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Abstract

A pervasive finding of unit roots in macroeconomic data often runs
counter to intuition regarding the stochastic nature of the process un-
der consideration. Two econometric techniques have been utilized in an
attempt to resolve the finding of unit roots, namely long memory and
models that depart from linearity. While the use of long memory and
stochastic regime switching models have developed almost independently
of each other, it is now clear that the two modeling techniques can be in-
timately linked. In particular, both modeling techniques have been used
in isolation to study the dynamics of the real exchange rate. To determine
the importance of each technique in this context, I employ a testing and
estimation procedure that allows one to jointly test for long memory and
non-linearity (regime switching behavior) of the STAR variety. I find that
there is substantial evidence of non-linear behavior for the real exchange
rate for many developing and European countries, with little evidence for
ESTAR non-linearity for countries outside the European continent includ-
ing Japan and Canada. In cases where non-linearity is found, I also find
significant evidence of long memory for the majority of the countries in
my sample. Thus, long memory and non-linearity can also be viewed
as compliments rather than substitutes. The linear model in isolation
appears to be inadequate for breaking down the paradox known as the
PPP puzzle. On the other hand, a combination of long memory and
non-linearity may be a promising research avenue for pursuing an answer
to the paradox.
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1 Introduction

A controversy is brewing in time series econometrics. The spark of this
controversy emerged with the seminal work of Nelson and Plosser (1982) who
found that most macroeconomic series were well characterized as an infinite vari-
ance unit root process. The earlier work of Granger and Newbold (1974) and
subsequently the work of Phillips (1986) turned empirical research in macroeco-
nomics on its head. The seemingly robust finding that macroeconometric data
were characterized as unit root processes contradicted the practical insight that
a strict unit root process is impossible for bounded series such as interest rates
and unemployment rates.
Almost simultaneously two schools of thought emerged to bridge the gap

between the finding of unit roots and the theoretical implausibility of processes
that can increase or decrease without bound. The concept of fractional integra-
tion was introduced by Granger and Joyeux (1980) as a means of bridging the
gap between covariance stationary linear processes and unit root processes. The
concept of fractional integration is surely one of the foremost advances in time
series econometrics and has been used extensively over the last twenty years to
model virtually every macroeconomic series including interest rates (Backus and
Zin, 1993 and Dueker and Startz, 1998), inflation (Hassler and Wolters, 1995
and Baillie, Chung, and Tieslau, 1996), unemployment (Diebold and Rudebusch,
1989), and particularly exchange rate dynamics (Diebold, Husted, and Rush,
1991, Baillie and Bollerslev, 1994, and Cheung and Lai, 2001). Shortly after
the introduction of fractional dynamics, Perron (1989) established the fact that
the unit root finding itself may be spurious if the actual data is characterized
as a process having a broken trend. A proliferation of empirical research has
emerged since Perron’s study employing models that accommodate structural
change or regime switching. In particular, Stock and Watson (1996) found evi-
dence of parameter instability among 76 different monthly time series including
employment, monetary aggregates, and prices. Garcia and Perron (1996) find
evidence that the real interest rate is subject to regime switching behavior, while
Bianchi and Zoega (1998) find evidence for structural breaks in the unemploy-
ment rate. Recently, evidence has emerged detailing the finding that exchange
rate dynamics can be characterized by models allowing for stochastic regime
switching behavior (Obstfeld and Taylor, 1997, Michael, Nobay, and Peel, 1997,
and Taylor Peel and Sarno, 2001).
The seemingly divergent paths of regime switching or non-linearity and long

memory have frequently enabled researchers to avoid the strict assertion that
data are characterized as having a unit root. Recently, however, it has become
clear that the divergent paths actually run parallel to each other and that it is
frequently difficult to know which road we are on. Diebold and Inoue (2001)
have each shown that regime switching and long memory are intimately linked.
In particular, it would appear that a regime switching process can produce
dynamics that are arbitrarily close to the stochastic properties of long memory
processes. Herein lies the controversy. Both long memory and non-linear models

2



have been successfully employed to analyze the behavior of the same processes.
The divergence of the two approaches can be highlighted through the pur-

chasing power parity (PPP) paradox. The initial finding of a unit root in
the real exchange rate (see for example, Meese and Rogoff, 1988) is at odds
with the theory that prices in two countries, expressed in the same currency,
should be equal. Deviations from PPP, as measured by the persistence in the
real exchange rate, are too large relative to the predictions of economic mod-
els (Rogoff, 1996). Attempts to resolve these issues have utilized both long
memory and non-linear models. In this paper, I analyze the interrelationship
between non-linear and long memory models for this extremely important ex-
ample. Clearly there are an infinite number of potential non-linear models that
one could consider. Recently, both theoretical and empirical research suggests
that a non-linear model that allows for a smooth transition between regimes
may be most appropriate. Thus, attention is confined to the STAR family of
non-linear models. I extend an approach developed by van Dijk, Franses, and
Paap (2002) that allows one to jointly test for the existence of long memory and
STAR non-linearity. My results are based on a large set of developed and devel-
oping countries relative to the United States. These are several major findings.
First, while I do not find overwhelming evidence that all real exchange rates
are characterized by non-linear behavior, I find strong evidence of complimen-
tary and substitutability between long memory and non-linear models. From
a statistical standpoint, each modeling strategy appears to adequately capture
the behavior for many of the real exchange rates considered in this paper. It is
important to note that the linear models in isolation are incapable of explaining
the PPP paradox. On the other hand, when non-linearity is present, there is
typically strong evidence of the dual existence of long memory. The results
suggest that in modeling exchange rate dynamics, it is important to recognize
the potential for both long memory and non-linearity. Clearly, these results
likely extend to other economic and financial variables.
The remainder of the paper will be organized as follows. In the next section,

I discuss the purchasing power parity paradox and the role of non-linear and
long memory models in the debate. In section 3, I introduce the FI-STAR
model and derive an LM-type statistic to jointly test for long memory and
ESTAR non-linearity that heavily borrows from van Dijk, Franses, and Paap.
In section 4, I discuss the data and present the results relative to my tests and
estimation. The final section presents concluding remarks and suggestions for
future research.

2 The Purchasing Power Parity Puzzle

The absolute form of purchasing power parity contends that the price of
a country’s currency relative to another country should equal the ratio of the
two countries price indices. If the strict form of the PPP hypothesis holds then
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the log of the real exchange rate is equal to zero. In other words, the following
most hold:

log(St)− log(P ∗t ) + log(Pt) = 0, (1)

where St is the foreign currency price of the domestic currency, and Pt and
P ∗t are the domestic and foreign price levels respectively. As alluded to by
Rogoff (1996), the empirical findings suggest that the real exchange rate is highly
volatile and that shocks are persistent. That is, deviations from PPP persist
for some time, typically having a half life in the neighborhood of 3-5 years.
Presumably, the source of these shocks is pecuniary in nature. While nominal
rigidities including wage and price stickiness are plausible modeling alternatives
for temporary deviations from purchasing power parity, the persistence of shocks
are implausibly long for macroeconomic models of exchange rate behavior given
the volatility of the real exchange rate. Therein lies the puzzle.
There appear to be few examples in empirical macroeconomics that bet-

ter illuminate the heated rivalry between long memory and non-linearity than
the purchasing power parity debate. Researchers who have used long memory
models in an attempt to resolve the finding of a unit root in the relationship
between the nominal exchange rate and goods prices include Diebold, Husted,
and Rush (1991), and Cheung and Lai (1993, 2001). On the other hand, Obst-
feld and Taylor (1997), Michael, Nobay, and Peel (1997), Baum, Barkoulas, and
Caglayan (2001), and Taylor, Peel, and Sarno (2001) attempt to use non-linear
regime switching models to describe the dynamics associated with purchasing
power parity. There have also been recent attempts to address the question
using elements of both approaches. Baum, Barkoulas, and Caglayan (1999)
consider both a long memory model and a model that allows for a double mean
shift for the real exchange rate and are unable to revive purchasing power parity.
Kapetanios (2002) finds evidence of both long memory and a general form of
non-linearity for Yen based real exchange rates.
There have also been advances in the theoretical formulation of exchange

