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A Computional General Equilibrium Model with Vintage Capital1

Loïc Cadiou (Cepii), Stéphane Dées (Cepii) and Jean-Pierre Laffargue (Cepremap et Team)

Introduction

Computational general equilibrium models usually assume a putty putty technology: the
capital intensity of the production process can be changed instantaneously and without cost.
Thus, in a competitive framework, the factors of production fully and instantaneously adjust
to current economic conditions. This means that “realistic” changes in real wages or in the
cost of capital lead to very significant and quick moves in demand for labor and capital.
Moreover, the quick adjustment of the capital stock should cause huge variations in the flows
of investment.

However, actual employment and capital stock exhibit much weaker movements than those
predicted above. Hence, the integration of this theoretical framework in a realistic model
requires some improvements. One way to decrease the cost-sensitivity of production factors
consists in assuming nonlinear adjustment costs (usually quadratic costs). This results in
smoother dynamic adjustments of labor and capital. However, this specification rests upon an
ad hoc assumption without strong empirical foundations. Moreover, it is a very unconvincing
way to model irreversibility, and firing and hiring costs. Finally, the putty putty framework is
unable to give simple and acceptable explanations for the medium term movements in the
wage share in value added, which are observed in some European countries. Although
adjustment costs smooth the dynamics of factor demands in the short run, they are far from
sufficient to produce medium term changes in the income distribution between capital and
labor.

A key feature of the putty putty specification, that is central to its empirical failure, is that all
the vintages of capital have the same capital intensity. On the contrary, we would expect the
current technology menu to be only available to the newly created units of production. This is
precisely what the putty clay specification does. In this framework, current economic
conditions affect the capital intensity of the new production units (their technological choice)
and the number of these units created (the investment in the economy). The other production
units keep the technology they were given at their creation. However, current economic
conditions affect their profitability and lead to the scrapping of non-profitable units. Hence,
the aggregate capital-labor ratio changes gradually with the flows of investment and the
scrapping of old obsolete production units. Putty clay investment may thus provide medium
term dynamics in the distribution of income.

This specification has some other advantages. The irreversibility of investment is embedded in
the model and firing costs can easily be introduced. This gives a convincing foundation to the
stickiness of employment.

1 The ideas developed here were inspired by a series of papers by Caballero and Hammour. We have benefited of
very useful comments by Agnès Bénassy, Pierre-Yves Hénin, Paul Zagamé, Pierre Sicsic and Werner Roeger.
Stéphanie Guichard made invaluable criticisms and suggestions on previous versions of the paper.
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Despite all its advantages, the putty clay technology suffers from a serious drawback. Its
implementation in a macroeconomic model is cumbersome for two reasons. First, the model
has a long memory since it keeps track of all the vintages of capital created in the past, that are
still in working order. Thus the model has “variables with long lags”. Second, the planning
horizon of investors stretches far into the future. More precisely, the decision concerning the
new production units involves forward variables that cover the expected lifetime of these
units. The model has then “variables with long leads”.

However, these problems can be easily overcome nowadays. Models with variables presenting
long leads and lags can be solved with powerful algorithms (for instance those implemented
in Troll), and simulation time is decreasing with the improvement of personal computers.

The first section presents a model representing the production of goods and the demand of
factors with a putty clay technology. In the second section we first close the model by
completing its demand side, by introducing a “wage curve” and by assuming the equilibrium
of the goods market. Then, we describe the determination of the equilibrium. The third section
presents the results of the simulation of the model. First, the calibration is such that the steady
state of the model is identical to the average situation of the French economy over 1991-1996.
Then, we investigate whether the properties of existence and uniqueness of a solution to the
model are satisfied. In particular, we illustrate the usefulness of the stability conditions
highlighted in Laffargue (2000). Finally, the fourth section discusses the consequences of the
introduction of monetary policy and nominal rigidities in the model.
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1. Technology and factors demands

In this section, we introduce the specification of the technology of firms and we determine
their decisions. At each date, firms build a number of new production units, which will start to
produce one period later. They have to choose the capital intensity embodied in these units.
Since this capital intensity cannot change in the future, the expected lifetime of the new
production units is part of the decision-making. Both capital intensity and expected lifetime
are set to maximize the expected discounted cash flows minus installation costs. Moreover,
firms reassess the profit that each older unit would make during the current period if it were
kept into activity. When this profit is negative the units are scrapped. Then, we can aggregate
the decisions of firms and get the investment, the employment and the production of the
current period.

a) Technology and investment cost

We consider a representative firm, on a perfectly competitive goods market, which must make
choices at time 0t

2. At this time, the firm decides to acquire
0t

k new units of capital. It also

chooses the technology embodied in this capital. The technology menu is characterized by an
ex ante first-order homogenous production function:

)1/(/11/11 ]))(1([),(
000000

−−− −+= σσσσ αα tttttt nAkznAkF , with: 10,0, <<> ασz .

This equation determines the amount of goods produced by combining
0t

k units of capital

with
0t

n units of labor.
0t

A represents the efficiency of the technology available at time 0t . σ
is the ex ante elasticity of factor substitution. The capital intensity

0t
κ chosen at time 0t for the

entire lifetime of the capital units is defined by:

0000
/ tttt nAk=κ .

The production function can be rewritten as:

(1) )1/(/11 )]1([)1,(
00

−− −+= σσσ αακκ tt zF

In the future, the vintage of capital created at 0t will either be used with capital intensity
0t

κ or

be scrapped.
We define one unit of production created at time 0t as the combination of 1 unit of labor and

00 tt Aκ units of capital. This unit of production produces )1,(
00 tt FA κ units of goods. At the

beginning of period 0t , i.e. at time 0t ,
0t

n new units of production are created. At the end of

each period, a fraction δ of the firms goes bankrupt and stops producing. δ can be seen as
the rate at which the production units disappear for all reasons but macroeconomic conditions

2 As firms are identical, the choices made by any individual firm also hold at the aggregate level. Time

0t represents the beginning of period 0t .
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(bad management, mistakes or technical difficulties in the implementation of production). In
that sense, δ is equivalent to an exogenous depreciation rate.

