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1. Introduction

The discovery of deterministic chaos has changed our view of erratic behaviour. The
enormous interest in deterministic systems derives from two opposite characteristics of these
dynamical systems. First, they are unpredictable on the long term and second, short term
predictions may be possible. This means that time series, which looks random at first glance,
may in fact be predictable on short time scales. Therefore, as most specialists in the field
would probably say, purely deterministic chaos seems to be hard to find in financial data. The
detection of chaotic structures in stock markets is usually complicated by the large noise
component inherent in the underlying dynamical system.

Most recent empirical works, applying sophisticated statistical procedures such as correlation
dimension method, have shown that stock returns are highly complex. The estimated
correlation dimension is high and there is little evidence of low dimensional deterministic
chaos. This result is well justified: noise and uncertainty play an important role in financial
markets. Evidence against low dimensional chaos includes not only high estimated (and
unstable) correlation dimension, but also very little evidence of out-of-sample predictability.
For example, Scheinkman and LeBaron (1989) present some evidence for a strange attractor
with correlation dimension equal to 6. They are very careful in stating their claim however:
“…..the data are not incompatible with a theory where some of the variation in weekly
returns could come from non-linearities as opposed to randomness and are not compatible
with a theory that predicts that returns are generated by i.i.d. random variables”
(Scheinkman and LeBaron (1989, p. 332)). This evidence is thus consistent with a noisy
chaotic model, but may also be consistent with a non-linear stochastic time series model.

From a practical viewpoint, distinguishing between noisy chaos (i.e. a chaotic system
disturbed by dynamical noise) and randomness is a very difficult task. Noisy chaotic series
can have zero autocorrelations at all lags and therefore, from a linear statistical viewpoint,
noisy chaos may be indistinguishable from white noise.

Early works of Brock and Hommes (1998), Lux (1995, 1998), Malliaris and Stein (1999),
Gaunersdorfer (2000), and Chiarella et al. (2000) showed that structural non-linear financial
markets models may lead to market instability and chaos. In these non-linear models, asset
price complex fluctuations are triggered by an interaction between a stabilising force driving
prices back towards their fundamental value when the market is dominated by
fundamentalists, and a destabilising force driving prices away from their fundamental value
when the market is dominated by speculative noise traders. The distributions of returns
derived from chaotic trajectories of the models [e.g. Lux (1998), Iori (1999)] share important
characteristics of empirical data: volatility clustering, they exhibit high peaks around the mean
as well as fat tails (leptokurtosis) and become less leptokurtotic under time aggregation. The
introduction of endogenously determined transitions probabilities (e.g. Lux, 1998), or the
modelling using noisy chaotic systems (e.g.  Malliaris and Stein, 1999), give a new dimension
of noisy chaos applications in finance.

Taking the complex behaviour in stock markets into account, we think that a more robust
approach than the traditional stochastic one, is to model the observed data by a non-linear
dynamical system disturbed by dynamical noise. In fact, we construct a model having
negligible or even zero correlations in the conditional mean, which corresponds to the
deterministic component, but a rich structure in the conditional variance (volatility), which
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characterises the stochastic component. In time series analysis the time dependence of
conditional variance is referred to as heteroskedasticity. The model is a noisy Mackey-Glass
equation with errors that follow a GARCH(p,q) process (henceforth MG-GARCH(p,q)).

The MG-GARCH(p,q) model permits us to capture volatility clustering phenomenon,
according to which, stock prices fluctuations are characterised by episodes of low volatility,
with small prices changes, irregularly interchanged by episodes of high volatility, with large
price changes. Nevertheless, the particularity of this model is that volatility clustering is
interpreted as an endogenous phenomenon. If stock markets are dominated only by
fundamentalists, prices would be determinated using the deterministic part of the MG-
GARCH(p,q) model. But in reality, there are different types of traders, having different
trading strategies and expectations about future prices and dividends of a risky asset. The
interactions between them cause the volatility clustering.

