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1 Introduction

In economics the importance of space has long been recognized in the context of location

theory,1 although as noted by Paul Krugman (1998) there has been neglect in a systematic

analysis of spatial economics, associated mainly with difficulties in developing tractable mod-

els of imperfect competition which are essential in the analysis of location patterns. After

the early 1990’s there was a renewed interest in spatial economics mainly in the context of

new economic geography,2 which concentrates on issues such as the determinants of regional

growth and regional interactions, or the location and size of cities (e.g. Paul Krugman, 1993).

In environmental and resource management problems the majority of the analysis has

been concentrated on taking into account the temporal variation of the phenomena, and

has been focused on issues such as the transition dynamics towards a steady state, or the

steady-state stability characteristics. However, it is clear that when renewable and especially

biological resources are analyzed, the spatial variation of the phenomenon is also impor-

tant. Biological resources tend to disperse in space under forces promoting "spreading",

or "concentrating" (Akira Okubo, 2001); these processes along with intra and inter species

interactions induce the formation of spatial patterns for species. In the management of

economic-ecological problems, the importance of introducing the spatial dimension can be

associated with a few attempts to incorporate spatial issues, such as resource management

in patchy environments (James Sanchirico and James Wilen 1999, 2001; Sanchirico, 2004;

William Brock and Anastasios Xepapadeas, 2002), the study of control models for interacting

species (Suzanne Lenhart and Mahadev Bhat (1992), Lenhart et al. 1999) or the control of

1 See for example Alfred Weber (1909), Harold Hotelling (1929), Walter Christaller (1933), and August
Löcsh (1940) for early analysis.

2 Paul Krugman (1998) attributes this new research to: the ability to model monopolistic competition
using the well known model of Avinash Dixit and Joseph Stiglitz (1977); the proper modeling of transaction
costs; the use of evolutionary game theory; and the use of computers for numerical examples.
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surface contamination in water bodies (Bhat et al. 1999)

In the economic-ecological context, a central issue that this paper is trying to explore, is

under what conditions interacting processes characterizing movements of biological resources,

and economic variables which reflect human effects on the resource (e.g. harvesting effort)

could generate steady-state spatial patterns for the resource and the economic variables. That

is, a steady-state concentration of the resource and the economic variable which is different

at different points in a given spatial domain. We will call this formation of spatial patterns

spatial heterogeneity, in contrast to spatial homogeneity which implies that the steady state

concentration of the resource and the economic variable is the same at all points in a given

spatial domain.3

A central concept in modelling the dispersal of biological resources is that of diffusion.

Diffusion is defined as a process where the microscopic irregular movement of particles such

as cells, bacteria, chemicals, or animals results in some macroscopic regular motion of the

group (Okubo and Simon Levin, 2001; James Murray, 1993, 2003). Biological diffusion

is based on random walk models, which when coupled with population growth equations,

leads to general reaction-diffusion systems.4 In general a diffusion process in an ecosystem

tends to produce a uniform population density, that is spatial homogeneity. Thus it might

be expected that diffusion would "stabilize" ecosystems where species disperse and humans

intervene through harvesting.

There is however one exception known as diffusion induced instability, or diffusive in-

stability (Okubo et al., 2001). It was Alan Turing (1952) who suggested that under certain

conditions reaction-diffusion systems can generate spatially heterogeneous patterns. This is

3 All dynamic models where spatial characteristics and dispersal are ignored leads to spatial homogeneity.

4 When only one species is examined the coupling of classical diffusion with a logistic growth function
leads to the so-called Fisher-Kolmogorov equation.
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the so-called Turing mechanism for generating diffusion instability.

The purpose of this paper is to explore the impact of the Turing mechanism in the emer-

gence of diffusive instability in unified economic/ecological models of resource management.

This is a different approach to the one most commonly used to address spatial issues, which

is the use of metapopulation models in discrete patchy environments with dispersal among

patches. We believe that the use of the Turing mechanism allows us to analyze in detail

conditions under which diffusion could produce spatial heterogeneity and generation of spa-

tial patterns, or spatial homogeneity. Thus the Turing mechanism can be used to uncover

conditions which generate spatial heterogeneity in models where ecological variables interact

with economic variables. When spatial heterogeneity emerges the concentration of variables

of interest (e.g. resource stock and level of harvesting effort), in a steady state, are different

in different locations of a given spatial domain. Once the mechanism is uncovered the impact

of regulation in promoting or eliminating spatial heterogeneity can also be analyzed.

The importance of the Turing mechanism in spatial economics has been recognized by

Masahisa Fujita et al. (1999, chapter 6) in the analysis of core-periphery models. Our

analysis extends this approach mainly by: explicit modelling of diffusion processes governing

interacting economic and ecological state variables in continuous time space; deriving explicit

conditions depending on economic-ecological variables, under which diffusion could generate

spatial patterns, and probably more importantly by developing the ideas for the emergence of

spatial heterogeneity in an optimizing context by an appropriate modification of Pontryagin’s

maximum principle.

In this context, first we present a descriptive model where the biomass of a renewable

resource (e.g. fish) diffuses in a finite one-dimensional spatial domain, and harvesting effort

diffuses in the same domain, attracted in locations where profits per boat are higher. We
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examine conditions under which: (i) open-access equilibrium generates traveling waves for the

resource biomass, and (ii) the Turing mechanism can induce spatial heterogeneity, in the sense

that the steady-state fishing stock and fishing effort are different at different points of the

spatial domain. We also show how regulation can promote or eliminate spatial heterogeneity.

Second we consider the emergence of spatial heterogeneity in the context of an optimizing

model, where the objective of a social planner is to maximize a welfare criterion subject to

resource dynamics that include a diffusion process. We present a suggestion for extending

Pontryagin’s maximum principle to the optimal control of diffusion. Although conditions

for the optimal control of partial differential equations have been derived either in abstract

settings (e.g. Jacques-Louis Lions 1971) or for specific problems,5 our derivation, not only

makes the paper self contained, but it is also close to the optimal control formalism used

by economists, so it can be used for analyzing other types of economic problems, where

state variables are governed by diffusion processes. Furthermore, the Pontryagin principle

developed in this paper allows for an extension of the Turing mechanism for generation of

spatial patterns, to the optimal control of systems under diffusion.

A new, to our knowledge, characteristic of our continuous space-time approach is that we

are able to embed Turing analysis in an optimal control recursive infinite horizon approach in

a way that allows us to locate sufficient conditions on parameters of the system (for example,

the discount rate on the future, and interaction terms in the dynamics) for diffusive insta-

bility to emerge even in systems that are being optimally controlled. This mathematically

challenging problem becomes tractible by exploiting the recursive structure of the utility and

the dynamics in our continuous space/time framework in contrast to the more traditional ap-

proach of discrete patch optimizing models. This is so because the symmetries in the spatial

5 See for example Lenhart and Bhat, (1992); Lenhart et al., (1999); Bhat et al., (1999); Jean-Pierre
Raymond and Housnaa.Zidani, (1998, 1999)
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structure coupled with the recursivity in the temporal structure of our framework reduce the

potentially very large number of state and costate variables to a pair of "sufficient" variables

that describe the dynamics of the whole system. We believe that our framework will be quite

easily adaptable to other applications, including an extension of the classical Ramsey Solow

growth model to include spatial externalities. Colin Clark’s classic volume (1990) as well as

the work of Sanchirico and Wilen (1999, 2001) is very suggestive, but they do not contain

the unification of Turing analysis with infinite horizon temporally recursive optimal control

problems that we present here. We set the stage by analysis of some descriptive frameworks

before turning to optimal control counterparts

Here, we use our methodology to study an optimal fishery management problem and

a bioinvasion problem under diffusion. For the fishery problem, our results suggest that

diffusion could alter the usual saddle point characteristics of the spatially homogeneous

steady state as defined by the modified Hamiltonian dynamic system. In an analogue to the

Turing mechanism for an optimizing system, spatial heterogeneity in a steady state could be

the result of optimal management. On the other hand diffusion could stabilize, in the saddle

point sense, an unstable steady state of an optimal control problem. For the bioinvasion

problem we develop a most rapid approach path (MRAP) solution to the optimal control of

diffusion processes with linear structure, and derive conditions under which it is optimal: to

fight the invasion to the maximum when it first occurs; to do nothing at all, or to attain a

spatially differentiated target biomass of the invasive species as rapidly as possible.
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2 Diffusion and Spatial Heterogeneity in Descriptive Models
of Resource Management

