
Cournot Competition and Endogenous Firm
Size∗

Jason Barr†and Francesco Saraceno‡

Version 1 — Comments Welcome

May 31, 2004

Abstract

We model the firm as a type of artificial neural network that plays
a repeated Cournot game. Each period the firm must learn to map
environmental signals to both demand parameters and it’s rival’s out-
put choice. In this paper, though, this Cournot game is in the ’back-
ground,’ as we focus on the endogenous adjustment of network size.
We investigate the long-run behavior of firm/network size as a function
of profits, rival’s size, and the type of adjustment rules used.
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1 Introduction

In this paper we explore firm size dynamics, with the firm modeled as a
type of artificial neural network (ANN). Two firms/networks compete at two
different levels. The first level, which has been explored in detail in other work
(Barr and Saraceno (BS), 2004; forthcoming), looks at Cournot competition
between two neural networks. In this paper, this level of competition is
essentially in the shadows, while the main form of strategic interaction is in
regards to firm size. The firm, while playing the repeated Cournot game, has
to make long run decisions about its size.; and size not only affects its own
profits, but its rival’s profits as well.
Our previous research showed that firm size is a crucial determinant of

performance in an uncertain environment, but it was left exogenous. Here we
reverse the perspective: we take for given the learning process and the depen-
dence of firm profit on size and environmental complexity, and we endogenize
firm size in order and investigate whether simple adjustment rules succeed
in yielding the ”optimal” (defined as the result of a best response dynamics)
size. We explore the concept of firm size adjustment using simple adaptive
adjustment rules. The computational requirements needed to discover the
optimal firm size equilbria may be quite expensive; and thus we explore less
costly methods for adjusting firm size.
We find that using these simple rules can often produce rather complex

long-run behavior. We find that only under only very precise parameter
values does the firm converge to the actual Nash equilibrium size. And that,
in general, the firms using the simple rules actually have larger sizes but
lower profits in the long run. Thus in many cases satisficing behavior may
not produce optimal outcomes. But this deviation from optimality must be
analyzed in terms of the relative costs and benefits: simple rules are less
expensive to implement, but profits could be higher if the firm were close to
equilibrium size. While we don’t directly address this trade-off, we begin in
this paper by exploring the outcomes for firm size when firms use simple rule
of behavior.

1.1 Related Literature

Information Processing Organizations Our work relates to several
different areas. As discussed in detail in other works (BS, 2002, forthcoming),
our approach to using a neural network fits within the agent-based literature
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on information processing (IP) organizations (Chang and Harrington, forth-
coming). In this field organizations are modeled as a collection or network of
agents that are responsible for processing incoming data. IP networks and
organizations arise because in modern economies no one agent can process all
the data, as well as make decisions about it. The growth of the modern cor-
poration has created the need for workers who are managers and information
processors (Chandler, 1962; Radner, 1993).
Typical models are concerned with the relationship between the struc-

ture of the network and the corresponding performance or cost (DeCanio
and Watkins, 1998; Radner, 1993). In this paper, the network is responsi-
ble for mapping incoming signals about the economic environment to both
demand and a rival’s output decision. Unlike other information processing
models, we explicitly include strategic interaction: one firm’s ability to learn
the environment affects the other firm’s pay-offs. Thus a firm must locate
an optimal network size not only to maximize performance from learning the
environment but also but also due to its rival’s actions. In our case, the firm
is able to learn over time as it repeatedly gains experience in observing and
making decisions about environmental signals.

Evolutionary Theory and Routines A second area of literature that
relates to our work is that of the evolutionary and firm decision making mod-
els of Nelson and Winter (1982), Simon (1982) and Cyret and March (1963).
In this area, the firm is also boundedly rational, but the focus is not on infor-
mation processing per se. Rather, the firm is engaged in a myriad of activities
from production, sales and marketing, R&D, business strategy, etc. As the
firm engages in its business activities it gains a set of capabilities that cannot
be easily replicated by other firms. The patterns of behavior that it collec-
tively masters are know as its ’routines’ (Nelson and Winter,1982). Routines
are often comprised of rules-of-thumb behavior: continue to do something if
it is working, change if not.
In this vein, firms in our paper employ simple adjustment rules when

