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ABSTRACT 

 

For period t, let qt = f(vt) + τt, where qt denotes measured output quantity, f(⋅) 

denotes a production function, vt = (v1t, ..., vnt)T denotes a vector of n input 

quantities, τt denotes total factor productivity (TFP), and all variables are in 

natural-log form. Then, f(vt) = , for 0 < αit
n

1i itv∑ =
α it < 1 and = 1, is 

a Cobb-Douglas first-order log-form approximation of a production function 

(denoted CD). If f(⋅) is approximated as a CD function, the share parameters, 

α

∑ =
αn

1i it

it, are set to successive two-period-averaged cost shares, and the observed 

input quantities are considered optimal or input-cost minimizing, then, τt = qt 

-  is the log-form Solow-residual measure of TFP (Solow, 1957). 

Solow-residual TFP could be subject to input-substitution bias for two reasons. 

First, the CD production function restricts all input substitutions to one. 

Second, observed inputs generally differ from optimal inputs, so that inputs 

observed in a sample tend to move not just due to substitution effects but for 

other reasons as well. In this paper, we test the possible input-substitution 

bias of the Solow-residual measure of TFP in capital, labor, energy, materials, 

and services (KLEMS) inputs data for U.S. manufacturing from 1949 to 2001. (1) 

Based on maximum likelihood estimation, we determine a best 4th-order 

approximation of a CES-class production function. The CES class includes not 

only the standard constant elasticity of input substitution production functions 

(denoted CES) but also includes so called tiered CES production functions 

(denoted TCES), in which prespecified groups of inputs can have their own input-

substitution elasticities and input-cost shares are parameterized (i) tightly as 

constants, (ii) moderately as smooth functions, and (iii) loosely as successive 

averages. (2) Based on the best estimated production function, we compute the 

implied best TFP as τ

it
n

1i itv∑ =
α

t = qt - f( ), where f( ) denotes the best estimated 

production function evaluated at the computed optimal inputs, . (3) For the 

data, we compute Solow-residual TFP and compare it with the best TFP. We 

conclude that for this data, the Solow-residual TFP is on average .1% lower, 

with a .6% standard error, than the best TFP and, hence, is very slightly 

downward biased, although the sampling-error uncertainty dominates this 

conclusion. In further work, we shall attempt to reduce this uncertainty with 

further testing based on more general CES-class production functions and more 

finely estimated parameters. 

tv̂ tv̂

tv̂
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1. Introduction. 

 

 The paper is specifically motivated as discussed in the preceeding 

abstract, but is also more generally motivated by the desire to accurately 

compute price indexes based on explicit forms of the functions being maximized. 

There are two main, mathematically identical, but economically different 

applications: computing price indexes of production inputs based on maximizing 

output of a production function for given input costs, as here, and computing 

price indexes of consumer goods based on maximizing utility of consumed goods 

for given expenditures, as in Zadrozny and Chen (2004). Here, we consider 

standard constant elasticity of input substitution production functions (denoted 

CES), with one input-substitution elasticity for all inputs, and more general 

tiered CES production functions, with a different input-substitution elasticity 

for each group of inputs (denoted TCES). 

We are also interested in using even more general production functions, 

which we call generalized CES production functions (denoted GCES), in which each 

input or good can have its own price elasticity parameter, but, for brevity, 

limit the present applications to CES and TCES production functions. CES and 

TCES production functions imply analytical solutions of their optimization 

problems. GCES production functions generally do not imply analytical solutions 

except in special homothetic cases, such as the CES and TCES cases. Generally, 

optimization problems based on GCES production functions can be solved only 

numerically. In Zadrozny and Chen (2004), we describe the multi-step 

perturbation (MSP) method as a quick and accurate method for numerically solving 

the corresponding utility maximization problem. 

Here, we could have used analytical CES and TCES solutions, but, for two 

reasons, use numerical solutions produced by the MSP method. First, we use the 

MSP method in order to test its accuracy in solving the static optimization 

problems. In all cases, we obtained nearly double-precision or about 14-decimal-

digit accuracy when we checked the numerical MSP solutions against the 

analytical solutions, which encourages us to work in the future with purely 

numerical solutions of GCES production functions. Second, we are intersted in 

studying TFP bias by generalizing the CD production function by adding higher-

order log-form Taylor-series terms up to a specified order. However, to do this 

tractably we must restrict the number of estimated parameters and we do this by 

parameterizing in terms of these CES-class production functions. 

 We proceed here entirely in log form for four reasons: (i) TFP and related 

price and quantity indexes are usually considered in log form; (ii) log-form 
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variables are unit free, scaled equivalently, and,  hence, lie mostly within or 

close to a unit sphere, which promotes numerical accuracy; (iii) log-form 

derivatives of the CES-class production functions are easier to derive, program, 

and compute with; and, (iv) comparisons with benchmark Solow residuals are 

easier in log form. 

