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Abstract
This paper proposes a model of endogenous fluctuations in investment. A

monopolistic producer has an incentive to invest when the aggregate demand
is high. This causes a propagation of investment across sectors. When the
investment follows an (S,s) policy, the propagation size can exhibit a significant
fluctuation. We characterize the probability distribution of the propagation size,
and show that its variance can be large enough to match the observed investment
fluctuations in a partial equilibrium of product markets. We then implement this
mechanism in a dynamic general equilibrium model to explore an investment-
driven business cycle. By calibrating the model with the SIC 4-digit level industry
data, we numerically show that the model replicates the basic structure of the
business cycles.

1 Introduction

This paper concerns a propagation mechanism in investment across sectors. The large
fluctuation in investment is often considered as a driving force of business cycles. Also
the investment fluctuation is characterized by the synchronized oscillation across sec-
tors. We propose a model of investment propagation which quantitatively explains this
phenomenon and identifies the parameters at work.

∗This paper is based on my Ph.D. dissertation submitted to Department of Economics, University
of Chicago. I am grateful to Lars Hansen, Fernando Alvarez and José Scheinkman for their advice. I
have benefited from comments by Samuel Bowles, Doyne Farmer, Xavier Gabaix, Jess Gaspar, Luigi
Guiso, John Leahy, Toshihiko Mukoyama, Andrea Tiseno, and Hiroshi Yoshikawa.
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The sectors are linked each other by derived factor demand when each sector uses
other sectors’ product as intermediate inputs. Their interaction forms a positive feed-
back in capital adjustments in the network of input-output relations. Suppose that
a capital adjustment takes a form of discrete decision. Then there is a chance of a
chain-reaction of investment in which an investment in one sector triggers an invest-
ment in another sector, and so on. This chain-reaction turns out to be represented by
a branching process in a partial equilibrium of product markets. We then find that
the total size of the chain-reaction can exhibit a very large variance in some parameter
range.

Quantitatively, we ask the following question: given the magnitude of sectoral os-
cillations in the U.S. economy, how do the sectoral fluctuations add up to the aggregate
fluctuations? It is immediately clear that just summing up the independent series of
the sectoral oscillations do not amount to the aggregate fluctuations observed in the
U.S. production. There must be some sectoral comovements. Simulations show that
the general equilibrium path of our model matches the magnitude and pattern of the
aggregate fluctuations observed in the U.S. when the responses of real wage and real
intrest rate to aggregate production are modest.

This paper casts a new perspective on the much discussed issue of investment fluctu-
ations. Traditional macroeconomics as well as the benchmark real business cycle theory
supposes the aggregate shocks, such as money supply, aggregate productivity, or animal
spirits of investers, as the fundamental shock. Without apparent evidence of such aggre-
gate shocks as the consistence cause of business cycles (Cochrane (1994),Christiano and
Fitzgerald (1998)), however, the literature is in search of the mechanism which prop-
agates and amplifies the shocks on disaggregated parts of economies (Shleifer (1986),
Horvath (2000), Gabaix (2004)). The disaggregated model of the aggregate fluctuations
turns out to face the law of large numbers: the tendency that disaggregated shocks can-
cel out each other. In many models the tendency is so strong that a realistic magnitude
of an individual shock does not generate aggregate fluctuations large enough to match
the data. For example, Long and Plosser (1983) show that a general equilibrium model
can in principle generate comovement across sectors when sectors bear idiosyncratic
productivity shocks. In a successive research, however, Dupor (1999) establishes that
their model cannot generate the aggregate fluctuations unless the individual shock is
of order the size of the number of individuals in the economy.

This paper shows that the law of large numbers can be overcome. We show that the
propagation distribution in our model has a heavier tail than the normal distribution
which characterizes a large class of aggregative models. The propagation also exhibits
critical fluctuations in which the variance of aggregate growth rates does not converge
to zero when the number of sectors in the economy tends to infinity in the limiting case
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at which wage and interest rate are determined independently from the product market.
This proposition assures that any plausible magnitude of aggregate fluctuation can be
obtained in our model when the price response to aggregate product is sufficiently slow.

Another line of research on investment fluctuations focused on the endogenous
fluctuations which result from non-linearity of economic dynamics. The models of
multiple equilibria, chaos, or self-fulfilling expectation show the possibility that the
aggregate fluctuations occur in a deterministic environment of economic fundamentals
if the non-linearity is sufficiently strong. This paper explores a new approach along this
line, in which an interaction of many small non-linear behaviors causes a deterministic
fluctuation. We suppose that individual sectors follow a deterministic pattern of capital
oscillations with occasional large adjustments and periods of inertial depreciation. The
sectors monopolistically compete each other, so an increase in production in a sector
induces other sectors to increase their production (and cut prices). Thus the timing of
occasional capital adjustments may be endogenously synchronized. This interrelation
makes the product markets a multi-dimensional non-linear dynamical system which
in principle is capable of generating an endogenous complex fluctuation. The result
obtained here can be seen as a generalization of the critical fluctuations demonstrated
by Bak, Chen, Scheinkman, and Woodford (1993) in particular. They show a power-law
distribution of production propagation in a network of locally interacting producers.
We implement a similar propagation mechanism in an equilibrium model of globally
interacting sectors. We find that a power-law distribution appears at a limiting case,
and near the limit any magnitude of fluctuation is observed for a system of a large
number of individuals.

This paper addresses the question of whether a micro discrete choice, in partic-
ular an (S,s) behavior, is relevant in aggregate fluctuations. The seminal paper by
Doms and Dunne (1998) found that an establishment level capital is adjusted only
occasionally but by a jump in size. A series of research, among others Cooper, Halti-
wanger, and Power (1999), has stressed the role of the lumpy adjustments played in
business cycles. Theoretical and numerical studies on aggregation of (S,s) behaviors,
for example Caplin and Spulber (1987) and Caballero and Engel (1991), have largely
found that such an individual lumpiness does not contribute to aggregate fluctuations.
Again, the law of large number is the logic: the individual lumpiness tends to cancel
out each other. To the contrary, this paper shows that the (S,s) behavior can generate
a considerable magnitude of aggregate fluctuations. In fact, the fluctuation is scale
free, in the sense that the variance does not depend on the number of agents, at the
limiting case when the wage and interest rate are determined independently from the
product markets. The propagation size exhibits a power-law distribution whose mean
and variance diverge. This implies that, if there are numerous establishments in an
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economy, their lumpy investments generate stochastic synchronization which results in
a considerable aggregate fluctuation.