The main objective of this article is the identification of the underlying process of the Paris
Stock Exchange returns series (CAC40). For this reason, we apply different test concerning,
the research of long memory components [fractional integration test, Geweke and Porter-
Hudak (1983)], and chaotic structures [Grassberger and Procaccia correlation dimension
(1983), and Gençay and Dechert Lyapunov exponents (1992) methods]. Then, we estimate
and forecast the CAC40 returns series by the MG-GARCH(p,q) model. Finally, we compare
this model with recent forecasting methods (Principal components regression, and Radial
basic functions). Since a part of this methodology has already used in Kyrtsou and Terraza
(2000a), we prefer briefly presenting the empirical procedure in figure 1 and reporting only
the results in the following section. We must note that this paper completes the findings in
Kyrtsou and Terraza (2000a), with the application of the MG-GARCH(p,q) model permitting
to study jointly chaotic and ARCH behaviour.
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Figure 1: Empirical procedure. Double lines show the path, we have followed.
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2. Empirical results

2.1 Data  and tests results

The data considered in this study were daily index returns series of the French Stock
Exchange (CAC40, during the period 09/07/1987-05/28/1999, 3060 observations). After
applying the augmented Dickey-Fuller unit root test, we find that a unit root exists in the
CAC40 series (DF value = 0.7294 > critical value at 5%). So, the data were first log-
differenced (DLCAC40, figure 2 in appendix) (DF value = -53.48 < critical value at 5%).

Afterwards, we apply the BDS test to the CAC40 returns series, in order to discern the
absence or the existence of linear or non-linear dependence. The results reported in Table 1
reveal that the i.i.d. null is rejected ( W >1.96).

          Table 1: BDS test results for the DLCAC40 series
Epsilon/sigma 0.5 1 1.5 2

m = 2 4.2522 5.6170 7.6004 9.0979
m = 3 5.5562 7.3283 9.8005 12.056
m = 4 6.9679 8.9349 11.376 13.817
m = 5 8.7084 10.235 12.588 14.822

Calculating descriptive statistics, the leptokurtosis in the data is revealed by high kurtosis
coefficient and Jarque-Bera (kurtosis = 9.21 and J.B = 5017,6). The ARCH LM test result
confirms the presence of heteroscedasticity (TR2 = 47,145 > χ 2(1)). Table 2 presents the

spectral regression estimates of the fractional differencing parameter d for the CAC40 returns
series over the in-sample period. A choice must be made with respect to the number of low-
frequency periodogram ordinates used in the spectral regression. Improper inclusion of
medium or high-frequency periodogram ordinates will contaminate the estimate of d. At the
same time too small a regression sample will lead to imprecise estimates. For this precise
reason, we put v = T0.5. To raise estimation efficiency, the known theoretical variance of the
regression error 62π  is imposed in the construction of the t-statistic for d. As table 2 reports,

there is strong evidence that the CAC40 returns series exhibits short memory. Nevertheless,
we cannot conclude that an ARCH process generates the CAC40 series. The fractional
integration coefficients for both series are identical (for more details see Kyrtsou and Terraza,
2000a).

  Table 2: Fractional integration coefficient for the DLCAC40 series
Methods d Standard error Test for d = 0 p-value

GPH 0.18469491 0.29168536 0.63319911 0.52660363

Tables 3, presents the correlation dimension estimates for the DLCAC40 series. Clearly, these
results reveal that as embedding dimension m is increased from 2 to 10, the correlation
dimension estimates do not converge to a stable value. This is a well-known characteristic of
stochastic processes. The interest in this stage, is the behaviour of correlation dimension
estimator, in the case of a noisy chaotic and a pure stochastic process. In both cases
correlation dimension is very high and thus it is very difficult to distinguish between the two
processes (Kyrtsou and Terraza, 2000a).
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       Table 3: Correlation dimension estimates for  the DLCAC40 series
m 2 3 4 5 6 7 8 9 10

C.D 1.918 2.928 3.794 4.562 5.091 5.477 5.878 6.244 6.522

Afterwards, in order to get a complete description of the CAC40 series dynamic behaviour,
we also compute the Lyapunov exponents of the log-differenced price series. The reliability
of the Lyapunov exponents on the basis of which one can distinguish between low-
dimensional chaos and stochastic processes, is well-known. Therefore, the algorithm
developed by Wolf et al. (1985), which is used to estimate the rates of exponential growth of
small perturbations to initial conditions, is very sensitive to the noise level. Thus, taking the
high noise level in financial series into account, we are not sure that Wolf et al. Lyapunov
exponent estimator will be robust. So that, we avoid biased estimators because of noise, we
apply the algorithm proposed by Gençay and Dechert (1992) based on feedforward neural
networks. The obtained results for the DLCAC40 series are reported in table 4. In the first
columns is given the number of hidden units. Then, we have the largest Lyapunov exponents

( )1λ  (for the first input) and ( )2λ  (for the second). The two last columns give the mean
squared error (MSE) and the Schwarz information criterion (SIC). The best Lyapunov
exponent is which that minimises the previous criteria. Looking at the table 4, we see that the
minimum MSE value is obtained, when we use 16 hidden units. In this case,