choosing a firm size. In a world where there is a lot of information to process
and where discovering optimal solutions are often computationally expen-
sive firms will seek relatively easier rules for behavior, ones that produce
satisfactory responses at relatively low cost (Simon, 1982).
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Complexity Theory and Firm Behavior The next area that over-
laps with our work is that of complexity theory (Puu, 2003). We show that
simple adjustment rules, based on satisficing behavior, can actually generate
very complex long-run dynamics. In fact, in a certain region of the para-
meter space, we find that firm size patterns can exhibit chaotic behavior in
the long run. Though, based on profitability, we have reasons to exclude
certain regions of the adjustment parameter space from being economically
plausible. Similar work in this area includes Currie and Metcalf (2001) who
show that prices can have chaotic behavior when firms employ relatively sim-
ple pricing, production and investment routines. Puu (2003) shows how a
monopoly’s output choices can be chaotic depending on the profit function,
and the parameters used in a simple output adjustment rule. Kopel (1996)
explore complex dynamics in the Cournot frame work to show how output
patterns are dependent on the functional form of the profit and best response
functions.

The rest of the paper is organized as follows. Section 2 discusses the
motivation for using a neural network as a model of the firm. Then, in section
3, we give a brief discussion of the set up of the model. A more detailed
treatment is given in the Appendix. Next, section 4 gives the benchmark
cases of network size equilibria. Section 5 discusses the heart of the paper—
the firm size adjustment algorithms and the results of the algorithms. Finally,
section 6 gives some concluding remarks.

2 Neural Networks as Models of the Firm

In previous work (BS, 2002; 2003) we argued that information processing is a
crucial feature of modern corporations, and that efficiency in performing this
task may be crucial in defining success and failure. We further argued that
when focussing on this aspect of firm behavior, computational learning the-
ory may give useful insights and modelling techniques. In this perspective,
it is useful to view the firm as a learning algorithm, consisting of agents that
follow a series of rules and procedures organized in both a parallel and serial
manner. Firms learn and improve their performance by repeating their ac-
tions and recognizing patterns (i.e., learning by doing). As the firm processes
information, it learns its particular environment and becomes proficient at
recognizing new and related information.
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Among the many possible learning machines, we focussed on Artificial
Neural Networks as models of the firm, because of the intuitive mapping
between their parallel processing structure and firm organization. Neural
networks, as other learning machines, generalize from experience to unseen
problems (as long as they are not too different), i.e., they recognize patterns.
Firms (and in general economic agents) do the same: the know-how acquired
is used in tackling new problems, at least as long it does not prove completely
inadequate.
What is specific of ANNs is the parallel and decentralized processing.

ANNs are composed of multiple units processing very simple tasks (on-off) in
parallel. The result of this multiplicity of simple jobs may be a very complex
task (as weather forecasting). In the same way firms are often composed of
different units working autonomously on very specific tasks, and coordinated
by a management that merges the results of these simple operations in order
to design complex strategies.
Furthermore, the firm, like learning algorithms, faces a trade-off linked to

the complexity of its organization. Small firms are likely to attain a rather
imprecise understanding of the environment they face; but on the other hand
they act pretty quickly and are able to design decent strategies with small
amounts of experience. Larger and more complex firms, on the other hand,
produce more sophisticated analyses, but they need time and experience
to do so. Thus, the complexity of the environment is a crucial element in
determining the optimal design of the learning machine. Likewise, the optimal
firm structures may only be determined in relation with the environment, and
it is likely to change with it. Unlike computer science, however, in economics
the search for an optimal structure occurs given a competitive landscape,
which imposes time and money constraints on the firm.
In our previous work we showed, by means of simulations, that the trade-

off between speed and accuracy generates a hump shaped profit curve, in
firm size (BS, 2002). We also showed that as complexity of the environment
increases the firm size that maximizes profit also increases. These results
reappeared when we applied the model to Cournot competition. We were
also able to show that environmental complexity affects the propensity to
cooperate of firms (BS, 2004). These results will constitute the background
of the present paper. Here, we will leave the Cournot competition and the
learning process in the background, and investigate how network size changes
endogenously.
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3 Setup of the Model