For every unit, production starts in the period following its installation. The units created at
time 0t are productive from the beginning of period 10 +t , i.e. at time 10 +t .

The aggregate investment made at time 0t is defined by the following relation:

(2)
0000 tttt nAI κ=

The cost of one unit of capital, including the installation costs, expressed in units of good
produced, is exogenous and equal to 0

0
>

ti
c .

Caballero and Hammour (1994, 1996) show that with this cost assumption, expected demand
shocks are reflected in the current changes in the investment flows (creation), and have no
effect on the scrapping age (destruction). Of course, the number of scrapped units changes
with time since the different vintages of capital do not have the same size3.

b) Value of a new production unit

We define tr as the nominal interest rate of an asset with a maturity of one period, available at

time t . We also define tt Aw as the nominal wage paid to each worker of the production unit

for the work done during period t . By convention, we assume that this wage is paid at the end
of period t . Let us consider a unit of production created at time 0t . When capital is scrapped,

at time )( 00 tTt + , firing the workers costs )()()( 000000 tTt
f

tTttTt Axp +++ where )( 00 tTtp + is the price

level at time )( 00 tTt + and f
tTtx )( 00 +

is the real firing cost in efficiency unit4. If the production

unit goes bankrupt, however, no firing cost is incurred.

We define by
0,ttV the present value of the cash flows of the production unit built at 0t ,

measured at the end of period t , i.e. the value of the production unit for the firms that have
not gone bankrupt until that time. In case of bankruptcy, this value is zero.

We have the following arbitrage condition:

[ ]
0000 ,1111,1 )1()1,()1()1( ttttttttttt VrAwFAptcrV +=−−+− +++++ κδ

3 Caballero et Hammour (1994) also consider the case of a more general cost function:

0

0

0
10

t

t

i A

I
ccc

t
+= with

00 >c and 01 >c . Assuming a positive value of 1c leads to fluctuations in the scrapping age with expected

changes in demand. Note that this assumption is different from that of models of Tobin’s q: for Caballero and
Hammour the investment appearing in the cost function is the aggregated value of investment in the economy, so
the individual firm considers that it cannot change it.
4 This means that the unit of production has been active from the beginning of period 10 +t to time )( 0tT , that

is for 1)( 0 −tT periods.
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where tcr is the corporate tax rate.

At the end of period t, the owner of a production unit can either sell it and invest the proceeds
in the financial markets, or hold it. In the first case, he/she will get

0,)1( ttt Vr+ at the end of

period t+1. In the second case, the unit will yield an after tax profit at the end of period t+1
equal to: [ ]1,111 000

)1,()1( ++++ −− ttttttt AwFAptcr κ . Besides, at the end of period t+1, the unit will

either go bankrupt, with probability δ , or still be in working order, with probability ( δ−1 ).

It is now possible to define an initial condition and a terminal condition for the first difference
equation above.

First, the assumption of free entry means that the financial value of a new production unit at
the end of the period when it is built is equal to its building cost (taking into account the
possibility of bankruptcy):

000000 ,)1( ttittt AcpV
t

κδ =−

The investor who decides to create a new production unit pays its building cost during the
installation period 0t :

0000 ttit Acp
t

κ . He is aware that this unit has a probability δ to go

bankrupt at the end of period 0t , and a probability ( δ−1 ) to remain in working order. Its

value at the end of period 0t , expected at the beginning of period 0t is then:
00 ,)1( ttVδ− .

Second, when the production unit is scrapped, the owner has to pay for the firing costs. Note
that the expected scrapping date of the new unit, )( oo tTt + , is not necessarily an integer

number of years. We define )( otT as the integer part of the expected lifetime5 of a new

production unit, and )( otT∆ as its decimal part6. The value of the production unit, at the date

it is scrapped, is equal to the firing costs. This defines the terminal condition.

In the model, the production units created at time 0t will be productive for )( otT full periods

of time, i.e. from the beginning of period 10 +t until the end of period )(0 otTt + . It will still

be in working order at the beginning period 1)(0 ++ otTt , but will be only productive during

a fraction of period equal to )( otT∆ . Hence, to write down the terminal condition, we must

make additional assumptions on the value of nominal wage (in efficiency unit), price and
firing costs at the date )(1)( 0tTtTt oo ∆+++ . We assume that these three variables at that

5 The expected lifetime corresponds to the period of time during which a unit is in working order.
6 Thus we have )(1)()( 00 tTtTtT o ∆++= . All the units of the same vintage are identical. We want to avoid

scrapping choices to be discrete: at a given time, all the units of a given vintage would be either scrapped or kept
in use. With a model using the year as basic time unit, this discrete choice would have introduced too strong
discontinuities in the response of the model to shocks. A better assumption is that part of a given vintage may be
scrapped and the rest may be kept in use. The assumption, made in the paper is that a vintage is scrapped at an
intermediary time inside a period. This assumption is slightly different, but a little more practical.
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date are equal to their geometrical interpolations between (the end of period) )( oo tTt + and

(the end of period) 1)( ++ oo tTt :
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We assume that the income related to the fraction of the period starting at the beginning of
period 1)( 00 ++ tTt and lasting )( 0tT∆ is received and taxed at the end of the period. We

also assume that the probability to go bankrupt is independent of the length of the fraction
)( 0tT∆ . Finally, technical progress is assumed to be a continuous function of time given by:

ttAttA )1)(()( 00 γ+=+ for 0≥t . We now have the terminal condition:
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The value of the firm when it is created is the present value of future expected profits minus
the firing costs at the expected scrapping age. Note that the creation of a new production unit
at the beginning of period ot enables firms to save a fraction of the firing costs incurred by

scrapping units at the beginning of period 1+ot (when the unit created in ot begins to

produce). We define η the fraction of workers in a new unit coming from scrapped units. This

saving ( 111 000 +++ t
f

tt Axpη ) is part of the value of the new unit.

