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ABSTRACT. We devise a system of coupled incentives that stimulate economic
agents to coordinate their actions. The agents are price takers and their ac-
tions would be independent of one another (“uncoupled”) if incentives were not
implemented. The action coordination is expected to help a technology transi-
tion from the current one to a modern one. The latter is assumed environment
friendlier than the former. With the incentives in place, the problem becomes one
of a principal-(multi)agent game. In the game, the principal chooses instruments
sufficient to generate an environment friendly agent reaction.

We define a specific coupled incentive scheme (CIS), in which individual agents
are rewarded for their joint actions’ effect rather than for their own actions’ ac-
complishments. We show that a technology switch can be realised through CIS
for a budget, for which no technology change would be achieved if only individual
agent actions were compensated. We show under which conditions the agents’
game has a unique solution and what the principal’s choices are for the solution’s
implementation.
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1. INTRODUCTION

Implementation of environmental policies by the regional government often re-
quires the use of taxes and/or subsidies. It is frequently so that private agents
produce a public negative externality by using an outdated technology. However, it
is usually only the government that perceives it as negative. Adoption of subsidies
appears necessary if the government wants economic agents to switch from the old
technology to a modern one, which will be environment friendly.

The coupled incentive model discussed in the paper can be useful to analyse vari-
ous economic activities. However, the particular context for which it is developed is
in agriculture and concerns landscape changes. For example, if farms are composed
of pastures and of less cultivated areas (e.g., woods), the regional government might
be interested in grouping the less cultivated areas together. This would stimulate
the biodiversity of the region as wild animals would likely reproduce faster in “aggre-
gate wilderness” rather than in the scattered backwoods. From the farm economics
viewpoint, either landscape arrangement may be equally profitable for each farm.
However, the transition from the original field mix to the new one will be costly and
the farmers will require incentives to perform an exchange. We will call technology,

the regime under which a farm produces. It will be technology A under the original
1
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field mix; it will be a mixture of technologies A and B (or B only) after the field
swap, which might be partial or total.

A technology switch is not easy for an economic agent because of the new tech-
nology capital expenditure cost. In an idealised model, the old technology, which is
already there, can be maintained at no cost. If the change is going to happen the
agents need to be helped by the government to meet the transition cost.

This paper is concerned with a mathematical model of a subsidy allocation scheme
that should be useful for the government, which pushes for a technology change and
that disposes of limited means. We define the coupled incentive scheme (CIS), in
which individual agents are rewarded not only for their own actions but also for
their joint actions’ result. We show that, for the same cost incurred by the Regional
Government, a higher goal fulfillment is achieved through CIS, than by a plan, in
which only individual actions are compensated.

In proposing a specific CIS we will follow a couple of “natural” team building
postulates formulated by Itoh [1]. In particular, our system will introduce strategic
interaction between agents who otherwise would be action-decoupled and non coop-
erative. The incentive system will modify “their [agents’] attitudes toward perform-
ing [...] tasks” (see [1], p. 630). Also, the system will stimulate social interactions;
in particular faster (in transition) agents will be lobbying agents who are slow, at
no cost to the principal.

Mathematically, we will model the agent reactions to the principal’s signals as
a Nash equilibrium in a static non cooperative infinite game whose parameters are
controlled by the principal. The principal’s problem will be one of mathematical pro-
gramming with constraints, where the objective function is an environmental index
that depends on agents’ strategies. A constraint of the mathematical programme
will correspond to the regional government’s budget. We will also assume that the
government can observe agent actions at negligible cost.

The paper is organised as follows. In Section 2, we present a multi-agent model
and introduce a functional form for CIS. In Section 3, we concentrate on a game where
the agents are symmetric and prove the solution uniqueness. This case is obviously
simpler to solve than its non symmetric counterpart. However, in a competitive
economy, farms in a region do not differ substantially in size. This means that a
symmetric game solutions bear relevance to real life situations. For this case, we
prove the existence of a Nash equilibrium for the agent problem and we analyse the
cases where the equilibrium uniqueness is guaranteed. We show that our CIS can
motivate agents to perform a technology switch even if the government disposes of
a “small” budget only. In Section 4, we examine a non symmetric agent game. We
collect the conclusions in the Concluding Remarks.