The setup of the neural network model is taken fromBS (2004) and BS (forth-
coming). Two firms compete in quantities facing a linear demand function
whose intercept is unobserved. Firms observe a set of environmental vari-
ables that are related to demand, and have to learn the mapping between
the two. But firms have to learn two variables: the demand intercept, and
their rival’s output choice. Appendix A gives the details of the model. Our
previous work shows that in general they are capable of learning how to map
environmental factors to demand, which allows the firms to converge to the
Nash equilibrium. We further showed that the main determinants of firm
profitability are, on one hand, firm sizes (i.e. the number of processing units
of the two firms, m1 and m2); and on the other environmental complexity,
that we modeled as being the number of inputs of the network, i.e., the
number of environmental factors affecting demand (n).
A few robust features of the learning process may be recalled here (the

reader is referred to BS (2004), and BS (forthcoming) for details about
the model and the results). (1) More complex environments yield, ceteris
paribus, lower profit for both competitors. (2) In general, firm profit is
hump shaped with respect to own size. A feature that reflects a trade-off
between speed and accuracy in the learning process (BS, 2002). (3) The
peak of the hump-shaped profit function, i.e. the optimal firm size, shifts to
the right when complexity increases. In other words, optimal size increases
in more complex environments.
These facts may be captured by a polynomial in the three variables (in

our previous work other variables affected profit, but here we hold them
constant):

πi = f(m1,m2, n) (1)

To obtain a specific numerical form for equation 1, we simulated the
Cournot learning process with different randomly drawn firm sizes (m1,m2 ∈
[2, 20]) and complexity (n ∈ [5, 50]), recording each time the profit of the two
firms. With such a data set we ran a regression, that is reported in table 1 in
the appendix (notice that the setup is symmetric, so that either firm could
be used).
The specific polynomial relating profits to size and complexity, that will

serve as the basis for our firm size dynamics, is given in equation (2).
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π1 = 287 + 7.53m1 − 0.81m2
1 + 0.031m

3
1 − 0.0005m4

1+

− 1.166m2+

− 2.954n− 0.015n2 + 0.00029n3+ (2)

− 0.34(m1m2) + 0.001(m1m2)
2 − 0.000002(m1m2)

3+

+ 0.079m1n+ 0.088m2n− 0.000035(m2n)
2 + 0.001(m1m2n)

These coefficients are plotted to give better insight. In Figure 1 we can see
how own and rival’s size affects a firm’s profits, for a particular environmental
complexity (n = 10). In general, profit is humped-shape in own size, and in
this case is declining in rival’s size. That is, as the rival increases size firm
1’s profits are lower.
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Figure 1: A firm’s profit versus network size and rival’s network size, n = 10.

Figure 2 shows the hump shape of profit with respect to own size. For
a particular complexity value, three curves are reported, corresponding to
small, medium and large opponent’s size.

7



200

220

240

260

280

prof1

2 4 6 8 10 12 14 16 18 20m1

Figure 2: A firm’s profit function vs own size (m2 = 2, solid line; m2 = 10,
crosses; m2 = 10, diamonds). n = 10.

4 Network Size Equilibria

In this section, as a benchmark, we discuss the firms’ best response function
and equilibria that arise from the game.

4.1 The Best Response Function

Given the functional form for profit, as shown in equation (2), we can derive
the best response function by setting the derivative of profit with respect to
size equal to zero, i.e., given each choice of rivals network size, there exists
(at least one) m∗

i , such that

∂πi
∂mi

= f 0 (m∗
i ,m−i, n) = 0 (3)

Notice however that the ’best response’ function is polynomial in mi and as
a result, there is generally more than one solution, and often some of the
solutions are complex numbers. Thus to solve for the best response function,
i.e., f 0 (m∗

i ,m−i, n) = 0, we perform the following steps: for each choice of
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rival’s network size m−i ∈ [2, 20] we solve equation (3), and we discard all
but the positive and real solutions (in our simulations there is always exactly
one positive, real value solution for each m−i). This then gives us a new
data set that gives a map between m−i and m∗

i . Figure 3 shows the best
response mapping for equation (2). In fact, in spite of the complexity of the
profit function, the best response is quasi-linear. Notice further the relation-
ship between the bet responses and environmental complexity: increasing
complexity shifts the best response function upward.