The value of a new production unit is obtained by summing the arbitrage equation until its
scrapping date:
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c) Characteristics of the new production units

When a new unit is created, its owners must choose the technology embodied in it on the basis
of its planned lifetime, and of the market conditions they expect during that period. The
choices of the planned lifetime ( )( 0tT ) and of the capital intensity of this new unit (

0t
κ ) result

from the maximization of the value of this unit minus its installation cost:

( )
00000000 ,0 )1(),( ttittttt AcpVtT

t
κδκ −−=Ψ .

The first-order condition relative to the expected lifetime cannot be obtained directly since the
objective function

0t
Ψ is not derivable in )( otT . However,

0t
Ψ depends on the two elements

that define the expected lifetime: )( otT which is an integer, and )( otT∆ which is a real

number between 0 and 1. The objective function is actually a three variable function:
( )

00
),(),( 00 tt tTtT κ∆Ψ . Firms determine the two components of the expected lifetime and the

capital intensity of the new production units so that
0t

Ψ is maximized.

Expected life time

The integer part of the expected lifetime, )( otT , is then defined by:

(3)
( ) ( )
( ) ( )





<∆Ψ−∆+Ψ

>∆−Ψ−∆Ψ

0),(),(),(,1)(

0),(,1)(),(),(

0000

0000

0000

0000

tttt

tttt

tTtTtTtT

tTtTtTtT

κκ

κκ

This system of inequations may have more than one solution. If it is the case, the whole model
should be solved for each of these solutions. The retained solution would then be the one
associated with the highest wealth of the owners of the unit.

However, we give in Appendix 1, reasons to believe that under reasonable economic
assumptions, the system of inequations has a unique solution.

The decimal part of the expected scrapping date of the unit )( otT∆ is determined by the

following first-order condition:

0
)(

)),(),((

0

00 00 =
∆∂

∆Ψ∂
tT

tTtT tt κ
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Thus:
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Capital intensity

The capital intensity chosen by investors for the new production units is then derived by the

first-order condition: 0
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where )1,('1 κF is the marginal productivity of capital.

By combining this equation and the free-entry condition, we get (see Appendix 2):

(6)
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Capital intensity is determined by present and future interest rates. Future expected real wages
are in turn defined by capital intensity. Thus, we have a factor cost frontier which involves the
average of present and future costs whereas the traditional cost frontier derived from putty
putty technology only depends on current costs.

d) Scrapping and aggregation

We now consider the decisions concerning the production units built before time 0t . For each

vintage of capital, its capital intensity being already set, the investor checks whether it is still
profitable. If not, it is discarded.
Under our assumptions, a production unit is built during a period (which is an integer
number), but can be used for the whole or part of a period. Let us call )( 0ta the age of the

oldest unit which is used at the beginning of period 0t
7, i.e. at time 0t , and which will be

scrapped at time 1)( 000 +<∆+ ttat . This unit was built at period )( 00 tat − . Its value at the

end of this period is8:
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7 So, the unit has been active at this date for 1)( 0 −ta periods.
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The age of the oldest production units used at the beginning of period 0t is defined by:
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The period of time during which the oldest units are in working order within period 0t is

defined by:
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It is now possible to define the aggregate level of employment and production. At date t , the
production structure available is characterized by the series: { }at

a
atn −− − κδ ,)1( , where a is

the age of the different production units in working order ( )(1 0taa ≤≤ ), and by )( 0ta∆ .

Aggregate employment and production capacity are obtained by summing these vintages9:
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9 In the above paragraph we have computed )( 0ta and )( 0ta∆ as the integer and the decimal parts of the age

)( 0ta of the oldest units which can generate a positive profit. However we could add the assumption that once a

productive unit was scrapped, it cannot be put in use again. In this case, we should introduce the constraint

1)1()( 00 +−≤ tata in our optimization problem. The maximum number of available units of production can

be called the physical productive capacity. In general this capacity will not be saturated, the exception being a

strong unanticipated increase in demand at time 0t .
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2. Closure and equilibrium of the model

In this section we close the model in the simplest possible way. Then, we investigate how the
current equilibrium of the economy is determined when its past and its expected future are
known.

a) Aggregate demand and labor supply

The model is completed by adding three equations: the equilibrium of the goods market, the
intertemporal arbitrage equation of a representative consumer and a wage curve.

Aggregate supply must be equal to total demand, which consists of real consumption and
investment10.

(11)
0000 tittt cICY +=

Consumption verifies the following Euler’s equation which assumes constant relative risk
aversion ( ρ ) and time preference ( β ) of households. Current consumption depends on its
expected level and on the real interest rate for the following period.

(12) ( )
1

1

0

00

00 1

1
/

+
+ 








+
+

=
t

tt
tt p

pr
CC

β
ρ

Finally, labor supply is defined as a wage curve linking the nominal wage in efficiency units
to the price level, the wedge (reflecting the spread between the purchasing power of wages for
the worker and the effective labor cost for firms) and the employment rate (where

0t
N is the

available labor force), which accounts for the effect of labor market conditions on wage
bargaining.

(13) )/ln()ln()ln()ln(
00000 210 ttttt NNwedgepw ϕϕϕ +++=

The general equilibrium of the model at date 0t is determined by equations (1) to (13).

Monetary policy pegs the nominal interest rate (
0t

r )11 and fiscal policy fixes the wedge

10 We could consider aggregate supply as the economic productive capacity, and introduce some stickiness in
production price. To do that we can assume that demand is never rationed, so that effective production is equal to
total demand but may differ from the economic productive capacity. The specification of the model would
become somewhat more complicated under this assumption and should borrow heavily to the theory of
disequilibrium economics. First, we should compute the equilibrium of the model as it is presented in this paper.
We get the equilibrium prices and the notional demands and supplies. Then, we should compute the effective
price as a combination of the price of the previous period and the current equilibrium price. Finally, we should

compute the effective equilibrium of time 0t consistent with this effective price (which includes effective number

of working units, employment, nominal wage, etc.).
11 In section 4 we will introduce a Taylor monetary rule.



