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Abstract

This paper presents a rigurous framework for evaluating alternative forecast-
ing methods for Chilean industrial production and sales. While nonlinear
features appear to be important for forecasting the very short term, simple
univariate linear models perform about as well for almost every forecasting
horizon.
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1 Introduction

Forecast accuracy is important because forecasts are often used to guide
decisions. As a wide range of forecasting methods is available, a rigorous
methodological approach for assessing their relative strengths is needed.
This paper considers several time series models and their respective au-

tomated selection procedures for forecasting Chilean Industrial Production
and Sales. Some of the models try to capture nonlinear features that may be
present in the data and not captured with simple linear models. Yet, the lack
of parsimony and extensive specification searches may seriously damage the
usefulness of complex models; thus requiring a sound approach for comparing
forecasting accuracy.
The remainder of the paper is organized as follows. Section 2 briefly

describes the data. Section 3 presents the various types of models used.
Section 4 uses several methodologies to compare the forecasting accuracy of
the models. Finally, Section 5 concludes.

2 The Data

I use monthly observations of the 12 month variations of the industrial pro-
duction and sales reported by the National Bureau of Statistics for the period
1991:12-2003:11.1

Production Sales
Mean (%) 3.27 3.46
Standard Deviation (%) 4.85 5.09
First order autocorrelation 0.56 0.50
Jarque-Bera (p-value) 0.25 0.86
ADF (p-value) 0.04 0.02

Table 1: Summary Statistics for Chilean Production and Sales Growth Rates
(1991:12-2003:11)

Table 1 and Figure 1 present the evolution of both series and some sum-
mary statistics. Production and sales growth present positive, yet volatile,

1If Yt is the raw data, the variable of interest is yt = ln (Yt/Yt−12). No additional
treatment of the data is conducted.
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growth rates for most of the sample. While, as expected, unit roots are
strongly rejected, both series present relatively high persistence for variables
that are already expressed in terms of growth rates. A sign that forecasting
these series may be challenging is that the variation coefficient (standard
deviation over mean) profusely exceeds unity. Finally, both series are highly
correlated (simple correlation 0.76) and there is marginal evidence of unidi-
rectional Granger causality from Production to Sales (not reported).
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Figure 1: Growth Rates of Chilean Industrial Production and Sales (1991:12-
2003:11)

The next section presents the forecasting models that are used. If it not
were for the inclusion of the 12 month variation of the number of working
days in the month (denoted by d), most of them are otherwise univariate
time series representations of the data.

3 Models

This Section briefly describes the five types of models under scrutiny: a
linear autoregressive model, an artificial neural network model, a self-exciting
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threshold autoregressive model, and a combination of the three.

3.1 Linear Autoregressive Model

The linear autoregressive (AR) model for series y reads

yt = α+

pX
j=1

βjyt−j + δdt + ut, (1)

where y denotes the variable of interest (production or sales), d is as defined
above, and u is a white noise.
To determine the order of the process, p is selected by minimizing the

Hannan-Quinn information criterion (HQ)

HQi ' ln
¡bσ2i ¢+ 2kiT ln (ln (T )) , (2)

where k is the number of parameters being estimated, T is the sample size,
and bσ2i is a consistent estimate of the variance of u for model i. This choice has
some desirable properties over other candidates, as it lays between the Akaike
criterion (that tends to overfit) and the Schwarz criterion (that chooses parsi-
monious models).2 In the empirical application the minimum and maximum
orders of p are set equal to 1 and 36. In the case of Industrial production,
the model chosen was an AR(12). For industrial sales, the model chosen was
an AR(3).

3.2 Artificial Neural Network Model

The artificial neural network (NN) model with K hidden units (layers) is
defined as:

yt = α0+

pX
j=1

βj,0yt−j+δ0dt+
KX
k=1

"
φkψ

Ã
αk +

pX
j=1

βj,kyt−j + δkdt

!#
+ut, (3)

where ψ (v) = (1 + e−v)−1 is a logistic activation function and φk is the
“weight” of the hidden unit k.

