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Abstract

We develop a model of a small open economy with three types of nominal rigidities
(domestic goods prices, imported goods prices and wages) and eight different structural
shocks. We estimate the model’s structural parameters using a maximum likelihood
procedure and use it to compute welfare-maximizing Taylor rules for setting domestic
short-term interest rates. For these computations, we use a second-order approximation
around the model’s deterministic steady state, which allows the Taylor rule coefficients
to affect the means of consumption, leisure and real balances as well as their variances.
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very precise knowledge of the values of the model’s structural parameters.
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1. Introduction

A large literature analyzes optimal monetary policy in the context of the New Open-Economy

Macroeconomics (NOEM), a class of open-economy dynamic general-equilibrium models with

explicit microfoundations, nominal rigidities, and imperfect competition.1 Gaĺı and Mona-

celli (1999) showed in a model with instantaneous pass-through of exchange rate changes

to domestic prices that optimal monetary policy is identical in open and closed economies

and involves stabilizing the overall price level, without regard to exchange rate fluctuations.

Corsetti and Pesenti (2001) showed that with slow pass-through this is no longer the case:

it is optimal for the central bank to minimize a CPI-weighted average of markups charged

in the domestic market by domestic and foreign producers. Much of this literature uses

highly stylized models with analytical solutions. Recently, more fully developed models have

appeared. Kollmann (2002) and Smets and Wouters (2002) showed that optimal monetary

policy with sticky domestic-goods prices and imported-goods prices involves minimizing a

weighted average of domestic and import price inflation.

In this paper, we analyze optimal monetary policy (within a class of simple monetary

rules) in a NOEM model of a small open economy with three types of nominal rigidities:

wages and both domestic and imported goods prices are set in advance by monopolistically

competitive agents. The model also incorporates eight different types of structural shocks.

We estimate the model’s structural parameters with Canadian and U.S. data using maximum

likelihood via the Kalman filter. We then use the model to compute welfare-maximizing

Taylor rules for setting domestic short-term interest rates. For these computations, we use a

second-order approximation around the model’s deterministic steady state, thereby allowing

the Taylor rule coefficients to affect the means of consumption, leisure, and real balances as

well as their variances.

Our main results can be summarized as follows. We estimate most of the parameters of

1The NOEM literature, spawned by the pioneering work of Obstfeld and Rogoff (1995), has been successful
in explaining phenomena such as high real exchange rate volatility and the strong impact of monetary policy
shocks on real exchange rates. See Sarno (2001), Lane (2001), and Bowman and Doyle (2003) for recent
surveys.
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the model precisely. The estimates are compatible with other small open economy models

in the NOEM literature, for example Bergin (2003) and Dib (2003). The optimal Taylor

rule involves responding more strongly to fluctuations in GDP and money growth than the

Bank of Canada has done historically. The gains from optimal monetary policy are quite

substantial. The gain in unconditional welfare amounts to 2.6% of the initial average level

of consumption compared to the stochastic steady state with the estimated values of the

Taylor rule coefficients. Compared to the historical (estimated) values of the Taylor rule

coefficients, optimized monetary policy responds more strongly to fluctuations in inflation

and output, and less strongly to fluctuations in real money balances.

Our results differ from those in the existing literature in three main respects. First, our

estimate of the welfare gain from optimal monetary policy is larger than in other recent pa-

pers that analyze optimal monetary policy in small open economies (for example Kollmann,

2002 and Smets and Wouters, 2002). Second, we investigate the robustness of the welfare

gains and find that the level of welfare is extremely sensitive to small changes in the values

of the Taylor rule coefficients. As a function of the Taylor rule coefficients, the slope of the

social welfare function is quite steep in the immediate neighborhood of the maximum, but

it becomes quite flat beyond this neighborhood: the welfare function is like a broad plain

with a small number of tall, narrow mountains. The location of the tallest peak in the plain

depends on the estimated values of the model’s structural parameters. This means that

small errors in these estimates due to sampling error could lead monetary policy to miss the

mountain entirely. Third, we show that most of the welfare gain from optimized monetary

policy comes from its effects on the levels of variables rather than on the second moments of

the arguments of the period utility function.

The rest of the paper is organized as follows. In section 2, we present the model. In

section 3, we discuss the estimation strategy used to attribute values to the model’s struc-

tural parameters and the parameter estimates themselves. We discuss the calculation of

the optimal Taylor rule and present our results concerning the benefits of optimal monetary

policy in section 4. Section 5 offers some conclusions.

2



2. The Model

The economy is small because it faces fixed prices on world markets for imported goods. Its

domestic output is an imperfect substitute for foreign goods, and it faces a downward-sloping

demand curve for its output on world markets. It also faces an upward-sloping supply curve

for funds on international capital markets.

Different labor types are associated with particular households that act as monopolistic

competitors in the labor market. Differentiated intermediate goods are produced by mo-

nopolistically competitive domestic firms using labor and a final composite good as inputs.

Differentiated intermediate goods are also imported by monopolistically competitive im-

porters. Domestic and imported intermediate goods are aggregated by competitive firms to

form a composite domestic and a composite imported good. Some of the composite domestic

good is exported. The remainder is combined with the composite imported good to form the

final good. As in McCallum and Nelson (1999, 2001), imports enter the production process

rather than being consumed directly.2 The final good is used for consumption, government

consumption, and as an input into the production of domestic intermediate goods.

There are therefore three sources of monopoly distortion and nominal rigidities. House-

holds set wages in advance, and both importers and producers of domestic intermediate

goods set prices in advance. Following Calvo (1983), price and wage setters maintain con-

stant prices and wages unless they receive a signal to revise them, which arrives at the

beginning of each period with a constant probability. This assumption makes aggregation

simple, allows us easily to vary the average duration of the nominal rigidities, and allows us

to estimate the length of the nominal rigidities along with other structural parameters of the

model.

