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Abstract - The performance of a ‘capital certain’ Divisia 
index constructed using the same components included 
in the Bank of England’s MSI plus national savings; a 
‘risky’ Divisia index constructed by adding bonds, shares 
and unit trusts to the list of assets included in the first 
index; and a capital certain simple sum index for 
comparison is compared.  
The evidence suggests that co-evolutionary strategies are 
superior to neural networks in the majority of cases. The 
risky money index performs at least as well as the Bank 
of England Divisia index when combined with interest 
rate information. Notably, the provision of long term 
interest rates improves the out-of-sample forecasting 
performance of the Bank of England Divisia index in all 
cases examined. 
 

I. INTRODUCTION 

 The objective of current monetary policy is to identify 
indicators of macroeconomic conditions that will alert policy 
makers to impending inflationary pressures sufficiently early 
to allow the necessary action to be taken to control and 
remedy the problem. Owing to lags in the effect of monetary 
policy this requires a forecast of inflation up to 24 months 
ahead and the Bank of England provides a regular review of 
the prospects for inflation in the form of a quarterly 
‘Inflation Report’, which includes quantified forecasts for 
inflation. Currently, inflation forecasting utilises a range of 
indicators of inflationary pressures such as money supply, 
interest rates, exchange rates and the labour market situation. 
The role of money as a policy control tool has thus been 
relegated from the primary role to being just one of many 
leading indicators of inflation selected from a range of key 
macroeconomic indicators.  
 Evidence is accumulating from a wide range of empirical 
studies around the world to demonstrate that broad Divisia 
weighted monetary aggregates are superior to their simple 
sum monetary counterparts (see, for example [1] for the 
USA, [2] for Germany and [3] for Japan). In keeping with 
[4] and [5], the main stimulus for the current work arises 

directly from the conclusions reached in the recent Bank of 
England study, [6] that “A Divisia measure of money 
appears to have some leading indicator properties for 
predicting both nominal output and inflation ..... a case can 
clearly be made for including Divisia in the range of 
indicators analysed by the authorities when forming their 
judgements on monetary conditions”. This finding was 
corroborated by [7] who concluded, “the Divisia aggregate 
has better leading indicator properties of inflation than does 
simple sum M4.” 
 The acceleration of financial innovation has lead 
economists to question whether the boundary between 
financial assets such as bonds, shares or mutual funds and 
monetary assets has been eroded to the point where it is now 
non-existent. It has been suggested that it might be 
appropriate to include such risky assets into monetary 
aggregates (see for example [8,9], although the 
substitutability between risky and capital certain assets 
decreases as the level of risk aversion increases. Interest rate 
risk arises in the construction of a weighted monetary index 
such as Divisia due to the fact that the interest rates used as 
weights are not known until the end of each period. Under 
risk neutrality, this would not constitute a problem. 
Consumers are, however, expected to be risk averse. Thus 
interest rate risk in combination with risk aversion 
complicates the construction of Divisia aggregates. 
However, [10,11,12] have developed a method to account 
for risk in combination with risk aversion within the Divisia 
index construction utilising results from the consumption 
capital asset pricing model in finance. The equations for 
constructing the risk adjustment needed for the returns on 
each asset are provided in [11] along with a demonstration 
that the new risk adjusted Divisia exactly tracks the 
underlying aggregator function under risk aversion. They 
find the risk adjustment to be small for the asset components 
that are usually included in monetary aggregates.  
 Drake et al. [13] studied the leading indicator properties 
of various UK simple sum, Divisia and risky Divisia 
monetary aggregates over the time period 1979Q1 to 
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1994Q2. They found that using risky aggregates offers an 
improvement over both the simple sum and the standard 
Divisia monetary aggregates. [14] have estimated a demand 
system that includes the UK personal sector holdings of 
risky money over the period 1980Q1 to 1999Q1. They found 
that the risky aggregate performed in accordance with 
economic theory, producing well specified, remarkably 
stable long run demand for money functions.  
 The novelty of this paper lies in the use of co-evolution, 
using neural networks and evolutionary strategies to 
examine the UK’s recent experience of inflation. Our 
preference for evolutionary strategies is due to their unique 
yet natural method of solving problems; they evolve 
solutions until a global solution is reached. This approach 
has the advantage of reducing the search space and has been 
found to be particularly applicable within financial markets 
(see [15]). This is a unique tool in this context and its use in 
this research is highly exploratory although results presented 
here give us confidence to believe that significant advances 
in macroeconomic forecasting and policymaking are 
possible using advanced Artificial Intelligence (AI) methods 
such as this. This is the first attempt to evaluate the 
empirical performance of a risk-adjusted weighted index 
number measure of money using such an approach.  
 