After establishing the analytical results on the propagation distribution in a partial
equilibrium setup, we simulate a general equilibrium calibrated by a finely disaggre-
gated sectoral data to examine under what conditions the model generates the right
magnitude of fluctuations. As argued by Thomas (2002), the general equilibrium effects
via wage and interest rate dampens the fluctuation effects due to the (S,s) behavior.
We first identify this dampening effect by using approximated price functionals, and
then simulate the exact general equilibrium path. Simulations show that the right mag-
nitude of fluctuations is obtained when the intertemporal substitution of consumption
as well as leisure is large. We also show that the autocorrelation and correlation struc-
ture of the production and demand components matches the empirical business cycle
patterns.

The rest of the paper is organized as follows. The next section presents the model of
investment propagation and the analytical propositions in a partial equilibrium setup.
Section 3 numerically examines the quantitative properties of the propagation and the
business cycle fluctuations by explicitly incorporating the consumer’s behavior. Section
4 concludes the paper.

2 Model of Investment Propagation

In this section we focus on the inter-industrial equilibrium relations in the product
market provided with the other prices, namely wage and interest rate. The product
market consists of N monopolists and a representative household. Each monopolist j
produces a differentiated good Yj, using capital Kj and labor hj.

Let us specify the production technology by a constant returns to scale Cobb-
Douglas function: Yj,t = Kα

j,t(Athj,t)
1−α, where At is a labor-augmenting technology

parameter which grows at rate g. We consider a balanced growth path where Yj,t,
Kj,t, and consumption Ct grows at rate g and ht stays constant. Let us normalize the
variables by a growth factor At as yj,t ≡ Yj,t/At, kt ≡ Kj,t/At, ct ≡ Ct/At, ij,t ≡ Ij,t/At,
etc. Then the production function is written in the normalized terms as:

yj,t = kα
j,th

1−α
j,t . (1)

The capital is accumulated over time as:

gkj,t+1 = (1− δj)kj,t + ij,t (2)
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where δj is an industry specific depreciation rate. Investment ij,t is a composite good
produced by combining all the goods symmetrically as:

ij,t = N1/(1−ξ)(
N∑

l=1

(zI
l,j,t)

(1−ξ)/ξ)ξ/(1−ξ) (3)

where ξ > 1 is the elasticity of substitution between inputs in the production of invest-
ment good.

We assume that the investment rate is chosen from a discrete set. Specifically, we
assume that:

ij,t/kj,t ∈ {(1− δj)(λ
κt
j − 1)}κt=0,±1,±2,... (4)

where λj > 1. Note that the choice space for kj,t is indepent of the path: kj,t ∈
{((1 − δ)/g)tkj,0λ

κ̃t
j }κ̃t=0,±1,±2,.... The assumption implies that the next period capital

kj,t+1 has to be either the naturally depreciated level kj,t(1− δj)/g or its multiplication
or division of λj. By this assumption, the producer is forced to invest in a lumpy
manner. Thus this constraint is a shortcut for the lumpy behavior which typically
occurs when a fixed cost incurs in investment. This is the only modification from
the usual model of monopolistic economies. The main objective of this paper is to
examine the aggregate consequence of a non-linear behavior of producers induced by
the discreteness constraint.

Let pj,t denote the price of good j at t. Define a price index pt ≡
(
∑N

j=1 p1−ξ
j,t /N)1/(1−ξ) and normalize it to one. Let wt denote a real wage for an ef-

ficiency unit of labor. Then the monopolist’s profit (normalized by At) at t is written
as:

πj,t ≡ pj,tyj,t − wthj,t −
N∑

l=1

pl,tz
I
l,j,t (5)

The demand function for good j is derived by usual procedure as in Dixit and
Stiglitz (1977). Let us suppose that the representative household has a preference over
the sequence of consumption and labor:

∞∑
t=0

βtU(Ct, ht) (6)

where Ct = Atct is a composite consumption good produced identically as the invest-
ment good:

ct = N1/(1−ξ)(
N∑

l=1

(zC
l,t)

(1−ξ)/ξ)ξ/(1−ξ). (7)
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The representative household maximizes the utility function subject to the sequence
of budget constraints:

N∑
j=1

pj,tz
C
j,t = wtht +

N∑
j=1

((πj,t + qj,t)vj,t − qj,tvj,t+1). (8)

where vj,t is the stock holding for firm j and qj,t is its price.
The cost minimization of the consumer given the level of consumption Ct implies

zC
j,t = (pj,t/pt)

−ξct/N . Similarly, the derived demand for good j by the monopolist
l given the level of investment il,t is obtained as zI

j,l,t = (pj,t/pt)
−ξil,t/N . With the

equilibrium condition for good j, yj,t = zC
j,t+

∑N
l=1 zI

j,l,t, these yield the demand function

for good j as: yj,t = (pj,t/pt)
−ξ(ct + it)/N where it ≡

∑N
j=1 ij,t. Define a production

index yt ≡ N1/(1−ξ)(
∑N

j=1 y
(ξ−1)/ξ
j,t )ξ/(ξ−1). Then we have relations

∑N
j=1 pj,tyj,t = ptyt,∑N

j=1 pj,tz
C
j,t = ptct, and

∑N
j=1 pj,tz

I
j,l,t = ptil,t. Combining with the consumer’s budget

constraint (8) and the equilibrium condition for labor, ht =
∑

j hj,t, we obtain the
demand function:

yj,t = (pj,t/pt)
−ξyt/N (9)

The monopolist maximizes its discounted future profits as instructed by the rep-
resentative household. The discount rate, r−1

t , is the intertemporal ratio of marginal
utility of consumption. Then the monopolist’s problem is defined as follows.

max
{yj,t,kj,t+1,hj,t,ij,t,zI

l,j,t
}

∞∑
t=0

(r1 · · · rt)
−1Atπj,t = A0

∞∑
t=0

(r1 · · · rt)
−1gt(pj,tyj,t−wthj,t−

N∑
l=1

pl,tz
I
l,j,t)

(10)
subject to the production function (1,3), the capital accumulation (2), the discreteness
of investment rate (4), and the demand function (9).