2.1 Households

There is a continuum of different households on the unit interval, indexed by j. The jth

household’s preferences are given by:

2Bergin (2003) and Kollmann (2002) develop similar models.
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U0(j) = E0

∞∑
t=0

βtu

(
Ct(j),

Mt(j)

Pt

, ht(j)

)
, (1)

where β is the discount factor, E0 is the conditional expectations operator, Ct(j) is consump-

tion, Mt(j) denotes nominal money balances held at the end of the period, Pt is the price

level, and ht(j) denotes hours worked by the household. The single-period utility function

is:

u(·) =
γ

γ − 1
log

(
Ct(j)

γ−1
γ + b

1
γ

t

(
Mt(j)

Pt

) γ−1
γ

)
+ η log (1 − ht(j)) , (2)

where γ and η are positive parameters. Total time available to the household in the period is

normalized to one. This functional form of the period utility function leads to a conventional

money demand equation in which the short-term nominal interest rate is the opportunity

cost of holding money, −γ is the interest elasticity of money demand, and consumption

is the scale variable. The bt term is a shock to money demand. It follows the first-order

autoregressive process given by:

log(bt) = (1 − ρb) log(b) + ρb log(bt−1) + εbt, (3)

with 0 < ρb < 1 and where the serially uncorrelated shock, εbt, is normally distributed with

zero mean and standard deviation σb. The household’s budget constraint is given by:

PtCt(j) + Mt(j) +
Dg

t (j)

Rt

+
etB

∗
t (j)

κtR∗
t

=

(1 − τt)Wt(j)ht(j, ·) + Mt−1(j) + Dg
t−1(j) + etB

∗
t−1(j) + Tt + Dt, (4)

where Wt(j) is the nominal wage rate set by the household. Labor income is taxed at an

average marginal tax rate, τt. B∗
t and Dg

t are foreign-currency and domestic-currency bonds

purchased in t, and et is the nominal exchange rate. Domestic-currency bonds are used by the

government to finance its deficit. Rt and R∗
t denote, respectively, the gross nominal domestic

and foreign interest rates between t and t + 1; κt is a risk premium that reflects departures

from uncovered interest parity. The household also receives nominal profits Dt = Dd
t + Dm

t

from domestic producers and importers of intermediate goods, and Tt is nominal lump-sum
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transfers from the government. The risk premium depends on the ratio of net foreign assets

to domestic output:

log(κt) = ϕ

[
exp

(
etB

∗
t

P d
t Yt

)
− 1

]
, (5)

where P d
t is the GDP deflator or domestic output price index. The risk premium ensures

that the model has a unique steady state. If domestic and foreign interest rates are equal,

the time paths of domestic consumption and wealth follow random walks.3

The foreign nominal interest rate, R∗
t , evolves according to the following stochastic pro-

cess:

log(R∗
t ) = (1 − ρR∗) log(R∗) + ρR∗ log(R∗

t−1) + εR∗t, (6)

with 0 < ρR∗ < 1 and where the serially uncorrelated shock, εR∗t, is normally distributed

with zero mean and standard deviation σR∗ .

Household j chooses Ct(j), Mt(j), Dg
t (j), and B∗

t (j) (and Wt(j) if it is allowed to change

its wage) to maximize the expected discounted sum of its utility flows subject to three

relationships: the budget constraint, equation (4), intermediate firms’ demand for their

labor type, and a transversality condition on their holdings of assets. Aggregate labor is

given by:

ht =

(∫ 1

0

ht(j)
σ−1

σ dj

) σ
σ−1

, (7)

where σ is the elasticity of substitution between different labor skills. This implies the

following conditional demand for labor of type j:

ht(j) =

(
Wt(j)

Wt

)−σ

ht,

where ht is aggregate employment. Wt is an exact average wage index given by:

Wt =

(∫ 1

0

Wt(j)
1−σdj

) 1
1−σ

.

3For an early discussion of this problem, see Giavazzi and Wyplosz (1984). Our risk premium equation
is similar to the one used by Senhadji (1997). For alternative ways of ensuring that stationary paths exist
for consumption in small open-economy models, see Schmitt-Grohé and Uribe (2003).
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The household’s first-order conditions are:

Ct(j)
−1
γ

Ct(j)
γ−1

γ + b
1
γ

t

(
Mt(j)

Pt

) γ−1
γ

= Λt(j)
Pt

P d
t

; (8)

b
1
γ

t

(
Mt(j)

Pt

)−1
γ

(
P d

t

Pt

)
Ct(j)

γ−1
γ + b

1
γ

t

(
Mt(j)

Pt

) γ−1
γ

= Λt(j) − βEt

[
P d

t

P d
t+1

Λt+1(j)

]
; (9)

Λt(j)

Rt

= βEt

[
P d

t

P d
t+1

Λt+1(j)

]
; (10)

Λt(j)

κtR∗
t

= βEt

[
P d

t

P d
t+1

et+1

et

Λt+1(j)

]
, (11)

where Λt(j) is the Lagrange multiplier associated with the time t budget constraint. With

probability (1 − dw) the household is allowed to set its wage. The first order condition is:

W̃t(j) =

(
σ

σ − 1

) Et

∑∞
l=0(βdw)l ηht+l(j)

1−ht+l(j)

Et

∑∞
l=0(βdw)l(1 − τt+l)ht+l(j)Λt+l(j)/P d

t+l

(12)

This first-order condition gives a New Keynesian Phillips curve for wage inflation (see section

(2.6)). The wage index evolves over time according to:

Wt =
[
dw(Wt−1)

1−σ + (1 − dw)(W̃t)
1−σ

] 1
1−σ

, (13)

where W̃t is the average wage of those workers who revise their wage at time t.

2.2 Goods production

2.2.1 Domestic intermediate goods

Firms have identical production functions given by:

Yt(i) = Xt(i)
φ (Atht(·, i))1−φ , φ ∈ (0, 1) , (14)
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where ht(·, i) is the quantity of the aggregate labor input employed by firm i and Xt(i) is the

quantity of the final composite good used by firm i.4 At is an aggregate technology shock

that follows the stochastic process given by:

log(At) = (1 − ρA) log(A) + ρA log(At−1) + εAt, (15)

where εAt is a normally distributed, serially uncorrelated shock with zero mean and standard

deviation σA. The firm chooses Xt(i) and ht(·, i) to maximize its stock market value. When

allowed to do so (with probability (1−dp) each period), it also chooses the price of its output,

P̃ d
t (i). It solves:

max
{Xt(i),ht(·,i),P̃ d

t (i)}
Et

[ ∞∑
l=0

(βdp)
l

(
Λt+l

Λt

)
Dd

t+l(i)

P d
t+l

]
, (16)

where Λt is the marginal utility of wealth for a representative household, and

Dd
t+l(i) ≡ P̃ d

t (i)Yt+l(i) − Wt+lht+l(·, i) − Pt+lXt+l(i),

where Pt is the price of the final output good, Zt. The maximization is subject to the firm’s

production function and to the derived demand for the firm’s output (discussed in section

(2.2.3)) given by:

Yt+l(i) =

(
P̃ d

t (i)

P d
t+l

)−θ

Yt+l, (17)

where P d
t is the exact price index of the composite domestic good. The elasticity of the

derived demand for the firm’s output is −θ. The first-order conditions are:

Wt

P d
t

= ξt(i)(1 − φ)
Yt(i)

ht(·, i) ; (18)