2Furthermore, this information criterion is consistent in the sense that it chooses the
“correct” model with probability 1 as T →∞. As is well known, the Akaike criterion does
not fulfill this requirement (Inoue and Kilian, 2003).
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As pointed out by Tkcaz (2001), considering NN models has several ad-
vantages: First, neural networks are data-driven and flexible tools that are
particularly useful when there are no prior beliefs about functional forms.
Second, when properly specified, NN are universal functional approximators.
Finally, neural networks are nonlinear and nest linear models.
For a given value of K, (3) can be estimated using nonlinear least squares

(Kuan and White, 1994). Large values of K may be difficult to estimate as
the number of parameters to be estimated increases linearly. The choice of
K is also conducted by minimizing (2). To make the search manageable, the
value of p is set equal to the linear model, thus forcing the NN model to nest
the AR model. In the empirical application the minimum and maximum
orders of K are set equal to 1 and 3. In the case of Industrial production,
the model chosen had K = 3. For sales, the model chosen had K = 1.

3.3 Threshold Model

The two-regime self-exciting threshold autoregressive (TAR) model reads

yt =

½
α1 +

Pp
j=1 βj,1yt−j + δ1dt + ut if yt−r ≤ θ

α2 +
Pp

j=1 βj,2yt−j + δ2dt + ut if yt−r > θ
, (4)

where θ is the threshold value and yt−r is the threshold variable.
This model is popular because it provides an easy-to-estimate alternative

to the regime-switching model (in fact it is a special case of the latter),
is consistent with nonlinear features of the data, and provides asymmetric
impulse-response functions.3

Given a choice of r, θ in (4) can be estimated by direct search. The
choice of r is conducted by minimizing (2). As above, the value of p is set to
coincide with the value for the linear model and the minimum and maximum
values of r are set equal to 1 and 12. In both, production and sales, the value
obtained for r was 1.

3.4 Combined Forecast

As Fang (2003) puts it, forecasting models differ in structure and data used. If
their forecasts are not perfectly correlated with each other, they may provide

3See Hansen (1997) or Siliverstovs and van Dijk (2003), and references therein for
further details.
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different insights of the dynamics of a series. Combining competing forecasts
often leads to increased forecasting accuracy.
The combined forecast (C) model is:

byCt = LX
l=1

bωlbylt, (5)

where ωl is the weight associated with forecast l and bylt is the forecast of
model l.
Given L forecasts, the weights are obtained as follows:

bω = argmin
ω

TX
t=T0

£
yt − yCt (ω1, . . . , ωL)

¤2
, ωl ≥ 0,

LX
l=1

ωl = 1,

For the application, L is set equal to 3 and combines the forecasts of the
three models described above.

4 Forecast Evaluation

Several evaluation criteria are available to judge the performance of a fore-
casting model. Here we concentrate on point forecast evaluation for h-steps
ahead forecasts of the models discussed.4

For evaluation of point forecasts, the Root Mean Squared Forecast Error
(RMSE) and the Mean Absolute Forecast Error (MAFE) are considered.
Let {bui,t}Tt=T0 denote the sequence of h-steps forecast errors and define T ∗ =
T − T0 + 1. The RMSE and MAFE of model i are defined as

RMSEi =

vuut 1

T ∗

TX
t=T0

bu2i,t
MAFEi =

1

T ∗

TX
t=T0

|bui,t| .
As several competing forecast models are considered, one set of them will

appear more successful than another in a given dimension (say, one model

4The predictive performance of models can also be judged in dimensions such as interval
and density forecasts (Siliverstovs and van Dijk, 2002).
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has the smallest MAFE for 2-steps ahead forecasts). It is inevitable then to
ask how likely it is that this result is due to chance. Diebold and Mariano
(1995), approach forecast comparison in this framework.
Consider the pair of h-steps ahead forecasts of models i and j (bui,t, buj,t)

for t = T0, . . . , T ; whose quality is to be judged by the loss function g (bui,t).5
Defining dt = g (bui,t) − g (buj,t), under the null hypothesis of equal forecast
accuracy between models i and j, we have Edt = 0. Given the covariance-
stationary realization {dt}Tt=T0, it is natural to base a test on the observed
sample mean:

d =
1

T ∗

TX
t=T0

dt.