Let us define the aggregate capital index kt as follows.

kt ≡ (
N∑

j=1

k
α(ξ−1)/(ξα+1−α)
j,t /N)(ξα+1−α)/(α(ξ−1)) (11)

By using the optimality condition for hj,t, the profit at t is reduced to a function of
(kj,t, kj,t+1) as:

πj,t = D0w
(α−1)/α
t k

1/(ξα+1−α)
t k

α(ξ−1)/(ξα+1−α)
j,t − gkj,t+1 + (1− δj)kj,t (12)

where D0 ≡ (1 − (1 − 1/ξ)(1 − α))((1 − 1/ξ)(1 − α))(1−α)/α. The discounted sum of
the profit sequence is concave in kj,t. Thus the optimal policy is characterized by an
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inaction region in kj,t with a lower bound k∗j,t and an upper bound λjk
∗
j,t. Consider two

sequences of kj,s which are identical except at t. Such sequences can be constructed by
assigning a positive investment at t− 1 and zero investment at t in one sequence and
zero investment at t − 1 and a positive investment at t in the other. Then the lower
bound of the inaction region is derived by solving for k∗j,t at which the two sequences
yield the same discounted profit. Namely, if kj,t is strictly less than k∗j,t, the producer
is better off by adjusting it upward rather than waiting. Let one sequence with zero
investment at t − 1 and one tick of investment at t have kj,t = k∗j,t, and let the other
sequence have kj,t = λjk

∗
j,t. Then the both sequences have the same amount of capital

at t− 1 and t + 1: kj,t−1 = (g/(1− δj))k
∗
j,t and (λj(1− δj)/g)k∗j,t. Solving for k∗j,t which

equates the discounted profits of the two sequences, we obtain:

k∗j,t = Dj(w
(1−α)/α
t (rt − 1 + δj))

−(ξα+1−α)kt (13)

where Dj ≡ ((λ
α(ξ−1)/(ξα+1−α)
j − 1)D0/(λj − 1))ξα+1−α.

Equation (13) expresses the feedback relation from the mean capital level kt to the
threshold for an individual capital level kj,t. Note that the feedback effect on kj,t is non-
linear because of the threshold behavior. The mean capital level kt affects the threshold
of the inaction region, but it may or may not induce the adjustment of kj,t. Also note
that the effect on the inaction region is linear. This implies that, in the situation when
an individual capital adjustment occurs continuously (λj → 1), the feedback effect
from the mean capital to an individual capital is linear. The linear feedback means
that the individual capital moves proportionally to the mean capital level. These two
observations are summarized as local inertia and global strategic complementarity of
the individual behavior. The individual capital is insensitive to a small perturbation in
the mean capital level, while it synchronizes with the mean capital if the perturbation
is large.

The global strategic complementarity is perfect in a sense that the percentage
changes coincide in an individual and mean capital. We will show shortly that this
perfect complementarity induces a large fluctuation in propagation of capital adjust-
ments. The perfect complementarity results from the constant returns to scale of the
technology. This point is shown as follows. Consider an identical economy as above
except for that the production incurs only capital as in Yj = A1−θ

j Kθ
j . Then the lower

bound of the inaction region of capital is shown to be proportional to k
1/(1+ξ(1/θ−1))
t .

The lower bound is linear in kt only when the returns to scale is constant (θ = 1).
The strategic complementarity is less than or more than proportional depending on
whether the returns to scale is diminishing or increasing.

For simplicity, let us for a while focus on this feedback network of producers in
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the product markets while abstracting the rest of the economy by assuming that the
equilibrium wage and interest rate only depends on the mean capital level. We come
back to the equilibrium price functionals in Section 4. Suppose that the equilibrium
wage and interest are approximated by constantly elastic functions of the mean capital
kt in the vicinity of arbitrary chosen levels (most naturally the time-average) of wage,
interest, and mean capital w̃, r̃, k̃:

(rt − 1 + δj)/(r̃ − 1 + δj) = (kt/k̃)θr (14)

wt/w̃ = (kt/k̃)θw (15)

This is a partial equilibrium assumption when θr = θw = 0 in particular. By assuming
(14–15), the threshold (13) is simplified as:

k∗j,t/k̃
∗
j = (kt/k̃)φ (16)

where k̃∗j is the threshold corresponding to (r̃, w̃, k̃), and φ represents the strategic
complementarity between the individual and mean capital:

φ = 1− (αθr + (1− α)θw)(ξ − 1 + 1/α) (17)

Note that φ is less than one. This implies that the strategic complementarity between
producers is decreased from the perfect complementarity due to the equilibrium re-
sponse of the wage and interest rate. The wage and interest rise in our approximation
when the production is higher than the time average level. This price response works
as a dampening factor in the investment propagation.

The equilibrium of the product markets is given by a capital profile which satisfies
kj,t ∈ [k∗j,t, λjk

∗
j,t]. This condition allows multiple equilibria in general. Here we employ

best response dynamics as an equilibrium selection algorithm. Suppose that a prede-
termined capital kj,t resides in the inaction region. The next period capital kj,t+1 only
decreases by depreciation and technology progress unless adjusted. In the first step of
the best response dynamics, the producers adjust capital by λj if their capital levels
go below k∗j,t given kt. Note that, assuming δj + g < λj, the adjustment never exceeds
λj. In the second step, kt is calculated by a new capital profile, and the producers
adjust their capital responding to the revised kt. We repeat this procedure until the
capital profile converges. The adjustments after the second step can be upward or
downward, depending on whether the first step upward adjustments by some produc-
ers weigh more or less than the inertial depreciation of overall capital. Let us formally
define the best response dynamics as follows. Set the initial point of the dynamics as
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k0
j,t = kj,t(1 − δj)/g and k0

t = kt. Succeeding mean capital ku
t is defined by the profile

ku
j,t. Then ku

j,t, u = 0, 1, . . ., evolves according to the (S,s) rule:

ku+1
j,t =


λjk

u
j,t if ku

j,t < k∗uj,t

ku
j,t/λj if ku

j,t > λjk
∗u
j,t

ku
j,t otherwise

(18)

We can show that this dynamics converges at a finite stopping time T with probability
one when N → ∞. Thus the best response dynamics is a valid equilibrium selection
algorithm. Then we define the converged point as an equilibrium capital profile at
t + 1, namely, kj,t+1 = kT

j,t.
The best response dynamics is a realistic equilibrium selection mechanism in a sit-

uation where many agents interact each other, as Vives (1990) argues. All information
needed for an agent to make decision is the prices and the mean capital level. This
selection mechanism precludes big jumps that occur due to the informational coordi-
nation among agents. In this sense, the best response dynamics selects an equilibrium
path that is least volatile among possible equilibrium paths.

The aggregate investment fluctuates along the equilibrium path depending on the
evolution of configuration of the capital profile in the inaction region. To evaluate the
magnitude of fluctuations analytically, we regard the capital configuration as being a
random variable that takes values within the inaction region. Specifically, we assume
that the position of an individual capital relative to the lower bound of its inaction
region (in log-scale) follows a uniform distribution independent across sectors.1 The
uniformity assumption has an analytical ground. It is known that a variable which
grows linearly and is controlled by an (S,s) policy converges to a uniform distribution in
the (S,s) band when the initial value is random. See Engel (1992) for the mathematical
reference and also Nirei (2003) for a rigorous treatment in our specific economic model.