2. A MULTI-AGENT PROBLEM

2.1. A coupled incentive scheme (CIS). Consider N (i = 1,2,... N) agents,
and a principal. The agents can cultivate their fields, each of surface s;, using
technology A (old) or B (new, environmental friendly) or both. A marginal revenue
m; from using either technology is the same but might be different for each agent.
A transition between the technologies is costly.

From the principal’s point of view technology B is superior because it generates
less of a negative externality. A local budget means M could be allocated to help



COUPLED INCENTIVES 3

agents to switch to technology B. We will devise an individual-and-collective incen-
tive system (a “comprehensive” coupled incentive scheme or CIS) capable of inducing
a maximal level of the technological change for a given level of M.

We will model the technology transition cost as the following quadratic function:

Cilri, 70, 81) = i (7 = 70)54)°

where 7 is the current percentage of technology B in use, 7; is the new level of use of
technology B and «; > 0 is a coefficient. However, we will suppose that the current
usage of technology B is negligible so TZ-O =0,

The assumption of the quadratic cost seems generally justified for small to moder-
ate 7;. However, it appears defendable for 7; € [0,1] in the landscape change context
where re-cultivation of large areas does not need to exhibit the large scale effect. (2)

The agents are price takers and their payoff function can be written as follows:
filri;7—i;u) = (mi(1 — 7)) +mim)si — Ci(73,0,8:) + 1L (u; 75, 7—)
2
(1) = mys; — oy (7i8i)” + i(u, 74, 74)

where a variable subscripted _; refers to the set of players that excludes player i.
Function IT;(u; 7;, 7—;) models a subsidy that an agent will receive if they dedicate
7;8; of their field to the new technology and u is a collection of the principal’s in-
strumental variables. The choice of II;(u; 74, 7_;) corresponds to an incentive scheme
adopted by the government and is the subject of study in this paper.

A natural incentive function may be one in which an agent is reimbursed for the
cost he incurs for implementing the new technology. As the cost is ¢; (TZ'SZ')2, the
government may consider paying a fraction u,u € [0,1] of this cost. Unfortunately,

(1-u)e (Tz'si)2;

which is the remainder and the farmer’s expenditure, is a convex function of 7;
minimised at 7; = 0. Therefore, if the government does not have enough funds to
finance the full programme (u = 1), the optimal agent reaction is null.

Suppose that the principal would like more than S of the entire cultivated area
E¢]i1 s; be dedicated to technology B. Presumably, this will be a substantially larger
area than a single agent disposes of i.e.,

N
S>> 8 V7, SSZSt
i=1
Suppose that u = [u, w, S] where u, w are the principal’s instruments that control
incentive primes that the principal can award to agents for their individual and
collective efforts, respectively. As above, symbol S denotes a minimum level of the
desired technology transfer area. We will design a comprehensive incentive function
IT; (w3 73, 7—;) such that for each agent not only

OI1;
ou

> 0 if >0

(WIf it was not, we would “re-scale” the problem and call the current technology mix a technology
A’; we will say that technology B is introduced if the mix has been changed.
) A logistic cost function might need to be considered.
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O1l;
ow

N
> 0 if 7—;>0 and Znsi>s.
1=1

Relationship (2) captures our objective to introduce a strategic interaction between
agents. In particular, each agent will be interested in the other agents’ partici-
pation in the technology transition programme. Henceforth, an incentive system
relying on II;(u; 7, 7—;) will promote inter-agent communication, and lobbying for
the new technology will eventuate without much of the principal’s influence. In that
sense, a system incorporating (2) will be more robust (i.e., insensitive to model and
information imperfections) than a purely individual incentive system.
We propose the following functional form for the incentive function II; where, as
said, u,w, S are principal’s instrumental variables:
N
(3) IL; (u, w, S; 74, T—i) = waoy(1is4)% + wmax(0, Znsi - 9).
i=1
According to (3), an agent will be reimbursed a proportion u of their technology
transfer cost and rewarded additionally if all agents’ joint effort has exceed S. The
function II; with parameters u, w and S will be announced to agents that will choose
their optimal participation levels 7* to maximise (1).
Notice that if w = 0, formula (3) represents an agent’s individual incentive func-
tion; for w > 0, it becomes an agent’s coupled incentive function. Also, function (3)
satisfies the postulates (2).

Result 2.1. The choice of the incentive function (3) guarantees that the payoff to
agent i grows in size of the area that agent j decided to cultivate in technology B, if
enough agents have decided to do it.