( )1λ =0.2954235e-03 and ( )2λ = -0.970291. Respectively, we obtain the minimum SIC when

we use 4 hidden units. The corresponding Lyapunov exponents are ( )1λ = 0.5352910e-03 and

( )2λ = -1.047435. For both cases, ( )1λ  is positive and ( )2λ  negative. Consequently, we
consider that there is not clear evidence for pure stochastic process. Similar results are also
obtained by Gençay and Liu (1996), for a noisy logistic map, a noisy Hénon map, and a noisy
Mackey-Glass delay equation. With the addition of noise, the largest Lyapunov exponent
becomes greatly negative. The fact that ( )1λ  is slightly positive could be due to the existence
of an underlying high-dimensional chaotic system, which generates random similar behaviour,
because of hidden dimensionality.



7

Table 4: Lyapunov exponents estimates for the DLCAC40 series
Hiddens Lambda(1) Lambda(2) MSE SIC

1 -0.1839252e-02 -0.9607019 0.381505e-07 -17.0686
2 0.1341960e-02 -1.051362 0.293360e-07 -17.3208
3 0.4474912e-02 -1.107096 0.360923e-07 -17.1031
4 0.5352910e-03 -1.047435 0.285112e-07 -17.3284
5 -0.1775347e-03 -1.048775 0.282644e-07 -17.3266
6 -0.1860099e-03 -1.048154 0.282796e-07 -17.3155
7 0.5006879e-03 -1.023327 0.287912e-07 -17.2871
8 0.1201093e-03 -1.057145 0.280426e-07 -17.3030
9 -0.1789163e-03 -1.061870 0.282179e-07 -17.2862
10 -0.1937435e-03 -0.9916856 0.271461e-07 -17.3145
11 0.1551437e-03 -0.9593365 0.270472e-07 -17.3076
12 0.2185285e-03 -1.060679 0.279938e-07 -17.2627
13 -0.9673228e-04 -1.048142 0.282721e-07 -17.2423
14 0.1971973e-03 -1.059729 0.280766e-07 -17.2388
15 0.1827083e-03 -0.9544411 0.272428e-07 -17.2584
16 0.2954235e-03 -0.970291 0.268500e-07 -17.2625
17 0.2153128e-03 -1.056791 0.279382e-07 -17.2122
18 0.2276746e-03 -1.059496 0.280041e-07 -17.1994
19 0.3131472e-03 -0.9656978 0.269641e-07 -17.2267
20 -0.1554122e-03 -1.043172 0.278274e-07 -17.1847

The application of the correlation dimension and the Lyapunov exponents methods cannot
permit us to bring a clear conclusion in favour of a noisy chaotic or a pure stochastic process.
A possible explanation is that financial series may include both chaotic and heteroskedastic
structures. To test this hypothesis, we fit a noisy Mackey-Glass model with errors that follow
a GARCH(1,1) process, to the CAC40 returns series.

2.2 Mackey-Glass-GARCH(1,1) model

As the majority of stock indices, the Paris Stock Exchange returns series does not present
significant autocorrelations. It is indistinguishable from white noise (figure 3 and table 7, in
appendix). Therefore, the results of the BDS test, presented in the previous section, have
shown that the CAC40 returns series is not an i.i.d. process. This dependence in the mean can
not be detected by an ARMA process. On the contrary, when we estimate a noisy Mackey-
Glass1 model the coefficients are widely significant2.

Our model is a discretized variant of the deterministic chaotic Mackey-Glass delay equation3

plus a noise.

Xt = Xt-1 + a
21 τ

τ

−

−

+ t

t

X

X  - bXt-1 + tε  = a
21 τ

τ
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−
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X

X  - (b-1)Xt-1 + tε  = a
21 τ
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−

−
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X

X  - δ Xt-1 + tε

                                                          
1 We also estimated a logistic equation but the coefficients were not significant.
2 These results are available upon authors.
3 Mackey and Glass (1977) equation is an infinite dimensional system, but its attracting set dimension varies as
the delay parameter τ is changed. We have found that for τ =1 the dimension is about 7 or greater.
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We use τ = 1.
After applying the ARCH LM test to the residuals series of the noisy Mackey-Glass equation,
the existence of heteroscedasticity is well confirmed (TR²=39.44 > χ 2(1)).

Consequently, the stochastic part in the previous model is a heteroskedastic noise

tt Iε ~  N(0, ht), where ht is the conditional variance.