Pt

P d
t

= ξt(i)φ
Yt(i)

Xt(i)
; (19)

P̃ d
t (i) =

(
θ

θ − 1

) Et

∑∞
l=0(βdp)

l
(

Λt+l

Λt

)
ξt+l(i)Yt+l(i)

Et

∑∞
l=0(βdp)l

(
Λt+l

Λt

)
Yt+l(i)/P d

t+l

, (20)

4We include Xt(i) in the production of domestic intermediates for two reasons. First, without Xt(i),
the response of the real wage to demand shocks is too highly countercyclical. Second, as shown in similar
models by McCallum and Nelson (1999, 2001), the presence of intermediates in the production function for
domestic goods affects the correlation between the nominal exchange rate and domestic inflation.
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where ξt(i) is the Lagrange multiplier associated with the production function constraint. It

measures the firm’s real marginal cost. The first-order condition with respect to the firm’s

price relates the price to the expected future price of final output and to expected future

real marginal costs. It can be used to derive a New Keynesian Phillips curve relationship for

the rate of change of domestic output prices (see section (2.6)).

2.2.2 Imported intermediate goods

The economy imports a continuum of foreign intermediate goods on the unit interval. There

is monopolistic competition in the market for imported intermediates, which are imperfect

substitutes for each other in the production of the composite imported good, Y m
t , produced

by a representative competitive firm. When allowed to do so (with probability (1−dm) each

period), the importer of good i sets the price, P̃m
t (i), to maximize its weighted expected

profits. It solves:

max
{P̃ m

t (i)}
Et

[ ∞∑
l=0

(βdm)l

(
Λt+l

Λt

)
Dm

t+l(i)

P d
t+l

]
, (21)

where:

Dm
t+l(i) =

(
P̃m

t (i) − et+lP
∗
t+l

) (
P̃m

t (i)

Pm
t+l

)−ϑ

Y m
t+l. (22)

For convenience, we assume that the price in foreign currency of all imported intermediates

is P ∗
t , which is also equal to the foreign price level. The elasticity of the derived demand for

the imported good, i, is −ϑ. The first-order condition is:

P̃m
t (i) =

(
ϑ

ϑ − 1

) Et

∑∞
l=0(βdm)l

(
Λt+l

Λt

)
Y m

t+l(i)et+lP
∗
t+l/P

d
t+l

Et

∑∞
l=0(βdm)l

(
Λt+l

Λt

)
Y m

t+l(i)/P
d
t+l

. (23)

This equation can be used to derive a New Keynesian Phillips curve relationship for the rate

of change of intermediate input prices (see section (2.6)).
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2.2.3 Composite goods

The composite domestic good, Yt, is produced using a constant elasticity of substitution

(CES) technology with a continuum of domestic intermediate goods, Yt(i), as inputs:

Yt =

(∫ 1

0

Yt(i)
θ−1

θ di

) θ
θ−1

. (24)

It is produced by a representative competitive firm that solves:

max
{Yt(i)}

P d
t Yt −

∫ 1

0

P d
t (i)Yt(i)di, (25)

subject to the production function (24). The first-order conditions yield the derived demand

functions for the domestic intermediate goods given by (17). The exact price index for the

composite domestic good is:

P d
t =

(∫ 1

0

P d
t (i)1−θdi

) 1
1−θ

. (26)

This price index corresponds to a producer price index (PPI) for the economy. The price

level obeys the following law of motion:

P d
t =

[
dp(P

d
t−1)

1−θ + (1 − dp)(P̃
d
t )1−θ

] 1
1−θ

, (27)

where P̃ d
t is the price index derived by aggregating over all firms that change their price at

time t.

Composite domestic output, Yt, is divided between domestic use, Y d
t , and exports, Y x

t .

Foreign demand for domestic exports is:5

Y x
t = αx

(
P d

t

etP ∗
t

)−ς

Y ∗
t , (28)

where Y ∗
t is foreign output.6 The elasticity of demand for domestic output is −ς, and αx > 0

is a parameter determining the fraction of domestic exports in foreign spending. Domestic

5This condition can be derived from a foreign importing firm that combines non-perfectly substitutable
imported goods.

6To ensure the existence of a balanced growth path for the economy, we assume that foreign output grows
at the same trend rate as domestic output.
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exports form an insignificant fraction of foreign expenditures, and have a negligible weight

in the foreign price index.

The foreign variables P ∗
t and Y ∗

t are both exogenous and, when stationarized, evolve

according to

log(P ∗
t /P ∗

t−1) = (1 − ρπ∗) log(π∗) + ρπ∗ log(P ∗
t−1/P

∗
t−2) + επ∗t, (29)

and

log Y ∗
t = (1 − ρy∗) log(Y ∗) + ρy∗ log(Y ∗

t−1) + εy∗t, (30)

where π∗ is steady-state foreign inflation, and επ∗t and εy∗t are zero-mean, serially uncorre-

lated shocks with standard errors σπ∗ and σy∗ , respectively.

The composite imported good, Y m
t , is produced using a CES technology with a continuum

of imported-intermediate goods, Y m
t (i), as inputs:

Y m
t ≤

(∫ 1

0

(Y m
t (i))

ϑ−1
ϑ di

) ϑ
ϑ−1

. (31)

It is produced by a representative competitive firm. Its profit maximization gives the derived

demand function for intermediate imported good j given by:

Y m
t (i) =

(
Pm

t (i)

Pm
t

)−ϑ

Y m
t . (32)

The exact price index for the composite imported goods is given by:

Pm
t =

(∫ 1

0

Pm
t (i)1−ϑdi

) 1
1−ϑ

. (33)

The price index obeys the following law of motion:

Pm
t =

[
dm(Pm

t−1)
1−ϑ + (1 − dm)(P̃m

t )1−ϑ
] 1

1−ϑ
, (34)

where P̃m
t is a price index derived by aggregating over all importers that change their price

in time t.
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2.2.4 Final-goods production

The final good, Zt, is produced by a competitive firm that uses Y d
t and Y m

t as inputs subject

to the following CES technology:

Zt =
[
α

1
ν
d (Y d

t )
ν−1

ν + α
1
ν
m(Y m

t )
ν−1

ν

] ν
ν−1

, (35)

where αd > 0, αm > 0, ν > 0, and αd + αm = 1. The final good, Zt, is used for domestic

consumption, Ct, as inputs to produce domestic intermediate goods, Xt, and government

purchases, Gt. The final good is produced by a competitive firm that solves:

max
{Y d

t ,Y m
t }

PtZt − P d
t Y d

t − Pm
t Y m

t , (36)

subject to the production function (35). Profit maximization entails:

Y d
t = αd

(
P d

t

Pt

)−ν

Zt, (37)

and

Y m
t = αm

(
Pm

t

Pt

)−ν

Zt. (38)

Furthermore, the final-good price, Pt, which corresponds to the consumer price index or CPI,

is given by:

Pt =
[
αd(P

d
t )1−ν + αm(Pm

t )1−ν
]1/(1−ν)

. (39)

2.3 Monetary authority

Following Taylor (1993), Dib (2003) and Ireland (2003) among others, the central bank

manages the short-term nominal interest rate, Rt, in response to fluctuations in CPI inflation

(πt = Pt/Pt−1), money growth (µt = Mt/Mt−1), and output (Yt). Its interest rate reaction

function is given by:

log(Rt/R) = %π log(πt/π) + %µ log(µt/µ) + %y log(Yt/Y ) + εRt, (40)

where π, µ and Y are the steady-state values of πt, µt and Yt, where R is the steady-state

value of the gross nominal interest rate, and where εRt is a zero-mean, serially uncorrelated
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monetary policy shock with standard deviation σR. The error term arises from the fact that

the central bank can controls short term interest rates only indirectly by setting the Bank

rate. The error term thus reflects developments in money and financial markets that are not

explicitly captured by our model.

Money growth is included as an argument in the Taylor rule because of the inclusion of

money demand shocks in our model. They turn out to be important empirically and account

for a significant fraction of fluctuations in output and inflation. If the central bank reacted

only to inflation, money demand shocks could be exacerbated by the bank’s behavior since

a positive money demand shock would lead to a decrease in inflation, a reduction in short

term interest rates, and thereby to an endogenous increase in money demand. The inclusion

of CPI inflation rather than PPI inflation is motivated by the fact that the Bank of Canada

does in fact target CPI inflation; also, reacting to CPI inflation allows for an indirect channel

for reacting to exchange rate movements, since exchange rate fluctuations may be passed

through much more quickly to the CPI than to the PPI.7

2.4 The government

The government budget constraint is given by:

PtGt + Tt + Dg
t−1 = τtWtht + Mt − Mt−1 +

Dg
t

Rt

. (41)

The left side of (41) represents uses of government revenue: goods purchases, transfers, and

debt repayments. The right side includes tax revenues, money creation, and newly issued

debt. The government also faces a no-Ponzi constraint that implies that the present value

of government expenditures equals the present value of tax revenue plus the initial stock of

public debt, Dg
0.

Because households have infinite horizons, there is Ricardian equivalence in the following

sense: given the tax rate on labor income, a change in the mix between lump-sum taxes and

borrowing does not affect the economy’s equilibrium. We can simplify the budget constraint

7Ambler, Dib and Rebei (2003) present evidence that this is indeed the case for Canada.
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without loss of generality to:

PtGt + Tt = τtWtht + Mt − Mt−1. (42)

This implies that Dg
t is zero in each period. Government spending and the tax rate are

determined by:

log(Gt) = (1 − ρg) log(G) + ρg log(Gt−1) + εgt, (43)

and

log(τt) = (1 − ρτ ) log(τ) + ρτ log(τt−1) + ετt. (44)

Given these stochastic processes and that the nominal money stock is determined by money

demand once the nominal interest rate is set, lump-sum taxes are determined residually to

balance the government’s budget.

2.5 Equilibrium

There are two different stochastic trends in the model. The first is in the foreign price level,

and arises from the specification of the stochastic process for P ∗
t in terms of rates of change in

equation (29). The second is in the price of domestic output and all other domestic nominal

variables, and arises from the fact that the monetary authority adjusts the domestic nominal

interest rate as a function of inflation rather than the price level, according to equation (40).

Solving the model involves using stationary transformations of variables with unit roots.

We use the following transformations: pt ≡ Pt/P
d
t , mt ≡ Mt/Pt, pm

t ≡ Pm
t /P d

t , p̃d
t ≡

P̃ d
t /P d

t , πt ≡ Pt/Pt−1, πd
t ≡ P d

t /P d
t−1, wt ≡ Wt/P

d
t , π∗

t ≡ P ∗
t /P ∗

t−1, b∗t ≡ B∗
t /P

∗
t and st ≡

etP
∗
t /P d

t . The complete system of equations in stationary variables that characterize the

model’s equilibrium is given in Appendix B.

2.6 New Keynesian Phillips curves

The price- and wage-setting equations cannot be used directly to simulate the model since

they involve infinite summations. By linearizing these equations around the steady-state

values of the variables, and assuming zero inflation in the steady state, we obtain three New

13



Keynesian Phillips curves relationships that determine the rates of inflation of locally pro-

duced goods intermediates, imported intermediates, and the nominal-wage index. Defining

πm
t ≡Pm

t /Pm
t−1, and πw

t ≡Wt/Wt−1, we get:

π̂d
t = βπ̂d

t+1 +
(1 − βdp)(1 − dp)

dp

ξ̂t; (45)

π̂m
t = βπ̂m

t+1 +
(1 − βdm)(1 − dm)

dm

ŝt; (46)

and

π̂w
t = βπ̂w

t+1 +
(1 − βdw)(1 − dw)

dw

·
[(

h

1 − h

)
ĥt − Λ̂t +

(
τ

1 − τ

)
τ̂t − ŵt

]
, (47)

where hats over variables denote deviations from steady-state values. The New Keynesian

Phillips curve for domestic output inflation is the same as in Gaĺı and Gertler (1999). It

relates inflation to expected future inflation and to the real marginal cost of output. The

equation for import price inflation is analogous, with real marginal cost captured by the real

exchange rate. The wage inflation equation is also analogous. The term in square brackets

measures the marginal rate of substitution (the real marginal cost to workers of their work

effort) minus the real wage. The household’s first-order condition for the nominal wage can

be interpreted as a markup over the average marginal cost of work effort over the life of the

wage contract.

3. Model Solution and Parameter Estimation

In order to estimate the model’s parameters we use a linear approximation around its steady

state, but for welfare analysis we use a higher order approximation using the Dynare program

(Juillard, 2002).