Obviously, the choice of an incentive function II; is non unique. The choice of (3)
is “reasonable” in that it guarantees the above result. However, one could argue that
small area agents can be given “disproportional” incentives because the second term
of (3) is common for all agents. A few counter arguments could be put forward: large
differences in area between farms are unlikely in a competitive economy; a large area
agents will always receive a greater reward because of the first term; finally, even if
some agents receive disproportional gains, who cares if this is done pro publico bono.

2.2. The mathematical formulation of the incentive scheme. Let [7],..., %]
denote the vector of the new technology optimal choices and let an environmental
index J be defined as

N
(4) J(ri, ..., TN U, w, S) EETi*Si-

i=1
The components of vector [77,...,7x] are agents’ optimal reactions to the princi-

pal’s instruments u, w, S and can be calculated as Nash equilibrium strategies in the
following game:

(5) 17 =arg max_fi(m, 7% ;u,w,S) 1=1,2,...N

Tie[():l]

We will show in Section 3 under what conditions the above equilibrium exists and
is unique.
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The principal’s problem whose budget for the technology switch is M > 0 might
be written as

6 find *Lw*, S*) = J(7 o TN S
( ) Tind (u s W, ) arguZO,IJ)ng(LSZO (7—1’ y TNy Uy, W, )
N
(7) and such that > TI;(u*,w", 8% 7}, 7;) < M

=1
where 7%, i =1,2... N satisfy (5) and
(8) fir), 7250w, 8) > m;s;.

We will call the problem (6) subject to (7), (5) and (8) the principal’s coupled
incentive optimisation problem (PCIOP).

Obviously, there will be a trade-off between the level of J and budget M. So, the
principal’s problem could be formulated as a bi-criterial optimisation problems as
follows:

(9) find (uw™ M G)

191 —1

N
such that J(rf,..., 75 uw/M w/™ S) >J and ZH,-(uJM,wJM,g;T* )< M
i1

where J, M would be the principal-defined satisfactory level of technology B imple-
mentation and an affordable budget, respectively. In other words, (u’/™, w/M S) are
the principal’s instruments that determine an efficient boundary of (J, M). Comput-
ing this boundary would enable us to propose a collection of satisfactory solutions
(see [2]) to the government problem.

Obviously, a different choice of the function IT; would lead to different solutions
to problems (6)-(7) and (9). In the remainder of this paper we will be concerned
with the coupled incentive function (3), agent game (5) and the principal’s problem
(6), (7).

We shall request the solution to (5) be unique i.e., the principal should know what
the agents’ reaction to u,w,S is. Otherwise the solution might be useless for the
principal. However, we can distinguish between two “levels” of uniqueness:

(ee) strong when the principal knows exactly what 7 Vi is associated with a given
set of instruments;

(¢) weak when the principal knows only which aggregate area va 7" s; corresponds
to a given set of instruments. Obviously,

(00) = (o)
and
(00) <> (o)

if all agents are identical. Notice that weak uniqueness is sufficient for the principal
to rest assured that a given set of instruments u, w, S generates an optimal value of

* * . * .
J(Tl,...,TN,'U;,’LU,S)— E Tis’L-
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3. THE SOLUTION TO A SYMMETRIC N-AGENT GAME

We first solve a symmetric N-agent game ie., when ®) oy = a = 1, 5; = s,
and m; = m. The relevance of this case stems from the fact that, in competitive
economies, no great variation among farms is expected in a geographic area.

3.1. A benchmark problem solution. The solution to (5) will depend on the
agent problem parameters (here, s only) and the principal’s instruments u,w,S.
Some combinations of the instruments may generate irrelevant solutions from the
principal’s point of view. To eliminate them from the discussion, we will first solve
a benchmark problem.

The benchmark problem consists of finding how much M} it would cost the prin-
cipal to entice the agents to do the full technology switch if the individual incentive
scheme only (w = 0) were applied. Any solution to (5) which would be more expen-
sive than M, or resulting, for the same My, in a smaller switch will be discarded.

Consider the individual incentive payoff function

(10) fi(ri, 7 4;4,0,0) = ms + (u— 1)72s>.