Define a producer’s position in an inaction region as sj,t = (log kj,t− log k∗j,t)/ log λj.
We assume for a while that λj and δj are common across j. Define m0 = N(log k1 −
log kt)/ log λ where k1 is the mean capital at the first step of the best response dynamics.
At the first step, all capital is depreciated by (1− δ)/g and some producers increased
capital due to the direct effect of the depreciation. Thus m0 indicates the deviation of
mean capital growth from the time average level in the unit of the number of producers
at the first step of the adjustment process. Also define W = N(log kt+1− log kt)/ log λ.
W indicates the deviation of mean capital growth from the time average level in the
unit of the number of producers in the entire best response dynamics. Define µ =
| log((1− δ)/g)|/ log λ. Here we place our main analytical proposition.

1See Nirei (2003) for the case in which the distribution is not uniform.
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Proposition 1 Suppose that λj and δj are common across j. Suppose that sj,t is
a random variable which follows a uniform distribution independently across j. Then
m0/

√
N asymptotically follows a normal distribution with mean zero and variance µ(1−

µ). Let m be a positive integer. |W | conditional to |m0| = m follows a distribution
function asymptotically as we take ξ → 1 first and then N →∞:

Pr(|W | = w | |m0| = m) = (m/w)e−φw(φw)w−m/(w −m)! (19)

for w = m, m + 1, . . .. The tail of the probability function is approximated by:

Pr(|W | = w | |m0| = m) ≈ (m(φe)−m/
√

2π)(φe1−φ)ww−1.5 (20)

The unconditional distribution of W is symmetric.

Proof is deferred to Appendix A.1. The key to the proof is to embed the best
response dynamics in a branching process so that the recursivity of the branching
process becomes available. Let G(s) be the generating function of the total adjustment
W given the initial deviation from the time average level, m0 = 1. Let x be the number
of sectors that adjust capital due to m0, and F (s) be its generating function. Each
adjustment of x then has a chance to propagate in the next step just like the initial
adjustment m0. Thus the total number of offsprings which are originated from each
of x follows G(s). Hence we obtain a functional equation G(s) = sF (G(s)), from
which we derive the distribution of W . A similar functional equation obtains for a
large class of models with features such as heterogeneous λi and δi, non-uniformly
distributed s0

j,t, or non-constant returns to scale technology, as shown in Nirei (2003).
The functional equation characterizes the propagation distribution completely, because
all the moments can be derived from it.

Proposition 1 implies that the capital growth log kt+1 − log kt conditional to m0 is
approximated by a power distribution w−1.5 truncated by an exponential distribution
that declines at rate 1 − φ. We can calculate moments when φ < 1. The capital
growth conditional to m0 = 1 has an asymptotic mean log λ/(N(1− φ)) and variance
(log λ/N)2(2 − φ)/(1 − φ)3. The variance of an unconditional capital growth rate is

calculated as ((log λ)2/N)(µ(1−µ)(1−2/π)/(1−φ)2 +
√

2µ(1− µ)/(πN)/(1−φ)3) by
approximating m0 by an integer random variable. This is a natural result as obtained
in usual models: a fraction µ of sectors are induced to adjust by the deterministic trend
in mean. The variance of the capital growth rate declines linearly in N , hence the law
of large numbers obtains. One notable difference is that the variance has a 1/(1− φ)3

term, which can be quite large when φ is close to one. In a continuously adjusting
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model, the variance is of order 1/(1 − φ)2. We can regard the extra 1/(1 − φ) as the
contribution of the discrete propagation to the fluctuations.2.

The fluctuation of the capital growth exhibits quite a different behavior, however,
when φ = 1. The distribution of W becomes a power law distribution. With the
exponent 0.5 (in a cumulative distribution), it is known that the distribution does not
have either mean or variance. That is, the sample moments diverge as the sample size
increases.

In fact, the variance of the capital growth rate ceases to depend on N when φ = 1.

Proposition 2 When φ = 1, the variance of the aggregate capital growth rate con-
verges to a non-zero constant as N →∞. The limit variance is approximated by:

(log λ)2
(
µ(1− µ) +

√
2µ(1− µ)/(9π)

)
. (21)

Proof: We concentrate on W/N which is the mean capital growth rate divided by
log λ. The unconditional variance Var(W/N) is decomposed as E(Var(W/N | m0)) +
Var(E(W/N | m0)). Since W is symmetrically distributed and since |W | conditional
to m0 follows the same distribution as the sum of m0 number of |W | conditional to
m0 = 1, we have Var(W/N | m0) = |m0|Var(W/N | m0 = 1) and E(W/N | m0) =
m0E(W/N | m0 = 1) for an integer m0. We linearly interpolate this formula for
any real number m0. Then, using the asymptotic distribution of m0, we obtain that

Var(W/N) =
√

(2/π)Nµ(1− µ)Var(W/N | m0 = 1) + Nµ(1− µ)(E(W/N | m0 = 1))2.

Next we derive the moments of W/N conditional to m0 = 1. At φ = 1, the distribution
of W becomes a pure power-law. Also by construction, W conditional to m0 = 1 only
takes integer values between 1 and N . Thus the distribution of W/N converges to
a continuous distribution in [0, 1] with keeping the power-law exponent. For a large
N , let us approximate the probability distribution of W conditional to m0 = 1 by a
density function x−1.5/(2(1−1/

√
N)) for x ∈ [1, N ]. Then the density function of W/N

is given by y−1.5/(2(
√

N − 1)) for y ∈ [1/N, 1]. Note that the distribution converges
to a delta function at zero only at the speed 1/

√
N . Hence the mean and variance of

W/N conditional to m0 = 1 are of order 1/
√

N . Combining with the previous result,
we obtain that the unconditional variance of W/N is of order N0. More precisely we
obtain the following formula:

Var(W/N) =
√

2µ(1− µ)/π(
√

N−1/N)/(3(
√

N−1))+Nµ(1−µ)(1−1/
√

N)2/(
√

N−1)2

(22)

2See Nirei (2003) for details.
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lumpiness (log λ)
0.02 0.05 0.1 0.2 0.4

periodicity 4 0.011 0.028 0.055 0.110 0.220
(1/µ) 6 0.010 0.024 0.049 0.098 0.195

8 0.009 0.022 0.044 0.089 0.178

Figure 1: Scale-free standard deviation of capital growth g

By taking a limit of N , we obtain our result. 2

This result means that the growth rate fluctuation is scale-free, and that the law
of large numbers is broken. No matter how large the aggregative system is, a non-
linearity in an individual level can add up to an aggregate fluctuation. Consider the
case of lumpy investment behaviors. Cooper, Haltiwanger, and Power (1999) docu-
ments that, in the Longitudinal Research Database, the investment episodes in which
the investment-capital ratio exceeds 20% constitutes 20% of the plants and account
for 50% of gross investment. Considering that there are about 350, 000 plans in U.S.
manufacturing as they report, the aggregate fluctuation generated by the lumpy in-
vestment in individual level is negligible in a situation where the central limit theorem
holds. To the contrary, our result establishes a possibility of the aggregate fluctuations
via a stochastic propagation effect.