rates that accommodate both types of modeling approaches, particularly non-
linear models. Cheung and Lai (2001) argue that under imperfect information
and bounded rationality long swings in financial data are plausible. Cheung
and Lai argue that the now familiar appreciation of the US real exchange rate
during the beginning of the 1980’s and the subsequent depreciation is consistent
with the view that speculative markets can be characterized by sharp swings.
The fractional process is a natural modeling alternative for variables charac-
terized by long swing dynamics given the underlying behavior of the fractional
process. More rigorous approaches have suggested that non-linear models may
be an appropriate approach. The theory of PPP is based on the law of one
price, where a differential between prices in two countries expressed in the same
currency presents an arbitrage opportunity that should quickly eliminate a dis-
parity between exchange rates and goods prices. Empirically, deviations from
PPP, of course, do not imply the availability of any trading rule that allows prof-
itable arbitrage. Price indices do not represent the price of any single tradeable
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commodity, and the different problems with variable indices render the empiri-
cal version of PPP a distant cousin to the theoretical version. On a more basic
level, impediments to trade such as transportation costs, tariffs, and transac-
tions costs complicate the underlying notion of the law of one price. Sercu,
Uppal, and Hulle (1995) develop a model where traded goods are subject to
transactions costs through a familiar iceberg cost mechanism. The intuitively
appealing model suggests that there is no a trade region when transactions
costs are large enough. In this way, the arbitrage necessary to insure the law
of one price is absent within a transactions band. Once the band is broached,
arbitrage takes place and the deviations are quickly eliminated. In this way,
there are two regimes, a no-trade regime and an arbitrage regime. Thus, un-
der the modeling scenario where transactions costs mitigate trade, non-linear
models are an attractive alternative. Furthermore, given the time aggregation
of price indices and potentially exchange rates, the movement from one regime
to another is unlikely to be sudden. Rather it would appear plausible that ad-
justment is smooth and larger deviations result in a stronger attraction process
to equilibrium for the real exchange rate. For these reasons, the STAR family
of models has emerged as an attractive candidate for exchange rate dynamics.
Empirically, it would be difficult to suggest that either non-linear models or

long memory models have thoroughly resolved the purchasing power parity puz-
zle, especially for the US. Taylor, Peel, and Sarno (2001) are able to show that
for large shocks, the half lives of deviations from PPP are considerably less than
3-5 years as originally implied by Rogoff (1996). However, for smaller shocks,
the impulse response function dies out at a rate roughly consistent with the pre-
vious literature. Cheung and Lai (2001) also use impulse response analysis for
yen based real exchange rates. While the half lives are typically smaller than 3
years for the majority of the yen based real exchange rates, the estimated half
life for the dollar/yen real exchange rate based on the estimated fractional model
is 2.9 years. Furthermore, it is somewhat difficult to directly interpret Cheung
and Lai’s results, as they fail to include estimated ARMA parameters for their
results. Nevertheless, the use of both long memory and non-linear models in
characterizing the dynamics associated with PPP is a recent breakthrough in
the study of international finance that is not without merit particularly given
the theoretical implications discussed above. Given the potential relationship
between the two modeling approaches, it would be interesting to determine the
significance of each approach jointly as it relates to the real exchange rate. In
the next section, I introduce a methodology that allows one to directly test for
both non-linearity and long memory simultaneously.

3 A Long Memory Non-linear Model

As discussed above, there is an infinite set of potential non-linear models
that could be employed for a time series variable. The theoretical and empirical
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literature suggests that the STAR family of models is an attractive alternative
to explain exchange rate dynamics. I thus concentrate on a testing procedure
that incorporates long memory and STAR non-linearity, although the approach
can be extended to other types of nonlinearity.
The concept of long memory was popularized with the seminal work on

fractional integration by Granger and Joyeux (1980). For many time series
processes, Granger and Joyeux concluded that the spectral density function of
the differenced process appeared to be over-differenced, while the level of the se-
ries exhibited long run dependence that was inconsistent with stationary ARMA
dynamics. Their approach was to employ a fractional differencing operator that
produced a stationary ARMA series. Mathematically, the ARFIMA model for
a time series process yt is written as,

φ(L)(1− L)d(yt − µ) = θ(L)εt, (2)

where φ(z) = 0 and θ(z) = 0 have all roots lying outside the unit circle, d is
any real number, and {εt} is a martingale difference sequence. While unnec-
essary for semi-parametric estimation such as the Geweke-Porter-Hudak (1983)
estimator, maximum likelihood estimation, and its variants, typically employ
a Gaussian assumption for the sequence of innovations, εt. The differencing
operator, (1− L)d, is defined as,

(1− L)d =
∞X
k=0

Γ(k − d)
Γ(−d)Γ(k + 1)L

k, (3)

where Γ() is the gamma or generalized factorial function.
Several important features of the ARFIMA model merit brief discussion.1

The ARFIMA model is stationary provided d<1/2 and is invertible if d>-1/2.
The autocorrelations of the fractional process decay at a hyperbolic rate for
0<d<1/2 and for positive values of the differencing parameter, the spectral
density function if unbounded at the origin. The ARFIMA model also has the
property that for d<1, the impulse response weights converge to zero, such that
the process is said to mean reverting.
The STAR model has a rich tradition in time series econometrics, although

Terasvirta (1994) is generally credited with establishing the necessary conditions
to make the model empirically applicable.2 Generally speaking, the two regime
STAR (p) model can be written as:

yt = (φ1,0+φ1,1yt−1+...+φ1,pyt−p)+(φ2,0+φ2,1yt−1+...+φ2,1yt−p)G(st; γ, c)+εt.
(4)

1For an excellent survey on long memory models and their applications in economics and

finance, the interested reader is referred to Baillie (1996).
2For a tremendous survey of STAR models, the interested reader is referred to van Dijk,

Terasvirta, and Franses (2002).
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The first or inner regime corresponds to the first set of p autoregressive terms,
while the outer regime corresponds to the sum of the two sets of autoregressive
parameters (whenG(st; γ, c) = 1). For the development of tests for non-linearity
it is typically assumed that the sequence {εt} is Gaussian white noise. The
function G(st; γ, c) is the transition function governing the movement from the
inner regime to the outer regime and is a function of the transition variable
st, the argument γ, which determines the degree of curvature of the transition
function, and the argument c, which is the threshold parameter. In most
applications, including the one considered in this paper, the transition function
is confined to be an exponential function (resulting in an ESTAR model) or
a logistic function (resulting in an LSTAR specification). Specifically, for the
ESTAR family of models, the transition function takes on the following form:

G(st; γ, c) = 1− exp[−γ(st − c)2]. (5)

Clearly, the transition function is symmetric in that its value does not depend
on whether the transition variable lies above or below the threshold c. Clearly,
the parameter γ controls the degree of non-linearity. As γ → 0, the transition
function function depicted in (5) goes to zero, such that the model in 4 becomes a
simple autoregressive model. As γ →∞, the transition function in (5) converges
to unity, and the model in (4) becomes a different autoregressive model, whose
autoregressive coefficients are equal to the sum of the autoregressive coefficients
in the two regimes. For the LSTAR family of non-linear models, the transition
function is given by:

G(st; γ, c) = (1 + exp[−γ(st − c)])−1. (6)