It is easy to see that payoff f; is maximised at 7* = 1 (i.e., the full technology switch
will take place and J = Ns) if it is a convex and increasing function of 7 € [0, 1].
This is true for u = 1 + € where € > 0. The cost to the principal is

(11) My = (1+¢)Ns?.

Evidently, if M < Ns? and w = 0 then 7; = 0, which means that no technology
switch is optimal. In the rest of this section, we will assume that the principal
disposes of M < Ns? (and bear in mind that s is in hectares and M in dollars). We
will show that, under CIS, a technology switch might be optimal.

3.2. Existence and uniqueness of Nash equilibrium in the agent problem.
In this section we prove several important facts about the equilibrium existence and
uniqueness. We can prove the following lemma.

Lemma 3.1. In the symmetric case, there exists a Nash equilibrium (5). For some
combinations of the agent problem parameters and principal’s instruments, the equi-
librium is unique and relevant (i.e., M < Ns? and f; > ms).

Proof. Remember that 7 denotes the optimal choice of agent i. Let u, w and

S < Zfil s; = Ns be fixed by the principal. Agents want to compute 7;° such that
it maximises their payoff function

N
(o _ _1\2.2 _
7 7y ' —11 7 7 - 7 -
(12) filri,m—isu,w, S) = ms + (u — 1)77s” + wmax (O E Tk Sk S)
k=1

(®)Notice that the coefficient o; = 1, which will disappear from notation, is not dimensionless.

Its dimension is [ if the area is measured in hectares. To preserve notation consistence we

ha? |’
will remember that the units of both u and (1 — u) are as above. If needed, we will use a coefficient

% = 1 whose dimension is [ ] to keep the “hidden” dimensionality of a; = 1 in a formula. A

ha?
similar problem occurs when we later assume s = 1. In that case, we will understand that m in $

rather than in [i] .
ha



COUPLED INCENTIVES 7

1. Suppose u > 1. Function f; is convex and increasing in 7; € [0, 1] so, 7 = 1 for
alli and f; = ms+(u—1)s? +w(Ns—S) > ms, however, M = (us?+w(Ns—
S))N > Ns?. Hence this solution is more expensive than the benchmark
problem’s.

2. Suppose u = 1.

(a) If w =0 then VS, f = ms, which is not sufficient to induce a technology
switch. Moreover, 7;* can be any value € [0, 1] so, the choice would be non
unique.

(b) If w > 0 then 7 = 1, for all ¢; the payoff value is f} = ms+w(Ns—S) >
m s, however, M = (s> + w(Ns—S))N > Ns?. Hence this solution is more
expensive than the benchmark problem’s.

3. Suppose u < 1. Here the study is more complicated because f; is piecewise
defined. We analyse 7; € [0, Nis) and 7; € [Nis, 1] separately.

(a) For all 7; € [Nis, 1], fi is a concave function with derivatives:
of:
(13) a—f = 2(u — 1)s27; + ws;
13
and
0 fi 2
(14) 57 2(u — 1)s2 < 0.
At
w
15 =
(15) 7 2(1 —u)s
which solves g—fj = 0, the payoff function is maximised. However, 7 can be
more than 1 so, 7;° is the projection of 7 onto interval [Nis, 1]. Each agent’s
payoff at 7 is
2N —1
(16) fi(Tu,w,S) =ms+w u—S , 1=1.N.
4(1 — u)
At the left and right ends of [Nis, 1] the payoffs are:
S S\° .
(17) fi m;u,w,S =ms— (1 —u) N) <™ i=1.N,
(18) fi(Lu,w,8) =ms — (1 —u)s®> +w(Ns—8), i=1..N

respectively. The latter can be greater than m s.
(b) If; € [0, Nis) the maximum of f; is achieved at 7 = 0 for all ; and f; = m s.

From “3a” and “3b” above we conclude that an equilibrium exists in the
agent problem (5) and can be 7 = min(7,1) or 7; = 0.
(i](\;__t))w -S> 0and —(1-u)s?+w(Ns—S) > 0, we obtain that
the unique equilibrium is given by 7* = min(7, 1) (7 = 0 is eliminated because
it gives an agent’s profit f;(0;-,-,-) = m s smiler than f;(7*;-,-,-) > m ).