As noted, q denotes the log of the quantity of observed goods and 

services, f(⋅) denotes the log of output produced by the  production function, 

and, τ = q - q̂  denotes the log of the level of technology or TFP of f(⋅), where 

 = f( ) denotes the log of optimal output produced by optimal log-form 

inputs, . To distinguish between q and f(⋅), we, respectively, refer to them 

as "goods and services" and "output." Let p = (p

q̂ v̂

v̂

1, ..., pn)T denote an n×1 vector 

of logs of observed or computed input prices (superscript T denotes vector or 

matrix transposition) and let v = (v1, ..., vn)T denote an n×1 vector of logs of 

observed or computed input quantities. The context of whether inputs are 

observed or optimal-computed will be spelled out in each case. Whether prices 

are in nominal or real (deflated) units makes no difference, so long as real 

prices in a period are obtained by deflating each nominal price by the same 

value. 

We assume f(⋅) is analytical, hence, for a sufficiently large k, f(⋅) is 

arbitrarily well approximated by a k+1-order Taylor series. Let e(x) = (exp(x1), 

..., exp(xn))T for any n×1 vector x = (x1, ..., xn)T. We write the input-cost 

line as e(p)Te( ) = e(p)v̂ Te(v), where p and v are given, so that e(p)Te(v) 

denotes observed expenditures on inputs and optimal  is computed. We consider 

the following output maximization problem: for given f(⋅), p, and v, maximize 

f( ) with respect to , subject to e(p)

v̂

v̂ v̂ Te(v ) = e(p)ˆ Te(v). Because τ is absent 

from the statement of the problem, it plays no role in its solution. Like Solow, 

we compute τ residually: first v̂ , then τ. The difference with Solow is that v̂  

is computed as optimal and is not equated with observed v. 

We consider only interior solutions which satisfy the usual first-order 

conditions (2.1) and (2.2). As functional forms, we consider CD production 

functions, standard CES production functions, and more general TCES production 

functions, which are multi-level generalizations of two-level CES functions 

(Sato, 1967; Burnside, Eichenbaum, and Rebelo, 1995), that allow different input 

groups to have different substitution elasticities. For each production 

function, we solve for optimal inputs using the MSP method. In the CD, CES, and 

TCES cases, we use analytical solutions to check the MSP method's accuracy and 
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in the future, given the successful application of MSP with the CD, CES, and 

TCES production functions demonstrated here, we shall consider the more general 

GCES production functions which do not imply analytical solutions. 

By a model we mean (i) a multiple-times-differentiable production 

function, f(⋅), (ii) a parameterization of f(⋅) over a data sample, and (iii) 

values of constant structural parameters which determine f(⋅) in the sample. We 

now consider three parameterizations in more detail: (a) unrestricted time-

varying reduced-form parameters set every period to different values of 

structural parameters; (b) time-varying reduced-form parameters restricted by a 

smooth function of constant structural parameters; and, (c) constant reduced-

form parameters equal to constant structural parameters. 

For example, f(vt) =  denotes a period-t log-form CD production 

function for mean-adjusted data, whose reduced-form parameters, α

it
n

1i itv∑ =
α

it, depend on 

constant structural parameters in the vector θ. In the typical case (a) of a 

data-producing agency, reduced-form parameters are unrestricted, are set period-

by-period to relative input costs, and are statistically unreliable (have 

infinite estimated standard errors), because the number of estimated structural 

parameters, dim(θ), equals the number of observations, nT: αit = θit, for i = 1, 

..., n and t = 1, ..., T, so that dim(θ) = nT. In the typical academic case (c) 

of an econometric analysis, the reduced-form parameters are fixed over a sample 

in terms of the structural parameters and are statistically reliable because 

there are fewer estimated structural parameters than observations: αit = θi, so 

that dim(θ) = n < nT. In the application in section 3, we consider the in-

between case (b), in which nT reduced-form parameters vary smoothly according to 

an integrated moving-average (IMA) process (Gardner, 1985), such that dim(θ) < 

nT. 

What difference does the extra generality of going beyond the CD 

production function make? Normally, empirical validity is measured by residual 

size. In this case, we have output residuals, q- , and input residuals, v- . 

However, because TPF and output residuals are identical, judging TFP's empirical 

validity using sizes of output residuals makes no sense. For example, 

statistically ideal zero output residuals imply zero log-TFP. Thus, instead, we 

propose judging TFP's empirical validity using an information criterion (IC) 

based on input residuals. The many IC which have been proposed differ in their 

propensities for choosing models with particular numbers of parameters. For 

example, Akaike's IC (1973) often picks less parsimonious models (i.e., with 

q̂ v̂
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more parameters), while Schwarz's IC (1978) often picks more parsimonious 

models. 