The formula (21) gives the standard deviation of growth rates as a function of λ and
µ. λ is the lumpiness parameter, and 1/µ is interpreted as the periodicity of capital
oscillation in individual level. Some numerical examples are shown in Table 1. We
observe that the magnitude of lumpiness observed in data is large enough to generate
the fluctuations in aggregate production.

Our analytical results imply two things on the investment propagation. First, it
challenges the conventional view that the sectoral propagation does not add up to a
large aggregate fluctuation due to the law of large numbers effect. Our result shows
that, when the price response is rigid enough so that φ is close to one, the sectoral prop-
agation generates a significant fluctuation in aggregate level. Secondly, our result shows
that the large, non-degenerate investment fluctuation can occur endogenously in a de-
terministic environment. This implies that an interdependence of a small non-linearity
in a micro behavior may play a crucial role in aggregate investment fluctuations.

The propagation distribution derived here has an interesting link with other models
of non-linear dynamics in a network, such as the self-organized criticality or a perco-
lation in the Bethe lattice. These analytical connections are explored in Nirei (2003).
In this paper, let us move on to the next question of how this propagation effect may
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explain the economic aggregate fluctuations quantitatively.

3 Business Cycle Simulation

In this section we examine quantitative properties of the equilibrium fluctuation by
numerical simulations. We ask whether the sectoral oscillations of magnitude exhibited
by the U.S. manufacturing sectors would add up in our model to the observed aggregate
fluctuations and generate the business cycle patterns. The answer is affirmative when
the intertemporal substitutions of consumption and leisure are close to perfect. If this
is the case, the (S,s) policy at the individual level generates an endogeneous fluctuation
of the aggregates.

In the previous section we demonstrate the possibility that an individual determin-
istic (S,s) policy generates aggregate fluctuations. The result is obtained by assuming a
simple behavioral rule of consumer decisions and the stationarity of the cross-sectional
distribution of producers’ positions in the (S,s) band. We no longer impose these
assumptions. The consumer’s behavior is derived from a representative household’s
choice. By this we can analyze the impact of preference structure on the aggregate
fluctuations. Moreover, the fluctuation is calculated by simulations without setting
the cross-sectional distribution of producers’ positions at the stationary distribution.
Whereas simulations show that the distribution converges to a uniform distribution
quickly, they can also exhibit interesting dynamics such as the echo-effect or mode-
locking when a large deviation from the stationary state is present. We will study the
dynamics which could not be examined in the setup of the previous section.

Our aim is to reproduce the second moment structure of business cycles. In par-
ticular, we attempt to explain the mechanism for the positive autocorrelation of the
business cycle variables and the positive correlation between production and demand
components. The parameter range we work in is in the vicinity of the fixed price
regime. In this way we quantify the dampening general equilibrium effect and test the
robustness of the fluctuation results we obtained in the partial equilibrium setting.

Let us start from estimating the fluctuation magnitude of U.S. manufacturing sec-
tors. We use the 4-digit SIC annual data compiled by Bartelsman and Gray (1996).
We remove the trend by Hodrick-Prescott filter with smoothing parameter λ = 100.
We estimate a second order autoregressive process of the detrended log sectoral capital
as:

yj,t = φ1,jyj,t−1 + φ2,jyj,t−2 + εj,t (23)

The regression shows that 434 sectors out of total 459 sectors exhibit a damped oscil-
lation phase φ2

1,j + 4φ2,j < 0. A second order autoregressive process with a damped
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oscillation displays a pseudo-periodic behavior. The pseudo-periodicity is calculated as

1/µj ≡ 2π/ cos−1(φ1,j/(2
√
−φ2,j)), following the procedure similar to Yoshikawa and

Ohtake (1987).
We emulate this oscillation by our lumpy behavior of sectoral investments. The

presumption is that a sector has to commit to a sizable investment if it invests at
all. If it does not invest, then the gap between the actual and desired level of capital
increases as capital depreciation and technological progress takes effect. The lumpy
adjustment generates a non-harmonic oscillation which is familiar in the (S,s) literature
such as the Baumol-Tobin cash balance dynamics. It is more likely that the committed
amount of investment is executed in several periods, if we consider the time to build.
By incorporating the time to build, the sectoral oscillation exhibits a more realistic
harmonic oscillation, but the basic properties of aggregate behavior does not change by
this modification. Individual sectors may fluctuate for various reasons in reality such as
technological improvement or strategic complementarity among firms’ behaviors within
the industry. It is for convenience of analysis that we assume the lumpy behavior of
monopolists.

We derive λj and δj from the observed oscillations µj and σj in the way that the
periodicity and magnitude of oscillation the data shows are maintained. From the
periodicity we have a relation 1/µj = log λj/| log((1 − δj)/g)|. Also, we numerically
calculate the standard deviation of the model oscillation for log λ = 1 and δj. Then
log λj is derived by dividing σj by the calculated standard deviation. Thus we obtain
λj and (1− δj)/g.

Figure 2 shows the estimated periodicity in the first panel. The periodicity is
distributed with mean 8.2 years and standard deviation 3.3. The second and third
panels show the calibrated discreteness λj and the annual depreciation rate δj that
match with the estimated parameters for oscillations. The mean of λj is 2.5 and
standard deviation is 2, and the mean of δj is 0.09 and standard deviation 0.07. Let us
notice the considerable heterogeneity shown in the periodicity. It casts a doubt on the
view that the sectoral fluctuation is merely a reflection of aggregate fluctuations. It is
worth exploring the possibility that a pseudo-random propagation effect across sectors
causes the aggregate fluctuations.

We will show that our model of investment propagation is capable of reproduc-
ing the basic business cycle structure: the standard deviation of GDP around 1.7%,
the positive correlations between production and demand components, and the strong
autocorrelations of the production and demand components. To do so, we explicitly
solve the representative household’s choice between leisure and consumption. We dis-
cuss how the approximated parameters θw and θr in the previous section relate to the
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Figure 2: Properties of sectoral oscillations
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preference and technology parameters. Our model shares the basic quantitative char-
acteristics of monopolistic models that have been studied by, for example, Gaĺı (1994)
or Rotemberg and Woodford (1995). In the following we concentrate on the investment
fluctuation and its effect on production and consumption.