2.1 Spatial Open Access Equilibrium with Resource Biomass Diffusion

We start by considering the case where resource biomass diffuses in a spatial domain and

harvesting takes place in an open access way. Let x (z, t) denote the concentration of the

biomass of a renewable resource (e.g. fish) at spatial point z ∈ Z, at time t. We assume

that biomass grows according to a standard growth function F (x) which determines the

resource’s kinetics but also disperses in space with a constant diffusion coefficient Dx.6

∂x (z, t)

∂t
= F (x (z, t)) +Dx∇2x (z, t) (1)

Harvesting H (z, t) of the resource is determined as H (z, t) = qx (z, t)E (z, t) , where E (z, t)

denotes the concentration of harvesting effort (e.g. boats) at spatial point z and time t, and

q is catchability coefficient. Assuming that the harvest is sold at a fixed world price, profits

accruing at location z are defined as

pqx (z, t)E (z, t)− C (E (z, t)) (2)

where C (E (z, t)) is the total cost of applying effort E (z, t) at location z. We assume that

effort is attracted by profits per boat and that effort (boats) diffuses in the spatial domain

infinitely fast so that profits are equated in every site. Then in open access equilibrium with

boats allowed to enter from "outside", profits are driven to zero at each site, or

pqxE −C (E) = 0 or (pqx−AC (E))E = 0 for all z (3)

6 In addition to standard notation we denote derivatives with respect to the spatial variable z, by ∇dy =
∂dy
∂zd

, d = 1, 2.
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where AC (E) denotes average costs. Assuming linear increasing average cost or AC (E) =

c0 + (c1/2)E, profit dissipation implies, using (3), that effort is determined as

Ē (t, z) =
2 (pqx (t, z)− c0)

c1
> 0 if pqx− c0 > 0 (4)

Ē (t, z) = 0 otherwise (5)

Thus with harvesting, logistic growth F (x) = x (s− rx) , 7 and open access equilibrium at

all sites, biomass diffuses according to the following Fisher-Kolmogorov equation:8

∂x

∂t
= x (s− rx)− qEx+Dx∇2x (6)

or using (4),

∂x

∂t
= s

0
x (1− ax) +Dx

∂2x

∂z2
(7)

s
0
=

µ
s+

2qc0
c1

¶
, r

0
=

µ
r +

2q2p

c1

¶
, a =

r
0

s0
(8)

If we introduce harvesting and open access equilibrium at all sites then biomass diffuses

according to the Fisher-Kolmogorov equation (7).9 Following Murray (1993), rescaling (7)

by writing t∗ = s
0
t and z∗ = z

³
s
0

Dx

´1/2
and omitting asterisks, we obtain

∂x

∂t
= x (1− ax) +

∂2x

∂z2
(9)

with spatially homogeneous states 0 and 1/a, which are unstable and stable respectively. In

this case the positive equilibrium carrying capacity is defined as

K =
1

a
(10)

As shown by Murray (1993), (9) has a traveling wave solution which can be written as

x (z, t) = X (v) , v = z − ct (11)

7 We write x instead of x (z, t) to simplify notation.

8 See Murray (1993 Chapter 11.2 page 277).

9 See Murray (1993, Chapter 11.2 page 277).
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where c is the speed of the wave. For a traveling wave to exist, the speed c must exceed

the minimum wave speed which under Kolmogorov initial conditions is determined for the

dimensional equation (7) by

c ≥ cmin = 2
³
s
0
Dx

´1/2
= 2

·µ
s+

2qc0
c1

¶
Dx

¸1/2
(12)

The wave front solution is depicted in figure 1.

[Figure 1]

These results can be summarized in the following proposition:

Proposition 1 When biomass disperses in space according to (1), then open access har-
vesting, with harvesting effort diffusing fast and resulting in zero profit spatial equilibrium,
induces convergence to a traveling wave solution for the biomass X (v), with corresponding
effort Ē (v) = 2(pqX(v)−c0)

c1
.

From (12) it can be seen that the wave speed depends on both ecological and economic pa-

rameters. In particular it is increasing in s, the catchability coefficient q, the initial marginal

effort cost c0, but declining in the slope of marginal effort cost c1.

Our model can be used to analyze the impact of regulation. Assume that regulation

involves linear spatially homogeneous taxes on effort (e.g. number or size of boats) or har-

vesting. Under an effort tax, zero profit condition and open access effort become

pqxE − τE − C (E) = 0 or [pqx− τ −AC (E)]E = 0 for all z, (13)

Ē (t, z; τ) =
2 (pqx (t, z)− c0 − τ)

c1
(14)

respectively. Under a linear spatially homogeneous harvesting tax they become

pqxE − τqEx−C (E) = 0 or [(p− τ) qx−AC (E)]E = 0 for all z (15)

Ē (t, z; τ) =
2 [(p− τ) qx (t, z)− c0]

c1
(16)
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respectively. Given the above equations the effects of regulation are obtained in the following

proposition.

Proposition 2 A spatially homogeneous linear tax on effort will increase the wave speed c,
and the equilibrium carrying capacity K, while a spatially homogeneous linear tax on harvest-
ing will increase the equilibrium carrying capacity K but leave the wave speed c unchanged.

For Proof see Appendix.

2.2 Biomass-Effort Reaction Diffusion and Pattern Formation

In the previous section we assumed that in an unbounded spatial domain effort diffuses fast

to dissipate profits under open access across all sites. In this section we consider a bounded

spatial domain Z = [0, α] and we assume that effort does not diffuse infinitely fast in search

of profits. This assumption allows us to study the interactions between biomass and effort

diffusion and the generation of spatial patterns where biomass and effort exhibit different

concentrations.

We assume that effort is attracted by profits per boat and that effort (boats) disperses

in the spatial domain with a constant diffusion coefficient DE. Although boats could move

fast in open access property regimes, movements could be restricted in communal property

regimes (e.g. Fikret Berkes 1996), where due to institutional arrangements, there is exclusion

of boats from certain areas and general frictions in the movement of boats towards the

biomass. The structure of the model implies that the movement of biomass and effort in

time and space can be described by the following reaction diffusion system

∂x

∂t
= x (s− rx)− qEx+Dx∇2x (17)

∂E

∂t
= δE (pqx−AC (E)) +DE∇2E , δ > 0 (18)

x(z, 0), E (z, 0) given, ∇x = ∇E = 0 for z = 0, α (19)

where AC (E) is the average cost curve, assumed to be U-shaped. By (19) it is assumed
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that there is no external biomass or effort input on the boundary of the spatial domain.10

Given the system of (17) and (18) we examine conditions under which the Turing mechanism

induces diffusive driven instability and creates a heterogeneous spatial pattern of resource

biomass and harvesting effort.

2.2.1 Biomass-Effort Spatial Patterns

In analyzing diffusion induced instability we start from a system which, in the absence of

diffusion, exhibits stable spatially homogeneous steady states. The spatially homogeneous

system of (17) and (18), with Dx = DE = 0 is defined as:

ẋ = x (s− rx)− qEx (20)

Ė = δE (pqx−AC (E)) , δ > 0 (21)

where a steady state (x∗, E∗) > 0 for the spatial homogeneous is determined as the solution

of ẋ = Ė = 0. The homogeneous steady state is defined by the intersection of the isocines

x|ẋ=0 =
s

r
− q

r
E (22)

x|Ė=0 =
AC (E)

pq
(23)

where (23) is linear with a negative slope, while (23) is U-shaped with E0 = argminAC (E)

being the effort minimizing average cost. Assume that two steady states E∗1 and E∗2 exist.

As shown in figure 3 it holds that

0 < E∗1 < E∗2 where AC
0
(E∗1) < 0, AC

0
(E∗2) ≷ 0. (24)

Furthermore, as indicated by the flows of the phase diagram, the high effort steady state is

stable while the low effort is unstable.