2

4

6

8

10

12

14

16

18

20

m1

4 6 8 10 12 14 16 18 20m2

Figure 3: Firm 1 best response functions (n = 10, solid line; n = 25, crosses;
n = 50, diamonds)

4.2 Equilibrium

Given the best response functions for each point, we can solve for the equi-
librium point. We find that there is always only one equilibrium, as it was
to be expected given the quasi-linearity of the best response functions. As
we can see in figure 4, the equilibrium firm size is about 5.8 nodes for each
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firm.1

For each complexity level, we are able then to solve for the equilibrium
value, i.e., the intersection of each firm’s best response function. In Figure
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10

m1

3 4 5 6 7 8 9 10m2

Figure 4: Size equilibrium is determined at the intersection of the two best
responses: m1 = br(m2) (solid line) and m2 = br(m1) (dashed line). n = 10.

5 we show the firm size equilibria and profits as a function of complexity.
As can be seen, firm size is increasing in complexity, while firm profits are
decreasing.

5 Adjustment Dynamics

As discussed above, firms face a large amount of information to process. In
standard economic theory, firms are assumed to understand how the world
functions. Meaning, they are assumed to know their cost functions, profit
functions, and the effect of a rival’s decisions on profits. But in a complex
world, with boundedly rational agents, the cost to discover such knowledge
is relatively high. As a result, firms learn as they engage in their activities
and use this knowledge to help guide them.

1For simplicity we ignore the integer issue in regards to firm size and assume that firm
size can take on any real value greater than zero.
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Figure 5: Network size equilbria and profits for each complexity level.

The knowledge that they have is acquired, in general, from following rel-
atively simple rules of behavior and general approximation schemes (Nelson
and Winter, 1982; Simon, 1982). That is to say, firms are not necessarily
concerned with what makes the world work the way it does, but rather are
concerned with learning the effect of general action-reaction type behaviors.
For example, two firms producing oil, are presumably not concerned with
actual mathematical Cournot functions, so much as they are concerned with
learning: ’if my rival produces so much oil and I don’t, what range of prices
can I expect to charge for my oil?’ In other words, the existence of a equi-
librium, for example does not lead to the simple assumption that firms will
know what this equilibrium is and then select the correct response. But
rather, in a world where information processing and knowledge acquirement
are expensive, firms may find it easier to behave according to simple rules of
actions, e.g., hire more workers if my profit is positive or higher more workers
if my profits are growing, etc.
For this reason, in this section, we explore simple dynamics for firm size;

dynamics that basically do not assume any greater knowledge on the part of
firms then simply being able to observe the effect of changing agents (nodes)
on profits. The best response function in section 4.1 is quite complex, and if
is assumed that the firm knows it; more specifically, it is assumed to know
the expect maximal profit obtainable for the entire range of a rival’s choice of
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network size.2 (Note also that the best response functions graphed above are
numerical approximations) But in a world in which production and market
conditions constantly change, past information may quickly become irrele-
vant. Meaning that even if a firm has perfect knowledge of its best response
function at a certain point in time, that function may quickly become out-
dated. That means that, even when in possession of the computational ca-
pabilities that are necessary to compute the best response, a firm may not
find it convenient to actually do it.
Using the profit function generated in section 3, we explore adjustment

dynamics for firms using rule-of-thumb type adjustment rules. As the level
of complexity in determining the equilibrium is quite complex, we assume
the following general adjustment dynamics:

mi,t = (1− ρ)mi,t−1 + βπi,t−1 + αIi [(m−i,t−1 −mi,t−1)(π−i,t−1 − πi,t−1)] (4)

where ρ ∈ [0, 1] is an exogenous ”quit rate” parameter; β represents the
sensitivity of firm size to profits; it captures the ”trend” growth of the firm,
that is linked to profit. The parameter α captures the ”imitation” factor
behind size adjustment; Ii is an indicator function taking the value of 1 if
the opponent’s profit is larger than the firm’s own one, and a value of 0 if
the contrary holds:

Ii =

½
1⇔ (π−i,t−1 − πi,t−1) > 0
0⇔ (π−i,t−1 − πi,t−1) ≤ 0

In case Ii = 1, then size will be adjusted in the direction of the oppo-
nents’. Thus, the firm will adjust towards the opponent’s size, whenever
it observes a better performance of the latter. Notice that if ρmi,t−1 >
βπi,t−1 + Ii [α(m−i,t−1 −mi,t−1)(π−i,t−1 − πi,t−1)] , then the firm will reduce
its size, regardless of the imitation effect sign, whereas if the contrary holds,
it will increase it.
We can think of the Cournot game as happening on a short term basis,

while the adjustment dynamics occurs on longer periods of time. Basically,
our questions is this section are: under what parameter choices using equation
(4) will firms reach the equilibrium level presented in Figure 4 and, what
kinds of behavior can we expect for firm size as a function of the parameter
space?

2A common assumption in game theory is that firms know the equilbrium and that
they know that their rival knows it, and they know that their rival knows they know it,
ad infitinum (Fudenberg and Tirole, 1996).
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5.1 Scenario 1: The Basic Case—The Isolationist Firm

Suppose that α = 0. Then each firm will only look at its own performance
when deciding whether to add or to remove nodes:

mi,t = (1− ρ)mi,t−1 + βπi,t−1(mi,t−1,m−i,t−1) (5)

Of course, this does not mean that the firm’s own dynamics is independent
of the other, as in fact πi,t−1 depends on both sizes at time t − 1. Suppose
further that size is below the Nash equilibrium value, m∗. Then, in order for
the algorithm to converge, we need to have that all along the path

πi,t−1(mi,t−1,m−i,t−1) >
ρ

β
mi,t−1,

and vice versa if mi,0 > m∗. The system will settle at the level given by the
solution of

mi,t = mi,t−1 = m∗ ⇒ m∗ =
β

ρ
πi(m

∗,m∗)

For the ‘basic’ analysis we assume that the two firms begin with 2 nodes each
(holding n = 10). This implies that their profits will be the same, and the
dynamics will be the same as well. We can then look at only one of them.
Further, in this scenario, we place no integer restrictions or value restrictions
on the nodes other than the number of nodes is set to 1, if the value becomes
less than one. We explore the parameter space for β (holding ρ constant)
and see how the number of nodes and profits evolve over the long run, i.e.,
we explore the limit points. Lastly, we investigate the relationship between
long run firm size and complexity (holding β constant.)

5.2 Scenario 2: The Imitationist Firm

In this case the contrary of the isolationist firm holds: each firm does not
simply care about its absolute situation, but rather about the comparison
with the other. For simplicity suppose that the quit rate and own profit
adjustment parameter are zero: β = ρ = 0. Thus,

mi,t = mi,t−1 + Ii [α(m−i,t−1 −mi,t−1)(π−i,t−1 − πi,t−1)] .

In this case, we also investigate the effect of complexity on long run firm size.
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5.3 Results

5.3.1 Scenario 1: The Basic Case

For n = 10, and two different values of ρ, the equilibrium is given by figure
6. Quite intuitively, the higher the dropout rate ρ, the lower the equilibrium
size.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

22

22.5

23

23.5

24

β

m

ρ = 0.1
ρ = 0.5

Figure 6: Equilibrium values of m1 = m2 as a function for β. Complexity is
fixed at n = 10. Two values for ρ are plotted.

On the other hand, a larger β also implies a larger steady state value.
The more reactive firms are to profits, the larger their long run value will be.
Notice that this steady state value is in general not reached by the firms

following the isolationist rule. In fact, as shown in figure 7,only for low values
of β(= 0.01) the convergence is monotonic and to a value larger than the
steady state level of figure 6. For larger values, firms sizes begin oscillating,
the oscillation being wider the larger the value of β.
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Figure 7: Isolationist firm size dynamics for different values of β.(ρ = 0.01,
and n = 10).