In particular, if

O

We can draw several conclusions from the above lemma.
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i. Only 0 < uw < 1, w > 0 are the relevant instrument intervals. Indeed, u > 1
requires M > M, and w = 0 cannot generate f; > ms.
ii. If the principal has a “small” budget M % Mj and proposes u < 1,w > 0 and
(2N - Nw (1—u)s
S < 20— ) (but S # Ns "
77 =1, 7" =0 or 77 =7 depending on the parameter choice.
ili. Some of those equilibria will be relevant i.e., f; > ms and M < M,.

) there will be unique equilibria at

An illustration of how the optimal choice of a new technology can take place in
case of a two player symmetric game (with s = 1) is presented in Figure 1.
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FI1GURE 1. The choice of the maximising 7.

The two surfaces in the top panel represent agent net gains (f; — m) from a
technology switch. The dark plane is drawn at the zero gain level. The parameter
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u is fixed in this figure (u = .5). Another principal’s instrument S equals .2 on the
larger surface; § = 1.5 on the smaller surface. The coupled reward instrument w
varies between 0 and 2 and constitutes an “independent” variable.

Given u,S and w, an agent maximises their net gain by choosing 7*. Three
principal’s choices of w and the agent optimising 7* are illustrated in Figure 1.
The upper panel of Figure 1 shows these choices in 3D (where the axes are marked
w, T, f —m) while the bottom panel presents them in a two dimensional space of
7 and f —m. If w = 0, the agent chooses 7* = 0; if w = .5, the agent chooses
7 =.5; if w = .9, the agent chooses 7 = 1. We can see that depending on w (and,
obviously, S and u) the equilibrium selected can be 0,1 or 7.

We have not included in this example the principal’s constraint M < M. It will
restrict the v and w that the principal can propose to the agents. This constraint
is part of the principal’s problem and will be dealt with in the next section.

3.3. A solution to the principal’s problem. It follows from Lemma 3.1 that
if the principal disposes of M > Ns? then the technology transition is total with
u > 1, w =0 and S is irrelevant for this case. In other words, a rich principal does
not need a coupled incentive scheme.

It is interesting to see that if M < Ns? then a coupled incentive scheme with
(3), 0 <wu <1, w >0 and an appropriate S guarantees that a higher 7* is realised
than if, for the same M, an individual scheme with 0 < v < 1 and w = 0 was
implemented. Indeed, if w > 0 then 7* > 0 is given by (15); for w = 0, the non
transfer 7% = 0 is optimal.

Let us see now which u, w, S have to be chosen by the principal to entice the agents
to a technology switch. In other words, we are looking for the principal’s instruments
under which the agents modify their technologies, are better off (f; > m s) and the
principal’s budget is M < Ns2. From (15), (16) (see items 3.3a in Lemma 3.1’s
proof) we can see that the instruments u,w, S have to be such that

(19) 0<u<l,

(20) NESSQ(II—Uiu)s < 1
w 2 Nw

. N(“(m) *“’(m—s)) =

(22) s<]2vzl”7__u%)

The principal’s problem is then to maximise

Nw
23 J=—.
(23) 2(1 —u)
subject to (19)-(22).
Maximisation of (23) subject to (19)-(22) is a rather complicated nonlinear pro-
gramme, which does not need to possess a unique solution. Particular difficulties
may arise because of the first (right hand) and last constraints, which are strict
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inequalities. It is possible that local maxima of (23) would occur if (19) and/or (22)
were allowed to be active(®).

Definition 3.1. A satisfying solution to the principal’s problem is one for which
5)

all constraints are satisfied and the principal’s utility is positive® .

To compute a satisfying solution a slack variable §; needs to be added to (19) and
another slack variable 5 to (22). So, the system that defines the feasibility region
looks now as follows:

(24) 0<u+d <1,
(25) %52(1:)3 = L
(26) N@(ﬁ)aw(%—s)) < M,
(27) S+62§]2\;T7__f)

where §; > 0, §o > 0.

While the slack variables may look arbitrary, they are two new principal’s in-
struments and have a political-economic interpretation. The first slack variable §;
determines the maximum strength of the individual incentive (1 — d§1)7s. This is
the upper limit that can be paid to an agent because of his own commitment to a
technology switch. The second slack variable §, controls the minimum amount of
the net gain a player will earn by participating in the programme. Indeed, from (16)
and (27), it is evident that

(28) fi(T;u,w, S) —ms > whs.