11

2

110 −− ++= ttt hh βεαα

Then, we estimate the Mackey-Glass-GARCH(1,1) process (henceforth MG-GARCH(1,1)).
The results are presented in the following table:

                         Table 4: Estimates for MG-GARCH(1,1) model for the
 DLCAC40 series

Coefficient Value t-Statistics
α 187,46 145.10**

δ 187,38 145.20**

0α 0.0000792 1.8874*

1α 0.14999 4.2839**

1β 0.5999 7.607**

*  : coefficient statistically significant at 10%
**: coefficients statistically significant at 5%

Looking at the table 4 we can see that the coefficients of the MG-GARCH(1,1) model are
significant. The model detects an important part of non-linearities in the returns series. For the
standardised residuals4 the kurtosis has been reduced from 9.2102 to 5.646, and the Jarque-
Bera value from 5,017.61 to 946.03 (figures 6 and 7, in appendix). In order to test the
robustness of this conclusion, we also apply the BDS test to the standardised residuals series.
The results presented below show, that dependencies have been eliminated. The
autocorrelations study of the standardised residuals, confirms this result (figures 4, 5 and table
8, in appendix). The W  statistics is clearly inferior to the critical value 1.96. Therefore, the

remaining high kurtosis and Jarque-Bera, are not due to heteroskedastic structure in the data,
because applying the ARCH LM test to the squared residuals, we find that TR²= 1.205 <
χ 2(1)).
          Table 5: BDS test results for the residuals of the MG-GARCH(1,1) model

Epsilon/sigma 0.5 1 1.5 2
m = 2 -1.6928 -1.7504 -1.2508 -0.71201
m = 3 -1.4647 -1.3558 -0.54833 -0.34387
m = 4 -0.90981 -0.64331 -0.3037 1.2809
m = 5 -0.15938 -0.17411 1.0398 1.9026

Finally, we compare the forecasts of the CAC40 returns series, obtained by using the MG-
GARCH(1,1), the GARCH(1,1), the naive prediction, the random walk, the Principal
Components Regression (PCR)5 and the Radial Basic Functions (RBF)6. In order to evaluate
the performance of the six forecasting methods we use the normalised mean square error
(NMSE) index, as defined by Farmer and Sidorowich (1987):

                                                          
4 The residuals of the MG-GARCH(1,1) process.
5 See Kugiumtzis et al. (1998).
6 See Casdagli (1989).
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where tx̂ is the predicted value of xt, P represents the samples for out-of-sample prediction,

and Px  is the mean value of P. We prefer using NMSE because the division by the estimated
variance eliminates the dependence on the range of the data. If NMSE=0, the predictions are
perfect; NMSE≥ 1 indicates that the performance is no better than the mean value predictor.
The NMSE values obtained by the six methods are summarised in table 6. As can be seen, the
MG-GARCH(1,1) gives the best forecasts.

Table 6: Normalised Mean Squared Error for the forecasts of the DLCAC40 series

Steps
ahead

RBF Mackey-G
GARCH

Mean
(PCR)

GARCH Naive Random
Walk

2 1.324172124 0.920453939 1.322494599 1.072239166 1.32168934 1.324172124

3 0.71659296 0.951630225 0.823201636 0.984493173 0.943101453 0.71659296

4 1.335082917 0.946319914 0.956974088 0.978389408 0.93634015 1.335082917

5 1.050936002 0.944227294 0.819394604 0.968726315 0.745238289 1.050936002

10 1.134384017 0.982015221 0.879301895 0.991544386 1.872776554 1.134384017

15 1.271814332 0.994110633 1.066608116 0.999884373 1.739011616 1.271814332

20 1.267923024 0.988908906 1.025008975 0.994233467 1.741206249 1.267923024

Mean of
Columns 1.157272 0.9610951** 0.9848027 0.9985014 1.3284806 1.1572657

** = best forecasting method

3. Conclusion

This paper investigated whether the behaviour of the CAC40 returns series is governed by
noisy  chaotic dynamics. With the use of the BDS and the fractional integration tests as well
as the correlation dimension and the Lyapunov exponents methods, this paper’s primary
findings are as follows:
•  The CAC40 returns series is not an i.i.d. process and exhibits short memory.
•  Our results on the estimation of correlation dimension and Lyapunov exponents provide

evidence that the CAC40 returns series is likely generated from a high-dimensional
chaotic (noisy chaos) or a pure stochastic process.

•  Thus, a MG-GARCH(1,1) model is fitted to the returns series, and it appears to capture an
important part of non-linearities.

•  Finally, obtained prediction results show that, according to the normalised mean square
error criterion, MG-GARCH(1,1) and chaotic models outperform the GARCH, naive and
random walk models. Paris stock market has become increasingly complex and therefore
less amenable to forecasting over long time.