10 This is a zero flux boundary conditions which is imposed so that the organizing pattern between biomass
and effort is emerging as a result of their interactions, is self-organizing and not driven by boundary conditions
(Murray 2003, Vol II, p.82).
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[Figure 2]

Linearizing around a steady state (x∗, E∗) ,11 the linearized spatial homogeneous system

can be written as

ẇ = Jw , w =

 x− x∗

E −E∗


where the linearization matrix J around a steady state is defined as

J =

 −rx∗ −qx∗

δpqE∗ −δE∗AC 0
(E∗)

 =
 a11 a12

a21 a22

 (25)

At the stable steady state:

tr (J) =
³
−rx∗ − δE∗AC

0
(E∗)

´
< 0

Det (J) = δE∗x∗
³
rAC

0
(E∗) + pq2

´
> 0

If the stable steady state is at the increasing part of the average cost then a11a22 > 0,

while a12a21 < 0. If the stable steady state is at the decreasing part of the average cost then

a11a22 < 0, a12a21 < 0. Since for diffusive instability we require opposite signs between a11and

a22 and between a12 and a21,
12 we consider the high effort steady state occurring at the

declining part of AC (E) . In this case the sign pattern for J is (a11, a12) < 0, (a21, a22) > 0.

Linearizing the full system (17) and (18) we obtain

wt = Jw+D∇2w , (26)

wt =

 ∂x/∂t

∂E/∂t

 ,D =

 Dx 0

0 DE


Following Murray (2003) we consider the time-independent solution of the spatial eigen-

value problem

∇2W+ k2W =0, ∇W = 0,for z = 0, a (27)

11 We follow Murray (2003, Vol II, Ch. 2.3).

12 Okubo et al., (2001, pp. 350-351).
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where k is the eigenvalue. For the one-dimensional domain [0, a] we have solutions for (27)

which are of the form

Wk (z) = An cos
³nπz

a

´
, n = ±1, ± 2, ..., (28)

where An are arbitrary constants. Solution (28) satisfies the zero flux condition at z = 0

and z = a. The eigenvalue is k = nπ/a and 1/k = a/nπ is a measure of the wave like

pattern. The eigenvalue k is called the wavenumber and 1/k is proportional to the wavelength

ω : ω = 2π/k = 2α/n. LetWk (z) be the eigenfunction corresponding to the wavenumber k,

we look for solutions of (26) of the form

w (z, t) =
X
k

cke
λtWk (z) (29)

Substituting (29) into (26), using (27) and canceling eλt we obtain for each k or equivalently

each n, λWk = JWk−Dk2Wk. Since we require non trivial solutions forWk, λ is determined

by ¯̄
λI − J −Dk2

¯̄
= 0

Then the eigenvalue λ (k) as a function of the wavenumber is obtained as the roots of

λ2 +
£
(Dx +DE) k

2 − (a11 + a22)
¤
λ+ h

¡
k2
¢
= 0 (30)

h
¡
k2
¢
= DxDEk

4 − (Dxa22 +DEa11) k
2 +Det (J) (31)

Since the spatially homogeneous steady state (x∗, E∗) , is stable it holds that Reλ
¡
k2 = 0

¢
<

0. For the steady state to be unstable in spatial disturbances it is required that Reλ (k) > 0

for some k 6= 0. But Reλ
¡
k2
¢
> 0 only if h

¡
k2
¢
< 0. The minimum of h

¡
k2
¢
occurs at

k2c obtained after differentiating (31) as k
2
m =

(Dxa22+DEa11)
2DxDE

which implies that for diffusive

instability we need h
¡
k2m
¢
< 0.The final condition for diffusive instability becomes (Okubo

et al., 2001)13

13 The assumption of friction in the boat movements because of institutional reasons, implies that δ is
sufficiently low to sustain the spatial pattern.
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a11DE + a22Dx > 2 (a11a22 − a12a21)
1/2 (DEDx)

1/2 > 0 (32)

Assuming that this condition is satisfied at the spatially homogeneous steady state, then

the spatially heterogeneous solution is the sum of the unstable modes with Reλ
¡
k2
¢
> 0, or

w (z, t) ∼
n2X
n1

Cn exp

·
λ

µ
n2π2

a2

¶
t

¸
cos

nπz

a
, k2 =

³nπ
a

´2
(33)

where λ are the positive solutions of the quadratic (30), n1 is the smallest integer greater or

equal to ak1/π and n2 is the largest integer less than or equal to ak2/π. The wavenumbers k1

and k2 are such that k21 < k2m < k22, with h
¡
k21
¢
= h

¡
k22
¢
= 0 and h

¡
k2
¢
< 0 for k2 ∈ ¡k21, k22¢ .

That is, (k1, k2) is the range of unstable wavenumbers for which Reλ
¡
k2
¢
> 0.

To obtain an idea of the solution described by (33), we follow Murray (2003) and assume

that the range of unstable wave numbers
¡
k21, k

2
2

¢
is such there exists only one corresponding

n = 1, then the only unstable mode is cos (πz/a) and

w (z, t) ∼ C1 exp
·
λ

µ
π2

a2

¶
t

¸
cos

πz

a
, k2 =

³π
a

´2
(34)

The solution for the biomass and effort assuming small positive C1 = (εx, εE)
0
take the form

x (z, t) ∼ x∗ + εx exp

·
λ

µ
π2

a2

¶
t

¸
cos

πz

a
(35)

E (z, t) ∼ E∗ + εE exp

·
λ

µ
π2

a2

¶
t

¸
cos

πz

a
(36)

Since λ
³
π2

a2

´
> 0, as t increases the deviation from the spatial homogeneous solution does not

die out and could eventually be transformed into a spatial pattern which is like a single cosine

mode. If the domain is sufficiently large to include a larger number of unstable wavenumbers

then the spatial pattern is more complex. With exponentially growing solutions for all time

for (35) and (36), then x → ∞ and E → ∞ as t → ∞ would be implied. However it is

assumed that the linear unstable eigenfunctions are bounded by the nonlinear terms and
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that a spatially heterogeneous steady state will emerge. The main assumption here is the

existence of a bounding domain for the kinetics of (17) and (18) in the positive quadrant

(Murray, 2003, Vol II p. 87). Thus the bounding set that constrains the kinetics will also

contain the solutions (35) and (36) when diffusion is present. Then the growing solution

approaches, as t → ∞, a cosine like spatial pattern, which implies spatial heterogeneity of

the steady state. Figure 4, draws on Murray (2003 Vol II, pp. 94-95) to represent one possible

spatial pattern for x (z, t) . Shaded areas represent spatial biomass concentration above x∗,

while non shaded areas represent spatial biomass concentration below x∗.

[Figure 3]

The interactions between effort and biomass are shown in figure 5. Assume that effort

increases and reduces biomass below the steady state x∗. This would result in a flux of

biomass from neighboring regions which would reduce the effort in these regions, causing fish

biomass to increase and so on until a spatial pattern is reached.

[Figure 4]

As we show above the reaction diffusion mechanism characterized by (17) and (18) might

be diffusionally unstable, but the solution could evolve to a spatially heterogenous steady

state defined by:

xs (z) , Es (z) as t→∞

Then, setting (∂x/∂t, ∂E/∂t) = 0 in (17) and (18), we obtain that xs (z) , Es (z) should

satisfy

0 = x (z) (s− rx (z))− qE (z)x (z) +Dxx
00
(z) (37)

0 = δE (z) (pqx (z)−AC (E (z))) +DEE
00
(z) (38)

x
0
(0) = x

0
(a) = E

0
(0) = E

0
(a) = 0 (39)
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Then a measure of spatial heterogeneity at the steady state is given by the heterogeneity

function which is defined as

G =
Z a

0

³
x
02 +E

02
´
dz ≥ 0 (40)

Integrating by parts (40) and using the zero flux condition (39) we obtain

G = −
Z a

0

³
xx

00
+EE

00´
dz

which becomes, using (37) and (38),

G =
Z a

0

·
x2

Dx
(s− rx− qE) +

δE

DE
(pqx−AC (E)

¸
dz (41)

if there is no spatial patterning s−rx−qE = 0 and pqx−AC (E) = 0, which are the spatially

homogeneous solutions, and G =0.