Even with optimal h-steps ahead forecasts, the sequence of forecast errors
follows a MA(h − 1) process. If the autocorrelations of order h and higher
are zero, the variance of d can be consistently estimated as follows:

V =
1

T ∗

Ãbγ0 + 2 h−1X
j=1

bγj
!
,

where bγj is an estimate if the j-th autocovariance of dt.
The Diebold-Mariano (DM) statistic is given by

DM =
d√
V

d→ N (0, 1)

under the null of equal forecast accuracy. Harvey et al (1997) suggest to
modify the DM test and use instead:

HLN = DM ·
·
T ∗ + 1− 2h+ h (h− 1) /T ∗

T ∗

¸1/2
to correct size problems of DM . They also suggest to use a Student’s t with
T ∗−1 degrees of freedom instead of a standard normal to account for possible
fat-tailed errors.
To test if model i is not dominated by model j in terms of forecasting

accuracy for the loss function g (·), a one-sided test of DM or HLN can be
conducted, where under the null Edt ≤ 0. Thus, if the null is rejected, we
conclude that model j dominates model i.

5For example, in case of Mean Squared Error comparison, g (·) is a quadratic loss
function g (bui,t) = bu2i,t and in the case of MAFE, it is the absolute value loss function
g (bui,t) = |bui,t|.
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4.1 In-Sample Evaluation

One way of evaluating competing models is by judging their in-sample fore-
casting accuracy. For in-sample forecasting (IS), each model is estimated
with the full sample, the “best” of each category is chosen by minimizing
(2), and the coefficients thus obtained are used to conduct h-steps ahead
forecasts. For example, a 3-step ahead forecast for period yt uses the coeffi-
cients estimated with the full sample bβT , but only uses the observations of y
up to period t− 3.6
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Figure 2: In-sample h-step Ahead Forecast Evaluation

6For the Factor model, we consider that the additional X variables are observed by
the forecaster. Thus, we put the Factor model with huge advantages over the univariate
models.
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Production Sales
Model i−Model j RMSE MAFE RMSE MAFE

AR-
NN
TAR
Combined

2 6
2 0
4 0

2 5
1 0
5 0

1 0
1 0
2 0

1 0
1 0
2 0

NN-
TAR
Combined

7 1
10 0

4 2
8 1

0 0
0 0

0 0
0 0

TAR-Combined 4 0 5 0 3 0 1 0

Table 2: Evaluation of In-sample Point Forecasts using the HLNTest. Entries
in plane font indicate the number of forecast horizons (of the 12 possible)
in which the null hypothesis that model i is not dominated by model j is
rejected. The reverse hypothesis is reported in bold font.

Figure 2 and Table 2 present the RMSE, MAFE, and HLN tests of fore-
casting accuracy for h-steps ahead forecasts. All display the typical ascending
pattern (increasing RMSE and MAFE as the forecasting horizon increases).
In both cases, nonlinear models appear to provide better forecasts than

the linear model for short term forecasting (1 and 2-steps ahead forecasts)
but deteriorate faster as the forecasting horizon increases and end up, either
being dominated by or providing comparable forecasts to the linear model.
Thus, univariate models signal that nonlinear features are important solely
for short term forecasting.
In the case of Industrial Production, the NN model dominates all the

other forecasting models for up to 2-steps ahead forecast and its performance
deteriorates markedly up to the point of being outperformed by the linear
model for horizons exceeding seven months. On the other hand, in the case
of Industrial Sales, the NN model (which is not as nonlinear as in the model
for production) basically coincides with the linear model. The nonlinear
short-term features of the series are better approximated by the TAR model,
while again, this model succumbs for further forecasting horizons. However,
in both cases, combining forecasts is prudent as this mixture exploits the
nonlinear features that are absent in the linear model for very short-term
forecasts.
Although useful as evaluation tools (Inoue and Kilian, 2002), in-sample

forecasts are not why models are used in practice. Next, we evaluate the
out-sample forecasting performance of the models presented.
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4.2 Out-of-Sample Evaluation