As usual, for a given data sample, we consider a model's parameter 

estimates and derived quantities like TFP as statistically reliable when the 

parameter estimates and derived quantities have finite standard errors. This 

occurs if and only if the degrees of freedom of the parameter estimates are 

positive. Among the models being considered, the one which minimizes a chosen IC 

is considered the best or empirically-most-valid model. An IC test based on input 

residuals for choosing the best model for computing TFP has several advantages. 

First, the test's justification does not depend on the method for estimating 

parameters. Second, the test can compare nonnested models. Third, the test does 

not require data on produced goods and services, q, although, of course, these 

data are ultimately needed to compute TFP. 

By setting input-share parameters period-by-period to relative input 

costs, a Solow-residual analysis treats observed inputs as optimal, so that 

input residuals are exactly zero, degrees of freedom of estimated parameters are 

exhausted, and, strictly, the estimated parameters and implied TFP have no 

statistical reliability. By contrast, by testing with an IC based on input 

residuals, we can select the empirically-most-valid model among CD, CES, TCES, 

and possibly other models, compute the best model's implied TFP, and compare it 

with benchmark Solow residuals. Along the way, we can check the MSP method's 

accuracy by comparing analytical and MSP-numerical solutions in the CD, CES, and 

TCES cases which imply analytical solutions. We illustrate these ideas using 

annual data on capital, labor, energy, materials, and services (KLEMS) inputs in 

manufacturing industries, from 1949 to 2001, obtained from the Bureau of Labor 

Statistics. Thus, we provide a method for computing the "empirically-most-valid" 

TFP, potentially more valid than the Solow residual. In other words, we check the 

robustness of Solow residuals to deviations of the production function from the 

CD approximation which underlies the Solow residuals. 

 The remainder of the paper is organized as follows. Section 2 discusses 

using the MSP method to compute optimal inputs. Section 3 discusses the 

econometric design. Section 4 does three things: (1) it applies the MSP method 

to the KLEMS data to compute input residuals for the CD, CES, and TCES models 

being considered; (2) it selects a best model which minimizes the information 

criteria of Akaike (1973), Schwarz (1978), and Hurvich and Tsai (1989); and, (3) 

it computes TFP implied by the best model, computes the benchmark Solow 

residual, and compares the two TFP computations. Section 5 contains concluding 

remarks. 
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2. Using MSP to Compute Optimal Inputs. 

 

We exploit the property for simplifying computations that maximizing a 

function in a constraint set results in a solution which is equivalent to the 

solution obtained by maximizing a monotonic transformation of the function in 

the same constraint set. In original units of measurement, the output 

maximization problem is: for given F(⋅), P, and V, maximize F( V̂ ) with respect 

to , subject to PV̂ T V̂  = PTV , where F(⋅), P, V, and V  denote antilogs of f(⋅) 

and the elements of p, v, and . Although the original-unit and log-unit 

formulations of the problem lead to slightly different first-order conditions, 

they have equivalent solutions, namely,  = exp( ). As noted before, 

proceeding in log form has several advantages. 

ˆ

v̂

V̂ v̂

We want to compute optimal and residual inputs, for each period, in a 

sample of input prices and quantities, for CD, CES, and TCES production 

functions. Let {pt, vt
T

1t} =  denote a given sample of observed input prices and 

quantities. Then, for given f(⋅), pt, and vt in period t, the vector of optimal 

inputs, , which solves the output maximization problem, implies the vector of 

input residuals, v

tv̂

t - . tv̂

Figure 1 illustrates MSP computation of  in terms of two inputs, in the 

movement from points A to B. Points A and B denote start and end points of an 

MSP computation. Straight lines AA and BB, through A and B, denote start and end 

input-cost lines. Curved lines f

tv̂

A and fB, tangent at A to AA and tangent at B to 

BB, denote start and end isoquants. Observed input prices and quantities are p = 

(p1, p2)T and v = (v1, v2)T. Observed v is at A and BB denotes the "observed" cost 

line defined by observed p and v, e(p)Te( ) = e(p)v̂ Te(v). The objective is to 

compute , the optimal combination of inputs on BB. The implied negative input 

residual,  - v, is depicted by the vector difference B - A. 

v̂

v̂

The MSP method starts at A but generally works correctly only if the 

starting point is optimal. Generally, A is not optimal on the observed cost line 

BB, because isoquant fA, which passes through A, is not tangent to BB at A. 

However, A is optimal on AA, because AA is constructed to be tangent to fA at A. 