It is clear that the LSTAR model is preferred when asymmetric behavior is
expected in the transition variable. As γ → 0, the LSTAR transition func-
tion converges to 0.50, such that the model in (4) becomes an autoregressive
specification whose coefficients correspond to a geometric average of the autore-
gressive coefficients, whereas, as γ → ∞ the transition function converges to
1. In this case, the model in (4) again becomes an autoregressive specifica-
tion whose coefficients are the sums of the autoregressive coefficients in the two
regimes.
While not necessary, it is typically assumed that the transition variable is

simply a lag of the dependent variable. In other words, st ≡ yt−d∗ where
d∗ denotes the delay parameter. In the present exercise, Taylor, Peel, and
Sarno (2001) argue that the most sensible transition function is a single lag of
the real exchange rate. While attention is not confined to a single lag of the
real exchange rate, the analysis below strongly supports the conjecture that the
transition variable is most appropriately defined as a lag of the real exchange
rate, rather than, for example, a lagged difference of the real exchange rate or
some other macroeconomic variable. Conceptually, it is intuitively appealing
that, to the extent non-linearities are present, the degree of mean reversion
is related strictly to the degree of misalignment in the real exchange rate. I
therefore proceed with the discussion assuming st ≡ yt−d∗ .
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3.1 Testing for STAR Non-linearity

The testing procedure employed in this paper borrows heavily on the ap-
proach of Terasvirta (1994), and thus a discussion of the general testing pro-
cedure for STAR non-linearity is merited. Tests for STAR non-linearity are
complicated by the fact that the parameters of the STAR model are not identi-
fied under the null hypothesis of linearity. Intuitively, the hypothesis of linearity
can be expressed in at least two ways, γ = 0 or φ1,0 = φ2,0, φ1,1 = φ2,1, ... ,
φ1,p = φ2,p. The complication of identification can be resolved easily, however,
by taking an appropriate Taylor series expansion of the transition function about
γ = 0. My results below show that the ESTAR model is the more appropriate
choice for modeling exchange rate dynamics. Thus, I discuss only testing for
ESTAR non-linearity. The reader interested in the similar testing procedure for
LSTAR non-linearity is referred to Terasvirta (1994). For the ESTAR model,
under the assumption that d∗ ≤ p (which is overwhelmingly the case in my
analysis), a first order Taylor series expansion of the transition function about
γ = 0 results in the following auxiliary regression:

yt =

pX
j=1

(β1,0 + β1,jyt−j) +
pX
j=1

(β2,jyt−jyt−d∗) +
pX
j=1

(β3,jyt−jy
2
t−d∗) + et. (7)

where et is related to the disturbance εt in (4) and the remainder from the first
order Taylor series expansion. The terms β2,0yt−d∗ and β3,0yt−d∗ are excluded
to avoid multicollinearity since d∗ ≤ p. Under the null hypothesis of linearity,
the remainder from the Taylor series expansion of the transition function around
γ = 0 is equal to zero and the disturbance in (7) is equivalent to the disturbance
in (4). The null and alternative hypotheses are given by:

H0 : β2,j = β3,j = 0, j=1,...,p (8)

HA : β2,j 6= 0 or β3,j 6= 0, for at least one j.

The χ2 version of the LM type test statistic is calculated as LMχ2=
T (SSRR−SSRUR)

SSRR
,

where T is the number of usable observations, SSRR is the sum of squared er-
rors calculated under the null hypothesis, and SSRUR is the sum of squared
errors for the regression in equation number 7. The hypothesis is distributed as

a χ2(2p) statistic. The F-version of the test is given by LMF=
(SSRR−SSRUR)/p
SSRUR/(T−2p)

and is distributed as an F (2p, T − 3p− 1) statistic.

3.2 The FI-STAR Model

The model depicted in (4) is a simple non-linear model that combines the as-
pects of non-linearity with autoregressive models. Recently, van Dijk, Franses,
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and Paap (2002) extended this concept to allow for fractional integration. In
particular, the FI-STAR model for a time series process yt is defined as

(1−L)dyt = {φ1,0+
pX
φ1,j

j=1

(1−L)dyt−j}+{φ2,0+
pX
j=1

φ2,j(1−L)dyt−j}G(yt−d∗ ; γ, c)+εt,

(9)
where I assume that εt is a martingale difference sequence. In this case, the
fractional difference of the time series process is a STAR model. The details
for estimation and testing for non-linearity have been developed by van Dijk,
Franses, and Paap for the case where the transition function is given by the
logistic function. I extend these results to consider the ESTAR specification
as well. As above, when d∗ ≤ p a first order Taylor series expansion of the
exponential transition function results in the following auxiliary regression for
(9):

(1−L)dyt = {φ1,0+
pX
j=1

φ1,j(1−L)dyt−j}+{
pX
j=1

φ2,j(1−L)dyt−jyt−d∗}+{
pX
j=1

φ3,j(1−L)dyt−jy2t−d∗}+et.

(10)
For the construction of the test, the Gaussian assumption will be applied. The
null hypothesis for linearity is given by:

H0 : φ2,j = φ3,j = 0, j=1,...,p. (11)

Under the null hypothesis, the time series process is distributed as a long mem-
ory ARFIMA(p, d, 0) process and et = εt. The lack of a moving average com-
ponent does not appear to be a major short-coming for the FI-ESTAR model
in terms of modeling the real exchange rate given the apparent dominance of
the 1st lag in the partial autocorrelation function and subsequent insignificance
of remaining lags in the PACF for the real exchange rate (c.f. Taylor, Peel, and
Sarno, 2001). The existence of the fractional differencing parameter, however,
complicates the construction of the LM type test statistic. In particular, I
follow van Dijk, Franses, and Paap, and use the conditional likelihood function
under the assumption of normality and a constant variance.3 The likelihood
function for the tth observation is given by:

£t = −1
2
ln(2π)− 1

2
σ2 − e2t

2σ2
, (12)

3An important consideration, especially in the context of a developing country’s real ex-

change rate process, is the possibility that the variance of the disturbance may be time varying.

We do not consider this complication here, but note that the use of the conditional likelihood

function eases the construction of GARCH errors, by allowing one to replace σ2 with σ2t .
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where et is calculated by recursion using (3). The construction of the LM test
statistic for non-linearity differs from the discussion above due to the gradient
of the likelihood function with respect to d. In particular,

∂£t
∂d

= − et
σ2

∂et
∂d

(13)

The calculation of the derivative in (13) results in the following:

∂et
∂d

= (1− L)d log(1− L)yt −
pX
j=1

{φ1,j(1− L)d log(1− L)yt−j}− (14)

{
pX
j=1

φ2,j(1− L)d log(1− L)yt−jyt−d∗}− {
pX
j=1

φ3,j(1− L)d log(1− L)yt−jy2t−d∗}

The calculation of the above under the null hypothesis of linearity yields

∂et
∂d
|H0 = log(1− L)ε̂t, (15)

where ε̂t denotes the residual obtained from the ARFIMA (p,d,0) model. Fi-
nally, under the hypothesis of linearity, we have

∂£t
∂d

|H0 = −
ε̂t
σ2

t−1X
j=1

ε̂t−j
j

(16)

The last step follows from Gradshteyn and Ryzhik (1980) equation 1.511. The
remainder of the construction of the LM test for ESTAR non-linearity follows
directly from Terasvirta (1994) and more particularly, van Dijk, Franses, and
Paap (2002). In particular, one first estimates an ARFIMA(p,d,0) model,

obtains the set of residuals ε̂t and the estimate for d denoted d̂. The sum
of squared errors, denoted SSRR, is then constructed from the residuals, ε̂t.

A regression of ε̂t is run on −
t−1P
j=1

ε̂t−j
j , 1, (1 − L)d̂yt−1, ..., (1 − L)d̂yt−p, (1 −

L)d̂yt−1yt−d∗ , ..., (1−L)d̂yt−pyt−d∗ , and (1−L)d̂yt−1y2t−d∗ , ..., (1−L)d̂yt−py2t−d∗ .
From this regression, form the sum of squared errors denoted SSRUR. The χ

2

version of the LM test statistic is calculated as LMχ2=
T (SSRR−SSRUR)

SSRR
and is

distributed as a χ2(2p) statistic. The F version of the LM test statistic is

calculated as LMF=
(SSRR−SSRUR)/2p
SSRUR/(T−3p−1) and is distributed as an F (2p, T −3p−1)

statistic.

