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Abstract 

In this paper we analyze the factors that influence the productivity of maize among smallholder 

farmers. We use farm-household survey data in order to compare the productivity of smallholder maize 

production under integrated (ISFM) and chemical-based soil fertility management using a normalized 

translog yield response model. The results indicate higher maize yield responses for integrated soil 

fertility management options after controlling for the intensity of fertilizer application, labour intensity, 

seed rate, land husbandry practices as well as selected policy factors. The estimated model is highly 

consistent with theoretical conditions. Thus we conclude that the use of ISFM improves maize 

productivity, compared to the use of inorganic fertilizer only. Since most farmers in the maize-based 

farming systems are crowded out of the agricultural input market and can hardly afford optimal 

quantities of inorganic fertilizer, enhancement of ISFM is likely to increase their maize productivity. 

We finally highlight areas of policy support needed to enhance ISFM uptake in smallholder maize-

based farming systems. 
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1. Introduction 

Maize is the dominant crop in most smallholder farming systems in Africa south of the Sahara. In 

Malawi, it is the main staple crop, estimated to be grown on over 70% of the arable land and nearly 

90% of the cereal area, making Malawi the world’s highest consumer of maize at 148 kg per capita per 

year (Smale and Jayne 2003). Thus, maize will remain a central crop in the food security equation of 

Malawi even if the agricultural economy is diversified. The dominance of maize as a staple crop 

mainly emanates from self-sufficiency policy which the Government adopted after independence in the 

mid 1960s. This resulted from the need to produce enough food to feed the growing rural population as 

well as keep staple food prices low. In this paper, we analyze the factors that influence productivity of 

                                                 
∗  Hardwick Tchale, Bunda College, University of Malawi Lilongwe and Worldbank, Malawi. 
**  Assistant Professor Johannes Sauer, Food and Resource Economics Institute, Royal Veterinary and Agricultural 

University, Rolighedsvej 25, 1958 Copenhagen, Denmark, js@foi.dk. The paper was prepared for the 46. Annual 
Meeting of the German Association of Agricultural Economists (Gewisola) in Giessen, 4.-6. October 2006. 



2 

maize among smallholder farmers, given that unfavourable output and input market conditions 

throughout the 1990s, have compelled smallholder farmers into unsustainable agricultural 

intensification. Currently, the most comprehensive studies of smallholder productivity in Malawi have 

been conducted by Chirwa (1996), Chirwa (2003) and Edriss et al. (2004). The first two studies have 

used data collected from a sample of farmers from Machinga Agricultural Development Division 

(ADD). Edriss et al. (2004) used national level data to analyze the levels of maize productivity given 

the labour market liberalization. All these studies use parametric approaches to estimate the efficiency 

of Malawian smallholder farmers in maize production. Our study complements these studies in a 

number of ways. First, the first two studies have been restricted to only one agro-ecological zone and 

their results may not be applicable to other agro-ecological zones, whereas our sample is drawn from 

three agro-ecological zones and thus accounts for agro-ecological variations. Secondly, both studies did 

not account for the theoretical regularity conditions in their analysis. Therefore it is highly likely that 

policy conclusions drawn from these studies may have been flawed due to lacking regularity of the 

estimated functions. Thirdly, our study considers the productivity effect of alternative soil fertility 

management options available to smallholder farmers. This is important because while many 

alternative soil fertility management options have been developed for smallholder farmers, very little is 

known about their impact on improving smallholder farmers’ productivity. The obvious weakness of 

the study by Edriss et al. (2004) is the use of national level data that masks the farm-level variations. 

We improve on that by using farm-level data. 

2.  Review of smallholder maize productivity in Malawi 

Despite the central role that maize plays in food security in Malawi, its productivity has not been 

impressive especially from the early 1990s when stagnation in maize yield led to frequent food security 

problems. Smale and Jayne (2003) have attributed the decline in maize yield to four main reasons: (i) 

removal of subsidies; (ii) devaluation of the Malawi Kwacha; (iii) increase in world fertilizer prices; 

and (iv) low private market development because fertilizer dealers require substantial risk premiums to 

hold and transport fertilizer in an inflationary economy with uncertain demand (Conroy, 1997; Diagne 

and Zeller 2001; Benson, 1997; 1999). The situation is exacerbated because maize price changes follow 

export parity while fertilizer price changes reflect full import costs. Since most fertilizer in Malawi is 