2.3 Spatial Heterogeneity and Regulation

As we showed in the previous section, the adaptive biomass-effort system is likely to create

spatial heterogeneity under an appropriate institutional regime inducing certain parameter

constellation. This implies, for example, that in the case presented in figures 4 and 5 the

biomass concentration, effort and profits will be different at different locations of our spa-

tial domain. This can emerge in situations where, because of institutional allocation of the

"rights to fish" which restricts boats from certain patches, fish biomass and boat movements

are compatible in speed for the Turing mechanism to create spatial patterns and potential

spatial inequalities. The measure of inequality can be given for example by the heterogeneity

function (40), then social justice would require regulation to support spatial homogeneity.

The problem then is reduced to that of finding instruments that will prevent diffusive insta-

bility.

As indicated in the previous section, diffusive instability cannot occur if the sign pattern

of the linearization matrix (25) does not show opposition of signs between a11 and a22 and
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between a12 and a21. Thus given (25), the target is to change the sign structure, through

a regulatory instrument, in a way that will prevent diffusive instability. An instrument

affecting harvesting behavior will affect profits and consequently the second row of (25).

We consider feedback control instruments in the general form of a non linear tax on effort

(e.g. boat size or boat numbers) or on harvesting τ (x,E) , with the property that when the

tax is applied, then either a21 or a22 will change sign so that diffusive instability is not

supported.

Proposition 3 A spatially homogeneous non linear tax on effort of the feedback form τ (E)
with τ

0
(E) > 0 and τ

0
(E+)+AC

0
(E+) > 0, where E+ is the regulated spatially homogeneous

steady state for effort, will prevent the emergence of spatial heterogeneity.

For proof see Appendix.

The effect of the nonlinear tax on effort is to shift the average cost curve, or equivalently

the x|Ė=0 curve so that the intersection with the x|ẋ=0 curve, takes place at the increasing

part of the average cost curve as shown in Figure 3, where the new curve is ACreg.

A feedback tax on harvesting can also be used as a regulatory instrument.

Proposition 4 A spatially homogeneous non linear tax on harvesting of the feedback form

τ (E, x) with p − τ (E,x) > 0 ∂τ
∂E > 0, ∂τ∂x < 0 and

∂τ(E+,x+)
∂E qx+ + AC

0
(E+) > 0, where

(E+, x+) is the regulated spatially homogeneous steady state for effort, will prevent the emer-
gence of spatial heterogeneity.

For proof see Appendix.

The effect of the nonlinear tax on effort is to shift the x|Ė=0 curve so that the intersection

with the x|ẋ=0 curve takes place at the increasing part of the average cost curve as shown

in Figure 3.

It is interesting to note from these two propositions that a feedback tax on harvesting

which depends on biomass alone, that is a tax τ (x) , cannot exclude diffusive instability,

because in this case the a21 element is positive, but the a22 element is now −δE+AC 0
(E+) .

Thus intersections at the decreasing part of the average cost curve cannot be excluded.
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On the other hand consider the introduction of a new technology, say because of subsi-

dization, that increases the catchability coefficient q, and assume that with the old technology

the x|ẋ=0 isocine was intersecting the x|Ė=0 at the increasing part of the average cost curve,

point S in figure 2, so that diffusive instability was not possible. The increase in q rotates

the x|ẋ=0 isocine towards the origin so that the new steady state could take place at the de-

creasing part of the average cost curve. Then, as has been shown above, diffusive instability

is possible. Thus,

Proposition 5 In the model of biomass and effort diffusion described above, an increase in
the catchability coefficient might generate spatial hererogeneity.

3 On the Optimal Control of Diffusion: An Extension of Pon-
tryagin’s Principle

In the previous section we analyzed descriptive models of biomass effort diffusion and ex-

amined, in the context of these models, the emergence of spatial heterogeneity through the

Turing mechanism. In this section we explicitly introduce optimization and we analyze the

effects of the optimal control of diffusion processes in the emergence of spatial heterogeneity.

We start by considering the optimal control problem defined in the spatial domain z ∈

[z0, z1]

max
{u(t,z)}

Z z1

z0

Z t1

t0

f (x (t, z) , u (t, z)) dtdz (42)

s.t.
∂x (t, z)

∂t
= g (x (t, z) , u (t, z)) +D

∂2x (t, z)

∂z2
(43)

x (t0, z0) given,
∂x

∂z

¯̄̄̄
z0

=
∂x

∂z

¯̄̄̄
z1

= 0 zero flux (44)

The first part of (44) provides initial conditions, while the second part is a zero flux

condition similar to (19). Problem (42) to (44) has been analyzed in more general forms (e.g.

Jacques-Louis Lions, 1971). We however choose to present here an extension of Pontryagin’s

principle for this problem, because it is in the spirit of optimal control formalism used by
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economists, and thus can be used for other applications, but also because it makes the whole

analysis in the paper self contained.14 Furthermore, as noted in the introduction, the

use of Pontryagin’s principle in continuous time space allows for a drastic reduction of the

dimensionality of the dynamic system describing the phenomenon and makes the problem

tractable. Our results are presented below, with proofs in the Appendix.

Maximum Principle under diffusion: Necessary Conditions - Finite time hori-

zon (MPD-FT). Let u∗ = u∗ (t, z) be a choice of instrument that solves problem (42) to

(44) and let x∗ = x∗ (t, z) be the associate path for the state variable. Then there exists a

function λ (t, z) such that for each t and z

1. u∗ = u∗ (t, z) maximizes the generalized Hamiltonian function

H (x (t, z) , u, λ (t, z)) = f (x, u) + λ

·
g (x, u) +D

∂x2

∂z2

¸

or

fu + λgu = 0 (45)

2.

∂λ

∂t
= −∂H

∂x
−D

∂2λ

∂z2
= −

µ
fx + λgx +D

∂2λ

∂z2

¶
(46)

∂x

∂t
= g (x, u∗) +D

∂2x

∂z2

evaluated at u∗ = u∗ (x (t, z) , λ (t, z)) .

3. The following transversality conditions hold

λ (t1) = 0,
∂λ (z1)

∂z
=

∂λ (z0)

∂z
= 0 (47)

The result can also be extended to infinite time horizon problems with discounting. In

14 Similar conditions have been derived for other cases such as the control of parabolic equations (Jean-Pierr
Raymond and Housmaa Zidani.1998,1999), boundary control (Lenhart et al. 1999), or distributed parameter
control (Dean Carlson et al. 1991; Lenhart and Bhat 1992)
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this case the problem is:

Z z1

z0

Z ∞

t0

e−ρtf (x (t, z) , u (t, z)) dtdz , ρ > 0. (48)

s.t
∂x

∂t
= g (x (t, z) , u (t, z)) +D

∂2x

∂z2
(49)

x (t0, z0) given,
∂x

∂z

¯̄̄̄
z0

=
∂x

∂z

¯̄̄̄
z1

= 0 zero flux (50)

Maximum Principle under diffusion: Necessary Conditions - Infinite time

horizon (MPD-IT). Let u∗ = u∗ (t, z) be a choice of instrument that solves problem (42)

to (44) and let x∗ = x∗ (t, z) be the associate path for the state variable. Then there exists a

function λ (t, z) such that for each t and z

1. u∗ = u∗ (t, z) maximizes the generalized current value Hamiltonian function H (x (t, z) , u, λ (t, z)) =

f (x, u) + λ
h
g (x, u) +D ∂x2

∂z2

i
, or

fu + λgu = 0 (51)

2.

∂λ

∂t
= ρλ− ∂H

∂x
−D

∂2λ

∂z2
= ρλ−

µ
fx + λgx +D

∂2λ

∂z2

¶
(52)

∂x

∂t
= g (x, u∗) +D

∂2x

∂z2
(53)

evaluated at u∗ = u∗ (x (t, z) , λ (t, z))

3. The following transversality conditions hold

∂λ (z1)

∂z
=

∂λ (z0)

∂z
= 0 (54)

It is clear that the pair of (46) or (52) can characterize the whole dynamic system in

continuous time space. Conditions (45) - (47) are essentially necessary conditions. Sufficiency

conditions can also be derived by extending sufficiency theorems of optimal control. Proofs

are provided in the Appendix.
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Maximum Principle under diffusion: Sufficient conditions - Finite time hori-

zon

Assume that functions f (x, u) and g (x, u) are concave differentiable functions for prob-

lem (42) to (44) and suppose that functions x∗ (t, z) , u∗ (t, z) and λ (t, z) satisfy necessary

conditions (45) - (47) and (43) for all t ∈ [t0, t1] , z ∈ [z0, z1] and that x (t, z) and λ (t, z)

are continuous with

λ (t, z) ≥ 0 for all t and z (55)

Then the functions x∗ (t, z) , u∗ (t, z) solve the problem (42) to (44). That is the necessary

conditions (45) - (47) are also sufficient.