13

(
0t

wedge ). Firing cost ( f
tx
0
), the labor force (

0t
N ), and technical progress (

0t
A ), are

exogenous.

b) Neutrality and inflation in the model

Two remarks must be made at this point. First, if we multiply the wage rate and the price for
all lags and leads by any positive number, the equations of the model are still verified. Thus,
the model presents the property of neutrality. It can be rewritten in real terms.

Second, as new units start to produce at the following period, the real interest rate that firms

take into account in their decision-making is defined by:
10

0

0
)1(

+

+
t

t

t p

p
r . Let us define the

inflation rate expected next period by:
0

0

0

1

t

t

t p

p
a

+=π . As nominal interest rate is exogenous,

then the real interest rate is endogenous through
0t

aπ .

Actually, our model has a structure which is very similar to the structure of the neoclassical
growth model. Thus, we would expect our model to include the real interest rate as an
endogenous variable. If monetary policy pegs the nominal interest rate, the expected inflation

rate should be an endogenous variable. If the economy starts at time 0t ,
0

0

0

1

t

t

t p

p
a

+=π should

be determined by the model. However, the initial price level
0t

p (and so all the following

prices) should be undetermined, which is unsurprising in a model without nominal anchor.

However, in our model, current and past inflation rates appear in the equations that determine
the age of the oldest units in working order at the beginning of period 0t , and the fraction of

time during which it will remain productive. If the current inflation rate
0t

π was determined by

the model, the initial price level would be determined by 1000 −= ttt pp π the nominal anchor

would be given by the past price level.

At this stage, at the price of some inconsistency, we will consider
0t

π as an exogenous

variable, and we will check that the local conditions of existence and uniqueness, given by
Blanchard and Khan (1980), are satisfied by the model. They would not be satisfied if

0t
π was

made endogenous (we would get an infinity of solutions parameterized by the initial value of
the inflation rate

10−tπ ). This result would not be changed if the current inflation rate were

introduced as an argument in the wage equation (13), as a result of staggered wage contracts.
However, we will see that a Taylor monetary rule can solve these problems.

The complete model is given and commented in Appendix 3. The equations, given in this
appendix, are those implemented in Troll programs.
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c) Equilibrium of the model

With a putty clay specification, aggregate supply adjusts to aggregate demand in two ways.
First, investment flows provide new additional production capacities. Second, the profitability
of available vintages commands the amount of production units that have to be scrapped.
However, in the model presented here, the production units created at date 0t starts being

productive at the beginning of period 10 +t . So here investment flows accrue to today’s

demand but to tomorrow’s supply. Thus, at each period, supply can only adjust through the
scrapping of old production units. As the technology of these vintages is set, their profitability
only depends on the current real wages (in efficiency units). Hence, the rate of scrapping of
old production units is an increasing function of the current real wages.

Aggregate employment is defined by the amount of labor attached to each vintage of
production still in working order. It decreases with the age of the oldest profitable production
units. Thus aggregate employment decreases with real wages. As labor supply is represented
by a wage curve according to which an increase in employment triggers an increase in wage
claims, the equilibrium on the labor market determines real wages, aggregate employment and
the age of the oldest units in working order.

Aggregate supply is obtained by summing all the vintages of production, profitable at current
real wages. Current consumption is defined by the expected levels of next period consumption
and the real interest rate. Then aggregate demand meets aggregate supply through the
investment flows. For any given capital intensity of the new production units, investment
flows adjust through the number of units created.

The technological choices for the new units depend on the current and expected values for the
real interest rate and real wages.
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3. Simulation of the model

a) The steady state and the calibration of the model

Appendix 4 gives the equations of the balanced growth path of the model. The basic time unit
is one year. The calibration is such that the steady state equilibrium replicates OECD National
Accounts average data (over the period 1991-1996) for aggregate production, employment and
investment (Y , N , I ), as well as for the wage rate, the price level and the nominal interest
rate (w, p , r ).

The parameters to be evaluated are the characteristics of the production function ( z and α ),
the scale factor of the wage equation

0ϕ , and the risk premium µ , which is introduced in an

ad hoc way as the difference between the return on investment and the interest rate. Values of
the unobserved endogenous variables must also be computed: the expected lifetime of the new
units of production, their capital intensity and their number: T , κ and n

12. Actually, the
parameters and the unobserved variables only depend on the wage share in value added and
the investment rate (see Appendix 5). The calculations presented in Appendix 5 rest upon
approximations that are necessary to go deeper in the analytical analysis. This enables us to
discuss the impact of macroeconomic data on the value of parameters and unobserved
variables, without much loss of accuracy. However, the values presented in Table 1 are
properly computed, using the steady-state model presented in Appendix 4.

Table 1 shows the results for France, the United States and Japan. The wage shares and the
investment rates correspond to their average values over the period 1991-1996. Note that in
National Accounts investment flows include dwellings, infrastructure, and industrial
buildings. Value-added also includes housing services.

It is important to note that the expected scrapping date of the new units of production
corresponds to the date of scrapping of the production units that have not gone bankrupt
before. This date corresponds to a decision related to macroeconomic conditions (technical
progress and wages). Nevertheless, the probability to go bankrupt for any reasons but
economic conditions is equal to δ at each period. Hence, each new production unit
depreciates at rate δ until date T , when it is scrapped. The effective lifetime of a new unit
can then be defined as:

( )T
T

i

iD )1(1
1

)1(
1

δ
δ
δδ −−





 −=−=∑

=

12 A the steady-state 1+= Ta .
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Table 1: Calibration of the model

1991-1996 average France
United
States Japan

Share of wages in value added (
pY

wN
) 0.59 0.63 0.64

Investment rate (
Y

I
) 0.21 0.17 0.27

Lifetime of the new production units T (years) 36.91 32.19 34.60

Effective lifetime of a new production unit D (years): 25.75 23.43 24.64

Capital intensity (κ ) 7.96 5.45 9.37

Production function parameters (for σ =0.99)
α
z

0.42
0.89

0.37
1.02

0.35
0.92

Return on investment (%) 8.8 11.0 3.9

Firing costs are close to zero (they amount to 0.1% of real wage) to concentrate on the impact of the other
variables; population and technical progress increase respectively at the rates 0.5% and 2% per annum. The
probability to go bankrupt at the end of each period (δ ) is equal to 2% and the installation costs are set to 1.
Source: OECD National Accounts.