II. DATA AND FORECASTING MODEL 
 In this study the performance of a UK risky monetary 
index is compared with that of the two capital certain 
indices, simple sum and Divisia. The effect of including 
information on interest rates is also studied.   
 The household sector holdings of the M4 components (£ 
millions) included in the official Bank of England index and 
their returns were obtained from the Bank of England 
Monetary and Financial Statistics division website. 
Following [9], the standard Bank of England Divisia 
components are assumed to be capital certain. 
 These assets are; notes and coins (N/C), non-interest 
bearing deposits (NIBD), interest bearing bank sight 
deposits (IBSD), interest bearing bank time deposits (IBTD) 
and building society deposits (BSD). This data set is 
described in detail in [6]. Recent studies have extended the 
list of capital certain assets to include national savings (NS) 
and certificates of deposit, see for example, [16]. In the 
construction of the capital certain indices used in this study, 
only national savings deposits are added to the assets used 
by the Bank of England. The reason is that a consistent NS 
series is available for the entire sample, while certificates of 
deposits only are available from 1986. Personal sector 
holdings of national savings have been downloaded from 
DataStream and the Office for National Savings has 
contributed by supplying the deposit rates.  The benchmark 
rate for the capital certain index was constructed by adding 
2.8 percentage points to the three-month local authority rate. 
This figure is 0.8 percentage points above that used by the 

Bank of England in order to avoid negative user costs when 
national savings are included. 
 The risky index used in the study is constructed by 
extending the list of assets in the capital certain index to 
include bonds, shares and unit trusts. Data on the household 
sector holdings of risky assets, equity (UK quoted shares), 
bonds (UK government bonds) and unit trusts at market 
values (£ millions), were obtained from DataStream. 
Quarterly returns on equities and bonds were calculated 
from the Financial Times all-share index and the Financial 
Times Actuaries government bond price index respectively. 
The return on unit trusts was calculated as an average of 
quarterly returns on all unit trusts. The returns on the risky 
assets are quarterly returns, whilst the returns on the capital 
certain assets are annualised yearly returns reported on a 
quarterly basis. The index construction is not dependent 
upon whether quarterly or yearly interest rates are used, 
although all returns need to be measured on the same basis. 
Thus, the yearly rates of return on the capital certain assets 
have been transformed to quarterly returns.  
 Studies have shown that returns on risky assets are 
autocorrelated. Hence, it may be possible to forecast these 
using an AR-model, see [9,17,18]. In the current work, the 
returns on all three assets are modelled as AR(2)-processes. 
One step ahead forecasts are then used to construct the 
actual interest rate forecasts used in the index calculation. 
 It is a well-known fact that empirical estimates often yield 
unreasonably high approximations of the degree of relative 
risk aversion. In the famous “equity premium puzzle” 
research [19], the estimated degree of relative risk aversion 
was as high as 25. Since it is difficult to find estimates that 
make sense economically, it has become common to choose 
a value directly. [9] assume values in the range 0 to 7. In the 
absence of better estimates, the mid-value 3.5 from this 
study was chosen. It should, however, be noted that the 
importance of the chosen value for the coefficient of relative 
risk aversion is marginal depending on the very low 
correlations between the real rates of the risky assets and the 
growth rate of real consumption. In this study, the estimated 
covariances are 0.00012272, 0.00016532 and 0.00018979 
for bonds, shares and unit trusts respectively. The chosen 
measure of consumption is real private final consumption 
expenditure (PFCE). In some cases, the estimated 
covariance between the real return on bonds and growth in 
real consumption was found to be negative. This implies that 
households can diversify consumption risk by holding risky 
assets, which is counterintuitive [12]. For the risky index, 
the benchmark rate used in calculating the user costs was 
constructed using an envelope approach, Rt