used on maize (and tobacco), the removal of implicit subsidies in the form of over-valued exchange 

rates had a strong negative effect on fertilizer use. Furthermore, since almost all of Malawi’s fertilizer 

supply is imported, the depreciation of the real exchange rate has also invariably raised the nitrogen to 

grain price ratios (Minot et al. 2000, Heisey and Smale 1995). One critical consequence of the increase 
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in fertilizer prices relative to maize grain prices is that most farmers over the past decade have 

continued to over-exploit the natural soil fertility. This is because the improved maize varieties released 

by the National Agricultural Research (i.e. MH17 and MH18) proved to yield more than local maize 

without fertilizer at the seed prices that prevailed through the early 1990s. This implies that it made 

economic sense for farmers to grow hybrids even if they could not apply fertilizer (Heisey and Smale 

1995; Benson, 1999). This has resulted in soil fertility mining, leading to unsustainability, as the 

inherent soil fertility is no longer capable of supporting crop growth at a rate that is required to feed the 

growing population. This calls for concerted efforts to promote smallholder soil fertility management 

using relatively more sustainable options such as integrated soil fertility management (ISFM) i.e. 

involving incorporation of grain legumes and inorganic fertilizer in maize production systems. 

However, farmers’ choice of the available soil fertility management options depends to a large extent 

on the relative returns of the options.  

3. Theoretical Review 
A number of functional forms have been used to specify yield response functions, most commonly the 

Cobb-Douglas, quadratic, square root, translog, Mitscherlich-Baule (or MB) as well as the linear and 

non-linear Von-Liebig functions. The rationale for choosing a particular functional form depends on 

the research questions and the underlying production processes to be modeled. Furthermore, the choice 

of a functional form should be based on the need to ensure rigorous theoretical consistency and factual 

conformity within a given domain of application as well as flexibility and computational ease (Lau, 

1986; Sauer et al., 2004). For example, while the Cobb-Douglas is simpler and easier to estimate, it 

assumes invariant returns to scale and does not ensure the attainment of a yield response plateau, 

thereby resulting in an overestimation of the optimal input quantities (Ackello-Ogutu et al. 1985). 

While the polynomial functions (i.e. the quadratic and square root) allow for the diminishing marginal 

returns of inputs as well as flexible input substitution, they are also lacking when it comes to the yield 

response plateau. The non-linear Von-Liebig and MB functions are the most widely used functions, 

especially in the field of agronomy. However, because they are highly non-linear, especially when a 

number of inputs are involved, their estimation is cumbersome and liable to several parametric 

restrictions. The other weakness of the MB function is that it may not be appropriate for modeling farm 

production in developing countries because it is only appropriate for stage II production (where 

marginal product increases at a decreasing rate). But research shows that most constrained farmers in 

developing countries still largely operate within stage I where marginal product increases at an 

increasing rate (Franke et al. 1990; Keyser, 1998). The following analysis uses a primal production 

function rather than the dual profit function as the latter is conditioned on prices. Relevant prices in the 
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study area suffer from a considerable bias of aggregation as it is fairly difficult to capture the variation 

in prices on household level. Given further the uncertainties in expected agricultural prices and 

production, it is unlikely that the correspondence between expected prices and production would give a 

good model fit. 

4. The Empirical Model 
In this analysis, we use a normalized translog functional form because we assume that yield response 

depends on nitrogen use efficiency and a second order polynomial function can approximate such a 

relationship. The normalized translog models have been widely used for describing the crop response 

to fertilization and tend to statistically perform better than other functional forms. Belanger et al. 

(2000) compared the performance of three functional forms (quadratic, exponential and square root) 

and concluded that although the quadratic form is the most favoured in agronomic yield response 

analysis, it tends to overstate the optimal input level, and thus underestimating the optimal profitability. 

Other studies that have reached similar conclusions include Bock and Sikora (1990), Angus et al. 

(1993) and Bullock and Bullock (1994). Our choice of the normalized translog is based on two further 

reasons: First, it is the best-investigated second order flexible functional form and certainly one with 

the most applications (Sauer et al. 2004); secondly, this functional form is convenient to estimate and 

proved to be a statistically significant specification for economic analyses as well as a flexible 

approximation of the effect of input interactions on yield. The normalized translog maize production 

model can be expressed as: 
1
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Where q is the yield (kg/ha), ix  are the variable inputs (fertilizer, labour and seed), z is a vector of 

productivity shifters such as land husbandry practices (i.e. weeding and date of planting) as well as 

rainfall. All variables are normalized to the sample mean by dividing by the mean value (q’, xi’, xj’). 