3.3 Estimation of the FI-STAR Model

The test statistic for FI-STAR non-linearity depends on the estimated value
of the differencing parameter d. Thus, it is important to obtain a consistent
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estimate of d. In the section, I describe estimation of the ARFIMA(p,d,0)
model and more importantly the FI-STAR model. A plethora of advances
have been made in the area of long memory estimation. In particular, Fox
and Taqqu (1986) develop an estimator for the ARFIMA model that is a fre-
quency based approximation to maximum likelihood estimation (MLE), while
Sowell (1992) develops the theory necessary for maximum likelihood estimation
(MLE) of the ARFIMA model. Beran (1995) develops an estimator for poten-
tially non-stationary models that is based on the conditional likelihood function
of the time series process. Geweke and Porter-Hudak (1983) develop a log pe-
riodogram regression based estimator for the differencing parameter that allows
one to estimate this parameter free of the ARMA components. Andrews and
Guggenberger (2003) have recently provided log periodogram regression based
estimators that adapt the Geweke-Porter-Hudak technique. In this paper, I
wish to estimate the autoregressive parameters with the differencing parame-
ters, which makes the time based estimators a more appropriate choice. Fur-
thermore, the advances of Sowell have established the conditions necessary to
calculate the autocovariances of the ARFIMA(p,d,0) model. However, condi-
tions have not been established for the FI-STAR model. Thus, it would appear
clear that the estimator of Beran is the most appropriate choice for the present
exercise.4

The estimator of Beran is based on the approximate maximum likelihood
function and results in minimizing the sum of squared residuals from either
an ARFIMA(p,d,0) model or the FI-STAR(p) model. In particular, Beran’s
estimator chooses the model parameters to minimize the following formula:

S(θ) =
TX
t=2

ε2t (θ), (17)

where θ denotes the model parameters for either model. The residuals are
calculated using the formula in (9). In particular, for the FI-ESTAR model
estimated below, the residuals are fit as follows,5

4Beran uses the sample mean as an estimate of µ. Chung and Baillie (1993) show that

the use of the sample mean in estimating µ can result in sizeable small sample biases when d

is positive. The biases tend to be smaller when µ is estimated jointly using the conditional

sum of squared errors estimator reported below. Thus, I choose to estimate µ jointly with

the other parameters rather than use the sample mean.
5Following Terasvirta (1994), we standardize γ by the variance of the transition variable.

Among other things, this makes the selection of starting values relatively straightforward. In

my algorithm, I select starting values by first estimating an ARFIMA (p,d,0) model and then

fit an ESTAR model to the fractional difference of the real exchange rate process. Start-

ing values for γ are selected using a grid search before joint estimation of all of the model
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εt = (1− L)dyt − {φ1,0 +
pX
j=1

(1− L)dyt−j} (18)

−{φ2,0 +
pX
j=1

(1− L)dyt−j}[1− exp{− γ

σ2yt−d
(yt−d − c)2}].

Estimation of the model requires non-linear least squares and necessarily im-
plies that the residuals must be truncated. The estimation procedure used
in this paper generates a numerical gradient that is used in construction of
the model’s standard errors. As alluded to by Terasvirta (1994) for ESTAR
models and van Dijk, Franses, and Paap (2002) for FI-STAR models, it can
be difficult to estimate the model parameters jointly. In particular, accurate
estimation of the smoothness parameter γ is quite difficult when this param-
eter is large, since small changes in the transition function result from even
large changes in γ. Among other things, this implies that γ will not have a
standard t-distribution under the null hypothesis of linearity. Furthermore, a
large resulting standard error for γ, in this case, is necessarily a result of the
numerical difficulty in estimating γ and should not be taken as evidence against
non-linearity. Because of difficulty in joint estimation of the model parameters
as outlined by Terasvirta (1994), van Dijk, Franses, and Paap (2002) propose
an algorithm that concentrates the sum of squares function. Conditional on
the differencing parameter, the threshold parameter c, and the smoothness pa-
rameter γ, the FI-STAR model is linear in the remaining parameters. Thus,
one can estimate γ, d, and c using non-linear least squares, and estimates of the
autoregressive parameters in the two regimes can be obtained via ordinary least
squares. Terasvirta (1994) recommends a similar approach when the algorithm
fails to converge. For the examples considered here, I find that normalizing
the exponential function by the variance of the transition variable is all that is
required to insure convergence of the algorithm. I therefore estimate all of the
model parameters jointly using non-linear least squares.
There are several technical details that briefly merit discussion. Here I pro-

pose a general modeling strategy for the FI-STAR model that again borrows
from Terasvirta (1994) and van Dijk, Franses, and Paap (2002). The first step
is to determine the number of autoregressive parameters to be estimated. In
choosing a value for the number of autoregressive parameters, I use the SIC and
AIC and check the residuals to insure a lack of serial correlation. I generally
find that p=1 is sufficient, although there are several detractors as alluded to
below. Once an appropriate selection has been established for the number of
autoregressive coefficients, one must decide on the appropriate delay parameter
and the preferred transition function. Taylor, Peel, and Sarno (2001) argue
that it is difficult to envision a scenario under which a delay parameter larger
than 1 is necessary. Furthermore, they suggest that an ESTAR model is more

parameters occurs.
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appropriate than the LSTAR counterpart. They argue that it is there is no
economic rationale to expect exchange rates to adjust differently when above
equilibrium than below equilibrium, and thus a symmetric transition function
is appropriate. On anecdotal grounds, I do not necessarily agree. It would
certainly seem plausible that monetary authorities might react to a rapid real
appreciation of their currency through market intervention, while leaving a real
depreciation relatively unchecked. In choosing the appropriate transition func-
tion and delay parameter, I employ the modeling cycle of Terasvirta (1994). In
particular, I choose the delay parameter that minimizes the p-value associated
with the linearity tests described above. To the extent that non-linearity is
found, I generally conclude that the delay parameter is equal to 1. Further-
more, in spite of my contention that LSTAR non-linearity is plausible, there is
absolutely no evidence of FI-LSTAR non-linearity over FI-ESTAR non-linearity
in any of the real exchange rates referred to below.
Finally, Kapetanios (2002) recommends a test for a general form of non-

linearity given the fact that the estimate of d above is constructed under the
null hypothesis of linearity. Of course, under the null, the estimate of d is
consistent, but under the alternative of non-linearity the model is misspecified
and the estimate of d is likely inconsistent. Here, given the discussion above
on the theoretical and empirical improvements that STAR models introduce to
exchange rate dynamics, I prefer to concentrate on a specific rather than general
form of non-linearity. Therefore, as a robustness check, I also estimate the full
FI-ESTAR model, obtain the estimate of d, and perform the same set of tests as
described above. The results are largely consistent with the original findings,
although there are several instances in which non-linearity is found.

4 Data and Estimation

In this paper I consider the real exchange rate process for 20 countries
against the United States. My sample includes Argentina, Belgium, Brazil,
Canada, Denmark, Finland, France, Germany, Ireland, Israel, Italy, Japan, Ko-
rea, Mexico, the Netherlands, Portugal, Spain, Sweden, Switzerland, and the
United Kingdom. The data employed in this study were obtained from the IFS
CD-ROM for June 2002. All of the data are monthly and begin in January
of 1973. The data set ends in December of 1998 for all of the EU member
states. For Israel, the available data extends through November 2001, while
for Japan I have data through February 2002. For Switzerland and Korea, the
available data extend through April 2002, while for the remaining countries the
available data extends through March of 2002. Whenever possible I have used
the consumer price index in the construction of the real exchange rate. For
Ireland I used the wholesale price index and for Israel it was necessary to use
the producer price index. Following Taylor, Peel, and Sarno (2001), the real
exchange rate is calculated as in equation 1, where the nominal exchange rate
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is defined as the foreign currency price of the dollar. The real exchange rate is
then normalized to have the value 0 in January 1973.
To gain a sense of the real exchange rate process under consideration refer to

figure 1, which depicts the real exchange rate process for Germany. The most
striking aspect of the plot is the unprecedented real appreciation of the dollar
during the beginning of the 1980’s and subsequent depreciation after the Plaza
Accord in 1985. Interestingly, ocular inspection reveals about four periods after
1987 in which the dollar steadily appreciates and then unexpectedly depreciates
after reaching approximately the same threshold. This is entirely consistent
with the theoretical foundation of Sercu, Uppal, and Hulle (1995) and provides
some support for the use of non-linear models.