We use the following utility specification:

U(ct, ht) = c1−σ
t /(1− σ)− h1+ν

t /(1 + ν) (24)

where σ ≥ 0 and ν ≥ 0. This simple specification allows us to obtain some analytical
insight as we see later, although the labor hour will not be stationary in the balanced
growth path in this specification. We set the technological growth rate at g = 1 and
inflate the depreciation rate δj by the observed productivity growth rate so that the
simulated sectoral oscillations continue to match the oscillations in the data. From the
utility specification we obtain the equilibrium price conditions immediately:

wt = cσ
t h

ν
t (25)

rt = (ct+1/ct)
σ/β (26)

A contemporaneous equilibrium (yt, ct, ht, wt) given kt, it, rt is determined by (25) and:

yt = ((1− 1/ξ)(1− α)/wt)
(1−α)/αNkt (27)

wtht = (1− 1/ξ)(1− α)yt (28)

yt = ct + it (29)

The first equation is derived by aggregating the optimal production level when the
capital is given. The second equation is obtained by aggregating the optimal employ-
ment given capital. It shows that the labor share is equal to (1 − 1/ξ)(1 − α). The
third equation is a product market equilibrium condition. Given these equilibrium re-
lations, the equilibrium path (kt, it, rt) is determined by the capital accumulation (2),
the equilibrium interest rate (26), and the selection algorithm for it with the optimal
threshold rule (13).

We resort to numerical simulations to solve the equilibrium path. In the simulation,
we assume that the representative household and monopolists have a static expectation
on future investment. Namely, the expected future investment is set at the time average
level

∑
j δj k̃j. Computational difficulty is the reason we do not solve for a perfect

foresight equilibrium. Since the investment crucially depends on the details of the
configuration of producers capital positions, solving the perfect foresight path requires
prohibiting computational loads. Also, it is not realistic to suppose that the agents are
able to form a perfect foresight. Besides the computational problem, the agents would
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GDP Investment Consumption Capital Hours Wage

standard deviation (%) 1.83 11.63 1.80 1.88 1.82 0.02
(0.52) (1.07) (0.50) (0.54) (0.52) (0.01)

correlation with GDP 1 0.49 0.77 1.00 1.00 0.77
– (0.05) (0.09) (0.00) (0.00) (0.09)

autocorrelation 0.89 0.61 0.52 0.88 0.89 0.52
(0.05) (0.07) (0.21) (0.05) (0.05) (0.21)

Table 1: Simulated business cycle statistics

have to have precise information about the capital configuration of the entire economy.
When the economy has attained the stationary level, a noisy information would not
contribute to the accuracy of prediction very much in our setting. We also tried another
expectation formulation based on an AR(1) estimate of the past investment path. We
confirmed that the basic property of the fluctuations does not change, although we
noted that the convergence to the rationally expected AR(1) parameters can be fragile
depending on the fundamental parameters. Another issue in the simulation is the
finiteness of the agents. The existence of equilibrium is shown in the previous section
as an asymptotic property when the number of sectors N tends to infinity. When
N is finite, with a positive probability the best response dynamics does not reach an
equilibrium. We impose a rule that the dynamics stops either when all the sectors
adjust upward or all the sectors which adjust at the initial step re-adjust downward.
This case happens in the early periods of simulated paths. We did not observe this
case once the equilibrium path is converged to a stationary state level.

Table 1 summarizes the simulation result on the second moments. The standard
deviations of the estimated second moments in 500 runs are shown in parentheses.
The parameter values are set as σ = 0.01, ν = 0, labor share (1− 1/ξ)(1− α) = 0.58,
mark-up rate 1/(ξ − 1) = 1/3, and annual discount rate β = 0.96. Although the
correlation between production and investment is not strong enough, the simulation
captures the basic feature of business cycles such as the magnitude of fluctuations in
GDP, investment, and consumption, strong autocorrelations in GDP, positive correla-
tions between production and demand components and input components, and small
wage fluctuations.

Figure 3 shows typical paths of the simulated production and investment for the
same parameter set. The variables are normalized by the stationary level GDP after
convergence. The top left panel shows the entire paths of the GDP and the aggregate
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Figure 3: A simulation path of GDP and investment. X axis shows quarters. Y axis is
scaled by the stationary level GDP.
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Figure 4: Admissible range of parameters

investment. The simulated path converges to a certain level quickly and exhibits per-
sistent fluctuations thereafter. The investment-production rate converges to a realistic
9.6%. The bottom left panel shows the capital paths of individual sectors. We observe
an (S,s) behavior of the sectors. The right panels show the magnified plots of the same
aggregate paths in a shorter time horizon. We observe a chaotic fluctuation (in the
sense that the deterministic path appears random) with a certain degree of periodicity.
Also we see a strong correlation between the production and investment.

The correlation structure shown in Table 1 exhibits a limited robustness in pa-
rameters. Figure 4 shows the admissible range of parameters. For each parameter
alignment, we take an average of estimates from 15 simulation runs. We plot a circle
when the standard deviation of GDP is more than 1% and less than 3%, a cross when
investment correlates with production, and a plus when consumption correlates with
production. The plots show that our results depend on the preference specifications
(σ and ν) sensitively but not on the markup rate (1/(ξ − 1)). In the left panel, there
exists an admissible range of σ for the markup rate larger than 30% (which corresponds
to ξ ≤ 4). The larger the markup rate is, the larger and the broader the admissible
range of σ is. We observed that the business cycle patters obtain also for a smaller
markup rate (ξ ≥ 10). It is not certain, however, if the business cycle pattern in
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this region is generated by the mechanism we analytically identified.3 The right panel
shows that the admissible range for preference specifications (σ and ν). We obtain the
aggregate fluctuations large enough when σ + ν is small enough. To obtain a mean-
ingful stochastic propagation effect, the representative household needs to be sensitive
enough to interest rate or wage. We also observe in the plot that σ needs to be small
for the correlation between production and investment to obtain. When σ is larger, an
investment by a sector increases the interest rate more, and dampens the propagation
effect.

The simulation replicates well the mean behavior of the pairwise correlation be-
tween sectoral production and GDP. The comovement of the sectoral production (and
hence sectoral and aggregate production) is a defining characteristic of business cycles.
However, the comovement is far from a perfect mode locking. The left panel of Figure
5 shows the histogram of the correlations in data (shown by a bar). The correlation
between a sector and aggregate is only modest. This fact agrees with another fact we
noted that the periodicity of sectoral oscillations varies much. These suggest contrary
to the view that the business cycles are mainly driven by an aggregate factor and the
sectoral movements are only a noise-ridden version of the same cycles. The modest
correlation between the sectoral and aggregate production is captured by our simula-
tion well. The histogram of the simulated correlations under our benchmark parameter
set (as for Table 1) is drawn by a real line. The simulated histogram is more centered
than the real histogram, which is a natural consequence of our symmetric modeling of
sectoral interactions. The real input-output matrix is far from symmetric, as Horvath
(2000) emphasized, and the asymmetric input-output relation will generate more het-
erogeneity in the comovement structure across sectors. The mean of the correlation
(0.24) is reproduced well by our simulation, however. This suggests that the symmetric
modeling may be satisfactory insofar as the aggregate fluctuations is concerned. The
right panel of Figure 5 shows the histograms of sector size in data (bar) and in sim-
ulation (line). The only source of heterogeneity in the model is depreciation rate (δj)
and lumpiness (λj). The heterogeneity of the sector size is reproduced fairly well. This
excludes the case in which the different variety in comovement stems from the different
sector size distributions. Also this assures that the model fluctuation we observe does
not result from an unrealistic distribution of sector size.