*=max (Etrit
*-φit, 

i=1…l). Following [20] the monetary asset quantities have 
been seasonally adjusted using the Bureau of Census X11 
program. A break adjustment was also made to levels in the 
risky index, to deal with the extraordinary volatility in stock 
market returns that occurred in 1987 (‘Black Monday’) 
without changing the actual model used to forecast the 



interest rates. 
 Monetary data was available for the period 1980Q1 to 
1999Q4. The starting point is restricted by the fact that the 
personal sector data for the risky assets is only available 
from 1980 onwards. Of the total quarterly data points 
available, after loss of data points due to the time lags 
implicit in our model of up to four quarters, 77 quarters 
remained, meaning that the period covered in terms of the 
inflation rate being predicted is 1981Q1 to 2000Q1, or just 
over 19 years. The RPI price series was obtained from 
DataStream. Inflation was constructed for each quarter as 
year-on-year growth rates of prices.  
 The choice of interest rates is a complex matter and the 
rates used are often based upon arbitrary assumptions. 
Considering the fact that most recent simple sum money 
demand studies contain one short and one long interest rate, 
one might ask what really is the own-rate of the monetary 
assets and what is the opportunity cost? For the short rate, it 
has become common to use an arbitrary average of deposit 
rates or a short-term interest rate, and here, following [14], 
the 30-day interest rate was chosen as a proxy for the own-
rate since it appeared to be sufficiently short to be strongly 
correlated with the returns on all capital certain assets. It is 
also common to use i.e. a 5 or 10 year interest rate as a 
proxy for the long rate and hence we chose the 10 year rate, 
though since the yield curve tends to flatten out over longer 
maturities, the exact choice of maturity for the long rate is 
less important. Seasonally unadjusted quarterly interest rate 
series were obtained from DataStream. 
 
A. The Model 
 A simple model of the relationship between money and 
inflation was employed as the basis for our work (see 
equation 1 below) that takes inflation in the current quarter 
to be a function of money measures in the four preceding 
quarters. The model also includes an autoregressive term, 
representing inflation for the preceding period. This model is 
the preferred specification in our earlier neural network 
studies since it consistently outperforms even simpler model 
constructs, although of course in the same vein, we 
recognise that a more complex model design will almost 
certainly yield superior results. A final variable was included 
to represent time (here taking a value between 1 and 77) that 
allows for the possibility that external factors, not catered 
for by the autoregressive variable, might affect the inflation 
rate.  

 Πt = F(Mt-1, Mt-2, Mt-3, Mt-4, Πt-1) (1) 
 The simple model above was tested in four variations; 
monetary index alone; short interest rate added; long interest 
rate added; both long and short interest rates added. Interest 
rates were also lagged for four quarters to be consistent with 
the monetary indices. Given three monetary indices, the 
result was twelve variations to be tested using both the 
neural network and co-evolution models used in this study. 