Consumers are assumed to have a relative risk aversion and a time preference rate of
respectively 0.5 and 5%. The wage curve is characterized by an elasticity of real wages to
employment of 0.3, and to the fiscal wedge of 0.5. Finally, we assume that firms do not save
on firing costs with the creation of new units ( 0=η ).

b) Blanchard and Kahn's conditions and simulation method13

The model calibrated on French data was rewritten in reduced variables, and its linear
approximation was computed around the reference steady state. Transforming the original
variables to reduced variables is equivalent to give a common trend of rate 0 to all variables.
We can also define expanded variables such that their common trend is equal to the highest
balanced growth rate present in the model. The eigenvalues of the linear approximation of the
model written in expanded variables are equal to the eigenvalues of the linear approximation
of the model written in reduced variables, multiplied by the highest balanced growth rate plus
one. The requirement for the model to converge in the long run to its balanced growth path is
severer when we consider expanded variables (stability in the expanded difference) than when
we consider reduced variables (stability in the relative difference). The severity is intermediate

13 The methodology used in this paragraph is developed in Laffargue (2000). All the computations were made
under Troll, with the commands Lkroots and Stack.
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when we consider the original variables of the model (which have different long run growth
rates), but in this case, the coefficients of the linear approximation of the model depend on
time, and the local conditions for the existence and the uniqueness of a solution, developed by
Blanchard and Kahn (1980), do not apply.

The model has 73 non-redundant lead variables. When we consider the linear approximation
with reduced variables, we have 73 eigenvalues with modulus larger than 1. So the Blanchard
and Kahn’s conditions are verified, and there is a unique solution path of the reduced form
model. Moreover, the largest eigenvalue less than 1 is equal to 0.951. Since the highest
growth rate in the model is the real GDP growth rate, which is assumed to be equal to 2.5%,
the Blanchard and Kahn’s are also verified for the expanded form model (0.951*1.025<1).
Hence, stability in expanded difference and stability in relative difference are verified. These
two conditions are sufficient to ensure the existence and the uniqueness of a solution path for
the model in original variables.

We simulate the model with a relaxation second order method implemented in Troll (Stack
algorithm). We assume that its original variables, which follow different trends, must
converge in the long run to their balanced growth path. The simulation of the model over 150
periods takes about 10 minutes.

The model can be used to illustrate the usefulness of the concept of stability highlighted in
Laffargue (2000). In the reduced form model, the largest eigenvalue with modulus less than 1
is related to the dynamics of consumption. For high relative risk aversion ( ρ ), this eigenvalue
is closer to 1, but still stays below unity. Hence stability in relative difference is still satisfied.
However, the Blanchard and Khan’s conditions are not verified anymore for the expanded
form model, because the previous eigenvalue time the long run real growth rate of the
economy is larger than 1. For example, when 5=ρ , the highest eigenvalue with modulus less
than 1 in the reduced form model is equal to 0.992. Thus, in the expanded form model, this
eigenvalue becomes 0.992*1.025>1. This situation, when the Blanchard and Khan’s
conditions are verified for the linear approximation of the model written in reduced variables
but not in expanded variables, is called pseudo-hysteresis by Laffargue. In this case we do not
know if the model written in its original variables has a unique solution. In our case, the
simulation algorithm diverges, which suggests, according to Boucekkine (1995), that there is
no solution to the model.

c) Shock on the wage-setting relation

To illustrate the properties of the model, we consider a permanent change in the wage-setting
relation in France. This shock may stem from institutional or political events that permanently
shift the wage curve upward, such as an increase in the unions’ power or more generous
unemployment benefits which improve the outside opportunity of incumbent workers.

In the steady-sate, the real interest rate is determined by consumers’ preferences. Hence, the
rate of return and the capital intensity of the production units are unchanged. Considering the
factor cost frontier, the wage rate that firms are able to pay is also unchanged. Thus, the
upward shift in the wage curve leads to a decrease in total employment and an increase in
unemployment. Since labor is the bounding production factor in the long run, output decreases
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in the same proportion as employment. There is no effect on the wage share in value-added in
the long run.

However, the path to the new steady-state is characterized by changes in the distribution of
income between production factors. Appendix 6 presents the results of this simulation (Charts
A1 to A5). At the first period, real wages adjust upward (Chart A4). The profitability of
existing production units deteriorates. The age of the oldest units in working order decreases
and employment and aggregate supply fall (Chart A2). Then, aggregate demand (Chart A1)
adjusts downward with investment flows (more precisely with the number of new units
created). The characteristics of the new production units have changed since investors expect
a transitory increase in real wages: the new units are more capital intensive and have a higher
expected lifetime (Chart A3).

The following period, as fewer units were created, aggregate employment is lower. This
smoothes the impact of the upward shift in the wage curve on current real wages. Then, the
age of the oldest units in working order decreases less than in the previous period. Besides, the
decrease in the creation of new units in the previous period negatively affects current supply,
although these units are more productive. Ex post, the fall in aggregate supply is stronger than
in the previous period, since the lower scrapping rate of old units does not compensate for the
lower number of recently created units.