We also include a dummy variable for soil fertility management (i.e. integrated management or use of 

inorganic fertilizer only) in order to assess the impact of soil fertility management choice on yield 

response as well as other control variables. iα  are the linear input parameters, ijβ  are the quadratic and 

interaction parameters, kδ  are the parameters for the productivity shifters and iε  is the error term 

assumed to be randomly distributed with zero mean and constant variance 2σ . 

In the case of a (single output) production function monotonicity requires positive marginal products 

with respect to all inputs and thus non-negative elasticities. With respect to the normalized translog 

production model the marginal product of input i is obtained by multiplying the logarithmic marginal 
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product with the average product of input i. By further adhering to the law of diminishing marginal 

productivities, marginal products, apart from being positive should be decreasing in inputs. However, 

both restrictions (i.e. ( ) ( )/ ' / / ' 0i iq q x x∂ ∂ >⎡ ⎤⎣ ⎦  and ( ) ( )22 / ' / / ' 0i iq q x x⎡ ⎤∂ ∂ <⎣ ⎦ ) should hold at least at 

the point of approximation. 

The necessary and sufficient condition for a specific curvature consists in the semi-definiteness of the 

bordered Hessian matrix as the Jacobian of the derivatives ( ) ( )/ ' / / 'i iq q x x∂ ∂  with respect to xi: if 

∇2Y(x) is negatively semi-definite, Y is quasi-concave, where ∇2 denotes the matrix of second order 

partial derivatives with respect to the normalized translog production model. The Hessian matrix is 

negative semi-definite at every unconstrained local maximum1. The conditions of quasi-concavity are 

related to the fact that this property implies a convex input requirement set (see in detail e.g. Chambers 

1988). Hence, a point on the isoquant is tested, i.e. the properties of the corresponding production 

function are evaluated subject to the condition that the amount of production remains constant. Hence, 

with respect to our normalized translog production model it has to be checked a posteriori for every 

input bundle that monotonicity and quasi-concavity hold. If these theoretical criteria are jointly fulfilled 

the obtained estimates are consistent with microeconomic theory and consequently can serve as 

empirical evidence for possible policy measures. 

With respect to the proposed normalized translog production model quasi-concavity can be imposed at 

a reference point (usually at the sample mean) following Jorgenson and Fraumeni (1981). By this 

procedure the bordered Hessian is replaced by the negative product of a lower triangular matrix Δ times 

its transpose Δ’ (see appendix A1). Imposing curvature at the sample mean is then attained by setting 

( ')ij ij i ij i jβ α λ α α= − ΔΔ + +    [2] 
where i, j = 1, …, n, λij = 1 if i = j and 0 otherwise and (ΔΔ’)ij as the ij-th element of ΔΔ’ with Δ a lower 

triangular matrix. As our point of approximation is the sample mean all data points are divided by their 

mean transferring the approximation point to an (n + 1)-dimensional vector of ones. At this point the 

elements of H do not depend on the specific input price bundle. The estimation model of the 

normalized translog production function is then reformulated as follows: 

                                                 
1 Hence, the underlying function is quasi-concave and an interior extreme point will be a global maximum. The Hessian 
matrix is positive semi-definite at every unconstrained local minimum. 
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However, the elements of Δ are nonlinear functions of the decomposed matrix, and consequently the 

resulting normalized translog model becomes nonlinear in parameters. Hence, linear estimation 

algorithms are ruled out even if the original function is linear in parameters. By this “local” procedure a 

satisfaction of consistency at most or even all data points in the sample can be reached. The 

transformation in [3] moves the observations towards the approximation point and thus increases the 

likelihood of getting theoretically consistent results at least for a range of observations (see Ryan and 

Wales 2000). However, by imposing global consistency on the translog functional form the parameter 

matrix is restricted leading to seriously biased elasticity estimates. Hence, the translog function would 

lose its flexibility. By a second analytical step we finally (a posteriori) check the theoretical consistency 

of our estimated model. The optimal level of ix  is obtained by setting the marginal productivity (i.e. 

the first order condition) equal to the input/output price ratio. Using the predicted yield response at the 

optimum level of ix , predicted profit levels are compared between the two soil fertility management 

practices. The predicted profit equation is given as: 

 
1
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where  and p c are output and input prices. Assuming that all farmers face the same output and input 

prices, then profit will solely depend on the yield response function given by the marginal productivity 

of the input. Thus: 

 *
i i

qp c
x x
π∂ ∂
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                         [5] 

Therefore, substituting the optimal level of ix  into equation [4], and solving for q, keeping all the other 

variables at the mean, results in the optimal yield, which is then used in calculating the level of profit. 