 
III. NEURAL NETWORK METHODOLOGY 

 The use of artificial neural network technology is an 
unusual tool in this context, although the application of 
neural networks in the field of economics is growing in 
popularity, as indicated by the diverse range of applications 
surveyed in [21]. Neural networks allow approximation of 
highly non-linear functions and so offer more promise in the 
context of econometric modelling than standard linear 
models, especially since there is no requirement to specify 
regression parameters and assumptions about data 
distribution are less rigorous. Where time series such those 
in the present study are concerned, neural networks are 
limited by the shortage of data points on which to train the 
network. However, promising results in earlier neural 
network studies have encouraged us to believe that the 
technique holds great potential and that exploratory studies 
such as this one are worthwhile; see for example, [22].  
 Neural networks are constructions made up of many 
relatively simple, interconnected processors. Establishing 
the architecture for the neural network is analogous to curve 
fitting [23] in that choosing the number of hidden layers and 
hidden neurons is like choosing the order of a polynomial. 
Choosing a lower order of polynomial than required leads to 
a poor fit with the data (the network fails to converge for the 
training data and prediction for new data is poor). Choosing 
a higher order than required leads to a good or perfect fit to 
the data (overfitting to the training data) but poor prediction 
for new data (poor generalisation). 
 The advantage of neural network methodology for this 
investigation, however, is that neural networks are inductive. 
Thus, even when there is no exact knowledge of the rules 
determining the features of a given phenomenon, knowledge 
of empirical regularities can still allow the phenomenon to 
be modelled and this is the strength of the neural network. 
The process of training allows the network, in effect, to 
ignore excess input variables. The technique seems ideal for 
economic phenomena where the central task is to model a 
system of immense complexity without losing predictive 
power. It seems, however, that the potential of non-
traditional techniques such as the neural network has not 
been exploited. 
 A neural architecture of four hidden units in a standard 
back-propagation network was employed throughout. 
Preliminary experiments with 4, 5 and 6 hidden units 
confirmed findings from our earlier work, that a larger 
network confers no advantage and can lead to over-
specialisation. These experiments also led to the surprising 
conclusion that four hidden units is the optimum size of 
network for this data for all model variations, even though 
some contain many more input variables than others. The 
smallest network had 6 inputs (four lags of monetary index 
plus the autoregressive term and the time variable) and the 
largest had 14 inputs (as above plus four lags for each of the 
two interest variables). 



 A policy of deliberate extended training was used [24] 
rather than risk the unreliability of premature stopping 
techniques since this policy had proved successful in earlier 
studies. All networks were trained for 100,000 epochs. 77 
quarters of data were available, of which the first 67 were 
used for training and the last 10 for testing (forecasting). 
This proportion of training to testing is higher than that 
conventionally used for neural networks, but at this 
exploratory stage we are primarily interested in the ability of 
the network to model the data as a precursor to predictive 
ability, rather than focusing exclusively on predictive 
accuracy per se. 
 

IV. EVOLUTIONARY STRATEGIES 

 Evolutionary strategies (ES) are closely related to genetic 
algorithms. Originally they used only mutation, only used a 
population of a single individual and were used to optimise 
real valued variables. More recently, ES’s have used a 
population size greater then one, they have used crossover 
and have also been applied to discrete variables [25]. 
However, their main use is still in finding values for real 
variables by a process of mutation, rather than crossover. 
 An individual in an ES is represented as a pair of real 
vectors, v = (x,σ). The first vector, x, represents a point in 
the search space and consists of a number of real valued 
variables. The second vector, σ, represents a vector of 
standard deviations. 
 Mutation is performed by replacing x by 

 Xt+1 = xt
 + N(0, σ) (2) 

 where N(0, σ) is a random Gaussian number with a mean 
of zero and a standard deviation of σ. This mimics the 
evolutionary process that small changes occur more often 
than larger ones. 
 In evolutionary computation there are two variations with 
regard to how the new generation is formed. The first, 
termed (µ + λ), uses µ parents and creates λ offspring. 
Therefore, after mutation, there will be µ + λ members in the 
population. All these solutions compete for survival, with 
the µ best selected as parents for the next generation. An 
alternative scheme, termed (µ, λ), works by the µ parents 
producing λ offspring (where λ > µ ). Only the λ compete 
for survival. Thus, the parents are completely replaced at 
each new generation. Or, to put a single solution only has a 
life span of a single generation. In this work, we use a 1+1 
strategy and plan to develop other strategies in the future. 
 Good introductions to evolutionary strategies can be 
found in [25, 26, 27, 28, 29] 
 