Once the principal has determined the instruments (including the slack variables),
the solution to the symmetric agent game from Section 3.2, is strongly unique i.e.,
the principal knows that payoff (23) is realised through the unique choice of agents’
actions (15). We will now show what the relationship between instruments u,w, S
has to be so that the principal’s problem (max (23) s.t. (24))-(27)) possesses a
solution.

It is reasonable to consider the situations where the principal uses the entire
budget M to stimulate the agents i.e.,

2
w Nw
29 N — ———-S) | =M.
2 (“(zu—m) o5 ))
Moreover, it is technically easier to solve the principal’s problem (23,)(24)-(27) (with
equality (29)) by substituting 7 from (15) and solving the problem in u,7,S. We

(D This happens to be a fact as shown by numerical experiments carried out in Example 3.1
further down in this section.
®)Compare [2] .
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get that u,7, S have to satisfy
2N —1

0<u+6<1, S+ < TS, T <1,

(30)
(u+2N(1 —u))72s2 +28(1 — u)7s =

S

From (29) we obtain that
(u+2N (1 — u))72s2 — M/N
2(1 —u)Ts '
Using (31) we obtain that (30) is equivalent to
0<u+46 <1, 7<1

(31) S =

(32) (ut 2N —w)P’s? - M/N o 2N -1
2(1 —u)Ts -2

and, further, to

(33) 0<u+6d; <1, 20o7s(l —u)+r72s% < %

where the coefficient x has been added to stress that all variables have to be in
specific units ($ and hectares, in this case).
As inequalities will be saturated we obtain:

(34) w=1-04,

_ 1 [ 9o M
(35) T = s ( (5152+KN (51(52) .

Tt is evident from the above that 7 > 0 for §1,09 > 0. Moreover, for modest budgets,
T < 1. If the optimal technology switch 7 < 1 then the optimal collective incentive
parameter

L 20 o, M

while the optimal target area can be computed using (31). So, the principal’s prob-
lem can be solved by calculating the optimal instruments (u*, w*, S*) from (34), (36)
and (31), respectively. They will induce 7% = min(7,1) x100% technology switch
and the principal’s utility level

*_E 252 %_
(37) J* = - (\/51(52 -I-KIN (51(52) .

The above observations entitle us to formulae a rather general result.

Result 3.1. For symmetric agents, for every pair of (§1,02) € (0,1) X R4 and M <
Ns?, there exists a unique solution to the principal’s coupled incentive optimisation

problem PCIOP (defined on page 5).

To get a feeling for which political variables §1,d2 enforce what solution, and
through which instruments, we provide a numerical example.
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Example 3.1. Suppose that the principal needs to control two symmetric agents
whose field areas are s = 1. The principal disposes of budget M = 1.8. (If M = 2 the
total technology switch would be possible through an individual incentive programme.)
What are the optimal instrument values and what percentage of the fields will be
cultivated in the new technology after the technology switch?

Three pairs of d1,d2 were selected. Remember that a low value of §; corresponds
to a strong individual incentive signal. A low value of d2 suggests that agents are
sensitive to the difference f; — m and will react to small payoff improvements.

6 =6, &=.1, J'=1781, 7*=89.06%, fi—m=0.1069,
[u,w,S] = [0.4000 1.0686 1.2358].

§1=.2, 0o=.1, J"=18578, 7*=092.89%, f;i—m=0.0372,
[u,w,S] = [0.8000 0.3715 1.2933).

51 =.2, 8y=.8, J'=16042, 7*=80.21%, f;—m =0.2567,
[u,w,S] = [0.8000 0.3208 0.4031].

Assigning a larger budget (M = 1.9) generates a higher 7* as follows:

5 =.2, 6,=..8, J* =16554, 7" =82.71%, fi—m =0.2649
[u,w,S] = [0.8000 0.3311 0.4416].

In accordance with Result 3.1, even very small budgets can generate a technology
switch. Take M < .1 ; this generates

§1=.2, 6,=2.8, J' =07224, 7°=36.12%, f;—m=0.0678
[u,w,S] = [0.8380 0.1170 — 0.0380].