The model exhibits medium term dynamics. Real wages shift upward at the beginning and
eventually returns slowly to their initial level, over 3 decades. Since the fall in GDP and
employment is also very gradual, the increase in the wage share in value-added is long lasting
(Chart A5). Hence, contrary to models assuming a putty putty technology, the putty clay
framework provides medium term changes in the income distribution between labor and
capital. Similarly, the fall in the investment rate, reflecting that the downward adjustment of
investment flows precedes the fall in output, lasts also around 3 decades.

The echo effect14, a familiar feature of the putty clay specification, is present in the model.
The change in the production capacities of new units, following a shock, has an impact on
aggregate supply at the time these vintages are scrapped. Here, the upward shift in the wage
curve leads to a decrease in the productive capacity of all the units created after the shock. The
production units created before the shock (i.e. more productive) are gradually scrapped and
replaced by the new ones. This explains the even fall in aggregate supply. Yet after the
scrapping of the last “pre-shock” vintage aggregate supply is affected by an upward shock,
since the vintage scrapped at that period is the first (less productive) units created after the
shock.

14 Among the largest eigenvalues less than one, several are complex (see above). The largest one has a
periodicity of 35 years which corresponds to the echo effect described here. As our model includes rational
expectations, this echo effect is expected before the scrapping of the units created after the shock and creates
sharp movements on variables before the 35 years. We can see such movements on the charts in Appendix 6. The
two complex eigenvalues with a periodicity of 17 and 11 years can explain these observed changes.

Real Imaginary Magnitude Period
74: 0.93563499 0.16994744 0.95094425 34.96881647
76: 0.94334400 0.00000000 0.94334400
77: 0.88160129 0.33087799 0.94164806 17.49963710
79: 0.80466035 0.47414700 0.93396662 11.79988748
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4. Monetary policy, price determinacy and hysteresis

The assumption of a monetary rule that maintains constant the nominal interest rate is not very
realistic. The concern of the central bank for the level of the inflation rate in the economy can
conveniently be rendered by a Taylor-type monetary rule, according to which the nominal
interest rate increases with the inflation rate. Moreover, we have assumed until now that the
expected inflation rate was endogenous, but that the effective inflation rate was exogenous.
This is logically inconsistent and we will now introduce a relation between both rates, which
will be endogenous. In this case, if the central bank pegs the nominal interest rate, the
Blanchard and Khan’s conditions are not verified (one eigenvalue larger than one is missing).
However, with a Taylor monetary rule this problem will disappear.

a) Monetary policy rule and inflation determinacy

With an exogenous nominal interest rate (
0t

r ), the model determines the inflation rate

expected next period (
0

0

0

1

t

t

t p

p
a

+=π ) and the current inflation rate (
10

0

0

−

=
t

t

t p

p
π ) is exogenous.

Now, we will suppose that the nominal interest rate is endogenous and follows a backward
Taylor rule:

( )***

00
ππαπ −++= tt rrr , where *rr and *π are the steady-state values of the real interest

rate and inflation rate.

We will introduce the consistency equation: 100 += tta ππ

Under the condition 1>α 15, the integration of the Taylor rule increases by one the number of
eigenvalues with modulus larger than 1. As one more non-redundant lead variable has also be
included in the model, since 100 += tta ππ , the models, both in reduced and expanded form,

satisfy the Blanchard and Khan’s conditions16.

If we start to simulate the model at time 0t ,
0t

π and 10 −tπ appear in the equation of the model.

10 −tπ is assumed to be given by history and
0t

π is computed by the model.

Now, if
0t

p represents the price level, we have :

10

0

0

−

=
t

t

t p

p
π .

So, the current price level is determined by current inflation and the price level of the previous
period. The price level permanently depends on the price level observed at time 10 −t : 10 −tp .

15 Actually, α must slightly exceed unity since the dynamics of the inflation rate is not exclusively determined
by the Taylor rule. The inflation rate dynamics also affects the choice of the firms with regard the scrapping of
old units and the expected lifetime of new ones. However, here 1.1=α is sufficient to increase by one the
number of eigenvalues with modulus larger than 1.ensure the stability of the model.
16 Now there are 109 eigenvalues with modulus larger than 1.
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This hypothesis is related to an eigenvalue equal to 1 when the model is written in reduced
variables (see Laffargue, 2000).

b) Simulating a monetary policy shock in a model with hysteresis

The nominal interest rate, the current inflation rate and the price level are added to the list of
endogenous variables of the model of the previous section, together with three equations: a
Taylor rule (with 5.1=α ), 100 += tta ππ and 1000 −= ttt pp π .

We can take into account nominal rigidities, coming from multi-period wage contracts by
adding an inflation term in equation (13), which becomes:

)/ln()/ln()ln()/ln( 13210 0000000 −−++= ttttttt ppNNWedgepw ϕϕϕϕ

We assume 5.03 =ϕ .

This model still satisfies the Blanchard and Khan’s conditions. There are 109 non-redundant
lead variables and 109 eigenvalues with modulus larger than 1 in the reduced form model as
well as in the expanded form model. One eigenvalue is equal to unity. The largest eigenvalue
less than one is equal to 0.952. Hence, as previously, the model satisfies the two stability
conditions (in reduced and expanded forms), and has a unique solution path.

To illustrate the dynamics of the model with an endogenous monetary policy, we simulate an
expected transitory shock on the nominal interest rate (5 years). For instance, this transitory
shift in the usual monetary rule can stems from the central bank concern for the situation of
financial institutions. The results of the simulation are presented in Appendix 6 (Charts A6 to
A10).