V. CO-EVOLUTION ENVIRONMENT 

 Co-evolution is based on the idea that a population of 
agents compete against one another and the fittest survive. 
At the start of this evolutionary process the agents are 
created randomly and, of course, these agents act in a 

random way. However, some will be slightly better than 
others and these will survive (and evolve), whilst the lesser 
agents die off. 
 The artificial neural networks we utilise are feed forward 
nets that have their weights adapted using evolutionary 
strategies, rather than a supervised learning technique such 
as back propagation. The networks comprise an input layer, 
with the neurons within that layer using an identify function. 
A hidden layer with a varying number of neurons, is used, 
with the number of nodes being a matter of experimentation. 
The network has a single output neuron, which is the 
predicted inflation rate. The hidden and output neurons use a 
non-linear activation function, which, in these experiments 
is either sigmoid (equation 3) or tanh (equation 8). In (7) and 
(8), x is the input value to the given neuron. 

 f(x) = 1 / (1 + exp(-1 * x)) (3) 

  f(x) = 1 / (1 + exp(x)) - 1 (4) 

 In the initial experiments a population of 20 neural 
networks are created. The networks have a fixed structure 
and the population is homogeneous. 
 Each neural network is presented with the entire set of 
training data (86 samples) and the output for each sample is 
compared against the actual inflation rate for that quarter. 
The fitness for a particular neural network is then given by 

 
86

1i=
∑ (ti – oi)2 (5) 

 where t = the training value presented to the network and 
o = the actual output from the network. 
 The aim is to minimise equation (5) and the network that 
produces the minimum value is the one that is used on the 
validation set (10 samples). 
 Once all 20 neural networks have had the training data 
presented, they are sorted based on their fitness (equation 5) 
and the best 10 are selected to progress to the next 
generation. These are copied (in order to maintain a 
population size of 20) and the copied networks have their 
weights mutated in order to try and improve their predictive 
ability. This is done using equation 1. In addition, the value 
of σ is also mutated using equation 6. 

 σ = σ * exp(τ * N(0, σ)) (6) 

 where τ = (2(NW)0.5)-0.5 and NW = The number of weights 
in the neural network. 
 This process continues for 1,000,000 iterations. This 
figure was chosen as a good trade off between time taken 
(about one hour to run on a 1.5 GHz PC) and to give the 
possibility of a suitably good neural network evolving. 
 A population of 20 networks were randomly created and, 
after evaluating them, the top 10 are retained and evolved 
using an evolutionary strategy (see [26,27,28,29] for good 
introductions). In addition to evolving the weights in the 



network, the sigma value (that is, the standard deviation 
value used in the mutation operator) is also evolved. Sigma 
is initially set to 0.05. 
 Various experiments were conducted. The number of 
hidden neurons was varied between 3 and 5 and sigmoid and 
tanh activation functions were used in the hidden layer (an 
identify function was used for the input and output layer). 
Each test consisted of 1,000,000 iterations so as to be 
comparable with the results reported in [26]. 
 In summary, the various parameters used are as follows;  
Measures: (RISKYM4, DIVM4, SIMSUMM4) 
• Population Size of Networks : 20 
• Iterations : 1,000,000 
• Networks Retained and Mutated : 10 
• Input Neurons : 5 
• Hidden Neurons : {3,4,5} 
• Activation fn (hidden): {sigmoid, tanh} 
• Activation fn (input/output) : identity 
• All results averaged over 5 runs 
 Therefore, we conducted 120 (|Measures| x |Hidden 
Neurons| x |Activations fn (hidden)| x Averaged over five 
runs) runs, each of 1,000,000 iterations. 
 As we were not, at this stage, evolving the structure of the 
network; just mutating the weights, we needed to conduct a 
series of experiments that tested various permutations. The 
experiments involved interchanging Risky Divisia M4, Bank 
of England Divisia M4 and Simple Sum M4 with no interest 
rate, the short interest rate, long interest rate and both short 
and long interest rates. Each experiment was run twice using 
the 26 model combinations for the three monetary 
aggregates, hence a total a set of 156 experiments were run. 
 

