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Abstract. In this note a one-state, one-control variable quadratic linear problem with robust control and 
discount factor is developed to examine the optimal response of the first-period control to changes in future 
model uncertainty. A change in future model uncertainty has an effect on the optimal first-period control 
response going in the same direction as the one caused by an equal size change in current model 
uncertainty. However, both analytical and numerical results show that such effect is much lower than the 
one derived from a change in current model uncertainty. Moreover, such effect is even much lower as the 
change in model uncertainty moves farther away into the future. Finally, the infinite horizon result confirms 
the reinforcing nature of the effects on the optimal first-period control response of current and future 
changes in model uncertainty.  
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1. Introduction 
 
The recent interest in the application of robust control methods to monetary policy has 

prompted some work on comparing them to the more familiar expected value controllers. 

Zakovic, Rustem and Wieland (2003) simultaneously apply both methods to monetary 

policy and find rules that limit worst-case outcomes while providing a reasonably good 

performance on average. In particular, one would like to characterize the response of the 

control to increases in model and parameter uncertainty with robust control and expected 

value control, respectively.  

 

In this note I distinguish between  “model uncertainty” which can be stepped up by 

decreasing the “free” parameter in the criterion function and “parameter uncertainty” 

which can be stepped up by increasing a parameter’s variance. Gonzalez and Rodriguez 

(2003) characterize the response of the control to changes in current model uncertainty. 

 
*The author thanks P. Ruben Mercado, David A. Kendrick and an anonymous referee for useful comments 
on earlier versions of this note. 
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Mercado and Kendrick (2000) examine the effect of an increase in future parameter 

uncertainty on the optimal use of the first-period control variables. Mercado (2001) finds 

that caution will always prevail over intensity given an equal increase in current and 

future parameter uncertainty. In this note, the effect of an increase in future model 

uncertainty on the optimal response of the first-period control variable is both analyzed 

with the Riccati equations derived from a QLP with discounting and compared to the 

effect corresponding to an equal size increase in current model uncertainty. Unlike the 

results in Mercado (2001) when comparing current to future parameter uncertainty, the 

analytical results show that the change in future model uncertainty has an effect on the 

first-period control variable response going in the same direction as the one caused by an 

equal size change in current model uncertainty –i.e. both effects are more aggressive. 

However, both analytical and numerical results show that such effect is much lower than 

the one derived from a change in current model uncertainty. This is the same as 

Mercado’s (2001) result - i.e. the effect of changes in current uncertainty is larger than 

the effect of changes in future uncertainty. Moreover, the analytical results show that the 

effect on the first-period control variable response becomes smaller as the change in 

model uncertainty moves farther into the future. Finally, the infinite horizon result 

confirms the reinforcing nature of the effects on the optimal first-period control response 

of current and future changes in model uncertainty.    

 

 In the next section a Quadratic Linear Problem (QLP) with one-state, one-control 

variable, discounting and robust control is set up. Section 3 shows the response of the 

first-period control variable to changes in future model uncertainty and compares that 

response to one caused by changes in current model uncertainty. Moreover, the decaying 

effect of future model uncertainty on the first-period control variable response as the 

uncertainty moves farther into the future is proved. Section 4 provides a numerical 

example. Section 5 studies the infinite horizon case. Section 6 contains the concluding 

remarks.                       
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2. Problem statement 
 

A QLP with one-state, one control variable, discounting and robust control is adapted 

from the one in Gonzalez and Rodriguez (2003). It is used here to examine the response 

of the first-period control variable to changes in future model uncertainty. Formally, the 

robust control problem consists of choosing  and ω to minimize and maximize the 

quadratic criterion function, respectively. Since both the Riccati equation for the QLP 

emerges from first-order conditions alone and the first-order conditions for extremizing a 

quadratic criterion function match those for an ordinary (non-robust) QLP with two 

controls (see Hansen and Sargent, 2003, pp 29-30), the robust control problem can be 

written as 
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 The desired path for both the control and state variable is zero2- i.e. 

 for = 0,1,.…,N. The absolute value of the state parameter a  is assumed 

to be smaller or equal to one - i.e. the state equation is not unstable. The penalty weight 
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2 As mentioned by Mercado and Kendrick (2000) and Mercado (2001), a zero path is common with 
variables expressed in logs or percentage deviations from a base case.    
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The solution to this extremization problem is the feedback rule (see Kendrick, 1981, p. 

17).  

 

     u G               (6) kx=k k

   

 By adapting the relevant equations from Gonzalez and Rodriguez (2003) to our 

case where the timing of model uncertainty and discounting matter, the following 

feedback coefficients for all periods are obtained:3    
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where  is the Riccati equation and given by  kk
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and 
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11 11 1 1 1detk k k k kk kλ θ λ β θ β+ += − + −

 

 Eq. (7) can be rewritten as 
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3 See Appendix A in Amman et al. (1995) for derivation of the Riccati equations in a model with 
discounting. 
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 In the next section equations (8) - (11) will be used to examine the response of the 

first-period control variable to changes in future model uncertainty and compare it to that 

one caused by changes in current model uncertainty.  