The previous findings confirm the idea that chaotic and ARCH phenomena can be studied
jointly in stock markets. Thereby, heteroskedasticity is interpreted endogenously.
Heterogeneity of expectations about future prices and dividends is the main source of
fluctuations in returns.
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APPENDIX

Figure 2: Paris Stock Exchange returns series

Figure 3: Autocorrelations of  the CAC40 returns series
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                                               Table 7 : Autocorrelations, and Q-Statistics
                                               for the DLCAC40 series

Lags    AC    PAC     Q-Stat     Prob

1   0.033    0.033   3.4126   0.065
2   0.006    0.005   3.516     0.172
3  -0.036   -0.037  7.5278    0.057
4   0.009    0.012  7.7848    0.100
5  -0.004  -0.004  7.8242    0.166
6   0.006   0.004   7.9213    0.244
7  -0.004  -0.004   7.9778    0.335
8  -0.014  -0.014   8.6008    0.377
9   0.045   0.047  14.824     0.096
10   0.030   0.027  17.571     0.063
11   0.009   0.005  17.798     0.086
12   0.026   0.029  19.930     0.068
13  -0.031  -0.032  22.853     0.043
14  -0.001   0.002  22.854     0.063
15   0.021   0.023  24.249     0.061
16   0.007   0.002  24.400     0.081
17  -0.028  -0.027  26.875       0.06
18   0.006   0.008  27.003     0.079
19   0.021   0.019  28.394     0.076
20   0.024   0.020  30.234     0.066
21  -0.031  -0.036  33.252     0.043
22  -0.005  -0.001  33.329     0.057
23  -0.003   0.002  33.354     0.075
24   0.013   0.008  33.874     0.087
25  -0.006  -0.007  33.985     0.108
26  -0.013  -0.013  34.538     0.122
27  -0.004  -0.002  34.592     0.150
28  -0.003  -0.004  34.622     0.181
29   0.022   0.019  36.110     0.170
30   0.042   0.039  41.440     0.080
31   0.020   0.018  42.670     0.079
32  -0.010  -0.008  42.995     0.093
33   0.006   0.012  43.119     0.112
34   0.016   0.012  43.876     0.100
35  -0.002  -0.004  43.889     0.144
36  -0.031  -0.029  46.912     0.105



12

Figure 4: Residuals series of the MG-GARCH(1,1) process

Figure 5: Autocorrelations for the residuals series of the MG-GARCH(1,1) process
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                                            Table 8 : Autocorrelations, and Q-Statistics for the
                                            residuals series of  the MG-GARCH(1,1) process

Lags    AC    PAC     Q-Stat     Prob

 1        -0.012   -0.012  0.4613    0.497
 2        -0.001   -0.001  0.4666    0.792
 3        -0.025   -0.025  2.4259    0.489
 4         0.037 0.036  6.5477    0.162
 5        -0.012   -0.011  6.9803    0.222
 6         0.013 0.012  7.5124    0.276
 7        -0.014   -0.012  8.0822    0.325
 8        -0.006   -0.008  8.1959    0.415
 9         0.024 0.025  9.9588    0.354
 10       0.017     0.016  10.822    0.372
 11       0.008 0.009  11.026    0.441
 12       0.023 0.024  12.604    0.398
 13      -0.013   -0.014  13.160    0.436
 14       0.007 0.007  13.306    0.503
 15       0.037 0.038  17.557    0.287
 16      -0.005   -0.006  17.636    0.346
 17      -0.031   -0.028  20.515    0.249
 18       0.010 0.009  20.804    0.289
 19       0.016 0.014  21.602    0.305
 20       0.029 0.028  24.117    0.237
 21      -0.030   -0.029  26.838    0.176
 22       0.003 0.003  26.863    0.216
 23      -0.012   -0.011  27.345    0.242
 24       0.005   -0.002  27.430    0.285
 25      -0.009   -0.007  27.685    0.323
 26      -0.007   -0.009  27.851    0.366
 27      -0.011   -0.010  28.238    0.399
 28      -0.011   -0.012  28.608    0.433
 29       0.016 0.014  29.359    0.446
 30       0.027     0.025  31.615    0.386
 31       0.025 0.027  33.605    0.342
 32      -0.001    0.003  33.610    0.389
 33       0.006    0.008  33.735    0.432
 34       0.009    0.007  34.004    0.468
 35       0.011    0.010  34.389    0.497
 36      -0.033  -0.029  37.774    0.388
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Figure 6: Sample statistics for the DLCAC40 series

Figure 7: Sample statistics for the residuals series of the MG-GARCH(1,1) process
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