The result can also be extended along the lines of Arrow’s sufficiency theorem. We state

here the infinite horizon case.

Maximum Principle under diffusion: Sufficient conditions - Infinite time hori-

zon

Let H0 denote the maximized Hamiltonian, or

H0 (x, λ) = max
u
H (x, u, λ) (56)

If the maximized Hamiltonian is a concave function of x for given λ then functions x∗ (t, z) ,

u∗ (t, z) and λ (t, z) that satisfy conditions (45) - (47) and (43) for all z ∈ [z0, z1] and the

transversality conditions

lim
t→∞ e−ρtλ (t, z) ≥ 0, lim

t→∞ e−ρtλ (t, z)x (t, z) = 0 (57)

solve the problem (42) to (44).

3.1 Optimal Harvesting under Biomass Diffusion

Having established the optimality conditions, we are interested in the implications of diffusion

on optimally controlled systems regarding mainly the possibility of emergence of spatial
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heterogeneity under optimal control, but also the possibility of diffusion acting as a stabilizing

force for unstable steady states under optimal control. Let as before x (z, t) denote the

concentration of the biomass of a renewable resource (e.g. fish) at spatial point z ∈ Z, at

time t. We assume a one-dimensional domain 0 ≤ z ≤ a with zero flux at z = 0 and z = a

or ∂x
∂z

¯̄
0
= ∂x

∂z

¯̄
a
= 0. Biomass grows according to a standard growth function F (x) and

disperses in space with a constant diffusion coefficient D, or

∂x (z, t)

∂t
= F (x (z, t))−H (z, t) +D∇2x (58)

where harvesting H (z, t) of the resource is determined as H (z, t) = qx (z, t)E (z, t) , E (z, t)

denotes the concentration of harvesting effort (e.g. boats) at spatial point z and time t, and

q is catchability coefficient. The total cost of applying effort E (z, t) at location z is given by

an increasing and convex function c (E (z, t) , z) , so if we apply the effort further from the

origin, cost increases. Let benefits from harvesting at each point on space be S (H (z, t)) .

The optimal harvesting problem is then defined as:

max
E(z,t)

Z ∞

0

Z
Z
e−ρt [S (H (z, t))− c (E (z, t) , z)] dtdz (59)

s.t.
∂x (t, z)

∂t
= F (x (t, z))− qx (t, z)E (t, z) +D

∂x2 (t, z)

∂z2

x (0, z) given, and zero flux on 0, a

Following the section above, MPD-IT implies that the optimal control maximizes the gener-

alized Hamiltonian for each location z,

H = S (H (z, t))− c (E (z, t) , z) + (60)

µ (t, z)

·
x (t, z) (s− rx (t, z))− qx (t, z)E (t, z) +D

∂x2

∂z2

¸

Setting S
0
(H (z, t)) = p (z) > 0, necessary conditions for the MPD-IT, omitting t to simplify,
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imply

∂H
∂E (z)

= p (z) qx (z)− c
0
(E (z))− µ (z) qx (z)⇒ (p− µ) qx = c

0
(E) (61)

E0 (z) = E (x (z) , µ (z)) , E0 (z) ≥ 0, if p (z)− µ (z) ≥ 0,
∂E

∂x
=

(p− µ) q

c00
> 0 ,

∂E

∂µ
= −qx

c00
< 0 for all z.

Then, the Hamiltonian system becomes:

∂x

∂t
= F (x)− qxE (x, µ) +D

∂x2

∂z2
= G1 (x, µ) +D

∂x2

∂z2
(62)

∂µ

∂t
=

h
ρ− F

0
(x) + qE (x, µ)

i
µ− pqE (x, µ)−D

∂µ2

∂z2
= G2 (x, µ)−D

∂µ2

∂z2
(63)

A spatially homogeneous (or "flat") system is defined from (62) and (63) for D = 0. A "flat"

steady state (x∗, µ∗) for this system is determined as the solution of ∂x
∂t =

∂µ
∂t = 0.

15 Given

the nonlinear nature of (62) and (63), more then one steady state is expected. Assume that

such a steady state with (x∗, µ∗) > 0, E0 > 0 exists, and consider the linearization matrix

around the steady state

J =

 G1x (x
∗, µ∗) G1µ (x

∗, µ∗)

G2x (x
∗, µ∗) G2µ (x

∗, µ∗)

 (64)

G1x = F
0
(x∗)− qx∗E (x∗, µ∗)− qx∗ ∂E(x

∗,µ∗)
∂x

G1µ = −qx∗ ∂E(x
∗,µ∗)

∂µ

G2x =
h
−F 00

(x∗) + q ∂E(x
∗,µ∗)

∂x

i
µ∗ − pq ∂E(x

∗,µ∗)
∂x

G2µ = ρ− F
0
(x∗) + qx∗E + qx∗ ∂E(x

∗,µ∗)
∂x = ρ−G1x

(65)

For the flat steady state we have trJ = G1x + G2µ = ρ > 0. Therefore if detJ > 0

the steady state is unstable, while if detJ < 0 the steady state has the local saddle point

property. In the saddle point case there is a one-dimensional manifold such that for any

15 See, for example, Clark (1990) for the analysis of this problem.
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initial value of µ there is an initial value for x, such that the system converges to the steady

state along the manifold.

To analyze the impact of diffusion we follow section 2.2. We have, for the linearization

of the full system (62) and (63):

wt = Jw+D̃∇2w , (66)

w =

 x (z, t)− x∗

µ (z, t)− µ∗

 , wt =

 ∂x/∂t

∂µ/∂t

 , D̃ =

 D 0

0 −D


and λ must solve ¯̄̄

λI − J − D̃k2
¯̄̄
= 0

Then the eigenvalue λ (k) as a function of the wavenumber is obtained as the roots of

λ2 − ρλ+ h
¡
k2
¢
= 0 (67)

h
¡
k2
¢
= −D2k4 −D [2G1x (x

∗, µ∗)− ρ] k2 + detJ (68)

where the roots are given by:

λ1,2
¡
k2
¢
=
1

2

³
ρ±

p
ρ2 − 4h (k2)

´
(69)

It should be noted that the flat (no diffusion) case corresponds to k2 = 0, so that h
¡
k2 = 0

¢
=

detJ, and λ1,2 = 1
2

³
ρ±

p
ρ2 − 4 detJ

´
. We examine the implication of diffusion in two cases

3.1.1 Case I: The Spatially homogeneous steady state is a saddle point λ2 < 0 <
λ1 for k2 = 0 - Diffusion generates spatial heterogeneity.

In this case detJ < 0 and since furthermore trJ > 0 there is a one-dimensional stable

manifold with negative slope. On this manifold and in the neighborhood of the steady state,

for any initial value of x there is an initial value of µ such that the spatially homogeneous

system converges to the flat steady state (x∗, µ∗) . For the optimally-controlled system the
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solutions are such that  x̂ (z, t)

µ̂ (z, t)

 ∼ C2v2e
λ2t , for all z (70)

where C2 is constant determined by initial conditions and v2 is the eigenvector corresponding

to λ2.
16 The path for the optimal control E is given by Ê0 = E (x̂ (z, t) , µ̂ (z, t)) for all z.

Under diffusion the smallest root is given by

λ2 =
1

2

³
ρ−

p
ρ2 − 4h (k2)

´
(71)

1. If 0 < h
¡
k2
¢
< ρ2/4, for some k, then this root becomes real and positive.

2. If h
¡
k2
¢
> ρ2/4, for some k, then both roots are complex with positive real parts.

In both cases above, the system is unstable with both roots having positive real parts.

Therefore if h
¡
k2
¢
> 0 for some k, then the Hamiltonian system is unstable, in the neigh-

borhood of the flat steady state, to spatial perturbations. From (68) the quadratic function

h
¡
k2
¢
is concave, and therefore has a maximum. Furthermore h (0) = detJ < 017 and

h
0
(0) = − (2G1x − ρ) > 0 if the steady state is on the declining part of F (x) , or F

0
(x∗) < 0.