The Blanchard and Kahn (1980) algorithm is used to solve the linearized model. It leads

to a state space representation with transition equations for the model’s predetermined

endogenous state variables and observation equations relating those states to observable

macroeconomic aggregates. The model’s forward-looking or jump state variables are elim-

inated from the state transition equations by the Blanchard and Kahn solution procedure.
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In the notation of Ireland (2004), we have:

st = Ast−1 + Bεt, (48)

The model is completed by the following set of observation equations relating the model’s

state variables to observable endogenous variables:

ft = Cst. (49)

The column vector st−1 contains the predetermined endogenous state variables of the model:

st−1
′ ≡ [bt−1 , At−1 , Gt−1 , τt−1 , R∗

t−1 , π∗
t−1 , Y ∗

t−1 , wt−1 , pm
t−1 , mt−1 , b∗t−1]

with all variables stationarized and measured in proportional deviations from their steady

state values. With eight structural shocks in the model, we include eight variables in the ft

vector in order to avoid the stochastic singularity problem discussed by Ingram, Kocherlakota

and Savin (1994). This problem stems from the fact that, with more than eight observation

equations, there would be exact or deterministic relationships among certain combinations

of the model’s endogenous variables. If these relationships did not hold exactly in the data,

estimation by maximum likelihood would break down. We include the five state variables

that are directly observable as well as consumption, CPI inflation, and the domestic interest

rate:

ft
′ ≡ [Ct , πt , Rt , Gt , τt , R∗

t , π∗
t , Y ∗

t ],

once again with all variables measured in proportional deviations from their steady state

values.

The Kalman filter is used to write down the model’s log-likelihood function given its

state space representation.8 The same estimation method is used by Dib (2003) and Ireland

(2003). The parameters are then estimated by maximizing the log-likelihood function over

the sample period from 1981:1 to 2002:4 sample period.

8See Hamilton (1994, ch.13) or Ireland (2004) for detailed descriptions.
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3.1 Parameter estimates

Table 1 summarizes our parameter estimates. Not counting constants in the stochastic

processes for the model’s forcing variables, the model has 36 structural parameters. Of

these, we were unable to estimate six because they were poorly identified. These parameters

were assigned calibrated values, as outlined in the following paragraph.

The subjective discount rate, β, is given a standard value, which implies an annual real

interest rate of 4 per cent in the steady state. The weight on leisure in the utility function,

η, is calibrated so that the representative household spends about one third of its total

time working in the steady state. The αx parameter is a normalization that ensures that

the current account is balanced in the long run. The demand elasticities, σ, θ, and ϑ,

influence the stochastic properties of the model in a very indirect way. After linearization,

they no longer appear in the three New Keynesian Phillips curve equations. By influencing

the size of the markups over marginal cost, they do influence the steady-state levels of the

domestic production of intermediate goods, imported intermediate goods, and employment.

Because certain coefficients in the linearized model depend on the steady-state levels of

endogenous variables, the moments predicted by the model are related to these parameters.

Unfortunately, the influence is so weak that it is impossible to estimate them precisely. The

θ and ϑ parameters give the elasticity of substitution across different types of intermediate

goods in the production of the composite domestic good and the composite imported good.

Setting θ = ϑ = 8 gives a steady-state markup of 14 per cent, which agrees well with estimates

in the empirical literature of between 10 per cent and 20 per cent (see, for example, Basu

1995). The σ parameter gives the elasticity of substitution across different labor types in

the production of individual domestic intermediate goods. The value of six corresponds to

estimates from microdata in Griffin (1992).9

Of the estimated parameters in Table 1, most have small standard errors and are highly

significant. In particular, the nominal rigidity parameters are highly significant. They are

9It also agrees with the value estimated in Ambler, Guay, and Phaneuf (2003) using aggregate time series
data. They succeeded in estimating the value of the equivalent parameter in their model by calibrating the
equivalent of the dw parameter.
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of plausible magnitude and within the range of values in previous empirical studies and in

calibrated general-equilibrium models. The estimate of dp implies that the prices of domestic

intermediate goods remain fixed for, on average, slightly more than three quarters. The other

prices are revised less often on average, but still well within the range of plausibility. Import

prices remain fixed for, slightly more than four quarters on average. Nominal wages remain

fixed for slightly more than six quarters on average.

The estimated values of the Taylor rule imply, since the sum of %π and %µ is greater than

unity, that the long-run level of the inflation rate is determinate and the model is saddlepoint

stable, with a unique dynamic solution in response to shocks. The value of %y suggests that

the Bank of Canada intervened only weakly if at all during the sample period to fluctuations

in real output.10

The stochastic processes for the model’s forcing variables highly persistent, with AR(1)

parameters above 0.59. The standard deviations of the innovations to the processes vary

widely in magnitude, ranging from 0.0021 in the case of foreign inflation shocks to 0.0771

in the case of money demand shocks. The volatility of foreign shocks is smaller than that

of domestic shocks, which suggests the relative importance of domestic shocks for business

cycle fluctuations in the Canadian economy.

4. Optimal Monetary Policy

Given the estimated and calibrated values of the model’s structural parameters, we optimized

over the three coefficients of the Taylor rule to find the values that maximize unconditional

welfare. The maximization problem can be written as follows:

max
%π,%µ,%y

E {u (Ct,mt, ht)} . (50)

10We also allowed monetary policy to respond to real exchange rate fluctuations in some of our estimations.
The coefficient was very small in magnitude and insignificant. We did not allow for regime shifts when
estimating the Taylor rule coefficients.
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The solution amounts to maximizing welfare in the steady state.11 It ignores any costs

involved in the transition between the initial stochastic steady state with the estimated

values of the Taylor rule coefficients and the new stochastic steady state with optimized

Taylor rule coefficients. We address this issue in Section (4.2).

It is now clear that for the purposes of welfare evaluation in dynamic, stochastic general

equilibrium models, first-order approximations of the model’s equilibrium conditions are

not adequate. Kim and Kim (2003) provide a simple example of a model in which welfare

appears higher under autarky than under complete markets because of the inaccuracy of the

linearization method.12

To compute the welfare-maximizing Taylor rules, we used the Dynare program to calcu-

late the theoretical first and second moments of the model’s endogenous variables, including

period utility.13 Our main results are presented in Table 2. The second column of the table

reproduces the historical (estimated) values of the Taylor rule coefficients from Table 1 in

order to facilitate comparison with their optimized values. The table shows the optimized

Taylor rule coefficients for three different cases with the estimated degree of nominal wage

and price rigidities. For the base case scenario we optimized over all three of the coefficients.

The results are shown in the third column of the table. We considered two different scenarios

with constraints imposed on one of the three coefficients. Results for a scenario in which

%y = 0 are shown in column four. Results for the case where %µ = 0 are shown in the fifth

column. This case corresponds to the optimal Taylor rule calculated by Kollmann (2002) in

a small open economy model calibrated for Germany, Japan and the United Kingdom. The

last column of Table 2 shows optimal Taylor rule coefficients for a case where nominal wage

and price rigidities are completely removed from the model.