To explore the long run nature of the system given by equation (5), we
look at the steady state value as a function of β. Interestingly, over a certain
range of β we get complex dynamics, including chaos. Figure 8 gives the
bifurcation graphs for mj and figure 9 gives the average profits versus β.
The results show that for a firm to rely on a simply heuristic to choose a

level of firm size can result in cyclical and even chaotic behavior over time.
Looking at average profits, however, we see that profits are maximized for
the firm for a small value of β. And as β increases, profits become increasing
volatile and after some point turn negative. Thus relatively large values of
β will not be feasible in the long run. The maximum profit occurs when
β ∈ [0.00005, 0.00045].
Interestingly, however, the two firms will achieve the Nash equilibrium

firm size when at approximately β = 0.004.
With β = 0.004 and ρ = .01, we investigate the relationship between

complexity and firm size and profits. In Figure 10 we present the results of
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Figure 8: Bifurcation graph: Firm size versus β

this run.
Here we see a slight increase in both firm size and profits as we increase

complexity. Increasing firm size with complexity is something we also see in
the equilibria benchmark cases, but here we have increasing profits.

5.3.2 Scenario 2: The Imitationist

In this section we present the results from using the following adjustment
equation:

mi,t = mi,t−1 + Ii [α(m−i,t−1 −mi,t−1)(π−i,t−1 − πi,t−1)] .

In this case, the firm will no change its size if it has a larger profit, and it will
converge to the other if it has a smaller profit. Thus, we can say a number of
things before feeding actual parameter values. First, at each period, only one
firm moves. Second, at the final equilibrium, the two profits must be equal,
which happens when firm sizes are equal, but not necessarily only in this
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Figure 9: Average profits as a function of β

situation. For n = 10, suppose one firm begins small (m1 = 2), and the other
large (m2 = 15). The resulting dynamics depend on α, as shown in figure 11
It may be seen that increasing values of α add noise, up to the point where
firm sizes fluctuate. On the other hand, a too low value of α(= 0.01) does
not allow sufficient growth of the small firm to the point in which it attains a
profitable size and forces an adjustment of the competitor. For intermediate
values, on the other hand, the two firms converge to similar sizes. Increasing
complexity, somewhat changes the situation (figure 12, where n = 50). On
one side, larger firms are more profitable, so that smaller firms are pushed
to change more even for low levels of α. On the other hand, though, the
oscillatory region begins earlier, i.e. for lower values of α, with respect to the
case of simpler environments.
Lastly we look at the effect of complexity on long run firm size in this

scenario. Figure 13 presents the results
Interestingly we see that in this scenario, there is a bifurcation point at

about n = 38. At that point average profits also become negative (results
not shown). Thus we can conclude that the imitationist scenario, given our
parameter values is not sustainable in highly complex environments.
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Figure 10: Long Run Firm Size versus Complexity. β = 0.004, ρ = 0.01

6 Conclusion

This paper has presented a model of the firm as an artificial neural network.
In prior papers (BS, 2004; forthcoming) we have explored the relationship
between firm size, environmental complexity and rival’s size in a Cournot
game with uncertainty. There, sizes were exogenous parameters; in this paper
we explore the endogenous relationship between two firms long-run sizes. Via
regression analysis, we relate a firm’s profit yielded by the Cournot game,
with its own size, its rival’s size and the environmental complexity; we find it
to be a fourth-order polynomial. Using this profit function, we then generate
the firm’s best response functions in sizes and related equilibria as a function
of environmental complexity. These results are used a benchmark for the
core of the paper, which looks at long-run firm size based on two types of
dynamic, adaptive rules: the ’isolationist’ and the ’imitationist.’ If a firm
uses an isolationist rule it updates its firm size each period as a function of
its last period’s size and profits; ignoring it’s rival’s actions. The imitationist
rule has the firm adjusting its size based on last period’s size and comparison
with the rivals’ profits.
Using the relatively simple rules, interestingly, generates some complex

behavior. First we find that only under only very precise parameter values
does the firm converge to the Nash equilibrium size given by the best re-
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Figure 11: Firm dynamics for different values of α. n = 10, ρ = 0.