VI. RESULTS 

 Table 1a and b shows the results from our two alternative 
AI experiments. The results are divided between within-
sample (the training set) and out-of-sample (the validation 
set). Within these two categories, three standard forecasting 
evaluation measures were used to compare the predicted 
inflation rate with the actual inflation rate, namely, Root 
Mean Squared Error (RMSE), Mean Absolute Difference 
(MAD) and Mean Absolute Percent Error (MAPE). The 
experiments comprise the four lagged measures of money 
and the previous quarters inflation rate.  
 In the case of the neural networks, table 1a, looking first 
at Mean Percent Error, within sample results are reasonable, 
averaging around 10% and there is not a great deal to choose 
between the indices. The best ‘fit’ is Simple Sum with both 
types of interest variable included at 4.2% – but this 
condition also has the worst out-of-sample result. 
 Out-of-sample results for ten quarters (2.5 years) are also 
reasonable, averaging around 32%. The best in terms of 
Mean Percent Error is BoE Divisia with long-term interest 
rates (9.2%) (see figure 1); the next best is risky, also with 
long-term rates (10.0%). Simple Sum does poorly out-of-

sample across the board. Looking at Root Mean Square 
Error and Mean Absolute Difference instead, the two results 
above are reversed so that risky does slightly better. These 
two results are also clearly better than for any other 
condition.  

Out-of-sample: Neural network 
(BOE Divisia and ten year interest)
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Figure 1: Out-of Sample Forecast of Best fitting Neural Network Model 

 Comparing the three monetary indices, simple sum 
performs poorly in all conditions but particularly badly 
where information about both types of interest rate is 
provided. Training error is small for this network and so the 
poor out-of-sample performance may be an artefact of 
overfitting, and BoE Divisia is also affected in this way. 
Since the networks in this condition are really small 
compared to the number of variables (4 hidden units for 14 
variables) this is a strange result. Comparing the 
performance of the risky index with that of the BoE index, 
in both cases there is one condition where the index 
performs poorly (risky in the ‘none’ condition and BoE in 
the ‘both’ condition) but both indices do well when 
information on long term interest rates (alone) is included. 
This may be a result of the high statistical correlation 
between the series, -0.83 and –0.82 for the risky money and 
traditional Bank of England Divisia respectively. Also, there 
is the simple explanation that the neural network favours the 
stability of the long term interest rates in preference to the 
more volatile short term rates. 
 Results confirm that long term (10 year) interest rates 
appear to be helpful in predicting inflation in conjunction 
with the risky and Bank of England indices, but not with 
Simple Sum. Infact, the best neural network result achieved 
does indeed combine the risky Divisia with long term 
interest rates. Short term rates do not seem to be helpful, 
despite the fact that they are used by government to try to 
control inflation. A possible, simplistic, explanation for this 
finding is that, while short term interest rates are mainly 
determined by central bank’s policy actions, long term rates 
reflect market beliefs of how inflation will develop.  
 It is also interesting to note that exactly the same pattern 
emerges when the co-evolutionary strategies are considered. 
Table 1b shows the results obtained when averages are taken 
across the set of four experiments, i.e., those having no 
interest rates inputted, those with the short interest as input, 
those with the long interest rate as input and those using 



both long and short rates. It is again interesting to note that, 
in accordance with the neural network results, the best out-
of-sample results were achieved, on average, when long 
interest rates were combined with the risky measure of 
money. 
 A comparison of the neural network results (table 1a) with 
the co-evolutionary strategy results (table 1b) reveals that, 
while the neural network consistently provides a better 
within-sample fit, the process of evolving neural networks 
using evolutionary strategies yields more accurate out-of-
sample results in 8 out of the 12 cases considered. On 
average, the co-evolutionary strategy RMSE results are 21% 
lower than those produced by neural networks.  
 