For each scenario, we measure the welfare gain from optimal monetary policy by means of

the compensating variation. This measures the percentage change in consumption given the

11It has become standard practice in the literature to abstract from welfare gains and losses due to changes
in real money balances. Because we find empirically that money demand shocks explain a substantial fraction
of output fluctuations, we decided not to shut down the effects of money demand shocks on the model.

12See Kim, Kim, Schaumburg and Sims (2003) for a more general discussion.
13We use the default option of a pure perturbation method as in Schmitt-Grohé (2002) for calculating the

moments.
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equilibrium with the historically estimated values of the Taylor rule coefficients that would

give households the same unconditional expected utility as in the indicated scenario. The

compensating variation is defined as follows:

E {u (Ct(1 + ζ),mt, ht)} = E {u (C∗
t ,m

∗
t , h

∗
t )} , (51)

where variables without asterisks refer to variables under the historical (estimated) values of

the Taylor rule coefficients, and variables with asterisks refer to variables under the optimized

Taylor rule coefficients.

The results are striking. The compensating variation for the base case is quite large.

Consumption in each period would have to increase by 2.69% in the model with the his-

torical values of the Taylor rule coefficients in order for agents to be as well off as with the

optimal coefficients. The gains in the constrained cases are of course smaller. The compen-

sating variation when %µ = 0 is equal to equal 1.07% of consumption. This is close to the

welfare gain calculated by Kollmann (2002). He calculates his welfare gains compared to the

deterministic steady state in which the variance of each shock is set equal to zero, rather

than the stochastic steady state with historical values of the Taylor rule coefficients as we do.

His compensating variation is 0.39%. Note from Table 3 that in our model the deterministic

steady state gives a welfare improvement over the stochastic steady state with the historical

Taylor rule coefficients. The size of the compensating variation is 0.835%. The difference

between this welfare gain and the welfare gain under optimized Taylor rule coefficients with

%µ = 0 is 0.233%, very close to Kollmann’s figure.

The results indicate that, surprisingly, an optimized Taylor rule can lead to a higher level

of welfare than in presence of nominal wage and price rigidities than with flexible wages and

prices. The last column of Table 2 shows that welfare is higher under flexible prices and

wages (with optimized Taylor rule coefficients) than in the stochastic steady state with the

historical values of the Taylor rule coefficients and with the estimated values of the price

and wage rigidity parameters. However, the compensating variation is equal to 0.84% of the

average level of consumption in the historical case, significantly lower than the base case and

slightly lower than our two constrained cases. This result is an example of the generalized
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theory of the second best. Because of the presence of other distortions such as monopoly

power by domestic firms and importers, and the fact that the economy’s terms of trade are

endogenous, there is no guarantee that the optimized Taylor rule without the distortions due

to nominal rigidities will do better that the optimized Taylor rule in the presence of those

distortions.

Compared to the historical values of the Taylor rule coefficients, monetary policy in the

base case responds more strongly to fluctuations in inflation and output, and less strongly to

fluctuations in the growth of real balances. Despite these differences, the coefficients of the

optimized Taylor rule are quite close to the corresponding historical values.14 This suggests

that the measured welfare gains may be quite sensitive to small variations in the Taylor rule

coefficients. This is confirmed by a detailed analysis of the shape of the welfare function in

the space of the Taylor rule coefficients.

Figure 1 shows the shape of the welfare function in the %π / %y plane, holding constant the

value of %µ at its optimal level. The figure shows that the welfare function looks like a broad,

flat plain with an area of rougher terrain in the southwest corner. The global maximum

occurs at the top of a narrowly-based peak. There are several other smaller peaks (one of

which is almost as tall as the global maximum) in the neighborhood of the global maximum

that also have very narrow bases (and one other peak that is nearly as tall). We located the

global maximum by performing a grid search with a fairly narrow grid for the values of the

Taylor rule coefficients. When instead we used the MATLAB functions _fmincon _fminunc,

and _fminsearch, the algorithms failed completely to locate the mountain for any starting

values not already on its slope. The maximization algorithms often got stuck on smaller

peaks or in the plain itself. This indicates that the substantial improvement in welfare from

optimizing the Taylor rule coefficients is not very robust. The location of the mountain

in the plain depends in a complicated way on the underlying structural parameters of the

model. Our estimates of those parameters are of course subject to sampling error, even if

our structural small open economy model has no specification errors. For this reason, the

14This is no longer true for the constrained cases. For both of these scenarios monetary policy responds
much more strongly to variations in inflation than with the estimated values of the Taylor rule coefficients.
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Taylor rule coefficients that are optimal for our parameter estimates may yield a value for

the welfare function that is suboptimal for the model’s true parameter values. Using these

Taylor rule coefficients may lead monetary policy to miss the slope of the mountain entirely.

On the other hand, there are no deep canyons in the plain. Using suboptimal values for

the Taylor rule coefficients should at least not lead to disastrously poor results in terms of

welfare.

4.1 Level effects versus stabilization effects

Because the model is solved using a second-order approximation of its equilibrium conditions

around the deterministic steady-state levels of its variables, both the variances of shocks and

the monetary policy rule (which influences how the shocks are transmitted to the economy)

can affect the means of the endogenous variables of the economy.

Table 3 shows the average levels of various endogenous variables, and the standard devi-

ations of the same variables, in the deterministic steady state, the initial stochastic steady

state (with the estimated values of the Taylor rule coefficients), in the steady state with the

optimal Taylor rule, and in a flexible price equilibrium with dw, dp and dm set equal to zero

and with the Taylor rule coefficients reoptimized given these new values.

It is also possible to summarize to what extent the gains in welfare are coming from the

effects of the change in policy on the levels of consumption, leisure and real balances versus

changes in the volatility of these variables. We can approximate the difference between

welfare under optimal policy and the estimated values of the Taylor rule coefficients as

follows:

E (u (z∗t )) − E (u (zt))

≈ u(z) + uzE (ẑ∗t ) +
1

2
E(ẑ∗t )

′uzz(ẑ
∗
t ) − u(z) − uzE (ẑt) − 1

2
E(ẑt)

′uzz(ẑt),

where zt ≡ (Ct,mt, ht) is the vector of arguments of the utility function, z is the value of

these arguments in the deterministic steady state, and variables with hats measure deviations

from their levels in the deterministic steady state. This implies:

E (u (z∗t )) = E (u (zt)) + uzE (ẑ∗t − ẑt) +
1

2
E (ẑ∗t − ẑt)

′ uzz (ẑ∗t − ẑt) .
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This allows us to decompose the gains in welfare from optimal monetary policy into a level

effect and a stabilization effect. We define the level effect as:

E {u (Ct(1 + ζL),mt, ht)} = Eu (zt) + uzE (ẑ∗t − ẑt) . (52)

We define the stabilization effect as follows:

E {u (Ct(1 + ζS),mt, ht)} = Eu (zt) +
1

2
E (ẑ∗t − ẑt)

′ uzz (ẑ∗t − ẑt) . (53)

The results are shown in the last two rows of Table 3. The overall effect in all cases is such

that approximately:

(1 + ζ) ≈ (1 + ζL)(1 + ζS). (54)

The most important result is that the welfare gain from optimizing the Taylor rule coefficients

comes almost entirely from the effect on the average levels of consumption, hours worked and

real balances. The level effect comes from an increase in the average level of consumption of

over five percent, which more than compensates for a four percent increase in hours worked

and a seven percent decrease in real balances.