Accordingly, AA is defined by e( )p̂ Te( ) = e( )v̂ p̂ Te(v), where  satisfies the 

first-order conditions (2.1) and (2.2) below, for given f(⋅) and v. Thus,  and 

AA are "optimal" at A. The MSP method computes the change in optimal inputs as 

they move from A to B in response to the counterclockwise rotation of the input-

p̂

p̂
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cost line at the initial point A, as the price vector flattens from  in AA to 

p in BB. 

p̂

As before, for given assumed f(⋅) and given observed p and v, the 

objective is to compute optimal . For these given quantities, the log-form 

output-maximization problem is: maximize f( ) with respect to , subject to 

e(p)

v̂

v̂ v̂

Te( ) = e(p)v̂ Te(v). The Lagrangian function of the problem is l = f( ) + 

(e(p)

v̂

λ̂ T(e(v) - e(p)Te(v )), where  denotes the Lagrange multiplier. We obtain 

the first-order conditions of the maximization problem by differentiating l with 

respect to  and  and setting the results to zero, 

ˆ λ̂

v̂ λ̂

 

(2.1)  ∇f( v̂ ) = λ̂ e(p + v̂ )T, 

 

(2.2)       e(p)Te( ) = e(p)v̂ Te(v), 

 

where ∇f( ) = [∂f( )/∂vv̂ v̂ 1, ..., ∂f( v̂ )/∂vn] denotes the 1×n gradient row vector 

of first-partial derivatives of f( ). For given f(⋅), p and v, equations (2.1) 

and (2.2) can be solved for unique values of  and , at least locally and 

numerically, if second-order conditions hold. 

v̂

v̂ λ̂

 As discussed before, we start the MSP method at observed inputs and need 

to treat them as optimal. Because observed inputs, v, are generally not optimal 

at observed prices, p, we first need to compute the "optimal" price vector, , 

at which v is optimal. We do this by considering the first-order conditions 

(2.1) and (2.2) as ∇f(v) = λ̂ e( +v)

p̂

p̂ T and e( )p̂ Te(v) = e(p)Te(v), for given 

assumed f(⋅) and given observed p and v, and solving for  and . Let E(x) = 

diag(e(x)) denote the n×n diagonal matrix with n×1 vector e(x) on the principal 

diagonal; because all original units of observed inputs are positive, E(v) has 

finite and nonzero diagonal elements and, hence, is nonsingular; E(v)

λ̂ p̂

-1e(v) = u, 

where u = (1, ..., 1)T denotes the n×1 unit vector of ones; e( p̂ )Te(v) = 

e(p)Te(v) when computing p̂ , because the computed input-cost line defined by  

and the observed input-cost line defined by p both pass through the observed 

inputs, v. The solution values of  and  are 

p̂

λ̂ p̂

 

(2.3)      = ∇f(v)u/e(p)λ̂ Te(v), 
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          e( ) = E(v)p̂ -1∇f(v)T/ . λ̂

 

At this point, having computed  according to equations (2.3), we now 

consider  as observed and given, and relabel it as p. Thus, we now consider as 

given the same f(⋅) and v as before and the computed  relabelled as p. For 

these given quantities, we now differentiate first-order conditions (2.1) and 

(2.2) with respect to , , and p and write the result as 

p̂

p̂

p̂

v̂ λ̂

 

(2.4)     F(x)d  = G(x)dp, ŷ

 

or         = dp, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−

+−+λ−∇

1x1
T

2

0)v̂p(e

)v̂p(e)v̂p(Eˆ)v̂(f

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λ̂d

v̂d

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+

+λ

TT )vp(e)v̂p(e

)v̂p(Eˆ

 

where ∇2f(⋅) denotes the n×n Hessian matrix of second-partial derivatives of 

f(⋅), F(x) is an (n+1)×(n+1) matrix function, G(x) is an (n+1)×n matrix 

function, x = ( , pTŷ T)T contains all 2n+1 variables, ŷ  = ( , )Tv̂ λ̂ T contains the 

n+1 "endogenous" variables to be determined, and p contains the n given or 

"exogenous" prices. Although all of x is computed recursively and hats emphasize 

computed values, for simplicity, we omit them from x because, unlike in v or y, 

we do not need to distinguish between hatted and unhatted x. If f(⋅) is 

differentiable k+1 times, then, F(x) is differentiable k-1 times; G(x) is always 

differentiable any number of times. 

 The elements of x are all known, because they are either observed or 

computed. For given x, equation (2.4) implies the unique value dy = H(x)dp, 

where H(x) = F(x)

ˆ

-1G(x), if and only if |F(x)| ≠ 0, where |⋅| denotes the 

determinant of a square matrix. This condition holds because the second-order 

conditions of the problem imply that 

 

(2.5)     (-1)n+1|F(x)| > 0 

 

(Mann, 1943). Thus, when x maximizes output and satisfies second-order condition 

(2.5), equation (2.4) has the unique solution 

 

(2.6)      = H(x)dp, ŷd
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where H(x) = F(x)-1G(x) is an (n+1)×n matrix function of x. Although equation 

(2.6) derives from the true y process, we write its left side as  to 

emphasize that the true dy is approximated using this equation. 