Figure 6 shows that the autocorrelations of production and investment depend

3For a small markup, the production goods are easily substitutable and the firms are competitive.
Hence the price responds sensitively to the initial shock in the best response dynamics. The subsequent
adjustment process occurs not in the direction to amplify the initial shocks but in the direction to
mitigate the initial response. Hence our analysis does not apply to this case. It is nonetheless
interesting that a competitive setting also generates an endogeneous fluctuation.
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Figure 5: Correlation between sectoral and aggregate production (left) and cross sec-
tional distribution of production relative to average (right). The bar and line respec-
tively show the actual data and simulation.
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Figure 6: Autocorrelation of GDP (left) and investment (right)
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Figure 7: Distribution of GDP growth rates

on σ and ν. The autocorrelation is estimated by taking an average of 15 runs for
each parameter set. The other parameters are set at the benchmark level. The left
panel shows that the GDP autocorrelation is decreasing in ν. The right panel shows
that the investment autocorrelation is not sensitive to the change in ν. This implies
that the intertemporal substitution of labor affects the production autocorrelation not
through the investment propagation but through the contemporaneous labor decisions.
In contrast, σ affects the autocorrelation of investment quite sensitively. This suggests
that the large part of the decrease in autocorrelation of production from σ = 0.01 to
the other values results from the decrease in autocorrelation in investment (and thus
in capital). In the U.S. data, the autocorrelation of investment is about 0.12 for the
post-war periods. To match this, σ has to be in between 0.01 and 0.02. It is a narrow
range, but the other statistics for this level of σ are consistent with the data as seen in
Table 1.

Finally, Figure 7 shows an inverse cumulative distribution of the growth rates in
GDP. The probability shown in the vertical axis is cumulated from above. The plot is
displayed in a semi-log scale, so a linear line would express an exponential distribution.
We plot by the dashed circle the real distribution calculated by quarterly GDP from
1958 to 2002. The real line shows the simulated distribution. The dotted lines show
several simulated distributions when the sample size is equal to that of the GDP data.
Because of the small sample size, the distribution fluctuates across the simulation
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runs. However, the mean behavior of the distribution matches the data well. Yet, this
should not be taken as a distinctive evidence for our distribution shown in Proposition
1. The distribution declines faster than an exponential distribution, hence a normal
distribution would also fit well. Thus the distribution data by itself does not reject any
aggregative model that results in a normal distribution by the central limit theorem.
The plot only confirms that the propagation distribution exhibited in simulation is
compatible with the data.

Let us now interpret the simulation results by our analytics. In the previous sec-
tion we introduce the parameter φ to characterize the relation between the propagation
fluctuations and the strategic complementarity across producers. The fluctuation ex-
hibits an extreme variance when φ = 1. In a static setup where the capital is replaced
with intermediate input, we can derive when this critical fluctuation occurs under the
same utility specification (Nirei (2003)). One case is σ = ν = 0. In this case, the
utility function is linear in consumption and labor, and thus both of the real wage and
interest rate are fixed. Another case of criticality occurs when α = 1 and the interest
rate is fixed. Namely, the production is adjusted only by capital. In this extreme
case of “production of commodities by means of commodities,” there is no longer an
aggregate resource constraint of labor. Thus the propagation lacks a dampening mech-
anism in which an increase in production is suppressed by a rising wage. In a general
equilibrium, a rising interest rate still serves as a dampening factor. If we study the
fluctuation of stationary level production, however, the interest rate is not a dampen-
ing factor since the stationary interest rate is given by fundamental parameters. Thus
the fluctuation is still critical in a long run. This is because a rise in interest rate has
to be followed by a decline to the time average level eventually, which serves as an
accelerator of the fluctuations.

It is not trivial in our model to have correlations between production and demand
components. In the standard real business cycle model, the fluctuation in total factor
productivity causes the procyclical movement of both consumption and investment.
Instead, the investment fluctuates relatively independently from the economic envi-
ronment in our model. This aspect gives the model a different mechanism for the
procyclical movement of the consumption and investment. An increase in investment
demand induces the monopolistic producers to produce more on one hand. On the
other hand, since the capital level is predetermined, an increase in investment com-
petes with the contemporaneous consumption given the production level. By using the
equilibrium relations given kt, we obtain dyt/dit = 1/(1 + (α + ν)/(σ(1 − α)(ct/yt))),
which is always between 0 and 1. Hence, given the capital level, an investment has
a positive effect on production, but the effect is no more than 1. Hence there is no
multiplier effect of the investment demand on the production. The correlation between
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consumption and production rather stems from the fluctuations of accumulated capi-
tal. We also obtain (dyt/yt)/(dkt/kt) = (1 + ν)α(ct/yt)/(σ(1− α) + (α + ν)(ct/yt)) at
equilibrium. This takes values between zero and one, and is close to one when σ and ν
are close to zero, agreeing with our benchmark simulation. Since the investment is de-
termined partly by an independent process of best response dynamics across producers
which the representative household cannot predict deterministically, large production
due to large capital can result in large consumption. The Keynesian multiplier effect
would increase the correlations between production and demand components. This
would be the case when the consumption function is more sensitive to income than
our baseline model. If a significant number of consumers face liquidity constraint, for
example, it would contribute to more synchronous movements between production and
demands.

The autocorrelation of production is generated by the demand-smoothing effect of
the real interest rate. In the previous section we saw that an increase in the interest
rate sensitivity θr lowers φ and dampens the instantaneous investment propagation. In
a dynamic setting, this dampening effect only postpones the investment propagation to
the subsequent periods. Suppose that the interest rate is now above the time average
level due to a large concentration of sectors near the adjustment threshold. In the next
period, the interest rate would decrease to the time average level if the investment
is at the time average level. This decrease in interest rate increases the threshold for
capital adjustment. Hence the investment in the next period tends to be larger than the
time average level. This is the mechanism for the autocorrelation in investment when
σ = 0.01 in Figure 6. In this mechanism, the effect of delaying the investment is strong
when the sensitivity parameter θr is large, and a large θr follows a small intertemporal
substitution in consumption, 1/σ. The autocorrelation in investment generates the
autocorrelation in production in two routes: a contemporaneous effect on aggregate
demand and subsequent effects on aggregate supply via capital accumulation.