sponsed. And that in general, as a result of the dynamics, the firm’s are
larger, but also earn lower profits. Furthermore, we find that simple adjust-
ment rules are quite ’parameter sensitive.’ In fact, the long run firm size can
be either stable, oscillitory or chaotic depending on the values of the adjust-
ment parameters. If firm’s use the imitationist rule and start at different
sizes, then whether they converge to the same size or not is also a function
of the adjustment parameters. Lastly, the relationship between long run
firm size and complexity is shown for specific adjustment parameter values.
In general firm size (and sometimes profit) is increasing in complexity, but
sometimes in a highly non-linear way.
This paper is a first attempt to understand the implications that the

interaction of two complex systems (neural networks) can have for simple—
boundedly rational—adjustment rules. Since both the behavior of the net-
works, the corresponding profit functions and the adjustment rules are quite
complex, much work still needs to be done on exploring the robustness and
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Figure 12: Firm dynamics for different values of α. n = 50, ρ = 0.

generalizability of our findings. Furthermore, future work will seek to link
the findings with these models to stylized facts around firm growth and size
(i.e., the literature on Gibrat’s Law).
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Figure 13: Long Run Firm size versus complexity. β = 0, ρ = 0.
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Appendix

A Neural Networks

This appendix briefly describes the working of Artificial Neural Networks. For
a more detailed treatment, the reader is referred to Skapura (1996). Neural
networks are nonlinear function approximators that can map virtually any
function. Their flexibility makes them powerful tools for pattern recognition,
classification, and forecasting. The Backward Propagation Network (BPN),
that we used in our simulations, is the most popular network architecture. It
consists in a vector of x ∈ RN inputs, and a collection of processing nodes,
m ∈ IM , organized in layers.
For our purposes (and for the simulations) we focus on a network with

a single layer. Inputs and nodes are connected by weights, wh ∈ RN×M ,
that store the knowledge of the network. The nodes are also connected to
an output vector y ∈RO, where O is the number of outputs (2 in our case),
and wo ∈ RM×O is the weight vector. The learning process takes the form
of successive adjustments of the weights, with the objective of minimizing
a (squared) error term.3 Inputs are passed through the neural network to
determine an output; this happens through transfer (or squashing) functions,
like the sigmoid, to allow for nonlinear transformations. Then supervised
learning takes place in the sense that at each iteration the network output
is compared with a known correct answer, and weights are adjusted in the
direction that reduces the error (the so called ‘gradient descent method’).
The learning process is stopped once a threshold level for the error has been
attained, or a fixed number of iterations has elapsed. Thus, the working of
a network (with one hidden layer) may be summarized as follows. The feed
forward phase is given by

ŷ
1×O

= g

∙
g

µ
x
1×N

· wh

N×M

¶
wo

M×O

¸
where g(·) is the sigmoid function that is applied both to the input to the
hidden layer and to the output. And the error vector is:

ε =
©
(yj−ŷj)2

ª
, j = 1, ..., O

3The network may be seen as a (nonlinear) regression model. The inputs are the inde-
pendent variables, the outputs are the dependent variables, and the weights are equivalent
to the regression coefficients.
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Total error is then calculated:

ξ = ε0ε =
oX

j=1

εj

where y is the true value of the function, corresponding to the input vector
x.
This information is then propagated backwards as the weights are ad-

justed according to the learning algorithm, that aims at minimizing the total
error, ξ. The gradient of ξ with respect to the output-layer weights is

∂ξ

∂wo
= −2 (y− ŷ) [ŷ(1− ŷ)] g ¡x ·wh

¢
,

since for the sigmoid function, ∂ŷ/∂wo = ŷ(1− ŷ).
Similarly, we can find the gradient of the error surface with respect to the

hidden layer weights:

∂ξ

∂wh
= −2 £(y− ŷ) [ŷ(1− ŷ)] g ¡x ·wh

¢¤
wog0(x ·wh)x.

Once the gradients are calculated, the weights are adjusted a small amount
in the opposite (negative) direction of the gradient. We introduce a propor-
tionality constant η, the learning-rate parameter, to smooth the updating
process. Define δo = .5 (y− ŷ) [ŷ(1− ŷ)] . We then have the weight adjust-
ment for the output layer as

wo(t+ 1) = wo(t) + ηδog
¡
x ·wh

¢
Similarly, for the hidden layer,

wh(t+ 1) = wh(t) + ηδhx,

where δh = g0(x ·wh)δowo. When the updating of weights is finished, the
firm views the next input pattern and repeats the weight-update process.