4. Data 
The data used for analysis in this study were based on a farm household survey administered to a 

stratified sample of 376 farmers. These farmers were randomly drawn from those that have been 

participating, more or less consistently, in the soil fertility management efforts involving public 

research institutions, donor organizations and NGOs for at least the last 5 seasons. From these farmers, 

maize technology information related to variety grown, rate of input application, other soil fertility 
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options applied as well as the general husbandry practices applied to the crop were collected and used 

in the analysis. The sample used for the analysis comprises of 253 plots on which hybrid maize was 

grown as the main crop.          

To validate the performance of various soil fertility management practices, we compared the farmers’ 

yields with those obtained from two on-farm trails (trial by the Maize Productivity Task Force in 

1997/98 season and the Nationwide Best-bet Trial by the Malawian Extension Service in 1998/99). The 

objective was to compare the maize yield responses of fertilized and unfertilized legume cropping 

systems. In total six treatments were included in the experiment: (i) green legume rotation involving 

either soybean or groundnuts; (ii) Mucuna pruriens rotation; (iii) maize pigeon pea intercrop; (iv) 

fertilized maize; (v) unfertilized maize; and (iv) local maize (fertilized and unfertilized) as the control.

 Apart from the key inputs such as fertilizer, seed and labour, the specification of the 

productivity model includes also a number of important control variables that substantially affect 

yields, especially in the smallholder farming systems. These include rainfall and its variation, crop 

husbandry practices such as weeding frequency and date of planting as well as the critical policy 

variables i.e. frequency of extension visits, access to seasonal agricultural credit, access to product and 

factor markets and agro-ecological dummies. We also incorporate a soil fertility management dummy 

(either fertilizer only or integrated soil fertility management (ISFM) involving fertilizer and grain 

legume intercrops for biological nitrogen fixation). The descriptive statistics for all the variables that 

were included in the productivity model are presented in Table 1.  

Table 1: Descriptive Statistics 
VARIABLE DESCRIPTION MEAN STD. 
YIELD Hybrid maize yield (kg/ha) 914.9 886.6 
FERTILIZER Fertilizer intensity (kg/ha) 30.9 38.3 
LABOUR Labour intensity (mandays/ha/month) 67.3 34.8 
SEED Seed intensity (kg/ha) 25.7 15.6 
SFM Soil fertility management (1=ISFM;0=fert)  0.6 0.5 
WEEDING Frequency of weeding 1.4 0.8 
PLANTING Date of planting (1=early; 0=later than first rains) 1.7 0.5 
RAIN Rainfall in mm 899.1 59.0 
EXT_FREQ Frequency of extension visits per month 0.8 1.0 
CREDIT Access to credit (1=yes; 0=no) 0.4 0.5 
MACCESS Market access (1=accessible; 0=remote) 0.4 0.5 

Source: Own survey (2003) 

5. Discussion of the Results 
The estimation results are shown in Table 2. Given the cross-sectional data set and the imposed 

regularity constraints the overall model fit is significant at the 1%-level (P<0.000). Nearly 87% of all 

observations are consistent with the regularity conditions of monotonicity, diminishing marginal 

returns and quasi-concavity respectively (the numerical estimation and regularity results are not shown 
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here but can be obtained from the authors). The subsequent discussion is based on the theoretically 

consistent range of observations in the sample. Except for seed, all input parameters show the expected 

sign. Among the inputs, fertilizer, its quadratic and seed interaction terms are highly significant. The 

parameter on soil fertility management is highly significant implying that the use of integrated soil 

fertility practices significantly influences maize yield. Although the parameters for rainfall, weeding 

frequency and planting dates show the expected signs, they are all insignificant. Among the policy 

variables, extension frequency is positively and significantly (P<0.05) related to maize productivity, 

while market and seasonal agricultural credit access are positively related to maize productivity, but are 

both insignificant. While we would expect significant influences of rainfall and its variation on maize 

yield, given the rainfed systems, the insignificance may be attributed to two reasons: First, hybrid 

varieties e.g. MH18 are bred specifically for drought resistance among other aspects and in Malawi 

most of these are particularly recommended for areas that are prone to intermittent droughts. Secondly, 

we attribute the insignificance to the way the rainfall data were collected. Rainfall figures are collected 

at an Extension Planning Area (EPA) level and thus do not reflect the actual variations experienced by 

different farms within an EPA. The husbandry practices are all positively related to yield for both 

varieties but are not significant.    