The total sample for both series comprises 144 observations. For out-of-
sample forecasting (OS), we obtain estimates for each model beginning with
the first 100 observations, produce a forecast for the relevant horizon with
them, add one more observation, produce the next forecast, and so on until we
use the full sample. The model used in each category, is the “best” obtained
with the full sample and not chosen again with each new observation.
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Figure 3: Out-of-sample h-step Ahead Forecast Evaluation

Figure 3 and Table 3 compare the out-of-sample performance of the mod-
els.7 The results here are very robust: 1-step ahead forecasts for Industrial

7The performance of the TAR models deteriorates very rapidly for forecast horizons of
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Production Sales
Model i−Model j RMSE MAFE RMSE MAFE

AR-
NN
TAR
Combined

1 0
0 5
3 0

1 0
0 3
2 0

0 0
0 5
0 0

0 0
0 5
0 0

NN-
TAR
Combined

0 3
1 0

0 3
0 0

0 2
0 0

0 1
0 0

TAR-Combined 9 0 9 0 6 0 6 0

Table 3: Evaluation of Out-of-sample Point Forecasts using the HLN Test.
Entries in plane font indicate the number of forecast horizons (of the 12
possible) in which the null hypothesis that model i is not dominated by
model j is rejected. The reverse hypothesis is reported in bold font.

Production can still be better captured with nonlinear (NN) models that once
again deteriorate for extended forecast horizons. Nonlinear models do not
provide better information than linear models for forecasting Sales. However,
the dominance of some in-sample forecasts is not present out-of-sample. In
fact, all models are preferred to the TAR model.

4.3 Forecast Encompassing

The DM and HLN tests are useful to asses if a model dominates another in
the dimension chosen. Forecast encompassing tests seek to evaluate whether
competing forecasts may be fruitfully combined to produce a forecast superior
to the individual forecasts. One of such tests prescribes to regress the actual
level of yt on the predicted values of y by the competing models (Clements
and Hendry, 1998). For example, an encompassing test between models i
and j can be conducted with the regression model:

yt = ρ1byit + ρ2byjt + vt

4 periods or more, thus they are excluded from Figure 3 to make a better visual comparison
of the other models.
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and test for ρ1 = 1, (or ρ2 = 0) conditional on ρ1 + ρ2 = 1.8 The former
specification is indeed equivalent to the regression:

buj,t = ρ (bui,t − buj,t) + vt (6)

and test the null hypothesis (ρ = 0). If the null is rejected, model j could be
improved by incorporating some of the features of model i.9

Production Sales
Model i−Model j IS OS IS OS

AR-
NN
TAR
Combined

9 11
3 0
11 0

8 12
0 12
8 0

1 1
4 8
3 1

0 6
1 11
0 0

NN-
TAR
Combined

11 9
11 0

10 12
12 0

7 11
7 0

1 11
6 0

TAR-Combined 9 0 12 0 10 0 11 1

Table 4: Forecast Encompassing Tests. Entries in plane font indicate the
number of forecast horizons (of the 12 possible) in which the null hypothesis
that model i can not be improved by incorporating features of model j is
rejected. The reverse hypothesis is reported in bold font. IS=In-sample
Forecast. OS=Out-of-sample forecast.

Table 4 presents the results of estimations of (6) for different forecast
horizons.10 As would be expected, the case for combining linear and nonlinear
models appears to be strong.