ŷd

 

3. Econometric Design. 

 

 We now discuss the econometric design of the tests. First, we explain 

computation of an information criterion (IC). We have a sample of observations 

on input prices and quantities, {pt,vt
T

1t} = , for periods t = 1, ..., T. Input 

residuals in period t are observed input quantities minus computed optimal input 

quantities, denoted ξt = vt- . Suppose the residuals are distributed normally, 

identically, independently, with zero means, and the covariance matrix Σ

tv̂

ξ or ξt ~ 

NIID(0,Σξ). Let LL(θ) denote -(2/T)×log-likelihood function, except for terms 

independent of parameters, where θ denotes the model's parameters. Then, LL(θ) = 

ln| |, where ln|⋅| denotes the natural logarithm of a determinant and  = 

(1/T) , where the residuals, ξ

ξΣ̂ ξΣ̂

∑ =
ξξT

1t
T
tt t, are evaluated at the particular value 

of θ. Finally, an IC = LL + P(θ), where P(⋅) is a penalty term which depends on 

the number of estimated parameters. For example, in the Akaike information 

criterion, P(θ) = (2/T)⋅#(θ), where #(θ) denotes the number of estimated 

parameters. 

 

4. Application to KLEMS Data. 

 

We now discuss the application to annual data for U.S. manufacturing from 

1949 to 2001, from the Bureau of Labor Statistics (2002). The data are prices 

and quantities of capital (K), labor (L), energy (E), materials (M), and 

services (S) used by U.S. manufacturing firms to produce output. The raw  data 

are indexes of input quantities (with 1996 values being 100), expenditures on 

inputs in billions of current dollars, and the value of output in billions of 

current dollars. Prices of inputs are computed as expenditures divided by input 

quantity indexes. As noted before, it makes no difference whether the prices are 

in current or constant dollars. 

 The Solow-residual is based on a first-order CD approximation of any 

differentiable production function. Here, a production function parameterized in 
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a certain way is a model. We consider CES and TCES models of the five KLEMS 

inputs. The parameters are input-cost shares, denoted α1, ..., α5, and input 

substitution elasticities, denoted σ in the CD and CES models and σ1 and σ2, for 

σ1 > σ2, in the TCES models. For the 53 annual periods, we consider "constant" 

α's estimated as sample means, "IMA" α's equal to one-period ahead forecasts of 

estimated IMA(1,1) models of the cost shares, and "Tornqvist" α's set to .5 × 

period t's observed input-cost shares + .5 × period t-1's observed input-cost 

shares. We estimate the IMA parameters by applying maximum likelihood estimation 

(MLE) to the raw cost-share observations. In each case, because the cost shares 

must sum to one, we set the α's of the four largest LMKS-cost shares as noted 

and set the remaining E-cost shares residually, as one minus the sum of the 

other α's. For CES models, we consider σ = .1, .5, 1., 2., 10. Thus, we do a 

kind of MLE over a coarse grid of σ's, conditional on estimated α's. In TCES 

models, we consider two σ's over a similar grid, such that the "outer" one is 

always larger than the "inner" one. We do not consider joint estimation of 

parameters, such as MLE, because often this results in implausible α's. For 

example, until he introduces utilization rates (an extension which is beyond the 

scope of this paper), Tatom (1980) obtains MLE α

&&

L > 1 and αK < 0, which 

contradicts 0 ≤ α ≤ 1. 

We evaluate estimated models in terms of information criteria (IC). We 

consider the basic Akaike IC or AIC, the bias corrected AIC or BCAIC (Hurvich 

and Tsai, 1989), and the Schwarz (1978) Bayesian IC or BIC. We are especially 

concerned about degrees of freedom (DF) of estimated parameters and, for a 

chosen IC, consider as "best" the model which minimizes that IC. We are 

concerned with DF because a model with zero DF implies that the model's 

estimated parameters and any derived quantities, such as TFP, have infinite 

variances and, hence, have no statistical reliability. To varying extents, the 

ICs considered here account for DF by adding penalty terms to -(2/T) × log-

likelihood function. Among the ICs considered here, in tables 1 to 3, BCAIC most 

effectively accounts for DF, because it is the only IC which approaches +∞ as 

DF approach zero from above. Thus, we set BCAIC = +∞ when DF are exhausted. An 

IC is parsimonious if it selects as "best" the models with the fewest 

parameters. ICs in Table 1 are ordered in increasing parsimony as AIC, BCAIC, 

and BIC. 
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4.1. Results from CD and CES Models 

 

We considered 15 CES models. The top panel of Table 1 reports ICs of the 

best CES production function for five KLEMS input residuals; constant, IMA, and 

T rnqvist cost-share processes; and five values of the input elasticity of 

substitution. Of course, when the elasticity of substitution is one, the CES 

function reduces to the CD function. 