Then h
¡
k2
¢
has a maximum for

k2max : h
0 ¡
k2max

¢
= 0, or k2max = −

[2G1x (x
∗, µ∗)− ρ]

2D
> 0, for (2G1x − ρ) < 0 (72)

If h
¡
k2max

¢
> 0 or −D2k4max−D [2G1x (x

∗, µ∗)− ρ] k2max+detJ > 0, there exist two positive

roots k21 < k22 such that h
¡
k2
¢
> 0 for k2 ∈ ¡k21, k22¢ . Figure 5a depicts h ¡k2¢ for this case.

This is the dispersion relationship associated with the optimal control problem.18

[Figure 5]

16 Since we want the controlled system to converge to the optimal steady state, the constant C1 associated
with the positive root λ1 is set at zero.

17 This is because the flat steady state has the saddle point property.

18 For a detailed analysis of the dispersion relationship in problems without optimization, see Murray,
(2003).
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When diffusion renders both roots positive, diffusive instability emerges in the optimal

control problem, in a way similar to the diffusive instability emerging from the Turing mecha-

nism in systems without optimization. In this case the solution (70) for the controlled system

becomes, following section 2.2,

x̂ (z, t) ∼ x∗ + εx

n2X
n1

Cn exp

·
λ2

µ
n2π2

a2

¶
t

¸
cos

nπz

a
, k2 =

³nπ
a

´2
(73)

µ̂ (z, t) ∼ x∗ + εµ

n2X
n1

Cn exp

·
λ2

µ
n2π2

a2

¶
t

¸
cos

nπz

a
, (74)

where λ2
³
n2π2

a2

´
is the root that is positive due to diffusion, n1 is the smallest integer greater

than or equal to ak21/π, and n2 is the largest integer less than or equal to ak22/π. The path

for optimal effort will be E0 (z, t) = E (x̂ (z, t) , µ̂ (z, t)) . Since λ2 > 0 the spatial patterns do

not decay as t increases. Thus, provided that the kinetics of the Hamiltonian system have

a confined set, the solution converges at the steady state to a spatial pattern. This implies

that for a subset of the spatial domain the resource stock and its shadow value are above

the flat steady state levels and for another subset they are below the flat steady state levels,

similar to figures 3 or 4. This result can be summarized in the following proposition.

Proposition 6 For an optimal harvesting system which exhibits a saddle point property in
the absence of diffusion, it is optimal, under biomass diffusion and for a certain set parameter
values, to have emergence of diffusive instability leading to a spatially heterogeneous steady
state for the biomass stock, its shadow value and the corresponding optimal harvesting effort.

The significance of this proposition, which extends the concept of the Turing mechanism

to the optimal control of diffusion, is that spatial heterogeneity and pattern formation, re-

sulting from diffusive instability, might be an optimal outcome under certain circumstances.

For regulation purposes and for the harvesting problem examined above, it is clear that

the spatially heterogeneous steady state shadow value of the resource stock, and the corre-

sponding harvesting effort, can be used to define optimal regional fees or quotas.
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3.1.2 Case II: The Spatially homogeneous steady state is unstable Reλ1,2 > 0
for k2 = 0 - Diffusion Stabilizes

Since trJ > 0, this implies that detJ > 0. Let ∆D = ρ2 − 4 detJ > 0 so the we have two

positive real roots at the flat steady state. Diffusion can stabilize the system in the sense of

producing a negative root. For the smallest root to turn negative or λ2 < 0 it is sufficient

that

h
¡
k2
¢
< 0 (75)

The quadratic function (68) is concave, and therefore has a maximum. Furthermore h (0) =

detJ > 0 and h
0
(0) = − (2G1x − ρ) > 0 if the steady state is on the declining part of F (x) ,

or F
0
(x∗) < 0. Thus there is a root k22 > 0 (see figure 5b) such that for k2 > k22, we have

λ2 < 0. The solutions for x (z, t) and µ (z, t) , will be determined by the sum of exponentials

of λ1 and λ2. Since we want to stabilize the system we set the constant associated with the

positive root λ1 equal to zero. Then the solution will depend on the sum of unstable and

stable modes associated with λ2. Following previous results the solutions for x and µ will be

of the form:  x̂ (z, t)

µ̂ (z, t)

 ∼

 x∗

µ∗

+ n2X
0

Cn̂ exp

·
λ

µ
n2π2

a2

¶
t

¸
cos

nπz

a
+ (76)

NX
n2

Cn exp

·
λ

µ
n2π2

a2

¶
t

¸
cos

nπz

a
,

where n2 is the smallest integer greater or equal to ak22/π and N > n2 and we choose optimal

effort such that E0 (z, t) = E (x̂ (z, t) , µ̂ (z, t)) . Since λ
³
n2π2

a2

´
< 0 for n > n2, all the modes

of the third term of (76) decay exponentially. So to converge to the steady state we need to

set Cn̂ = 0, then the spatial patterns corresponding to the third term of (76) will die out

with the passage of time and the system will converge to the spatially homogeneous steady

state.
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This result can be summarized in the following proposition.

Proposition 7 For an unstable steady state, in the absence of diffusion, of an optimal har-
vesting problem, it is optimal, under biomass diffusion and for a certain set of parameter
values, to stabilize the steady state. Stabilization is in the form of saddle point stability
where spatial patterns decay and the system converges along one direction to the previously
unstable spatially homogeneous steady state.

The significance of this proposition is that it shows that under diffusion it is optimal to

stabilize a steady state which was unstable under spatial homogeneity.

3.2 On the Optimal Control of Bioinvasions

The framework of the optimization methodology developed in section 3 can be applied to the

study of bioinvasion problems which typically involve, along with the temporal dynamics,

diffusion in space of an invasive species (e.g. insects). Let the evolution of the biomass of

the invasive species given by the diffusion equation

∂x (z, t)

∂t
= F (x (z, t) , a)− h (z, t) +D∇2x (77)

where x (0, 0) = x0 denotes the "propagule" of the invasive species which is released at time

t = 0 at the origin of a one-dimensional space Z. The biological growth function of the

invasive species is given by F (x (z, t) , a), with a reflecting general environmental interaction

with the species in question, and h (z, t) denoting the removal (harvesting) of the invasive

species, through for example spraying.

Let c1 (z)h (z, t) be the cost of removing h (z, t) from the invasive species at time t and

location z, thus c1 (z) is the site dependent unit removal cost, and c2 (x (z, t) , z) the cost or

damage associated with the amount of biomass x (z, t) from the invasive species at time t

and site z. This cost could be, for example, losses in agricultural production, or treatment

cost of those affected by the invasive species.

The bioinvasion control problem for a regulator would be to choose a removal policy

{h (z, t)} in space/time to minimize the present value of removal and harvesting costs. The
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problem can be defined as

min
{h(z,t)}

Z
Z

Z ∞

0
e−ρt [c1 (z)h (z, t) + c2 (x (z, t) , z)] dtdz (78)

s.t. (77) and x (0, 0) = x0 (79)

We exploit the linearity of the objective function and the species dynamics in h to develop

a MRAP for the optimal control of diffusions with a linear structure in the control. The

MRAP essentially determines an optimal or target invasive species biomass, x∗ (z) ≥ 0 in

the following way.

Proposition 8 The optimal target biomass x∗ (z) ≥ 0 of the invasive species for any t ∈
(0,∞) and site z ∈ Z = [0, ZB] , when the flux of the invasive species on the boundary Z is
such that ∂x(t,0)

∂z = ∂x(t,ZB)
∂z ,19 is determined as

x∗ (z) = argmin {c1 (z) [F (x (z) , a)− ρx (z)] + c2 (x (z) , z)} (80)

For proof see Appendix.

Objective (80) is now written in MRAP form which is in the form of a sum of independent

terms across space and time which suggests that the optimal thing to do is to approach as

rapidly as possible, for each site z, the desired "target" x∗(z) described by optimization (80).

If we assume that the objective function in (80) is convex in x for all z in Z, then we can

derive some concrete results.