[FIGURE 1 ABOUT HERE]

4.1 ARFIMA (p,d,0) estimation

I now turn to estimation of the ARFIMA (p,d,0) model in table 1. As
alluded to above, the modeling strategy generally suggested that the appropriate
number of autoregressive parameters is equal to 1. In particular, in the vast
majority of cases both the SIC and AIC were smallest for the ARFIMA(1,d,0).
The strategy employed was to minimize the SIC under the constraint that the
residuals are white noise. In instances where the residuals are not WN, I either
use the AIC (if it differs from the SIC), or increase the number of autoregressive
terms until serial correlation is removed. There were three detractors. For
Canada, using the Ljung Box Q-statistic there was some evidence of higher
order serial correlation for every model estimated. The inclusion of additional
autoregressive terms did not eliminate the higher order serial correlation, nor
did it impact tests for non-linearity. In both cases the AIC and SIC selected
one autoregressive term, and I therefore set p=1 for Canada throughout. For
Korea and Mexico, every linear model considered was inadequate for removing
serial correlation, although the FI-ESTAR(1) model was adequate for Korea,
while the FI-ESTAR (4) model produced an adequate fit for Mexico.
From table 1, there is little evidence that supports PPP. For 14 of the coun-

tries in the sample, the estimated value of d is not significantly different from
unity using the constructed numerical standard errors at the 5% value. For
Canada, the estimated value of d is not statistically different from 0, while the
autoregressive specification points to an extremely persistent real exchange rates
in line with the analysis reported in Rogoff (1996). The results for the United
Kingdom and Spain are somewhat difficult to interpret. While the estimated
value of d for these two countries is not significantly different from 0, there is a
strong first order autoregressive coefficient exceeding one, while the sum of the
autoregressive coefficients is only marginally less than unity. There is some evi-
dence of mean reversion for Argentina, Israel, and Mexico, where the estimated
differencing parameter is not significantly different from 0 and the sum of the
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autoregressive coefficients is substantially less than unity. This is somewhat in
line with previous analysis that has suggested purchasing power parity is more
likely to hold for countries with high inflation rates. Table 2 reports diagnostic
statistics associated with the estimated ARFIMA (p,d,0) models. It is not at
all surprising that the residuals from the developing countries exhibit a high
degree of kurtosis and appeared to be skewed. In particular, the economies of
Latin America have endured a history of exchange rate turmoil. By and large,
the residuals from the ARFIMA estimation appear to be serially uncorrelated.
To shed more light on the use of long memory, I also estimated an ARFIMA

model for the first difference of the real exchange rate process. The results,
which are available upon request, very strongly support the estimation results
reported in table 1. In fact, there are only two cases where there is any dis-
cernible disparity between the results. For both Spain and the United Kingdom,
the estimated value for d for the differenced series is insignificantly different from
0, suggesting the potential presence of a unit root. The estimated differenc-
ing parameters for Argentina, Israel, and Mexico are all significantly different
(and less) than 0. In addition, the autoregressive parameters sum to less than
unity. For Canada, the estimated differencing parameter is not statistically
different from -1 (suggesting d=0 for the level of the series), while the estimated
autoregressive parameter remains in line with the estimates found in table 1.
For the remaining countries, there is no direct evidence for purchasing power
parity. Each of the remaining differencing parameters are not statistically dif-
ferent from zero using the numerical standard errors, and thus I am unable to
reject the hypothesis that the real exchange rate processes have unit roots. It is
well known, however, that the asymptotic distribution of the approximate MLE
estimator of the differencing parameter for a stationary and invertible ARFIMA
model with known mean is given by the following (c.f. Li and McLeod, 1986):

√
T (d̂− d) ∼ N(0, 6

π2
) (19)

Recall from above, that sample size varies from 352 to 312, and thus the asymp-
totic standard errors range from 0.0416 to 0.0442. With the asymptotic stan-
dard errors, there is mild support for PPP in that the differencing parameters
for the real exchange rates of Argentina, Brazil, Canada, France, Ireland, Israel,
Italy, Japan, Korea, Mexico, Spain, and the UK are all statistically different
from 0 at the 5% level. Nonetheless, even using this relatively informal metric,
it would be difficult to validate PPP on these grounds. The estimated differ-
encing parameters typically indicate a strong degree of non-stationarity in the
level of the real exchange rate, and while the estimated ARFIMA models for
these 12 countries may point to some degree of mean reversion, the amount of
persistence implied by the parameter estimates is too large to resolve the PPP
puzzle of Rogoff (1996).
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4.2 Tests for FI-STAR Non-linearity

Evidence of STAR(p) non-linearity has been reported by several authors,
most recently Taylor, Peel, and Sarno (2001) and Baum, Barkoulas, and Caglayan
(2001). In table 3, I report the results of the tests for ESTAR non-linearity
based on the modeling cycle described above. Again, I vary the delay parameter
and report the findings associated with the smallest probability for linearity.6

There is very strong evidence of non-linearity for Argentina, Brazil, Korea, and
Mexico. Among these countries, the probability that the fractionally differ-
enced series is linear is at most 3 × 10−7 (Argentina). There is also strong
evidence of non-linearity in the German real exchange rate given a p-value of
0.0154. Of the remaining countries, the p-values for linearity are less than 10%
for Israel, Spain, and Sweden. I also estimated the FI-ESTAR model for each
of the countries where I failed to reject linearity. The estimated value of d
for these countries indicates additional evidence of non-linearity for the Nether-
lands, Portugal, and Spain. In each case, the estimated p-value associated with
the hypothesis of linearity is less than 10%. Furthermore, while the tests fail
to reject linearity both with the estimated value of d under the null and the
value under the alternative hypothesis, the estimated FI-ESTAR models for the
United Kingdom and France produce a smaller AIC than the simple fractional
model. I report the estimation results for these two countries as well. Nonethe-
less while I concede the possibility of non-linear effects for these two countries,
given the results of the linearity tests, I conclude that the UK and French real
exchange rate are best defined as long memory linear processes. Therefore,
of the 20 countries in my sample, the results indicate that the real exchange
rates for 9 countries are best defined as linear long memory processes, while 11
countries have real exchange rates that appear to be defined well by ESTAR
non-linear dynamics. Of these 11 countries, 7 have estimated values of d that
are significantly greater than 0 but less than 1 indicating the significant presence
of long memory coupled with non-linearity.7

In the next section, I turn to estimation of the FI-ESTAR model for the

6I allow the delay parameter to vary from 1 to 4 and select the value that yields the most

support for non-linearity as in Terasvirta (1994). I experimented with higher values, but

never encountered a situation where a delay greater than 4 was necessary.
7Clearly, while non-linearity can be quite important in explaining the dynamics of the

real exchange rate in this paper, I find that not all real exchange rates are characterized by

non-linearity when long memory is present. Rapach and Wohar (2003) also present results

that suggest non-linearity may be somewhat limited in capturing the dynamics of the real

exchange rate process, while Koop and Potter (2001) caution that the finding of non-linearity

could result from an underlying structural change. This seems like a possibility especially for

the developing countries in my sample.
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eleven countries that showed evidence of non-linearity. I also include the esti-
mation results for the UK and France, and I comment on the lack of finding of
non-linearity in the other countries in my sample, especially Canada.