The negative S* = —.038 tells us that the agents would have been subsidised even if
7 = 0. However, that solution would not be optimal for the players and they would
choose 7 = 0.3612 . o

Parallel to the analytical solutions (34)-(37), (31) numerical solutions to the non-
linear programme max (23) s.t. (24)-(27) were calculated®). The results obviously
coincided, however, the numerical solution provided us with the information which
constraints were active. As expected, the first (right hand) (24), third (26) and
fourth constraint (27) were active while there was a slack on the other inequalities.
An additional feature of a numerical solution is the computation of the Lagrange
multipliers (not quoted here), which could help the principal to choose an appropri-
ate pair of d1, ds.

4. THE SOLUTION TO A TWO AGENT NON SYMMETRIC GAME.

Anecdotal evidence speaks against existence of substantially different size farms
in a geographic area where economic competition is allowed. However, our CIS could
be used even if there were non symmetric agents. We will show how CIS will operate
if there are two non symmetric agents (i.e., N = 2). There is nothing that could stop
us to apply CIS if N > 2, however, the analytical solutions become complicated.

(®)Matlab fmincon was used.
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4.1. Uniqueness of Nash equilibrium in the agent problem. We assume that
there are two agents whose cultivation areas and cost coefficients are essentially
different; for example consider:

s1 < 89, a1 > Qag.

The above relationships reflect the fact that larger farms tend to have lower unitary
costs. Considering other relations between cultivation areas and cost coefficients
would not impact the qualitative results.

We assume that the joint action reward from CIS has been paid to agents so,
S < 32| 7¥s;. This means that each agent i = 1,2 maximises

2
(38) filri, T—isu,w, S) = mis; + (u — l)aﬂfs? +w (Z TLSK — S)
k=1
at
w
39 T, = .
(39) Ti 20i(1 — u)s;

Notice that the first and second order conditions are satisfied at 7;.

We also assume that u < 1 for all ¢ = 1,2 which means that the principal does
not dispose of a large budget to stimulate the agents individually only. Notice (see
(39)) that u < 1 implies 7; > 0. Moreover 7; = 0 if and only if w = 0.

Suppose that the small budget excludes 7/ =1, ¢ = 1,2. If w = 0 then we have
that 7 = 7; = 0 is an optimal solution. For w > 0, we have that 7, = 7; if and only
if CIS is profitable for each agent i.e., f;(7;,7;,u,w,S) > m;s;. This means that

w? w?
4oi(1 — ) + 2a(1 —w)

for i = 1,2 and 7 # j. Because of a; > ag, these two conditions (for i = 1,2)
collapse(” to

1 1
(40) S<w(4a2(1—u) +2041(1—’U/)> '

Relationship (40) is a constraint that the principal’s instruments have to satisfy.

fi(Fia?j,uawaS) = m;s; + —wS > m;s;

4.2. A solution to the principal’s problem. As in the symmetric agent bench-
mark problem in Section 3.1 we can establish what the budget is that would allow
the principal to stimulate agents individually (i.e., w = 0) to perform the technology
switch. To achieve 7 = 1,7 = 1,2 and if w = 0, © > 1 is needed. In that case,
the necessary budget would have to be M > s? + s3. In the following we consider
“small” budgets M < M = s? + s3. So, the principal’s problem (PCIOP) is to find
u*, w*, S* such that maximise
2

2
(41) J = 2; T'8; = Z m

(MThis is because
1 " 1 S 1 " 1
dor(1—u)  2a2(1 —w) ~ da2(1—w) 201(1—u)
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(because 7 = T;), subject to (40) and

w
0< —/——<1, i=1,2
(42) < 20;(1 —u)s; = 77 Th

u((T151)%a1 + (Tos2)%as) + 2w(T181 + 7280 — S) = M < M.

Notice that VJ # 0 i.e., gradient J cannot be zero. This means that there is no
interior solution to the above maximization problem. Moreover, there is no boundary
solution because some of the above constraints are strict inequalities.

However, we can easily see that a number of satisfactory solutions exist i.e., such
that (40) and (42) are satisfied and J > 0 (see Definition 3.1). As in the symmetric
case we need to introduce slack variables to compute a satisfactory solution.

Before formally introducing slack variables let us identify a particular satisfactory
solution that is simple yet economically interpretable.