 
 
3. Future and Current Model Uncertainty: The Optimal First-Period  
    Response 
 
An increase in future model uncertainty is represented here by a reduction of the 

robustness “free” parameter θ  where T can take any value between 1 and N-1. An 

increase in current model uncertainty corresponds to lower values of θ . The link 

between the change in future model uncertainty and the value of the first-period feedback 

gain coefficient G  is obtained by applying the chain rule from calculus.

T

0

0u
4  

 

The first-period feedback gain coefficient G  is obtained from Eq. (11) and is 

given by

0u

5 
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A change in future model uncertainty θ  and the first-period feedback gain 

coefficient G are linked, after applying the chain rule, according to the following: 

T

0u

 

0 0

1 1

 ...  ... u u k T

T k

G G k k
k kθ θ+

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ T

                                                

                                      (14)  

 

 
4 Mercado (2001) applies the chain rule from calculus to examine the link between changes in future 
parameter uncertainty and the absolute value of the first-period feedback gain coefficient G . 

0u
5 Unlike Mercado and Kendrick (2000) and Mercado (2001), the absolute value of the gain coefficient 

is not used here because its denominator is either positive or negative and contains the variable whose 
changes are analyzed.   

0uG
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From Eq. (13) the partial derivative of the first-period feedback gain coefficient 

 with respect to  is obtained: 
0uG 1k
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From Eq. (8) the partial derivative of the Riccati equation k  with respect to next 

period’s Riccati equation  is obtained: 
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From Eq. (8) the partial derivative of the Riccati equation with respect to θ  is 

also obtained: 
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 By substituting the right side of equations (15) – (17) into the right side of Eq. 

(14) and setting the “free” parameter θ  for all  the following is obtained: k θ= k T<
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 Comparing the effect of a change in future model uncertainty on the first-period 

response of the control variable to that one caused by an equal size change in current 

model uncertainty will give us a better idea of its relative strength.  
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 The effect of a change in current model uncertainty on the first-period response of 

the control variable is obtained from Gonzalez and Rodriguez (2003) and adapted to our 

case with discounting. It is given by  

 

  0

2 2
1 1 11
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0 0det
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∂
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 By comparing the qualitative effect of a change of model uncertainty on the first-

period response of the control variable across both cases, it can be seen that they share an 

effect going in the same direction. This finding contrasts with the one obtained by 

Mercado (2001) in relation to the opposite direction of the effects on the first-period 

control response of changes in current and future parameter uncertainty     

 

 Next it will be assumed that the effect of a change in current model uncertainty is 

greater than the effect of a change in future model uncertainty on the first-period response 

of the control variable. That is,     
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In order to determine whether inequality (20) is true or not, it is necessary to 

simplify it to get the following:6 
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6 Note that 1 11
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Since 1a <  and  

 
2 2 2 2 2 2 2 2 42 2
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The numerator of the right side of Eq. (22) will always be smaller than the 

denominator for any value of θ  different from zero.7 Moreover, the value of the right 

side of inequality (21) decreases with  since T 1a <  and 
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detk
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In order to determine if inequality (23) is true or not, the analysis will only be 

done for the case when . Such case is the only one that represents the domain of 

 for which the robust control solution arises – i.e. as indicated by an anonymous 

referee, a saddle point arises when the overall impact of the omegas on the objective 

function is negative and it is being maximized with respect to omega. 
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Now, it will be proved why the robust control solution arises only when det . 
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7 The denominator contains all the terms of the numerator plus one more positive term: λ θ . When the 
Riccati equation is positive, the case for a positive numerator is very strong given the poor contribution of 
the term  due to the relative low values of λ . Indeed, the extreme case of infinite 

uncertainty whenθ =  would make 

2 2
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2 2
11λ θ 11  and 

0
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from which the second order conditions and the Hessian matrix are derived  

 
2

1 1 11uu kf k b λ+= +              (26) 

1 1u kf kω += b

b

k



2 2
+

              (27) 

1 1u kf kω +=               (28) 

1kf kωω θ+= −               (29) 

   
   

uu u

u

f f
H

f f
ω

ω ωω

 
= 
 

              (30)  

A saddle point arises when  (see Chiang, 1967, p. 317) 2
uu uf f fωω ω<

or 

 − −          (31) 2 2 2
1 1 11 1 1 11 1 1 1k k k k k kk b k b k k bθ λ θ λ+ + ++ + <

 

After solving for θ  in inequality (31), the following is obtained  k

 11 1
2

11 1 1

k

k

k
k b

λ
λ

+

+

> =
+

θ θ            (32) 

This is the case that corresponds to the right side of the discontinuity ( ) in 

the response of the control to changes in the “free” parameter θ .
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term inside the parenthesis of the Riccati equation, Eq. (8) can be rewritten as  
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Since , then . This in turn implies that 

. Therefore . Consequently, it validates the 

assumption that the effect of a change in current model uncertainty is greater than the 

effect of a change in future model uncertainty on the first-period response of the control 

variable.  
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8 See Gonzalez and Rodriguez (2003) for a further characterization of the control response to changes in 
model uncertainty. 
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4. Numerical Example 

 
A numerical example will help to illustrate the previous findings. The parameters 

obtained with the relevant data from Gonzalez (2003) are substituted into equations (1) 

and (2).  