4.3 Estimation Results for the FI-ESTAR Model

In this section, I consider estimation of the FI-ESTAR model. Table 4
contains the estimation results for the 11 countries where non-linearity was
found plus the UK and France. As alluded to above, I estimate the model
parameters jointly and report the standard errors associated with the numer-
ical procedure. The underlying estimates of the smoothness parameter γ are
quite large, and as such the estimated Hessian matrix can be volatile. As a
consequence, the numerical standard errors are relatively large when compared
to table 1. Nonetheless, there is ample evidence to support the hypothesis that
the real exchange rate processes considered in table 4 can be described as having
both long memory and non-linear components. In particular, for 7 of the coun-
tries considered, Argentina, Brazil, Germany, Korea, the Netherlands, Portugal,
and Switzerland, the estimated value for d is significantly different from both 0
and 1 at the 5% for a two tailed test even using the large numerical standard
errors. It is also interesting to note, that when one allows for non-linearity the
degree of persistence as measured through the differencing parameter decreases
substantially. In particular, the estimated value of d has fallen for all countries
relative to the results in table 1, except Argentina, Israel, Mexico, and Spain.
The estimated values of d for the latter countries are of the same magnitude as
the quantity estimated in table 1.
Notice that if the differencing parameter is equal to zero, the result is a simple

ESTAR (p) model. The ESTAR model appears to be the preferred model using
the numerical standard errors for Israel, Mexico, Spain, and Sweden. Again,
the FI-ESTAR model appears most appropriate for the remaining 7 countries.
There is particular interest in Germany. Below, is an estimated ESTAR(1)
model for the German real exchange rate process where Rt denotes the real
exchange rate,

Rt = 0.067+0.793Rt−1+(−0.078+0.148Rt−1){1−exp[−38.3442∗0.363(Rt−1−0.42)2]}.
(20)

Analysis indicates that there are two regimes associated with the ESTAR(1)
model, the inner regime corresponding to an AR(1) process with an estimated
autoregressive coefficient equal to 0.7930, and an outer regime, corresponding
to an AR(1) process with an autoregressive parameter equal to 0.9410. The
German real exchange rate lies within the outer regime for much of the sample,
implying that the real exchange rate can be persistent. Nonetheless, the results
are interesting, as the two regimes produce autoregressive models that are less
persistent that a linear autoregressive model estimated in isolation, which would
produce an AR coefficient equal to 0.9851.
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Turning to the estimated FI-ESTAR model, I first point out that the model
fits the data markedly better than the ESTAR counterpart. First, the estimated
value of d is significantly different from 0. Second, the sum of squared errors
of the ESTAR model is 0.2467 compared to the much lower value (0.2175)
that results from the FI-ESTAR model. The introduction of the additional
differencing parameter allows the SIC to drop from -7.0287 to -7.1546. The
inner regime is associated with a relatively transient regime given by

(1− L)0.4011Rt = 0.3179(1− L)0.4011Rt−1 (21)

The outer regime is the more persistent of the two regimes resulting in an
ARFIMA process with an estimated autoregressive coefficient equal to 0.9123.
Insight can be gained into the estimated model for Germany by observing the

transition function against time for the estimated FI-ESTAR model, which is
depicted in figure 2. The rapid appreciation of the dollar during the early 1980s
is accompanied with a move to the relatively persistent regime. Referring to
figure 1, there are 4 smaller episodes following the original run-up and associated
decline of the dollar in which the pattern repeats itself. Interestingly, during the
periods of rapid appreciation of the dollar, the transition function depicted in
figure 2 suggests that the real exchange rate lies in the persistent regime, before
the deviation from the equilibrium value becomes too large, and the process
begins to transition to the less persistent regime.

[Figure 2 About Here]

Table 4 also contains the estimated results for the United Kingdom and
France. It is interesting to note, that in spite of the failure to reject linearity
for these two countries, that the estimated models do provide some possible
evidence favoring the FI-ESTAR model. The estimated values of d are of the
same magnitude as the estimated differencing parameter for Germany, especially
France’s, although using the numerical standard values, we fail to reject that
these parameters are 0. The inner regime for France is associated with an
ARFIMA model with three autoregressive parameters which sum to 0.3309,
while the outer regime has autoregressive parameters equal to 0.8639, -0.1434,
and 0.1860. The estimates for France suggest that the process tends to be
quite near the outer regime, implying dynamics that are comparable to those of
Germany.
Overall, the FI-ESTAR model appears to be an attractive alternative for

modeling real exchange rate dynamics, especially for the developing countries
and European countries in our sample vis-a-vis the US dollar. Nonetheless,
note that there is not rampant evidence of non-linearity in the real exchange
rate process once long memory has been introduced. In particular, there is
little evidence supporting the contention that non-linearity is present in the real
exchange rate in Canada. The estimated FI-STAR model seems to collaborate
the findings in table 1. The transition function associated with the estimated
FI-STAR model for Canada is depicted in figure 3. Note, the transition function
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is always quite near zero, deviating slightly away from zero near the end of the
sample. This implies that the process is frequently near the inner regime, which
has an ARFIMA specification with d=0.2057 and an autoregressive coefficient
equal to 0.9540. While the outer regime results in a process with an autoregres-
sive parameter equal to -0.3472, the actual process never appears to approach
this regime, and we are left with a model that is virtually indistinguishable form
the one depicted in the first table.

[Figure 3 About Here]

5 Conclusion

A debate has emerged in economics as to who has the better answer con-
cerning the paradox that many bounded series appear to be well described as
unit root processes. Both long memory and structural change are elegant tools
that have been introduced in the past quarter century as a means of bridging
the gap between stationary ARMA models and non-stationary infinite variance
unit root processes. While both techniques have proven to be important from
a modeling perspective, it is now clear that the picture has been clouded again
by the apparent similarity between the two approaches. Indeed, Diebold and
Inoue (2001) establish conditions under which structural change results in a
stochastic structure that can be characterized as long memory. Therefore, it is
important to consider the relationship between these models.
Nowhere in economics is the intersection of structural change and long mem-

ory more apparent than it is for the purchasing power parity puzzle. In partic-
ular, I argue that the strongest empirical and theoretical modeling approaches
for purchasing power parity with regard to structural change point to models
that allow structural change to occur endogenously through non-linear stochas-
tic regime switching models. The appealing argument suggests that a model
that incorporates a smooth transition between regimes is most appropriate given
various impediments to the arbitrage conditions that underlie the theory of PPP
and the time aggregation of price indices and exchange rates. Thus, numer-
ous authors including Michael, Nobay, and Peel (1997), Taylor, Peel, and Sarno
(2001), and Baum, Barkoulas, and Caglayan (2001) have recently employed the
STAR family of models to analyze real exchange rate movements. At the same
time, others such as Cheung and Lai (2001) have put forth arguments suggesting
that the real exchange rate process is best defined as a long memory process.
Given the disparate modeling approaches with regard to purchasing power

parity and it importance in international economics, the theory provides a natu-
ral environment for analyzing the interaction between non-linear and long mem-
ory models. To this end, I employ a modeling approach that allows for joint
estimation of a non-linear long memory STAR model that extends the approach
of van Dijk, Paap, and Franses (2002) to allow for FI-ESTAR models. Again
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the STAR model is selected given the obvious breakthroughs with this model-
ing procedure in the last ten years, although the procedure readily extends to
other forms of non-linearity. I find that it can be important to view the two
modeling techniques not only as potential substitutes but also as potential com-
plements. Of the 11 countries where evidence of non-linearity was found, 7 also
produced significant evidence of long memory. Thus, future analysis of the real
exchange rate process should consider the potential of both long memory and
non-linearity. The results also accord with those of Diebold and Inoue (2001)
in that frequently the dynamics of the real exchange rate process are captured
well by both models. While the findings of non-linearity are not rampant, it is
crucial to note that in terms of the PPP puzzle, linear long memory models offer
little empirical relief for the paradox. On the other hand, from both an empir-
ical and theoretical perspective, the non-linear techniques used in conjunction
with long memory may help explain the findings of strong persistence in the real
exchange rate. In particular, when non-linearity is found, my results typically
indicate a strong reduction in the differencing parameter. In particular, the
German real exchange rate has an inner and outer regime that appear to be
largely stable.
Finally, it is important to note what I am able to do and what I am unable

to do. I only test for one form of non-linearity, and it would be interesting to
extend my results to include different types of non-linearity such as band TAR
models and Markov switching models. Second, more research may be needed for
several of the countries in my sample to determine the appropriate model when
non-linearity is found. In particular, the strongest support for non-linearity
obtained in this paper results for economies that have a history of institutional
instability with regard to their exchange rate policy. Especially for the devel-
oping countries in my sample, it would be sensible to associate non-linearity
with underlying parameter instability associated with structural change. Fi-
nally, especially for the developing countries, there is some evidence of time
varying conditional volatility and non-normality in the residuals. The primary
assumption employed by van Dijk, Franses, and Paap in the construction of
their estimation procedure only relies on the assumption that the disturbance
is a martingale difference sequence. Nonetheless, it is clear, as pointed out by
Eitrheim and Terasvirta (1996), that conditional heteroskedasticity and non-
normality can influence the testing procedure for ESTAR non-linearity. In the
present exercise, one could easily accommodate the assumption of a time vary-
ing conditional volatility by explicitly modeling it in the conditional likelihood
function. I leave these issues for future research.
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Table I
Results for Estimation of ARFIMA (p,d,q) Model