It is helpful to examine our economy’s smooth counterpart to understand the fun-
damental condition when the fluctuations occur. Suppose that there is no discreteness
constraint (4); then any capital level can be chosen. The producers’ optimal choice of
capital yields an optimality condition which is linear in aggregate capital as in (13).
By aggregating the optimality condition, we find that the aggregate capital level kt

is indeterminate in the product market. The capital level is thus solely determined
by the consumer’s choice between leisure and consumption. In our model, the time
average capital level (normalized by the total factor productivity) is also determined
independently from technology. However, the investment is determined uniquely in
the best response dynamics across producers. We saw that the propagation exhibits
an extreme variance when the wage and interest rate are fixed. This corresponds to
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the indeterminacy of capital level in the smooth economy. When the wage and interest
rate are not fixed, the aggregate capital does have a unique time average level. How-
ever, the attraction power of the time average in the dynamics of aggregate capital is
vanishingly small as the wage and interest rate bacomes insensitive to production.

4 Conclusion

This paper explores a mechanism of investment propagation as a fundamental shock to
the business cycle fluctuations. We consider industrial sectors which are characterized
by constant returns to scale technology and monopolistic pricing. Demand for inter-
mediate inputs forms a positive feedback of capital adjustment in the interindustrial
relations. We suppose that the sectoral capital exhibits an intermittent adjustment
where a large investment occurs occasionally. Under this environment, we derive the
distribution function of the propagation size. The propagation size has a large variance
when the real wage and real interest rate do not respond sensitively to the production
level. In the limit case when the wage and interest rate are fixed, the variance of capital
growth rates does not depend on the level of dissaggregation.

Simulations show that the investment propagation mechanism above can explain
the aggregate fluctuations of the U.S. economy quantitatively. We specify the represen-
tative household’s utility as a separable function in leisure and consumption and solve
for the equilibrium paths. The results show that the standard deviation, the correla-
tions between production and investment and consumption, and the autocorrelation of
production, investment, and consumption match the U.S. postwar business cycles well.
Thus we show that, given the magnitude of oscillations that a manufacturing sector
exhibits, the sectoral oscillations can add up to the aggregate fluctuations through the
investment propagation mechanism with the correct second moments of the business
cycle variables.

The paper leaves three points for further explorations. First, the simulation shows
that the correlations between two demand components and production are not strong
enough simultaneously. It stems from that the consumption responds weakly to income
when capital level is fixed. The behavior of representative household needs to be modi-
fied in such a way that the income effect becomes strong, for example by incorporating
the liquidity constraint. Secondly, the intertemporal substitution of consumption in
the simulation is set larger than the evidence for the U.S. economy suggests. Thirdly,
the deterministic oscillation of sectoral capital is assumed. It is no doubt an over-
simplification that a sectoral capital jumps in one period and depreciate capital over
many years. Incorporating the time-to-build of capital would make the sectoral oscil-
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lations more realistic with keeping the results of the paper unaltered. Yet it is not
obvious that a sectoral capital accumulation process incurs such degree of inflexibility.
This leads to the question as to whether the business cycle patterns still obtain if we
disaggregate the economy to the establishment level. Our analytics shows that the
large aggregate fluctuations can occur in principle regardless of the number of agents,
but a quantitative demonstration of the theoretical possibility is left open.

A Appendix

A.1 Proof of Proposition 1

The details of proof draw on Nirei (2003). Here we outline the proof. Let us rewrite
the best response dynamics for the investment in t. We use u to denote the step in the
dynamics and suppress t. Let ku denote the mean capital defined by (11) with a profile
ku

j . Define k∗uj by the threshold formula (16) with ku except for u = 0 at which we
define k∗0j = k∗j,t. Define su

j = (log ku
j − log k∗uj )/ log λ. Then the dynamics of (ku

j , su
j ) is

written as follows.

k0
j = kj,t(1− δ)/g (30)

s0
j = sj,t + (log k0

j,t − log kj,t)/ log λ (31)

ku+1
j =


ku

j λ if su
j < 0

ku
j /λ if su

j > 1
ku

j otherwise
(32)

su+1
j = su

j + (log ku+1
j − log ku

j − log ku+1 + log ku)/ log λ (33)

We consider for u > 1 the case m0 > 0. The case m0 < 0 is proved symmetrically
by changing the sign of adjustments. W = 0 if m0 = 0. Define Hu as the set of j such
that log ku+1

j − log ku
j = log λ. Define mu as the size of Hu. First we derive a formula

for N(log ku+1− log ku). By definition, we have log ku+1
j = log ku

j +log λ for u ∈ Hu and

log ku+1
j = log ku

j for u 6∈ Hu. Let us define ϕ = α(ξ − 1)/(ξα + 1− α). Then the first
term of a Taylor expansion is

∑
j∈Hu

(ku
j /ku)ϕ log λ. All the terms after the second term

either contain ϕ or are of order 1/N . Also the series are absolutely convergent. We
have ϕ → 0 as ξ → 1. Hence we obtain N(log ku+1− log ku) → ∑

j∈Hu
log λ = mu log λ

as ξ → 1 and N →∞.
Next we examine m0 = N(log k1 − log kt)/ log λ. We break m0 into two terms as

m0 = N(log k1− log k0)/ log λ+N(log k0− log kt)/ log λ. The first term represents the
first step adjustments and the second term represents the depreciation. The second
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term is equal to N log((1−δ)/g)/ log λ. The first term converges to m1 by the argument
in the previous paragraph. Let us study m1. By the assumption that sj,t follows a
uniform distribution, we obtain Pr(s0

j < 0) = µ. Then the number of producers who
adjust their capital at the first step, m1, follows a binomial distribution Bin(N, µ). By
the central limit theorem, m1/

√
N−

√
Nµ asymptotically follows a normal distribution

with mean zero and variance µ(1−µ). Combining these results, we obtain that m0/
√

N
asymptotically follows a normal distribution with mean zero and variance µ(1− µ).

Next we examine mu conditional to mu−1. We have Pr(j ∈ Hu|j /∈
∪v=1,2,...,u−1Hv) = φ(log ku − log ku−1)/ log λ. Thus mu follows Bin(N −∑u−1

v=1 mv, φ(log ku−log ku−1)/ log λ). This defines the stochastic process mu completely.
As we let ξ → 1 and N → ∞, the binomial converges to a Poisson distribution with
an asymptotic mean φmu−1.

Since a Poisson distribution is infinitely divisible, the Poisson variable with mean
φmu−1 is equivalent to a mu−1-times convolution of a Poisson variable with mean φ.
Thus the process mu is a branching process with a step random variable being a Poisson
with mean φ. Since φ ≤ 1, the process mu reaches 0 by a finite stopping time with
probability one. Thus the best response dynamics is a valid algorithm of equilibrium
selection. Let T denote the stopping time. Using the asymptotic formula, we have
W → ∑T

u=1 mu. By using the property of a Poisson branching process (Kingman
(1993)), we obtain the infinitely divisible distribution for the accumulated sum W =∑T

u=1 mu as in the proposition.
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