First, it will be optimal to fight an initial bioinvasion, described by x0(z), as much as

possible, if x∗(z) = 0 for all z, when (81) below holds,

c1(z)(F
0(0, a)− ρ) + c02(0, z) ≥ 0, ∀z ∈ Z (81)

With the objective (80) convex in x for each z, condition (81) is sufficient for "fighting to

the max" to be optimal. Condition (81) is easy to interpret. Assume to simplify things that

19 This assumption covers the zero flux condition used earlier in this paper.
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F (x, z) = xs(z), then condition (81) is

c02(0, z)/[ρ− s(z)] ≥ c1(z), ∀z ∈ Z (82)

which says that you "fight to the max" the bioinvasion, when the capitalized sum of marginal

damages from the biomass of the invasive species (adjusted for the growth rate of the species)

is greater than the cost of killing one.

Secondly, it is optimal to do nothing if

c02(k(z), z)/[ρ− s(z)] ≤ c1(z), ∀z ∈ Z (83)

where k(z) is the carrying capacity of the invasive species at site z. Equation (83) makes

sense from the economic point of view. If c2(x) is convex, marginal damage is increasing in

x. Hence, if the largest possible marginal damage is still not enough when capitalized (at

the rate adjusted for growth) to cover the current marginal cost of removing one unit of x,

it makes sense that it would be optimal to do nothing in the face of bioinvasion.

Third, it is easy to locate the necessary and sufficient conditions for an interior solution

to be optimal, given the assumed convexity of the objective function in (80). The optimality

condition for the interior solution, x∗ (z) , will be

c1(z)(F
0(x∗ (z) , a)− ρ) + c

0
2(x

∗ (z) , z) ≥ 0, ∀z ∈ Z (84)

Then the MRAP to the bioinvasion control, across sites z ∈ Z and for every t, will take

the form

h∗ (z) =


0 if x (z) < x∗ (z)

hmax if x (z) > x∗ (z)

F (x∗ (z) , a)−D∇2x∗ (z) if x (z) = x∗ (z)

(85)

Conditions (85) represent an extension of the standard MRAP solution to continuous time

space.
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4 Conclusions and Suggestions for Future Research

This paper develops methods of control of spatial dynamical systems. In particular it adapts

Turing analysis for diffusive instability to bioeconomic problems, and it furthermore extends

this analysis to recursive optimal control frameworks. It applies the methods to economic

problems of optimal harvesting and optimal control of bioinvasions as illustrations of the

potential power of the methods.

In section two of the paper, we formulate a spatial harvesting model in continuous space-

time of the Clark (1990), Sanchirico and Wilen (1999, 2001) type, in order to illustrate how

the interaction of the Turing mechanism with economic forces can produce travelling wave

solutions and spatial heterogeneity in an analytically tractible descriptive framework. We

show how this framework could be used to study the interaction of various tax and regulatory

policies with the economic dynamics and the biomass dynamics over space-time to produce

or to moderate emergent spatial heterogeneity. We use this framework to expose the key role

of the dispersion relation in the study of emergent spatial heterogeneity. In section three

of the paper, we develop a version of the Pontryagin Maximum Principle for continuous

space-time problems that should be useful to economists. While this is not entirely new,

we believe the tractible and transparent way in which we develop it should be useful to our

fellow economists and other researchers.

We illustrate its usefulness by applying the method to an optimal version of the descriptive

problem in section two. We develop the analog of the dispersion relationship for a recursive

infinite horizon version of the optimal harvesting problem, and show how one can now easily

do local stability analysis by linearization of the analog of the familiar Hamiltonian. We

extend the theory associated with the dispersion relationship in descriptive spatial Turing

analysis to our recursive infinite horizon optimization framework. This is an extension to
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continuous space-time of the economist’s familiar infinite horizon framework. We believe this

extension of the dispersion relation and Turing analysis is new. In any event it should be

useful for many applications involving optimization over space-time in economics and related

subjects.

We locate sufficient conditions for diffusion and optimization to induce local instability

and, hence, spatial heterogeneity in an originally spatially-homogeneous situation. We also

locate sufficient conditions for diffusion and optimization to stabilize and to homogenize an

originally spatially-heterogeneous situation.

In addition we show how the optimization framework can be easily modified to ana-

lyze "bang-bang" problems which are linear in the control, e.g. MRAP. We illustrate the

potential usefulness of this modification to the optimal control of bioinvasions. We give sim-

ple, economically-interpretable sufficient conditions for the optimality of various bioinvasion

fighting strategies such as "fighting to the max."

We believe that the analytical methods developed in this paper not only provide some

useful insights on the optimal control in time-space of some important bioeconomic problems,

such as fishery management and control of bioinvasions, but that they can also provide a

solid basis for the analysis of a variety of economics problems where spatial considerations

are important.

31



Appendix

Proof of Proposition 2: From the definition of s
0
and r

0
we have the following condi-

tions under regulation

Effort tax: s
0
=

µ
s+

2q (c0 + τ)

c1

¶
, r

0
=

µ
r +

2q2p

c1

¶
, K =

1

a
=

s
0

r0

Harvesting tax: s
0
=

µ
s+

2qc0
c1

¶
, r

0
=

µ
r +

2q2 (p− τ)

c1

¶
, K =

1

a
=

s
0

r0

Thus under the effort tax s
0
, cmin in (12) and K increase, while under the harvesting tax

only r
0
declines and thus K increases. ¥

Proof of Proposition 3:Under the tax the evolution of effort for the spatially homoge-

neous system is described by

Ė = δE (pqx− τ (E)−AC (E))

The regulated homogeneous steady state is defined by the intersection of the isocines

x|ẋ=0 =
s

r
− q

r
E (86)

x|Ė=0 =
τ (E) +AC (E)

pq
(87)

Then the linearization matrix at the spatially homogeneous steady state becomes

J+ =

 −rx+ −qx+

δpqE+ −δE∗
h
τ
0
(E+) +AC

0
(E+)

i
 =

 a11 a12

a21 a22

 :
 − −

+ −

 (88)

It is clear that tr (J+) < 0 and Det (J+) > 0 so the regulated steady state is stable and

because of the sign order at the steady state no diffusive instability is possible.¥

Proof of Proposition 4:Under the tax the evolution of effort for the spatially homoge-

neous system is described by

Ė = δE (pqx− τ (x,E) qx−AC (E)) (89)
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The regulated homogeneous steady state is defined by the intersection of the isocines

x|ẋ=0 =
s

r
− q

r
E (90)

x|Ė=0 =
τ (E) +AC (E)

(p− τ (x,E)) q
(91)

Then the linearization matrix at a spatially homogeneous steady state becomes

J+ =

 −rx+ −qx+

δ
¡
p− τ − ∂τ

∂xx
+
¢
qE+ −δE∗

h
∂τ
∂E qx

+ +AC
0
(E+)

i
 , with

 − −

+ −


It is clear that tr (J+) < 0 and Det (J+) > 0 so the regulated steady state is stable and

because of the sign order at the steady state no diffusive instability is possible. ¥

Extension of Pontryagin’s Principle: Necessary conditions

We develop a variational argument along the lines of Morton Kamien and Nancy Schwartz

(1981, pp. 115-116). Problem (42) to (44) can be written as:

J =

Z z1

z0

Z t1

t0

f (x (t, z) , u (t, z)) dtdz =

Z z1

z0

Z t1

t0

{f (x (t, z) , u (t, z))

λ (t, z)

·
g (x (t, z) , u (t, z)) +D

∂2x

∂z2
− ∂x

∂t

¸¾
dtdz (92)

We integrate by parts the last two terms of (92). The λ (t, z) ∂x∂t term becomes

(−1)
Z z1

z0

Z t1

t0

λ (t, z)
∂x

∂t
dt =Z z1

z0

·
−λ (t1)x (t1) + λ (t0)x (t0) +

Z t1

t0

x (t, z)
∂λ

∂t
dt

¸
dz (93)

The λ (t, z)D ∂2x
∂z2 becomes

D

Z z1

z0

Z t1

t0

λ (t, z)
∂2x

∂z2
=

D

Z t1

t0

"
λ (z1)

∂x

∂z

¯̄̄̄
z1

− λ (z0)
∂x

∂z

¯̄̄̄
z0

−
Z z1

z0

∂x

∂z

∂λ

∂t
dz

#
dt =

−D
Z t1

t0

·Z z1

z0

∂x

∂z

∂λ

∂t
dz

¸
dt by zero flux (94)
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integrating by parts once more we have