VII. CONCLUDING REMARKS 

 This research provides a significant improvement upon 
[26] in terms of comparative predictive performance of co-
evolution. Co-evolutionary strategies have been found to 
compete very favourably with neural networks and have the 
potential to beat neural networks in terms of superior 
predictive performance when used to evolve neural 
networks. Artificial Intelligence techniques in general and 
co-evolution in particular are highly effective tools for 
predicting future movements in inflation; there is 
tremendous scope for further research into the development 
of these methods as new macroeconomic forecasting 
models.  
 This study compares the empirical performance of three 
different monetary services indices within a simple 
macroeconomic framework using the novel approach in this 
context of artificial neural networks. A capital certain 
monetary services index is constructed using the same 
components included in the Bank of England’s monetary 
services index plus national savings. A risky index is 
constructed by adding bonds, shares and unit trusts to the list 
of assets included in the capital certain index. Including such 
assets is motivated both by financial innovations and recent 
theoretical developments in the field of monetary 
aggregation theory. With the acceleration of financial 
innovations, it is legitimate to ask if the frontier between 
financial assets such as bonds, shares or mutual funds and 
capital certain assets has become non-existent. Theoretical 
developments have addressed the problem that the returns 
on many assets, in particular risky assets, are not known 
until the end of each period with certainty. In particular, a 
method has been developed to explicitly adjust the user costs 
used in the calculation of the index based upon results from 
the consumption CAPM framework.  
 Risk-adjusted MSI’s are not estimation free. Under a set 
of CCAPM special case assumptions, the need for 
estimation reduces to making forecasts of returns and 
estimating an Arrow-Pratt measure of relative risk aversion. 
In empirical work, this may not constitute a major obstacle, 
at least from a practical point of view. The researcher can 

simply choose some method to obtain forecasts of returns 
along with some reasonable risk-aversion coefficient. Our 
own experimentation using alternative models to forecast 
returns revealed no dramatic changes in the aggregate risky 
MSI depending upon the model used to obtain the forecasts. 
It should be noted that the risk adjustments obtained in this 
current work are much smaller than one would expect a 
priori. 
 Since the inclusion of risky assets into monetary services 
indices is a new research field, there is tremendous scope for 
future research in this area. This paper does not examine the 
ability of such an index to forecast changes in GDP or the 
price level from a macroeconomic policy viewpoint; 
although recent evidence has been provided by [30] using 
out-of-sample forecasting techniques on US data. Similarly, 
causal relationships between changes in money and changes 
in income and the price level are not investigated here. An 
empirical application of causality tests in a multivariate 
cointegration framework based on monetary services indices 
is presented in [31]. She also develops the idea of 
encompassing in this multivariate cointegration framework. 
It may well be the case that the information content of the 
risky index is greater than the information content in the 
capital certain index, though the present results do not 
provide strong evidence one way or the other. This 
conclusion is reinforced by the difficulties faced in the 
construction of a risky index in order to account for interest 
rate risk in combination with risk aversion. Specifically, two 
problems are identified in the construction of the risky 
monetary services index. Firstly, the equity premium puzzle 
is strongly present in UK data, making the risk adjustment 
minute. Much work is needed to incorporate suggested 
solutions from the finance literature into the monetary 
aggregation literature. Secondly, the Black Monday in 
October 1987 caused a large shift in the risky index. Even 
though this might appear to be a big problem, the size of the 
break is largely determined by the model used to estimate 
the forecasts of real interest rates.  
 Evidence presented here suggests the new risky money 
index performs at least as well as the Bank of England 
Divisia index when used in combination with long interest 
rates. It seems from the present results that such information 
is indeed useful, even though monetary services aggregates 
already internalise interest rates in their construction. There 
is clear evidence of an interaction effect between the 
monetary indices and interest rate information. The 
improvement in prediction with the benefit of any interest 
rate information is particularly marked in the case of the 
risky index, since this index performs particularly poorly on 
its own. The results may demonstrate that forecasting in 
general can be improved by the inclusion of additional 
variables, even within a simple macroeconomic modelling 
framework. In any case, the question merits further 
investigation. Given the increased liquidity of many 
financial assets and the increased monetary services 