 

 

The parameter values are:  

 

1

0

11

0.7737
3.389E 04

1
0.020
1.0E 15
6

a
b

x

N

β

λ

=
= − −
=
=
= −
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The desired path for the state variable (pollution stock) and control variables is 

zero for every time period. Moreover, the parameter  must be zero since there is no 

penalty on deviations of the control (taxes) from its desired path. However, setting 

 would make the feedback matrix singular (see Kendrick, 1981, p. 17). 

Consequently, a very small value for λ  was chosen. Finally, the estimated value for b  

is very low since taxes were measured in $/tons and the pollution stock in parts per 

million (ppm). Table 1 shows the effects on the first period control variable of equal 

increases in current and future model uncertainty.

11λ

11 0λ =

11 1

9  

 
 
 
 
 

                                                 
9 Both current and future model uncertainty increases are obtained by subtracting one tenth of  from 
the base case theta denoted by . For example, the model uncertainty increase for the first row 
would be represented by a theta equal to 5.00E-08 – 0.1xE-08 = 4.9E-08.    

#E −
#cE −
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Table 1 
First-period control response to changes in current and future model uncertainty 

 

It can be seen from the table above that changes in future model uncertainty do 

not hav

. Infinite Horizon 

onsider now the infinite horizon case. Here the feedback gain coefficient of the control 

Base case theta Control response in base case Control response Control response 
with a current model uncertainty with a future model uncertainty
increase (Base case theta - 0.1E#) increase (Base case theta - 0.1E#)

5.00E-08 55.2869 55.5258 55.2869
2.00E-08 80.8617 84.2816 80.8617
1.00E-08 353.0643 1401.4 353.0643
9.2E-09 851.6582 1056.6 851.6582

 

e an effect on the first-period control response as opposed to changes in current 

model uncertainty. It is important to mention that the relevant range for θ  depends on the 

values of the model parameters. 
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C

given by Eq. (11) and the Riccati equation given by Eq. (8) become stationary. These 

new equations are: 
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here  Thus, for an infinite 

horizon problem, the time-varying optimal control policy given by Eq. (11) is replaced by 

By taking the derivative of Eq. (34) with respect to  and after simplifying, the 

                                                 

w  and , where 'ss' stands for steady-state.u uss ssG G k k= =

the constant optimal control policy implied by equations (34) and (35).    

 

 θ

following expression is obtained:10 

10 In this footnote Eq. (36) is obtained. 
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By comparing Eq. (36) with equations (18) and (19), they will share the same sign  
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11 In this footnote Eq. (37) is obtained. Let us define the function F from the Riccati expression given by 

Eq. (35) as  
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equations (18) and (19).  
 

Consequently, for an infinite horizon dynamic problem, an increase in model 
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depending on the sign of the  product.1ab 12 Notice that in this case the timing of model 

uncertainty, the main focus of this note, is removed from consideration.   

 
6. Conclusions 
In this note, the effect of an increase in future model uncertainty on the optimal response 

of the first-period control variable is analyzed with a one-state, one-control variable 

model in a standard QLP with robust control and discounting incorporated. The Riccati 

equations are used to compare that effect to the one corresponding to an equal size 

increase in current model uncertainty. Unlike the results in Mercado (2001) when 

comparing current to future changes in parameter uncertainty, the analytical results show 

that the change in future model uncertainty has an effect on the first-period control 

variable response going in the same direction as the one caused by an equal size change 

in current model uncertainty.  However, both analytical and numerical results show that 

such effect is much lower than the one derived from a change in current model 

uncertainty. That result is the same as the one in Mercado (2001) – i.e. the prevalence of 

the effect of changes in current uncertainty over changes in future uncertainty is 

maintained. Moreover, the analytical results show that the effect on the first-period 

control variable response becomes smaller as the change in model uncertainty moves 

farther into the future. Finally, the infinite horizon result confirms the reinforcing nature 

of the effects on the optimal first-period control response caused by current and future 

changes in model uncertainty.    
 

 

 

 

 

 

                                                 
12 Just like in Mercado (2001), notice that the infinite horizon problem could also be assimilated to the case 
of a change in model uncertainty expanding into the future. Thus, this result confirms the reinforcing nature 
of the effects on the optimal first-period control response of current and future changes in model 
uncertainty.  
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