Our results show that there is no additional gain from eliminating wage and price rigidity

from the model once the Taylor rule coefficients are optimized. Indeed, the level of steady

state welfare attainable under flexible prices and wages is lower than in our base case scenario.

The simple monetary rules that we analyze here go most of the way to completely eliminating

the welfare costs due to the presence of nominal rigidities. However, because of the presence

of additional distortions in the model (such as the economy’s monopoly power over the types

of goods that it sells on world markets), we do not know how close the optimized Taylor rule

can come to the fully optimal monetary policy.

4.2 Transition costs

[SECTION TO BE COMPLETED LATER]

By maximizing unconditional welfare, we are implicitly comparing two different stochastic

steady states. The welfare comparison ignores the possibility of losses in welfare on the
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transition path from one steady state to another. The possibility is particularly acute for

open economies. Welfare in the new steady state with optimal policy may be higher because

a higher level of net foreign assets allows individuals to enjoy a higher level of consumption.

However, acquiring the additional foreign assets implies a lower level of consumption in

the short run. The short term loss may even swamp the long term gain if individuals are

sufficiently impatient.

In order to guard against this possibility, we simulated the transition from the stochastic

steady state with the estimated values of the Taylor rule coefficients to the steady state

with the optimal Taylor rule. We subjected the model to stochastic simulations under the

estimated values of the Taylor rule coefficients and then simulated the implementation of the

optimal Taylor rule, taking the mean values of the economy’s predetermined state variables

under the old rule as initial conditions for the simulations. The results are presented in

Figure 1. The graph indicates that there is a modest loss in utility when the optimal policy

is implemented. The reduction in utility lasts for XXX periods, and then the transition to

the new steady state with a higher level of period utility is quite rapid.

These results are for the optimized Taylor rule in our base case scenario. For both con-

strained Taylor rules the results are quite different. In these cases, average money balances

increase substantially. Most of the welfare gain comes about from this increased average

level of real balances. In fact, the decomposition of the welfare gain into a levels effect and

a stabilization effect shows that the component of the compensating variation coming from

stabilization is strongly negative. In these cases, since the long run benefits come mainly

from a large buildup of real balances, the transition costs are actually quite high. The mod-

est costs of transition in our base case can be partly explained by the fact that agents do

not have to sacrifice too much current consumption and leisure in order to build up assets

that make them better off in the steady state.

It is possible that an optimization of the Taylor rule coefficients based on maximizing

conditional welfare. However, optimizing conditional welfare is technically much more

challenging, and the modest initial dip in welfare combined with the rapid transition to the

new steady state level of welfare mean that the marginal gains are unlikely to be large.

23



5. Conclusions

This paper has shown that it is feasible to construct a fully developed NOEM model of a

small open economy such as Canada, to estimate almost all of its parameters using maximum

likelihood techniques, and to use the model to analyze optimal monetary policy by calculating

the values of the Taylor rule coefficients that maximize unconditional welfare. The time is

perhaps not far off when central banks themselves will integrate the use of such models into

the formulation of their monetary policy.

Our results show that it is possible to improve welfare substantially by getting the co-

efficients of a modified Taylor rule right. The welfare increase is equivalent to a permanent

2.6% increase in the level of consumption between the stochastic steady states with the es-

timated values of the Taylor rule coefficients and the optimal values. The transition costs of

moving to the optimal stochastic steady state are relatively modest. However, the welfare

function is very sensitive to the values of the Taylor rule coefficients in the neighborhood of

the optimum, and the location of the optimum is sensitive to the estimated values of the

structural parameters of the model.

Much work remains to be done. We need to incorporate capital into the model so that

it can better reproduce the persistence of some of the main macroeconomic aggregates. We

need to do more work on the difference between policies that maximize conditional versus

unconditional welfare. We need to work on deriving the truly optimal feedback rule and to

evaluate the welfare loss from using a Taylor rule that is necessarily an approximation to

the fully optimal rule. We need to analyze the problem of time consistency. Finally, we need

to examine whether the result that welfare gains are extremely sensitive to the coefficients of

the optimal policy rule and to the structural parameters of the model is robust to different

types of models.
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Schmitt-Grohé, S. and M. Uribe. 2003. “Closing Small Open Economy Models.” Journal of

International Economics. 61: 163-185.

Senhadji, A. 1997. “Sources of Debt Accumulation in a Small Open Economy.” International

Monetary Fund. Working Paper No. 97/146.

Smets, F. and R. Wouters. 2002. “Openness, Imperfect Exchange Rate Pass-Through and

Monetary Policy.” Journal of Monetary Economics 49: 947-981.

Taylor, J. B. 1993. “Discretion versus Policy Rules in Practice.” Carnegie-Rochester Con-

ference Series on Public Policy 39: 195-214.

Woodford, M. 2001. “Inflation Stabilization and Welfare.” Contributions to Macroeconomics

Volume 2.

Appendix A: Data and Data Sources

Our data set is available on request. The data are from Canada and the United States and

are quarterly from 1981Q3 to 2002Q4. The Canadian data are from Bank of Canada Banking

and Financial Statistics, a monthly publication by the Bank of Canada. Series numbers are

indicated in brackets and correspond to Cansim databank numbers.

• Consumption, Ct, is measured by real personal spending on non-durable goods and

services in 1997 dollars (non-durables [v1992047] + services [v1992119]).

• The CPI inflation rate, πt, is measured by changes in the consumer price index, Pt

[v18702611].

• The short-term nominal interest rate, Rt, is measured by the yield on Canadian three-

month treasury bills [v122531].

• Government spending, Gt, is measured by government expenditures on goods and ser-

vices (total domestic demand [v1992068] − total personal expenditures [v1992115] −
construction [v1992053 + v1992055] − machinery and equipment investment [v1992056]).
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• The labor tax rate, τt, is measured by the effective labor tax rate (calculated following

the methodology of Jones 2002; and Mendoza, Razin, and Tezar 1994).