o&&

The DF in for the CES models are obtained as follows. Each model has five 

KLEMS inputs. Because the cost shares sum to one, there are four free cost 

shares in each of the 53 sample periods. Each model also has an elasticity 

parameter. Thus, constant-cost-share models have 4 + 1 = 5 estimated parameters, 

hence, have DF = max[53-5,0] = 48. Each IMA(1,1)-cost-share model has two 

estimated parameters, a moving-average coefficient and a white-noise disturbance 

variance. Thus, IMA-cost-share models have 4×2 + 1 = 9 estimated parameters, 

hence, have DF = max[53-9,0] = 44. Finally, T rnqvist-cost-share models have 

53×4 + 1 = 213 estimated parameters, hence, have DF = max[53-213,0] = 0. Figure 

2 depicts the largest cost-share inputs, L, M, K, and S. That is, the smallest 

cost shares of E are not graphed. In figure 2, each panel contains time plots of 

constant, IMA, and Tornqvist cost shares for each of the LMKS inputs. Strictly 

each panel has three cases, but practically each panel has two cases, because 

the IMA and Tornqvist graphs are nearly identical. Thus, the IMA and T rnqvist 

models differ significantly only in their DF. 

o&&

&&

&& o&&

In the constant-cost share case, σ = .5 yields the lowest IC values with 

positive DF. Because the IMA- and T rnqvist-cost share graphs are nearly 

identical but IMA DF = 44, whereas Tornqvist DF = 0, we consider the IMA models 

as better, regardless of IC values. Thus, even if we chose to follow AIC and 

disregard the other ICs, we would consider IMA model 2 better than Tornqvist 

model 3, because model 2 has positive DF, even though model 3's AIC is lower. 

o&&

&&

&&

 

4.2. Results from TCES Models 

 

We also considered 24 TCES models. Even if we limit the TCES model search 

to two-tiered models, this still implies more models than we could evaluate in 

practice, because there are 16 possible groupings with one to five KLEMS inputs. 

Thus, we look at figures 3 and 4 to obtain guidance about which input groups to 

form. 
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Figure 3 depicts the 10 pairwise scatter plots of the KLEMS inputs in log 

form. In the figure, all pairwise plots except those involving L follow clear, 

noiseless, mostly upward, straight or curved lines. Plots involving L are quite 

noisy. Thus, figure 3 suggests that all non-L inputs move in close to fixed 

proportions and have low substitutability. That is, figure 3 suggests a two-

tiered TCES model with an outer group of L and KEMS, with high substitution σ1, 

and an inner group of K, E, M, and S, with low substitution σ2. The L-KEMS two-

tiered CES model, TCES1, takes the form 

 

(4.1)  Q = [α1L
ρ + α2(β1Kγ + β2Eγ + β3Mγ + β4Sγ)ρ/γ]1/ρ, 

 

where αi, βi > 0, α1 + α2 = β1 + ... + β4 = 1, and ρ, γ < 1. The outer group, L 

and KEMS, has σ1 = |1-ρ|-1; and the inner group, K, E, M, and S, has σ2 = |1-γ|-1. 

Figure 4 suggests a two-tiered TCES model with so-called L-E-KMS input 

groups. The top panel of figure 4 depicts the following broad input-price 

movements: all input prices except E prices follow the same upward trend, 

exhibit relatively minor differences about the trend, and E prices are 

relatively constant during 1949-1972 and 1982-2001 and rise sharply during 1973-

1981. The bottom panel of figure 4 depicts the following broad input-quantity 

movements: L is relatively constant, K, M, and S follow each other very closely 

along an upward trend, and E rises sharply until 1973 and thereafter grows 

slowly. In particular, the bottom panel of figure 4 suggests a two-tiered TCES 

model: an "outer" group of L, E, and KMS, with high substitution σ1, and an 

"inner" group of K, M, and S, with low substitution σ2. Because the bottom panel 

of figure 4 shows that K, M, and S move in close to fixed proportions, we expect 

σ2 to be small. The relative constancy of L in figure 4 could also be 

interpreted as indicating nonneutral L-saving technical change, but we limit the 

analysis to homothetic production functions, hence, limit it to the neutral 

technical change of the Solow residual. The L-E-KMS two-tiered CES model, TCES2, 

takes the form 

 

(4.2)  Q = [α1L
ρ + α2E

ρ + α3(β1Kγ + β2Mγ + β3Sγ)ρ/γ]1/ρ, 

 

where αi, βi > 0, α1 + α2 + α3 = β1 + β2 + β3 = 1, and ρ, γ < 1. The outer group, 

L, E, and KMS, has σ1 = |1-ρ|-1; the inner group, K, M, and S has σ2 = |1-γ|-1. 

 The middle and bottom panels of Table 1 contain ICs from the TCES1 and 

TCES2 models. Because there are outer and inner elasticities of substitution in 
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the TCES models, DF is equal to 47 in the constant-cost share models, is 43 in 

the IMA-cost share models, and remains 0 for the Tornqvist-cost share models. 