______________________________________________________________________________________
Country φ1 φ2 φ3 φ4 d µ
______________________________________________________________________________________
Argentina 0.7703 0.1676 N/A N/A 0.1274 0.3527

[0.1727] [0.1254] [0.1680] [0.2827]

Belgium 0.3476 N/A N/A N/A 0.9689 -0.0837
[0.1710] [0.1444] [0.0604]

Brazil 0.4302 N/A N/A N/A 0.8142 -0.0428
[0.1873] [0.1645] [0.0817]

Canada 0.9960 N/A N/A N/A 0.1042 0.4488
[0.0108] [0.0662] [0.8844]

Denmark 0.3859 N/A N/A N/A 0.9370 -0.0671
[0.1802] [0.1546] [0.0582]  

Finland 0.3853 N/A N/A N/A 0.9374 -0.0675
[0.1803] [0.1547] [0.0583]

France 0.5815 -0.0962 0.1946 N/A 0.7057 -0.1822
[0.2346] [0.0928] [0.0810] [0.2312] [0.1371]

Germany 0.4467 N/A N/A N/A 0.8510 -0.1206
[0.1811] [0.1599] [0.0755]

Ireland 0.5249 N/A N/A N/A 0.7976 -0.0322
[0.2242] [0.2108] [0.0655]

Israel 0.9572 N/A N/A N/A 0.0794 -0.1369  
[0.0313] [0.0865] [0.0692]  

Italy 0.4476 N/A N/A N/A 0.8932 -0.0313  
[0.2024] [0.1797] [0.0615]  

______________________________________________________________________________________

Notes:  The numerical standard errors are displayed in brackets under the respective coefficients.
We used the SIC and AIC, coupled with a criteria that the residuals from the estimated models must be
serially uncorrelated to generate the number of AR coefficients.  
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Table I (cont).
Results for Estimation of ARFIMA (p,d,q) Model

______________________________________________________________________________________
Country φ1 φ2 φ3 φ4 d µ
______________________________________________________________________________________

Japan 0.5138 -0.099 0.1271 N/A 0.8352 -0.1828  
[0.2016] [0.0834] [0.0831] [0.1917] [0.1181]  

Korea 0.5149 N/A N/A N/A 0.8627 0.0101
[0.2205] [0.2105] [0.0697]

Mexico 0.8701 -0.0421 -0.0905 0.1946 0.1852 0.0298
[0.2267] [0.1300] [0.0998] [0.0831] [0.2258] [0.1477]

Netherlands 0.4053 N/A N/A N/A 0.8995 -0.1052
[0.1795] [0.1564] [0.0689]

Portugal 0.3101 N/A N/A N/A 0.9299 -0.0639
[0.1656] [0.1369] [0.0574]

Spain 1.1637 -0.1912 N/A N/A 0.1291 -0.3004
[0.2358] [0.2075] [0.2132] [0.1459]

Sweden 0.3747 -0.1064 N/A N/A 1.0000 -0.0487
[0.1412] [0.0804] [0.1218] [0.0470]

Switzerland 0.4145 N/A N/A N/A 0.8773 -0.1482
[0.1648] [0.1441] [0.0792]

UK 1.1576 -0.3623 0.1494 N/A 0.1935 -0.1656
[0.2553] [0.1883] [0.0799] [0.2543] [0.0946]

______________________________________________________________________________________

Notes:  The numerical standard errors are displayed in brackets under the respective coefficients.
We used the SIC and AIC, coupled with a criteria that the residuals from the estimated models must be
serially uncorrelated to generate the number of AR coefficients.  
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Table II
Statistics Associated with FI Model

______________________________________________________________________________________
Country Excess Skewness Jacque Q Stat Q Stat Q Stat AIC SSE

Kurtosis Bera Pvalue[5] Pvalue[10] Pvalue[20]

Argentina 36.5209 4.7096 20567.00 0.8096 0.129 0.2957 -4.3025 4.6301

Belgium 0.4538 0.1359 3.6024 0.2923 0.2656 0.6176 -7.271 0.2121

Brazil 9.6344 1.5574 1486.60 0.5763 0.2334 0.308 -6.7507 0.4026

Canada -0.1158 0.2029 2.5827 0.749 0.0418 0.0009 -9.019 0.0417

Denmark 2.4120 0.5339 89.5831 0.5892 0.4571 0.8553 -7.4397 0.1792

Finland 2.4119 0.5337 89.562 0.5907 0.4579 0.8557 -7.4397 0.1792

France 1.1238 0.3197 21.3851 0.9083 0.9121 0.9454 -7.3142 0.2006

Germany 0.4565 0.0137 2.6931 0.8339 0.6392 0.9043 -7.2081 0.2259
 

Ireland 0.2132 0.0433 0.6819 0.8289 0.6883 0.5974 -7.5574 0.1593

Israel 24.1936 3.319 9021.3000 0.9254 0.9538 0.8967 -7.3419 0.2203

Italy 0.9432 0.2442 14.5246 0.8749 0.8576 0.8189 -7.4323 0.1805

Japan 0.8404 -0.5294 26.269 0.9867 0.8306 0.3739 -7.1299 0.2716

Korea 73.6714 6.3334 81258.00 0.0006 0.0000 0.0003 -7.4160 0.2076

Mexico 35.0047 4.3974 18726.00 0.0141 0.0174 0.2600 -5.9989 0.8392

Netherlands 0.2096 0.1351 1.5064 0.8974 0.8543 0.9607 -7.2439 0.2180

Portugal 1.6523 0.4599 46.0417 0.9474 0.7204 0.759 -7.1910 0.2298

Spain 2.7178 0.5282 109.1154 0.4776 0.5136 0.482 -7.3948 0.1862

Sweden 2.6122 0.6211 120.9666 0.9715 0.4001 0.7683 -7.4701 0.1950

Switzerland 0.296 0.0373 1.3551 0.6957 0.5407 0.8542 -7.0453 0.3007

UK 1.2948 -0.1275 25.1086 0.7237 0.8844 0.2431 -7.4036 0.2072

______________________________________________________________________________________
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Table III
Tests Results for Linearity

______________________________________________________________________________________
LM χ2 LM F p value p value Selected Selected Transition