The elasticities presented in Table 2 indicate that, keeping all factors constant, a unit increase in seed, 

fertilizer and labour will result in a 0.43%, 0.42% and 0.11% increase in maize yield respectively. 

Hence smallholder farmers are not producing at their optimal point with respect to the usage of variable 

inputs: The relative input usages could be radially increased to increase the maize output. The use of 

integrated soil fertility management improves the yield of maize by 4.2% on average, compared to the 

use of inorganic fertilizer only. The elasticity of maize yield with respect to the amount of  rainfall 

further indicates a relatively importance of climatic factors. The unit input effect of the other control 

and policy variables on maize yield is finally quite low. 

Table 2: Mean Output Elasticities 

VARIABLE 
ELASTICITY 

ln / ln
' '

i

i

xq
q x

⎛ ⎞⎛ ⎞⎛ ⎞
∂ ∂⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Labour*** 0.106 (0.0077) 
Fertilizer*** 0.420 (0.0613) 
Seed*** 0.428 (0.1621) 
Soil fertility management♣ 0.042 
Rainfall 0.245 
Weeding Frequency 0.005 
Planting date 0.034 
Market access 0.007 
Extension Frequency 0.013 



9 

Credit access 0.007 
Note: *** P<0.000; **P<0.05; *P<0.10 
♣: invariant over observations as linear added control variables for SFM to Credit access 

In Table 3, we compare the returns to scale associated with smallholder maize production using 

alternative soil fertility management options. The results indicate that smallholder farmers exhibit 

considerable returns to scale, consistent with other previous studies (Kamanga et al. 2000). Most 

smallholder farmers operate in a region of the production function where marginal productivity of 

inputs is increasing (stage I in figure 2). However, returns to scale for farmers using integrated soil 

fertility management practices are significantly higher (P<0.000) than for farmers using only inorganic 

fertilizer. The relatively higher returns to scale for integrated soil fertility management options imply 

that there is still scope for smallholder farmers to improve maize productivity by an increase of their 

production: ISFM options improve the soil fertility and hence enhance the efficiency of inputs. 

Table 3: Returns to Scale by Soil Fertility Management Option 
SOIL FERTILITY MANAGEMENT OPTION RTS RTS RANGE 

  MIN. MAX. 
INORGANIC FERTILIZERS ONLY 1.12 (0.07) 0.98 1.35 
INTEGRATED SOIL FERTILITY MANAGEMENT 1.50 (0.12) 1.09 1.71 
TOTAL SAMPLE 1.31 (0.22) 0.98 1.71 

Note: Returns to scale (RTS) difference between soil fertility management options is significant at (P<0.000),  
Figures in parentheses are standard errors. 

These results imply that assuming constant maize/fertilizer price ratios, the optimal yield response for 

inorganic fertilizer (as well as other inputs) is higher in the case of integrated soil fertility management, 

due to the significance of the SFM parameter. Thus, with farmers facing more or less the same maize 

price and input cost, the profitability of smallholder maize production is likely to be higher when 

farmers integrate inorganic fertilizers with grain legumes. This is illustrated by figure 2: 

Figure 2: Average and Marginal Products 
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Figure 3: Average Cost of Maize Production
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Farmer 1 as the average farmer using integrated soil fertility management enjoys a higher marginal 

product (MPISFM) as well as average product (APISFM) than farmer 2 as the average farmer applying 

inorganic fertilizers only (MPINORG, APINORG). As depicted by figure 2 both smallholder farmers 

experience increasing returns to scale and hence could enhance the production of maize, however, the 

average returns to scale for farmer 1 are relatively higher than those for farmer 2 (space inbetween the 

MP and AP curve). Although the yield effect implied by the elasticity of SFM is somehow low (at 

4.2% on average), given the low yields experienced by smallholder farmers, if we account for other 

bonus crops such as grain legumes (groundnuts, soya and pigeon peas), the overall additional yield 

effect of ISFM is quite substantial. In fact it is likely to be higher among farmers which are unable to 

afford optimal quantities of inorganic fertilizer, but still have access to hybrid maize seed. These results 

corroborate those of past studies in many ways. Most studies indicate that in general, ISFM options are 

more remunerative where purchased fertilizer alone remains unattractive or highly risky, as is the case 

with the maize-based smallholder farming systems in Malawi (see e.g. Tomlow et al. 2001 for Malawi, 

Mekuria and Waddington 2002, Mekuria and Siziba 2003 as well as Whitebread et al. 2004 for 

Zimbabwe, Place et al. 2002 for Kenya, Mwale et al. 2003 for Zambia). 