The transitory downward shift in the monetary rule triggers an increase in the inflation rate
expected next period so that the real interest rate, as defined in this paper, is almost unchanged
(Chart A9). The equilibrium of the first period is barely affected by the shock. At the second
period, however, the increase in the rate of inflation triggers a fall in real wages since nominal
wages are sticky. The lower labor cost then leads to an increase in the age of the oldest units
in working order as well as in aggregate supply and aggregate employment (Chart A7). Firms
create more production units and investment flows increase. The positive impact on GDP is
stronger during the 5 years of the monetary policy shift. However, GDP keeps track of the
increase in the size of the vintages for around 15 more years.
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Conclusion

This paper presents a macro-economic model assuming putty clay investment and perfect
foresight, in the line of the works by Caballero and Hammour. When calibrated on French
data, the model is shown to have a unique solution path for reasonable values of the
parameters. More precisely, the methodology presented in Laffargue (2000) sates that the
stability of a model with variables with different trends is ensured when the linear
approximations of the model in both reduced and expanded form satisfy the Blanchard and
Khan’s conditions. These two conditions are verified for the parameters retained here. We
show however that for high risk-aversion of households, the stability of the model in the
original variables is no more satisfied, although Blanchard and Khan’s conditions are still
verified for the reduced form model. This illustrates the relevance of this methodology.

The model has variables with long leads and long lags, but it can be simulated easily using the
Stack algorithm implemented in Troll. We first simulate a permanent shift in the wage curve.
The putty clay framework provides medium term dynamics in the distribution of income
between production factors that putty putty models lack. As highlighted by Caballero and
Hammour (1998) in the case of France, putty clay investment may thus be the appropriate way
to model factor demands in European countries.
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Appendix 1: The uniqueness of solution for the system of inequations (3)

The multiplicity of solutions for the system of inequations (3) depends on the monotony of the
expression ( ) ( )

00000
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More precisely, the change in the investor’s wealth resulting from the lengthening of the unit
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Consider a date far enough in the future so that firms’ expectations on the tax rate tcr , the
firing cost (in efficiency unit) fx , and the interest rate r are constant, as well as the inflation

rate π+=
−

1
1p

p . At this horizon the real wage rate in efficiency unit
p

w is also considered to

be constant. Then, the change in wealth coming from the increase of the unit’s lifetime by one
period becomes:
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which is negative for economically plausible values of the variables. If for 1)( =otT , this

expression takes a positive value, then its sign changes only once and there is a unique
solution for system of inequations. Note that if for 1)( =otT , this expression is negative, we

get the solution 0)( =otT . Since the previous reasoning assumes values of )( otT far enough in

the future, the existence of another solution, less far away, cannot be ruled out. It could be the
case if the investor expects very important changes in the firing costs, the tax rate and the real
interest rate. We will neglect this possibility in what follows.
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Appendix 2: The computation of the factor costs frontier (equation (6))

As F is homogenous of order 1, we have:
)1,()1,()1,( '

2
'

1 κκκκ FFF += ,

where )1,('2 κF is the marginal productivity of labor, measured in efficiency unity17.

Hence, the optimization condition (5) is equivalent to :
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The expression of the production unit value is used to eliminate F in this equation:

}
00000

0

00

0

000

00

0

00

0

0

00

00

0

00

00

00

0

00

00

00

00

0 0

0

0

0

0000

00

0

0

00

0

00

00

00

00

0 0

0

00

/)1(

/)1(/)1()1(

)1()1)((

)1(/)1](/)1()[1()/(

)1(/)1)(1()(

)1(/)1)(1(]/)1,([

11

)(
)()()(

1)(

)(1

)(

)(

)(

1)(

1)(

)(1

)(

)(

1)(0

)(

)(

1)(

)(

)(

1

1
1

,

)(
)(

1)(

)(

)(

1)(

)(0

)(

1

1
1'

2

titt
f

tt

t

tTt

t

tTtTtTf
tTt

tTf
tTt

tT

tT

tTt

tTt

tT

tTt

tTt

tTt

tT

tTt

tTt

tTt

tTt

ts

s

t

ts
t

ts
sstttt

tTt

t

tT
tTt

tT

tTt

tTt

tTt

tTt

ts

s

t

ts
sstt

cpxp

rxx

p

w

p

w
tcrtT

p

p
p

rwtcrAV

rtcr
p

p
ptT

rtcrpF

−+−

+−++







+



























−∆














+

+−+−+

=






+−−













∆+







+−−

++

+

=

∆−

++

∆−

+

∆

++

++

∆−

+

+
++

∆

+

++
+

+

+=

−

=

−−−

+

=
++

∆

+

++
+

+

+=

−

=

−−

∏

∑ ∏

∏

∑ ∏

κγη

κδγ

γ

δκγκ

δ

δκκ

τ
τ

τ
τ

τ
τ

τ
τ

If we combine this equation with the free-entry condition, we get equation (6).

17

)(

),(
)1,(

00

000

0

'
2

tt

ttt

t nA

nAkF
F

∂
∂

=κ .



25

Appendix 3: The computation of the equilibrium of the model at period 0t

(13 equations)

The following equations determine the equilibrium of the economy at time 0t , when the past

and the expected future are given. The terminal conditions (for instance at time 2000 +t ) are

computed by the steady state model of Appendix 3.

We define
0

0

0

t

t

t p
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=ω as the real wage in efficiency unit,
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t

t p
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+=π as the inflation rate

expected next period, and
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0

0

−

=
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t p

p
π as the inflation rate of the current period.

Firms’ choices for new units, as well as aggregate supply and aggregate employment, refer to
variables over a period of time or at a date that is endogenous. In Troll, variables are real
numbers. So it is not possible to index a lag or a lead by a variable of the model (even though
this variable happens to take only integer values). It is also impossible to sum over a period of
time that is endogenous. Lastly, the command that yields the integer part of a variable is not
recognized by the modeling procedures of Troll (actually it cannot be derived). The solution
we have implemented rests upon the operator sign(x), which is equal to 1 if x is positive, -1 if
x is negative and 0 if it is equal to zero. The trick consists in summing, over a period that
covers the date or the time period we are interested in, the expressions of the equations times a
combination of sign operators. This combination is equal to 0 for the dates we want to avoid
and to 1 for the dates we want to retain. Note that we can explicitly refer to the variables

)( 0tT and )( 0ta in the algebraic part of the formula.
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Endogenous variables (13)

)( 0ta : age of the oldest production units in working order at the beginning of the current

period )( 0ta∆ : fraction of the current period during which the oldest production units at the

beginning of the current period are effectively in working order.