χ2 F Model delay Function

Argentina 34.521821 9.4156975 5.82E-07 3.11E-07 FI-ESTAR 2 ESTAR

Belgium 3.2579 1.6303 0.1961 0.1976 FI 1 ESTAR

Brazil 36.563133 20.24544 1.1493E-08 4.814E-09 FI-ESTAR 1 ESTAR

Canada 0.6498 0.3217 0.7226 0.7251 FI 1 ESTAR

Denmark 3.9293 1.9706 0.1402 0.1411 FI 1 ESTAR

Finland 3.9229 1.9674 0.1407 0.1416 FI 1 ESTAR

France 5.1914 0.8544 0.5195 0.5289 FI 1 ESTAR

Germany 8.3148 4.2306 0.0156 0.0154 FI-ESTAR 1 ESTAR

Ireland 2.9251 1.4622 0.2316 0.2333 FI 1 ESTAR

Israel 4.9508 2.4896 0.0841 0.0844 FI-ESTAR 1 ESTAR

Italy 3.9601 1.9798 0.1381 0.1398 FI 1 ESTAR

Japan 6.9412 1.1498 0.3263 0.333 FI 1 ESTAR

Korea 33.6594 18.4608 4.9086E-08 2.393E-08 FI-ESTAR 1 ESTAR

Mexico 66.4741 9.9286 2.465E-11 1.98E-12 FI-ESTAR 1 ESTAR

Netherlands 2.9759 1.4878 0.2258 0.2275 FI 1 ESTAR

Portugal 0.4726 0.2336 0.7896 0.7918 FI 4 ESTAR

Spain* 7.9936 2.0116 0.0918 0.0927 FI-ESTAR 2 ESTAR

Sweden 8.005 2.013 0.0914 0.0922 FI-ESTAR 2 ESTAR

Switzerland 2.8493 1.4199 0.2406 0.2431 FI 3 ESTAR

UK* 9.8635 1.6433 0.1305 0.1344 FI 4 ESTAR

______________________________________________________________________________________

*  For Span and the United Kingdom, the p-values reported for 2 and 4 lags of the delay parameter are
marginally smaller than the p-values for 1 lag.  However, the estimated models reported below are based
on the delay parameter set equal to 1, as this model produced a better fitting non-linear model.
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Table IV
FI-ESTAR Estimation Results

______________________________________________________________________________________
Country:
Argentina Brazil Germany Israel Korea Mexico Nether. Portugal

______________________________________________________________________________________
Coefficient

φ0
(1) 0.0129 0.0017 -0.0299 0.0172 -0.0143 0.0004 -0.0072 0.0303

[0.0142] [0.0034] [0.0314] [0.0372] [0.0197] [0.0090] [0.0088] [0.0318]
φ1

(1) 0.8264 1.1015 0.3179 1.1772 3.4397 0.6445 1.1988 1.2853
[0.1373] [0.1098] [0.5166] [0.2724] [0.3077] [0.2110] [0.2000] [0.3193]

φ2
(1) 0.3506 N/A N/A N/A N/A 0.4373 N/A N/A

[0.1513] [0.1643]
φ3

(1) N/A N/A N/A N/A N/A -0.3926 N/A N/A
[0.1464]

φ4
(1) N/A N/A N/A N/A N/A 0.2778 N/A N/A

[0.0844]
______________________________________________________________________________________

φ0
(2) 0.0308 0.1094 0.0278 -0.0209 0.0139 -0.0071 0.0067 -0.034

[0.0717] [0.9989] [0.0318] [0.0378] [0.0198] [0.0246] [0.0096] [0.0319]
φ1

(2) -0.8777 -4.0668 0.6034 -0.2643 -2.9919 1.7517 -0.2797 -0.3365
[0.4080] [35.7836] [0.5029] [0.2487] [0.3221] [1.6481] [0.1911] [0.3180]

φ2
(2) 0.1752 N/A N/A N/A N/A -3.5 N/A N/A

[0.3303] [3.3280]
φ3

(2) N/A N/A N/A N/A N/A 2.0105 N/A N/A
[2.2312]

φ4
(2) N/A N/A N/A N/A N/A -0.4193 N/A N/A

[0.8038]
______________________________________________________________________________________

γ 0.2855 0.0258 3.4207 10.5394 690.8707 0.2373 18.9115 1410.70
1/σ2

s 5.7847 37.7403 38.3442 90.8149 48.8415 27.6396 40.3676 27.9313
[01.980] [0.2451] [0.5131] [16.2099] [394.5694] [0.3153] [19.0115] [4230.00]

c 0.2156 -0.0825 -0.359 -0.208 0.0059 0.2711 -0.1373 0.0787
[0.1023] [0.0285] [0.0833] [0.0023] [0.0017] [0.0185] [0.0137] [0.0053]

d 0.2186 0.3759 0.4011 0.1166 0.7977 0.1983 0.2932 0.2042
[0.0969] [0.0947] [0.1613] [0.0997] [0.1015] [0.1804] [0.0996] [0.0959]

______________________________________________________________________________________
Ex. Kurt. 42.8037 9.2229 0.2359 23.654 21.4036 38.6593 0.0874 1.7026
Skewness 5.2834 1.2689 -0.0664 3.2293 2.5618 4.8483 0.1106 0.4465
J. Bera 27699.00 1311.5453 0.931 8517.40 6962.70 22372.00 0.7183 46.9714
Pval- Q (5) 0.8625 0.1520 0.5554 0.8995 0.9976 0.4732 0.2633 0.6457
Pval- Q (10) 0.0547 0.1206 0.4669 0.8660 0.1646 0.5778 0.5335 0.3943
Pval- Q (20) 0.1664 0.0749 0.7494 0.8385 0.3853 0.8950 0.8738 0.6124
AIC -4.3970 -6.8318 -7.2171 -7.339 -8.035 -6.1158 -7.2394 -7.2074
SSE 4.0692 0.3617 0.2175 0.2152 0.1089 0.7086 0.2127 0.2174
______________________________________________________________________________________
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Table IV (continued)
FI-ESTAR Estimation Results

______________________________________________________________________________________
Country: Country:

Spain Sweden Switz. France* UK*
______________________________________________________________________________________
Coefficient

φ0
(1) -0.0385 -0.0317 -0.0334 -0.0250 -0.1442

[0.0351] [0.2828] [0.0551] [0.0387] [0.1514]
φ1

(1) 1.6946 1.4158 -1.4921 -3.3783 1.7905
[0.9586] [0.1510] [7.7717] [8.3796] [1.3875]

φ2
(1) 0.1122 -0.6173 N/A 2.9733 0.5736

[0.9324] [1.2810] [7.6902] [0.4796]
φ3

(1) N/A N/A N/A 0.7359 0.1857
[1.5792] [0.4983]

φ4
(1) N/A N/A N/A N/A N/A

______________________________________________________________________________________

φ0
(2) 0.0323 0.2359 0.0294 0.0248 0.1405

[0.0357] [2.0749] [0.0551] [0.0388] [0.1508]
φ1

(2) -0.5532 -0.4531 2.4282 4.2422 -0.5939
[0.8864] [1.6024] [7.7652] [8.3188] [1.2320]

φ2
(2) -0.2931 0.3597 N/A -3.1167 -1.0015

[0.8999] [0.5754] [7.6837] [0.5265]
φ3

(2) N/A N/A N/A -0.5499 -0.0169
[1.5625] [0.4982]

φ4
(2) N/A N/A N/A N/A N/A

______________________________________________________________________________________
γ 9.9316 0.0874 242.3588 164.8797 8.569

1/σ2
s 29.1519 26.4049 34.5878 43.9756 57.6385

[7.5488] [0.6370] [404.5597] [182.9398] [6.4255]

c 0.0223 -0.2392 0.0502 0.0100 0.1095
[0.0247] [0.9856] [0.0032] [0.0040] [0.0138]

d 0.1291 -0.0134 0.2910 0.4340 0.1916
[0.1056] [0.0954] [0.0996] [0.2638] [0.1852]

______________________________________________________________________________________
Ex. Kurt. 2.9427 2.2488 0.3209 1.2812 1.3121
Skewness 0.5845 0.485 0.0455 0.3778 -0.1815
J. Bera 126.5782 85.4718 1.5992 27.7469 26.2567
Pval- Q (5) 0.469 0.3196 0.0943 0.7194 0.8322
Pval- Q (10) 0.5621 0.1987 0.1121 0.3761 0.8207
Pval- Q (20) 0.4212 0.6583 0.4655 0.7435 0.1571
AIC -7.397 -7.4726 -7.0470 -7.3281 -7.422
SSE 0.1787 0.1878 0.2908 0.1884 0.1948
______________________________________________________________________________________
*  Tests indicate that the linear models are more appropriate for these two countries.
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Figure 1 
Real Exchange Rate Germany 

Figure 2 
Estimated Transition Function Germany 
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Figure 3 
Estimated Transition Function Canada 