(−1)D
Z t1

t0

·Z z1

z0

∂x

∂z

∂λ

∂t
dz

¸
dt =

D

Z t1

t0

·
−∂λ (z1)

∂z
x (z1) +

∂λ (z0)

∂z
x (z0)

+

Z z1

z0

x (t, z)
∂2λ

∂z2

¸
dzdt (95)

Thus (92) becomes

Z z1

z0

Z t1

t0

f (x (t, z) , u (t, z)) dtdz =Z z1

z0

Z t1

t0

[f (x (t, z) , u (t, z)) + λ (t, z) [g (x (t, z) , u (t, z))]

+x (t, z)
∂λ

∂t
+ x (t, z)D

∂2λ

∂z2

¸
dtdz

+

Z z1

z0

[−λ (t1)x (t1) + λ (t0)x (t0)] dz +

D

Z t1

t0

·
−∂λ (z1)

∂z
x (z1) +

∂λ (z0)

∂z
x (z0)

¸
dt (96)

We consider a one parameter family of comparison controls u∗ (t, z)+εη (t, z) , where u∗ (t, z)

is the optimal control, η (t, z) is a fixed function and ε is a small parameter. Let y (t, z, ε) ,

t ∈ [t0, t1] , z [z0, z1] be the state variable generated by (43) and (44) with control u∗ (t, z) +

εη (t, z) , t ∈ [t0, t1] , z ∈ [z0, z1] . We assume that y (t, z, ε) is a smooth function of all its

arguments and the ε enters parametrically. For ε = 0 we have the optimal path x∗ (t, z) ,

furthermore all comparison paths must satisfy initial and zero flux conditions. Thus,

y (t, z, 0) = x∗ (t, z) , y (t0, z0, ε) = x (t0, z0) ,
∂y

∂z

¯̄̄̄
z0

=
∂y

∂z

¯̄̄̄
z1

= 0 (97)

When the functions u∗, x∗ and η are held fixed the value of (42) evaluated along the control

function u∗ (t, z) + εη (t, z) and the corresponding state function y (t, z, ε) depends only on

the single parameter ε. Therefore,

J (ε) =

Z z1

z0

Z t1

t0

[f (y (t, z, ε) , u∗ (t, z) + εη (t, z))] dtdz (98)
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or using (96)

J (ε) =

Z z1

z0

Z t1

t0

[f (y (t, z, ε) , u∗ (t, z) + εη (t, z))

+λ (t, z) g (y (t, z, ε) , u∗ (t, z) + εη (t, z))

+y (t, z, ε)
∂λ

∂t
+Dy (t, z, ε)

∂2λ

∂z2

¸
dtdz

+

Z z1

z0

[−λ (t1) y (t1, ε) + λ (t0) y (t0, ε)] dz

+D

Z t1

t0

·
−∂λ (z1)

∂z
y (z1, ε) +

∂λ (z0)

∂z
y (z0, ε)

¸
dt (99)

Since u∗ is a maximizing control the function J (ε) assumes the maximum when ε = 0. Thus

dJ(ε)
dε

¯̄̄
ε=0

or

dJ (ε)

dε

¯̄̄̄
ε=0

=Z z1

z0

Z t1

t0

·µ
fx + λgx +

∂λ

∂t
+D

∂2λ

∂z2

¶
yε + (fu + λgu) η

¸
dtdz +Z z1

z0

[−λ (t1) yε (t1, ε) + λ (t0) yε (t0, ε)] dz +

D

Z t1

t0

·
−∂λ (z1)

∂z
yε (z1, ε) +

∂λ (z0)

∂z
yε (z0, ε)

¸
dt = 0 (100)

Using the usual transversality condition on λ, we have that λ (t1) = 0, furthermore

yε (t0, ε) = 0, since y (t0, ε) = x (t0, z0) fixed. If we impose zero flux conditions on λ, then,

∂λ(z1)
∂z = ∂λ(z0)

∂z = 0, then we obtain from (100)

∂λ

∂t
= −

µ
fx + λgx +D

∂2λ

∂z2

¶
(101)

fu + λgu = 0 (102)

So if we define a generalized Hamiltonian function

H =f (x, u) + λ

·
g (x, u) +D

∂x2

∂z2

¸
(103)

then by (102) optimality conditions become conditions (45) - (47). The infinite horizon case

with discounting is obtained by following Kenneth Arrow and Mordecai Kurz (1970, Chapter

II.6). ¥
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Extension of Pontryagin’s Principle: Sufficiency

Suppose that x∗, u∗, λ satisfy conditions (45) - (47) and (43) and let x, u functions

satisfying (43). Let f∗, g∗ denote functions evaluated along (x∗, u∗) and let f, g denote

functions evaluated along the feasible path (x, u) . To prove sufficiency we need to show that

W ≡
Z z1

z0

Z t1

t0

(f∗ − f) dtdz ≥ 0 (104)

From the concavity of f it follows that

f∗ − f ≥ (x∗ − x) f∗x + (u
∗ − u) f∗u (105)

then

W ≥
Z z1

z0

Z t1

t0

[(x∗ − x) f∗x + (u
∗ − u) f∗u ] dtdz (106)

=

Z z1

z0

Z t1

t0

·
(x∗ − x)

µ
−∂λ
∂t
− λg∗x −D

∂2λ

∂z2

¶
+ (u∗ − u) (−λg∗u)

¸
dtdz (107)

=

Z z1

z0

Z t1

t0

λ [g∗ − g − (x∗ − x) g∗x − (u∗ − u)] g∗udtdz ≥ 0 (108)

Condition (107) follows from (106) by using conditions (45) and (46) to substitute for f∗x

and f∗u . Condition (108) is derived by integrating first by parts the terms involving
∂λ
∂t ,

substituting for ∂x
∂t from (43), and using the transversality conditions, as has been done in

(93), then by integrating twice the terms involving ∂2λ
∂z2

and using the zero flux condition as

has been done in (95). The non-negativity of the integral in (108) follows from (55) and the

concavity of g.

The result can be easily extended along the lines of Arrow’s sufficiency theorem (Arrow

and Kurz, 1970, Chapter II.6). ¥

Proof of Proposition 8: Substitute h from (77) to (78) and then integrate by parts to

eliminate the dx/dt term. For this term we obtain

Z ∞

0
{dx/dt exp(−ρt)}dt = lim

T→∞
x(T ) exp(−ρT )− xo+

Z ∞

0
{ρx exp(−ρt)}dt (109)
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where the "admissible" class of x(t, z) is such that

lim
T→∞

x(T ) exp(−ρT ) = 0 ∀z ∈ Z (110)

Integrating the term, D ∂2x
∂z2
, over z ∈ Z, we obtain

Z
Z

·
D
∂2x

∂z2

¸
dz = D

∂x

∂z

¯̄̄̄
bdry(Z)

= D

µ
∂x(t, B)

∂z
− ∂x(t, 0)

∂z

¶
(111)

where "bdry(Z)" denotes the "boundary of Z". If Z is, for example, a circle [0, 2π] where

the derivatives are equal at the "boundary points" 0 and 2π, then the equal flux condition

∂x(t,0)
∂z = ∂x(t,B)

∂z , implies ∂x(t,0)
∂z = ∂x(t,2π)

∂z and (111) is zero. Thus, for this special case,

the diffusion term vanishes in the objective (78). This will be true for any space Z where

we assume that the values of the derivatives ∂x
∂z are equal at the boundaries. If Z is the

infinite real line, let −B,+B be large in absolute value, the equal flux assumption implies

limB→∞
h
∂x(t,B)

∂z − ∂x(t,−B)
∂z

i
= 0.

Thus, collecting all this together we may write the objective as

TC(0) =

Z Z
{exp(−ρt){c1(z)[F (x, z)− ρx] + c2(x, z)}dzdt+

Z
{c1(z)x0(z)}.dz(112)

J(x, z) : = {c1(z)[F (x, a)− ρx] + c2(x, z)} (113)

Once we get (113) we can optimize "term by term" to obtain (80). ¥
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Figure 1: Wavefront solution for biomass in open access equilibrium
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Figure 2: Spatially homogeneous solutions and regulation
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Figure 4: Diffusion driven spatial heterogeneity for biomass and effort
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Figure 5: Dispersion relationships
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