In the TCES models, the outer elasticity of substitution is σ

&&

1 ∈ {.5, 1} and the 

inner elasticity of substitution is σ2 ∈ {.1, .17, .5, .67}. In the TCES1 

models, the IMA-cost-share model 5, with σ1 = 1 and σ2 = .67, has the lowest ICs 

and positive DF. Similarly, in the TCES2 models, the best IMA-cost-share model 

8, with σ1 = 1 and σ2 = .67, has the lowest ICs and positive DF. 

Among the 15 CES and 24 TCES models, the IMA-cost-share model 5 has the 

lowest ICs, and therefore, is the best model. The results reject a single 

elasticity of substitution for all the KLEMS inputs and suggest that TFP 

computed from the IMA-cost-share L-KEMS TCES model 5 is more appropriate than 

TFP computed from a T rnqvist-cost-share CD model. o&&

The MSP method worked accurately for all models and sample periods. The 

accuracy of MSP computations is measured as the largest absolute residual of the 

computed first-order conditions (FOC). For the KLEMS inputs, there are six 

scalar FOC, five marginal productivity conditions and a cost line. Each scalar 

FOC may be written as a scalar expression equal to zero. The computed value of 

each scalar expression is an FOC residual, which we want to be as close to zero 

as possible. For each sample period, the MSP method computes the input residuals 

in many steps. For each step, the method computes six absolute FOC residuals. 

For each case, the optimal inputs, hence, the residual inputs, were computed so 

that the FOC were satisfied with approximately double-precision or 10-14 

accuracy. Because economic data usually have no more than 5-6 decimal digits, 14 

decimal digit accuracy significantly exceeds the accuracy of usual economic 

data. 

 

4.3. Best TFP versus Solow-Residual TFP. 

 

We use the best production-function model, IMA-cost-share TCES1 model 5, 

to compute  = %∆Q*
tTFP%∆ t - %∆F( ), namely, period-to-period percentage change 

in optimal TFP, where %∆Q

tv̂

t denotes period-to-period percentage change in 

observed output, %∆F( ) denotes period-to-period percentage change in computed 

optimal output, for the best production function, F(⋅), at optimal inputs, . 

Similarly, let  = %∆Q

tv̂

tv̂

SR
tTFP%∆ t – ckt⋅%∆Kt – ... – cSt⋅%∆St, denote percentage change 

in Solow-residual TFP, where ckt, ..., cst denote Tornqvist input-cost shares 

and %∆K

&&

t, ..., %∆St denote percentage changes in the KLEMS inputs. To compare 
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the percentage changes in optimal and Solow-residual TFP, we graph their 

difference in figure 5. 

For the period 1949 to 2001, figure 5 and table 2 show a slightly positive 

mean, a slightly upward trend if one abstracts from outlying fluctuations, and a 

significantly declining variance in the difference between percentage growth in 

optimal and Solow-residual TFP or  - . In particular, table 2 shows 

a mean of µ = .10% and a standard deviation of σ = .60%. Although these numbers 

might seem small, they become much more significant when translated to levels at 

the end of the 53-year period, as follows. 

*
tTFP%∆ SR

tTFP%∆

For example, suppose the levels of the two TFP measures are both one in 

1949. A measure which starts at one in 1949 and grows at γ% per year for 53 

years equals e53γ in 2001. Thus, the one-standard-deviation bounds µ - σ = -.005 

≤  -  ≤ µ + σ = .007 on the differences in the growth rates from 

1949 to 2001 imply the one-standard-deviation bounds .767 ≤  -  ≤ 

1.449 on the differences in the levels of TFP in 2001. Thus, if optimal and 

Solow-residual TFP are both one in 1949, optimal TFP could be 45% higher or 23% 

lower than Solow-residual TFP by 2001. In other words, apparently small average 

differences and uncertainties in growth rates over 53 years translate into large 

differences and uncertainties in levels at the end of 53 years. We mention this 

example illustratively. Further investigation is needed to determine more 

conclusively whether there is a significant discrepancy between optimal and 

Solow-residual TFP. 

*
tTFP%∆ SR

tTFP%∆

*
2001TFP SR

2001TFP

 

5. Conclusion. 

 

We have used the multi-step perturbation (MSP) method to compute input 

residuals for CD, CES, and TCES production functions of KLEMS inputs, for 

inelastic, unit elastic, and elastic input substitution, using KLEMS data from 

the Bureau of Labor Statistics, representing aggregate U.S. manufacturing from 

1949 to 2001. We then used the input residuals to compute various ICs. We focus 

on ICs because, like log-likelihood functions, they provide a scalar measure of 

the empirical fit of a multiple equation model, in this case the five, 

numerically computed, demand functions of the KLEMS inputs. By extending -(2/T) 

× log-likelihood function with positive penalty terms, the ICs acknowledge that 

adding parameters is statistically costly because degrees of freedom (DF) are 

used up. Adding too many parameters reduces DF to zero so that estimated 
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parameters and derived quantities, such as TFP, based on them, strictly have 

infinite variances, hence, have no statistical reliability. 