4.4 White’s Reality Check

As noted by White (2000), whenever a “good” forecasting model is obtained
by an extensive specification search, there is always the danger that the
observed good performance results from luck and not from actual forecasting

8Including a constant and not imposing the constraint are also other possibilities (Fang,
2003).

9As mentioned, as the forecast errors tend to be correlated for 2-steps ahead forecasts
or more, a HAC covariance matrix should be used to test the null.
10For example, the TAR model would help improve the forecasts of the AR model only

for 1 of the 12 horizon periods in the case of industrial sales. However, the AR model
would help improve the forecasts of the TAR model in 11 of the 12 horizon periods.
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ability. Even when no exploitable relation exists, looking long enough at a
given data set will often reveal inexistent patterns that are in fact useless.
The practice of conducting extensive searches and their consequences for
inference is called “data snooping” or “data mining” and may induce naive
practitioners to mistake the spurious for the substantive.
White (2000) provides a formal framework with which to test the null

hypothesis that the best model encountered during a specification search has
no predictive superiority over a benchmark model.11 The test is appropriately
named a “Reality Check” and can be conducted in several ways. Here, we
briefly describe the so-called “Bootstrap Reality Check”, which is the one we
perform. The steps involved in it are:12

• Obtain the DM or HLN test for each model j against a benchmark
model and denote it by Aj.

• Generate i = 1, . . . ,M artificial samples of y and the other variables
involved in estimating the models. In this case, we require a resampling
procedure applicable to dependent processes. Here we use Politis and
Romano’s (1994) stationary bootstrap.13

• Conduct the specification search, minimizing (2), to select the “best”
model of each category and each bootstrapped sample.

• Compare the forecast obtained by each model j with a (fixed) bench-
mark model using either the DM or HLN tests and denote it by Dj

i .
14

• After obtaining theM values of Dj
i for each j, denote the sorted values

of Dj
i as S

j
i . Find F such that Sj

F ≤ Aj < Sj
F+1. Then, the Bootstrap

Reality Check p-value is 1− F/M .

11There is a subtle but important difference with the DM and HLN tests presented
above. Those tests compare the forecasts of two (fixed) models, while White compares the
forecasts of a model obtained through extensive specification searches and a benchmark
model.
12This procedure can be computationally very demanding. For example, obtaining the

Bootstrap Reality Check p-value (defined below) for the NN model takes up to 30 hours
with a Pentium 4 computer. All the results of this paper were performed using GAUSS.
The code is available upon request.
13Fixed block bootstrapping is also commonly used, however it does not guarantee

stationarity of the sample so generated. The stationary bootstrap resamples blocks of
random length (length drawn from a geometric distribution) and the resulting series is
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h−steps ahead Production Sales
AR NNr AR NN

1
2
3
4
5
6
7
8
9
10
11
12

.01

.36

.80

.81

.82

.79

.76

.74

.71

.55

.59

.71

.00

.01

.36

.50

.60

.68

.88

.77

.80

.85

.83

.77

.42

.51

.74

.77

.84

.85

.85

.79

.81

.81

.87

.90

.48

.48

.75

.77

.87

.86

.84

.79

.78

.77

.83

.88

Table 5: Bootstrap Reality Check p-values. An AR(1) Model is used as the
benchmark model.

Table 5 presents the Bootstrap Reality Check p-values for the AR(p) and
NN Models against an AR(1) benchmark model. The results show that ex-
cept for one (two) case [1-step (1 and 2 steps) ahead forecast(s) for Industrial
Production], the best AR and NN models do not beat (in mean squared er-
ror) the AR(1) benchmark model. The results thus confirm that nonlinear
features, are important only for very short-term forecasting.

5 Concluding Remarks

This paper develops a methodology for comparing linear and nonlinear uni-
variate forecasting models for Chilean Industrial Production and Sales.
The results suggest that nonlinear features may be relevant for forecasting

only the very short run, and that combining forecasts improves the forecast-
ing performance of each model.

stationary.
14White (2000) also uses a variant of the DM test due to West (1996).
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