0t
C : consumption at the current period

)1,(
0t

F κ : production capacity of a production unit implemented in the current period

0t
I : investment of the period, productive from the next period

0t
κ : reduced capital intensity of the new production unit (capital divided by efficiency and

employment) implemented during the next period

0t
n : number of production units built during the current period and employment required

by these units at the following periods.
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0t
N : employment in the current period

0t
aπ : expected inflation rate for the next period

)( 0tT : integer part of the lifetime of the unit implemented during the current period

)( 0tT∆ : decimal part of the lifetime of the unit implemented during the current period

0t
ω : real wage rate divided by efficiency

0t
A

0t
Y : current real GDP

Exogenous variables

0t
A : efficiency for the period; )1(100

γ+= −tt AA

0t
N : available labor force

0t
r : interest rate of the period

0t
wedge : fiscal wedge

0t
tcr : tax rate on profit

f
tx
0
: reduced firing cost (i.e. deflated by

00 tt Ap )

0t
ic : real cost of the investment implemented during the current period

0t
π : inflation rate for the current period
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Appendix 4: The steady-state of the model

The growth rates
n&: population growth rate
π : inflation rate
γ : technical progress growth rate

)1)(1(1 ng &++=+ γ : production growth rate

Endogenous variables (13)
κ )1,(κF T T∆ aπ a a∆ and ω , growing at rate 0
C I and Y , growing at rate g
n and N , growing at rate n&

The expressions using the operator sign in Appendix 3 simplify here, since there is no more
reference to lead or lag variable in the steady-state model.
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Note that from equations (3), (4), (7) and (8), we get: 1−= aT 18.

18 More precisely, according to equations (4) and (8), we have: 1)()()()( +∆+=∆+ oooo tTtTtata .

Let us consider that )()( oo tTta ∆=∆ . Equation (7) can be rewritten using equation (3) as:
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By definition, N is high enough for ))( NX − to be negative. Moreover, when all the production units produce

for at least a fraction of time )( ota∆ , X is positive. Thus, we have: 1)()( += oo tTta .
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Appendix 5: Calibration of the model

Let us introduce the new auxiliary parameter ξ , the ratio of firing costs to yearly wages, given

by:
p

w
x f ξ= .

We define arR πµ −+= as the real return for investors, where r is the nominal interest rate,
aπ is the inflation rate (expected next period) and µ is a risk premium.

To discuss the impact of National Account data on the values of the parameters and the
unobserved data, we need an analytical solution of the steady-state model. This cannot be
easily done as long as the expected lifetime is divided between an integer part and a decimal
part. We choose here to compute the first-order condition relative to the expected lifetime as if
the model were written in continuous time. Then, we use the discrete time equivalent to this
condition for replacing equations (3) and (4) of Appendix 4. The lifetime time variable is
assumed to be an integer. Thus we neglect the decimal part in the aggregation equations.
Although these assumptions are somehow inconsistent, we believe they lead to relations
between variables that can be qualitatively interpreted.

The value of a new unit, in a continuous time framework, can be written as:
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The first-order condition relative to the expected lifetime of the new unit is the following at
the steady-state is as follows:

( ) 0)()1,()1( =−−++−− − fT xreFtcr γπδωκ γ

whose equivalent in a discrete time framework:

( ) 0)()1)(1,()1( =−−+−−+− − fT xrFtcr γπδωγκ (3bis)

This equation (3bis) replaces equations (3) and (4) of Appendix 4. Equations (7) and (8) of
this appendix are also replaced by a similar formula. The other equations of the steady-state
model are those of Appendix 4 with 0=∆=∆ aT , 1+=Ta and aa = . We refer to number
of these equations in Appendix 4 in what follows. By definition we have 1+=Ta , so we
concentrate on the expected lifetime T .

The equation (3bis) above combined with aggregate production and aggregate employment
(equations (10) and (9)) gives the expected lifetime of the new unit:

( ))(1
)1(

)1(
)1( γδξγ −+−








+
+

=+ − R
pY

wN

nh

gh

T

TT

&



34

where 





 −

−

















−
−=

−

1
1

/
1

1)(
δδ

xx
xh

T

T

Without firing costs ( 0=ξ ), the previous equation determines the expected lifetime of the
production units in terms of the share of wages in value-added and the growth rates of
population and technical progress.

Note that firing costs affect positively the lifetime since the later these costs are charged the
lower is their present value. Then, the expected lifetime also depends positively on the real
return when firing cost are taken into account.

The capital intensity and the production capacity of a new unit are derived from the expected
lifetime. It is also the case for the number of new units created at each period, i.e. the
employment attached to the new units:
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The production function (1) ties the scale factor z to coefficient α :
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This equation expresses the distribution of total income between capital and labor. It can be

rearranged to depend only on the wage share in value added (
Y

NAω
) and the investment rate

Y

I
.
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The scale factor is then defined by:
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Appendix 6: Simulation results

1- Upward shift in the wage curve

Chart A1 : Aggregate demand adjustment
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Chart A2 : Aggregate supply
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Chart A3 : Technology choices for the new units
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Chart A4 : Real interest rate and wage rate

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1
Y

3
Y

5
Y

7
Y

9
Y

11
Y

13
Y

15
Y

17
Y

19
Y

21
Y

23
Y

25
Y

27
Y

29
Y

31
Y

33
Y

35
Y

37
Y

39
Y

41
Y

43
Y

45
Y

-0,2000

0,0000

0,2000

0,4000

0,6000

0,8000

1,0000

1,2000

Wage rate

Real interest rate (right scale)

change from baseline
% change from baseline



38

Chart A5 : Labor share in value added and investment rate
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2- Transitory shock on nominal interest rate

Chart A6 : Aggregate demand adjustment
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Chart A7 : Aggregate supply
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Chart A8 : Technology choices for the new units
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Chart A9 : Real interest rate and wage rate
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Chart A10 : Labor share in value added and investment rate
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