 For the results in tables 1, TCES1 model 5, with IMA-cost shares, is the 

best model with the lowest ICs and positive DF. According to AIC, CD model 3 has 

a slightly lower AIC and, in this respect, is better but we dismiss T rnqvist 

models with DF = 0 as statistically unreliable. Figure 2 indicates that the IMA-

cost shares and the Tornqvist-cost shares follow each other very closely. Thus, 

the Solow-residual TFP implied by model 3 should be close to TFP of model 5 

computed as τ

o&&

&&

t = qt - f( ). tv̂

 We have chosen a best TCES1 model, within the CES and TCES classes of 

models, for computing optimal TFP. For a given IC and a given model, conditional 

on estimates of the cost-share parameters, αi, we chose the elasticity 

parameter, σ, over a coarse grid of values, so as to minimize the IC. In the 

future, we shall consider estimating σ using maximum likelihood, conditional on 

estimates of the αi's. Unless the production function includes a measure of 

capacity, estimating σ jointly with the αi's may result in implausible estimates 

(Tatom, 1980). Also, we shall consider using more general production functions, 

such as the log-form GCES function, f(v) = (1/γ)⋅ln( ), where ρ∑ =
ραn

1i
ivi

ie i < 1 is 

an input-specific elasticity parameter and setting γ = ∑  implies local 

constant returns to scale. If the ρ

=
ραn

1i ii

i's are unequal, then, the GCES function is 

globally nonhomothetic and first-order conditions (2.1) and (2.2) have no 

analytical solution. Because, for the CES and TCES applications in this paper, 

the MSP method produced very accurate solutions, with almost double precision (≅ 

10-14) accuracy, we expect the method to produce similarly accurate solutions for 

GCES applications. 
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Figure 1: Illustration of Multi-Step Perturbation. 
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Input-cost lines AA and BB are, respectively, defined by e( )p̂ Te( ) = e( )v̂ p̂ Te(v) 
and e(p)Te( v̂ ) = e(p)Te(v), for given precomputed "optimal"  and given observed 
p and v. 

p̂
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Figure 2: Constant, IMA, and T rnqvist LMKS Input Cost Shares, 1949-2001. o&&
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Figure 3: Scatter Plots of Pairwise Log of KLEMS Input Quantities. 
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Figure 4: Log of KLEMS Input Prices and Quantities, 1949-2001. 
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Figure 5:  -  from 1949 to 2001. *
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Table 1: Summary Statistics of the Best Estimated Models. 

 
 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
Model 

 
αit

 
σ1

 
σ2

 
DF 

 
-2LL/T 

 
AIC 

 
BCAIC 

 
BIC 

 
Best CES Models 

 
1 

 
Const 

 
.50 

 
--- 

 
48 

 
-26.66 

 
-26.47 

 
-26.45 

 
-26.29 

 
2 

 
IMA 

 
1.0 

 
--- 

 
44 

 
-32.62 

 
-32.28 

 
-32.21 

 
-31.94 

 
3 

 
Tornq 

 
1.0 

 
--- 

 
0 

 
-42.22 

 
-34.18 

 
+∞ 

 
-26.26 

 
Best TCES1 Models 

 
4 

 
Const 

 
.50 

 
.17 

 
47 

 
-27.69 

 
-27.50 

 
-27.48 

 
-27.32 

 
5 

 
IMA 

 
1.0 

 
.67 

 
43 

 
-33.54 

 
-33.21 

 
-33.13 

 
-32.87 

 
6 

 
Tornq 

 
1.0 

 
.67 

 
0 

 
-37.26 

 
-26.98 

 
+∞ 

 
-19.06 

 
Best TCES2 Models 

 
7 

 
Const 

 
.50 

 
.10 

 
47 

 
-24.09 

 
-23.90 

 
-23.88 

 
-23.71 

 
8 

 
IMA 

 
1.0 

 
.67 

 
43 

 
-33.24 

 
-32.90 

 
-32.82 

 
-32.56 

 
9 

 
Tornq 

 
1.0 

 
.67 

 
0 

 
-40.35 

 
-32.32 

 
+∞ 

 
-24.40 

 
Comment: The CES, TCES1, and TCES2 production functions are, respectively, Q = 
(α1K

ρ + α2L
ρ + α3E

ρ + α4M
ρ + α5S

ρ)1/ρ, Q = [α1L
ρ + α2(β1Kγ + β2Eγ + β3Mγ + β4Sγ)ρ/γ]1/ρ, and 

Q = [α1L
ρ + α2E

ρ + α3(β1Kγ + β2Mγ + β3Sγ)ρ/γ]1/ρ. 
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Table 2: Summary Statistics of %∆TFP* - %∆TFPSR. 

 

 
%∆TFP* - %∆TFPSR 

 

 
Min 

 
-1.91% 

 
 

Max 
 

  
1.32% 

 
Mean 
 

  
.10% 

 
Std dev 

 

  
.59% 
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