provided by broader assets not previously regarded as 
money, increased substitution between monetary and non-
monetary assets is taking place. Central banks run the risk 
that conventional broad monetary assets will become 
increasingly unstable unless such substitutions between 
official and unofficial monetary assets are internalised into 
the construction of money. The problem of destabilisation 
by substitutions between assets within the official aggregate 
and risky assets, such as unit trusts, was faced by the US 
authorities in the so-called ‘missing M2’ episode in the early 
1990s. As [32 has pointed out, however, such destabilising 
substitutions could be completely internalised by 
constructing a suitably wide aggregate using a procedure 
such as the risk-adjusted Divisia approach. 
  This application of artificial intelligence techniques to 
explore the money - inflation link is highly experimental in 
nature and the overriding feature of this research is very 
much one of simplicity. It is virtually certain in this context 
that more accurate inflation forecasting models could be 
achieved with the inclusion of additional explanatory 
variables, particularly those currently used by monetary 
authorities around the world as leading indicator 
components of inflation. 
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TABLE 1A: NEURAL NETWORK RESULTS 
 

 Risky Interest Bank of England Divisia Interest Simple Sum Interest 
In-sample both long short none both long short none both long short none 
RMSE  0.00325 0.00433 0.00506 0.00555 0.00198 0.00421 0.00495 0.00848 0.00183 0.00433 0.00528 0.00580 
MAD 0.0026 0.0035 0.0038 0.0043 0.0015 0.0033 0.0039 0.0070 0.0015 0.0034 0.0041 0.0048 
MAPE 7.1% 8.9% 12.5% 10.1% 4.5% 8.6% 10.3% 17.1% 4.2% 9.6% 12.1% 13.0% 
Average 9.7%    10.1%    9.7%    
             
Out-of-
sample 

            

RMSE 0.00649 0.00315 0.01220 0.01820 0.01887 0.00360 0.00841 0.00749 0.02187 0.00982 0.00593 0.00925 
MAD 0.0059 0.0025 0.0079 0.0138 0.0160 0.0026 0.0074 0.0063 0.0173 0.0074 0.0053 0.0076 
MAPE 22.6% 10.0% 29.1% 53.6% 61.1% 9.2% 28.7% 24.1% 72.8% 29.0% 20.3% 27.8% 
Average 28.8%    30.8%    37.5%    
 
TABLE 1B: CO-EVOLVING NEURAL NETWORK RESULTS (AVERAGES) 
 
 Risky Interest Bank of England Divisia Interest Simple Sum Interest 
In-sample both long short none both long short none both long short none 
RMSE  0.00680 0.00706 0.00723 0.00764 0.00687 0.00690 0.00706 0.00739 0.00703 0.00715 0.00731 0.00748 
MAD 0.0053 0.0057 0.0057 0.0062 0.0054 0.0055 0.0057 0.0059 0.0054 0.0056 0.0058 0.0060 
MAPE 14.8% 15.5% 16.6% 17.9% 15.2% 15.1% 16.5% 17.4% 15.4% 15.5% 16.7% 17.2% 
             
Out-of-
sample 

            

RMSE 0.01330 0.00693 0.00765 0.00828 0.00838 0.00689 0.00813 0.00737 0.00966 0.00769 0.00698 0.00760 
MAD 0.0122 0.0063 0.0066 0.0070 0.0073 0.0061 0.0069 0.0063 0.0089 0.0068 0.0060 0.00682 
MAPE 45.7% 22.9% 24.5% 25.8% 28.2% 22.7% 26.5% 24.5% 33.9% 25.0% 23.3% 26.2% 
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