B Derivation of the Profit Function

This appendix briefly describes the process that leads to equations 1 and 2,
that in the present paper is left in the shadow. Details on the model can be
found in BS (forthcoming).
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B.1 Cournot Competition in an Uncertain Environ-
ment

We have two Cournot duopolists facing the demand function

pt = αt − (q1t + q2t) .

where αt changes and is ex ante unknown to firms. Assume that production
costs are zero. Then, the best response function, were αt known, would be
given by

qbrj =
1

2
[α− q−j] ,

with a Nash Equilibrium of

qne =
α

3
, πnej =

1

9
α2.

When deciding output, firms do not know α, but have to estimate it. They
only know that it depends on a set of observable environmental variables
x ∈ RN :

αt = α(xt)

where α(·) is unknown. Each period, the firm views an environmental vector
x and uses this information to estimate the value of α (x) .
To measure the complexity of the information processing problem, we

define environmental complexity as the number of bits in the vector, N ,
which, ranges from a minimum of 5 bits to a maximum of 50. Thus, in each
period:

1. Each firm observes an environmental state vector x.

2. Based on that each firm estimates a value of the intercept parameter,
α̂j. The firm also estimates its rival’s choice of output, q̂j−j, where q̂

j
−j

is firm j0s guess of firm −j0s output.
3. It then observes the true value of and α, and q−j, and uses this infor-
mation to determine its errors using the following rules:

ε1j = (α̂j − α)2 (6)

ε2j =
¡
q̂j−j − q−j

¢2
(7)
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4. Based on these errors, the firm updates the weight values in its network.

To summarize, the neural network is comprised of three ’layers’: the envi-
ronmental data (i.e., the environmental state vectors), a hidden/managerial
layer, and an output/decision layer. The ’nodes’ in the managerial and de-
cision layers represent the information processing behavior of agents

This process repeats for a number T = 250 of iterations. At the end, we
can compute the average profit for the two firms as

πi =
1

T

TX
t=1

qit(αt − (q1t + q2t)). (8)
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C Regression Results for Profit

Equation 2 was derived by using the model described in the preceding appen-
dix. We built a data set by making random draws of n ∈ [5, 50], mi ∈ [2, 20].
We ran the Cournot competition process for T = 250 iterations (random
initial conditions were appropriately taken care of by averaging over multiple
runs). We recorded average profit for the two firms computed as in eq. 8, and
the values of m1, m2, and n. This was repeated 10000 times, in order to ob-
tain a large data set. We then ran a regression to obtain a precise polynomial
form for profit as a function of sizes and environmental complexity. Table 1
gives the complete results of the regression, that is reflected in equation 2.

Dependent Variable: 10000 ∗ π1
Variable Coefficient Std. Error t-Statistic

Const 287.505 1.947 147.64
m1 7.530 0.674 11.17
m2 -1.166 0.105 -11.15
n -2.954 0.122 -24.23
n2 -0.015 0.004 -3.61
n3 0.00029 0.00005 6.02
m2
1 -0.812 0.104 -7.83

m3
1 0.031 0.007 4.65

m4
1 -0.0005 0.00015 -3.08

m1 ∗m2 -0.340 0.021 -16.24
(m1 ∗m2)

2 0.001 0.00009 10.75
(m1 ∗m2)

3 -0.000002 0.00000015 -10.35
m1 ∗ n 0.079 0.003 25.81
m2 ∗ n 0.088 0.005 18.34
(m2 ∗ n)2 -0.000035 0.000003 -12.00
m1 ∗m2 ∗ n 0.001 0.0003 3.36
R-squared 0.8799 Mean dependent var 225.44
Adjusted R-squared 0.8797 S.D. dependent var 23.79
Nobs.: 10,000 S.E. of regression 8.25

Table 1: Profit function for firm 1. White Heteroskedasticity-Consistent
Standard Errors.
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