Applying the assumption that all farmers face the same input and maize price ratios, these results imply 

that on average, use of ISFM in maize production improves profitability compared to use of inorganic 

fertilizer only. The average profitability indicators also support these results as shown in Table 4. The 

gross margin per unit of fertilizer and labour is higher when farmers use ISFM. As a result, using 

average as well as marginal rate of return, the results indicate that it is more profitable for farmers to 

produce maize under ISFM than using inorganic fertilizer only as shown in Figure 3: 

  

 

 

 

 

 

 

 

 

These results agree with those obtained using on-farm trials data which indicate higher yields in green 

legume rotation systems compared to maize applied with inorganic fertilizer only. Mucuna rotation 

gives the highest optimal yield compared to maize applied with inorganic fertilizer only. Similarly the 
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optimal yield for groundnut/soybean rotation and maize pigeon pea intercrop is higher than that of 

maize with inorganic fertilizer only. 

Table 4:  Descriptive Statistics - The Economics of Maize Production 
 Hybrid maize 
 Inorganic fertilizer only (N= 110) Integrated SFM (N=143) 
Gross revenue (Kwacha per ha) 9488.80 13124.09 
Labour cost  (Kwacha per ha)  1816.02 1478.91 
Fertilizer cost  (Kwacha per ha) 1520.34 1994.42 
Gross margin  (Kwacha per ha) 6107.44 9650.76 
Gross margin per Kg of fertilizer 368.41 530.26 
Gross margin per manday 99.91 191.03 
Average variable cost per kg of maize 4.80 3.60 
Value/Cost ratio (VCR) 2.81 3.78 
Marginal Rate of Return (%) 181 278 
Note:  Hybrid maize includes MH17 and MH18, Kwacha is the local currency, Fertilizers include a 

combination of 23:21:0+4s and CAN, Integrated soil fertility management (SFM) involves the 
application of inorganic fertilizers and incorporation of grain legumes i.e. groundnuts (Arachis 
 hypogea) or pigeon peas (Cajanas cajan) in an intercrop system.  

6. Conclusions and Policy Implications 
The study clearly shows that maize productivity under ISFM is higher than when farmers use inorganic 

fertilizer only. Gross margin per unit of inputs is also higher, assuming farmers face the same maize 

prices and input costs. These results are likely to be more meaningful among smallholder farmers that 

can hardly afford optimal levels of inorganic fertilizer, and those in very risky environments. These 

results in someway also assist to dispel skepticism associated with the benefits of integrated soil 

fertility management options, especially among farmers who have been crowded out of the agricultural 

inputs market for reasons of affordability. In terms of policy implications, ISFM provides scope for 

improving maize productivity especially where use of inorganic fertilizer is highly unaffordable and 

risky. Thus there is need for policy interventions to promote smallholder uptake of ISFM options. 

However, it is important to note that the scope for ISFM to resuscitate the productivity of the maize-

based smallholder farmers depends on consistent integration of grain legumes with inorganic fertilizers 

and access to improved maize varieties. The performance of grain legumes in fixing nitrogen is greatly 

compromised under low soil fertility conditions. Thus ISFM establishment in smallholder farming 

systems can be facilitated through cross-compliance interventions through among others, seasonal 

credit provision to enable farmers to afford inorganic fertilizers and improved maize and legume seeds. 

Similarly, an improvement in rural output and input markets, including the grain legume market would 

act as an additional incentive that will motivate farmers to grow grain legumes together with maize. 

Public extension still remains the main caveat for reaching smallholder farmers with technologies 

developed by researchers. Where the capacity for public extension is overstretched e.g. due to 
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HIV/AIDS scourge, there is need for policy to create favourable conditions for the involvement of non-

governmental organizations that have been instrumental in reaching smallholder farmers. 
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