Example 4.1. Suppose no individual incentives will be paid to players so, u* = 0.
Consider S* and w* > 0 as follows

(1 1
(43) yzﬂ(—+—>
4 \o1 o9
This choice satisfies (40) because
w* (1 1 w* (1 2
44 Ay PLINL [P GLIRL N
( ) 4 (Oél—l_ag) < 4 (a1+a2)

If we substitute u* = 0 and S* in the budget equation, which is the last equation of

(42), we obtain:
2
* 1 1
M:W)(—+—)
4 (05} a9

M v M 1 1
(45) w* = 24) 1227 and St = ——y/—+ —.
a1 + a9 2 ap Qg
(46) = C¥1042M _ ijM _ i & M
¢ (a1 + ag)a?s? (1 +a2)ais? s\ i Vo +as’

Spending M € (0, M] guarantees 0 < 7} < 1.

This is an interesting solution. It tells us that, for a given budget M, players’
efforts are inverse proportional to their own cultivation areas. The efforts depend
also on the relative competitiveness of the players. For a given competitor’s cost
structure, the player’s effort increases as his cost coefficient diminishes (i.e., his
competitiveness improves).

As in the symmetric case, we can introduce slack variables into the strict inequality
constrains and solve the principal’s problem for various levels of the slacks. We add
01 > 0 to the left hand side if the first inequality of (42) to obtain
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with 0 < §; < ag. The other slack variable is §o > 0 and is involved in satisfying
(40). We put

w w

(48) S+ 0= 4o (1 — u) + 201 (1 —u)’

As in Section 3, the slacks §; > 0, d > 0 are the principal’s policy variables. The
first one determines the highest individual compensation and the second one controls
the gain a player can obtain from participating in the programme.

We need to satisfy (40) i.e.,

w N w
dag(l —u)  20q(1—u)’

0<S<

Using (48) and dropping S yields

w w
0< 6y < .
<RS- w T ma—w

Substituting (47) and (48) in the last equation of (42) (budget condition), we obtain:

(49) w? ((1 - 51)(2‘;%‘;222) + 204251> 2w = M
Introducing
A= (1 —01)(o1 + ag) + 20261 50
45%041042
we obtain

_ /ST AT A
(50) u* =1-— 4y, w* = o2+ XQ—I_MA

and S* resulting from (48). The corresponding values of 7, and J* can be computed
from (39) and (41); they are obviously greater than 0.

The above observations entitle us to formulae a result valid for a two player non
symmetric PCIOP.

Result 4.1. For two non symmetric agents, for every pair of (61,02) € (0, a2) X R+
and M < s? + s2, there exists a unique solution to the principal’s coupled incentive
optimisation problem.

Remark 4.1. [t is easy to see that if a1 = ag =1 we obtain

1
A= 267 w = 201(4/ 6302 + M /2 — §261).

That is, Results 3.1 and 4.1 coincide for a two player symmetric PCIOP.

Remark 4.2. Even if the principal could be satisfied with a weak solution (see page
5) a strong solution (39) for this asymmetric case was obtained. We conjecture that
this is a particular feature of the incentive function IL;(...) (3).
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5. CONCLUDING REMARKS

A team effort stimulating approach. We have presented a coupled incentive
scheme (CIS) useful for a principal who disposes of scarce financial means and wants
to induce a technological change among a group of followers.

We have proposed a subsidising method, which guarantees that joint agent actions
result in a higher utility to the agents themselves and to the principal than if the
same means were spent on individual incentives only. The method is practical in that
it is based on three interpretable instruments that can be easily communicated to
agents. The principal has also two policy variables that might be chosen depending
on idiosyncratic characteristics of the agents. For example, in some regions an
agent’s gain margin must be higher than in some other regions to stimulate the
effort.

The scheme application results are not only economical but also possess other
attractive features. For example, an agent’s effort increases if his competitiveness
improves. Also, because the collective reward depends on the other players’ be-
haviour, agents who are “slow” in the transition process will be lobbied to speed up
by their faster counterparts, without any additional cost to the principal.

Asymmetric information extension. CIS has been presented for a symmetric
information case. However, CIS can be useful even if the principal’s knowledge of
the agents’ models is limited. In that case, an iterative approach becomes obvious.
If a given instrument set brings no desired technology change, the principal will
revise the agent models and recompute the policy instruments.

A dynamic game extension. It is easy to see that CIS is applicable in case the

. . m;s .
agent’s payoff (1) comprises a future discounted profits 7 " where 0 < o < 1 is

the discount factor. Indeed, this term is independent of the policy instruments and
does not impact the optimisation procedure.
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