• The series in per-capita terms are obtained by dividing each series by the Canadian

civilian population aged 15 and over (civilian labor force [v2062810] / labor force

participation [v2062816]).

The U.S. data are from the Federal Reserve Bank of St. Louis, with the series numbers

in brackets. The world series are approximated by some of the U.S. series.

• World output, Y ∗
t , is real U.S. GDP per capita in 1996 dollars [GDPC96] divided by

the U.S. civilian non-institutional population [CNP16OV].

• The world nominal interest rate, R∗
t , is measured by the rate on U.S. three-month

Treasury Bills [TB3MS].

• The world inflation rate, π∗
t , is measured by changes in the U.S. GDP implicit price

deflator, P ∗
t [GDPDEF].

Appendix B: Equilibrium Conditions

The following system of equations defines the economy’s equilibrium:
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Y x
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ς
tY

∗
t ; (B.17)

Y d
t = αd

(
1

pt

)−ν

Zt; (B.18)

Y m
t = αm

(
pmt

pt

)−ν

Zt; (B.19)

b∗t
κtR∗

t

− b∗t−1

π∗
t

=
Y x

t

st

− Y m
t ; (B.20)

log(κt) = ϕ

[
exp

(
stb

∗
t

Yt

)
− 1

]
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log(Rt/R) = %π log(πt/π) + %µ log(µt/µ) + %y log(Yt/Y ) + εRt; (B.22)

πt =
mt−1

mt

µt; (B.23)

log(At) = (1 − ρA) log(A) + ρA log(At−1) + εAt; (B.24)

log(bt) = (1 − ρb) log(b) + ρb log(bt−1) + εbt; (B.25)

log(Gt) = (1 − ρg) log(G) + ρg log(Gt−1) + εgt; (B.26)

log(τt) = (1 − ρτ ) log(τ) + ρτ log(τt−1) + ετt; (B.27)

log(R∗
t ) = (1 − ρR∗) log(R∗) + ρR∗ log(R∗

t−1) + εR∗t; (B.28)

log(π∗
t ) = (1 − ρπ∗) log(π∗) + ρπ∗ log(π∗

t−1) + επ∗t; (B.29)
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log Y ∗
t = (1 − ρy∗) log(Y ∗) + ρy∗ log(Y ∗

t−1) + εy∗t, (B.30)

where equation (B.20) gives the trade balance of the economy.
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Table 1: Parameter Estimates

Parameter Value Standard deviation t-stat p-value
Stochastic processes

ρa 0.5900 0.1316 4.4229 0.0000
ρb 0.7920 0.0257 30.8171 0.0000
ρg 0.8152 0.0642 12.6978 0.0000
ρτ 0.9502 0.0378 25.1376 0.0000
ρr∗ 0.8619 0.0198 43.5303 0.0000
ρy∗ 0.9832 0.0078 126.051 0.0000
ρπ∗ 0.7794 0.1158 6.7306 0.0000
σa 0.0262 0.0044 5.9545 0.0000
σb 0.0771 0.0054 14.2778 0.0000
σg 0.0071 0.0006 11.8333 0.0000
στ 0.0297 0.0022 13.5000 0.0000
σr∗ 0.0021 0.0002 10.5000 0.0000
σy∗ 0.0065 0.0005 13.0000 0.0000
σπ∗ 0.0022 0.0002 11.0000 0.0000
σr 0.0141 0.0011 12.8182 0.0000
b 0.2961 0.0580 5.1052 0.0000

Nominal rigidity
dw 0.8764 0.0381 23.0026 0.0000
dp 0.5786 0.2197 2.6336 0.0050
dm 0.7708 0.0796 9.6834 0.0000

Interest rate rule
%π 0.7959 0.1743 4.5663 0.0000
%µ 0.5484 0.1965 2.7908 0.0065
%y 0.0095 0.0860 0.1105 0.9123

Foreign supply/demand
αx 0.074 calibrated
ϕ -0.0199 0.0353 0.5637 0.5745
ς 0.7027 0.1321 5.3195 0.0000

Production
ν † 0.7027 0.1321 5.3195 0.0000
αd 0.7224 0.2297 3.1450 0.0023
φ 0.3173 0.0555 5.7171 0.0000
σ 6.00 calibrated
θ 8.00 calibrated
ϑ 8.00 calibrated

Preferences
γ 0.2282 0.0718 3.1783 0.0021
β 0.99 calibrated
η 1.35 calibrated

† — ν was constrained to equal ς



Table 2: Optimized Taylor Rule Coefficients

Historical Base Case Constrained Cases Flex-Price
%y = 0 %µ = 0

%π 0.7959 0.9000 3.8000 3.8300 1.2400
%µ 0.5484 0.3300 0.0000 — 0.0000
%y 0.0095 0.2100 — 0.0700 0.2400

CV∗ — 2.6906 1.0358 1.0682 0.8381
∗: compensating variation in percent
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Table 3: Average Values and Standard Deviations

Deterministic Initial Stochastic Optimal Stochastic Constrained Constrained Flexible Price
Steady State Steady State Steady State Steady State 1† Steady State 2‡ Equilibrium

Averages
Consumption 0.7308 0.7220 0.7612 0.7335 0.7337 0.7395
Hours Worked 0.3182 0.3160 0.3292 0.3193 0.3192 0.3272
Real Balances 0.5937 0.5970 0.5554 0.9936 0.9498 1.6801
Period Utility -0.8336 -0.8419 -0.8154 -0.8317 -0.8313 -0.8336

Standard Deviations
Consumption 0.0000 0.0221 0.0163 0.0368 0.0348 0.0353
Hours Worked 0.0000 0.0110 0.0087 0.0103 0.0009 0.0194
Real Balances 0.0000 0.0385 0.0734 0.3125 0.2949 0.4334
Period Utility 0.0000 0.0280 0.0269 0.0469 0.0452 0.0421

Compensating Variations (%)
CV∗ 0.8350 0.0000 2.6906 1.0358 1.0682 0.8381

Level Effect 0.7488 0.0000 2.6763 1.5775 1.5383 1.9357
Stabilizaton Effect 0.0869 0.0000 0.0164 -0.5357 -0.4649 -1.0826

†: optimum with ρy = 0
‡: optimum with ρµ = 0

∗: compensating variation in percent
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Figure 1: Objective Function with %µ = 0.33

0.8

0.85

0.9

0.95

1

1.05

1.1 0.2

0.25

0.3

0.35

0.4

−0.845

−0.84

−0.835

−0.83

−0.825

−0.82

Optimum 

U
til

ity
 

ρπ 
ρ

y
 

35


