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1. Introduction

This paper concerns the welfare analysis of maturity transformation in ¯nancial structure.

Maturity transformation is the ¯nancing of an intermediary's assets by liabilities (demand deposits

at a bank, in particular) that are callable, and that some traders do call in equilibrium, before

the assets themselves mature. Bryant (1980) shows that such a portfolio structure is a means of

insuring the depositors against unobservable risks, and he also identi¯es a multiplicity-of-equilibrium

problem. He implicitly represents a bank as a rule or \allocation mechanism" that speci¯es the

outcome, in each state of nature, of each possible pro¯le of traders' decisions regarding whether or

not to exercise the call options on their deposits. This rule constitutes a framework for strategic

interaction among the traders. Bryant observes that maturity transformation is necessary in order

to implement the symmetric, ex-ante e±cient, allocation as a Bayesian Nash equilibrium. He shows

also that some mechanisms that do implement that e±cient allocation|notably the mechanism that

most faithfully re°ects the features of a bank-deposit contract in the context of his model|also can

possess other equilibriums that are strictly Pareto dominated by the \intended" equilibrium.

Diamond and Dybvig (1983) address a related set of issues to Bryant. They study a model

that brings the role of aggregate risk into sharp focus. They prove four main results.

1. The phenomenon of Pareto-ranked bank-deposit-contract equilibriums can occur even in an

environment where there is no aggregate risk.

2. However there is an allocation mechanism, suggested by historical banking regimes that have

permitted suspension of convertability of deposits when a \run" occurs, that implements the

symmetric, ex-ante optimal allocation in strictly dominant strategies. This is intuitively a

particularly compelling notion of implementation that implies, among other things, that the

Bayesian Nash equilibrium is unique. Obviously, then, there cannot be multiple, Pareto-ranked

equilibriums.

3. In some environments with aggrate risk, a deposit scheme with suspension of payments cannot

implement an ex-ante e±cient allocation.

4. However, despite the presence of aggregate risk, it is possible to implement the symmetric,

ex-ante e±cient allocation in Bayesian Nash equilibrium. If deposit insurance is feasible,

then it can provide one means to do so. Diamond and Dybvig's analysis does not establish

whether or not there is any allocation mechanism that implements the symmetric, e±cient



allocation as its unique Bayesian Nash equilibrium. Wallace (1988) provides a formalization

of the sequential-service constraint to which previous researchers had appealed informally. He

proves the following result that bears on Diamond and Dybvig's fourth point.

5. If the provision of deposit insurance is genuinely regarded as a feature of the over-all allocation

mechanism, and if it is this over-all mechanism to which the sequential-service constraint

applies, then deposit insurance is not feasible to provide.

Taken together, the last three of these results raise the possibility that existence of multiple,

Pareto-ranked equilibriums might be an unavoidable problem for any mechanism that implements

the symmetric, ex-ante e±cient allocation as a Bayesian Nash equilibrium in an environment with

aggregate risk. Suppose that that were indeed the situation, and that one believed that traders'

strategic interactions were much more likely to proceed according to the Pareto-dominated equi-

librium than according to the e±cient one. If there were another mechanism that had a unique,

\mediocre," equilibrium that was situated strictly between the other two according to the Pareto

relation, then one might be inclined to choose that mechanism and to tolerate the ine±ciency of its

equilibrium rather than to incur the substantial risk of doing even worse, in order to have any chance

of attaining e±ciency. To the contrary, if there were a mechanism possesing a unique equilibrium,

and if the symmetric e±cient allocation were the outcome that would result from that equilibrium

being played, then one would reject without hesitation the mechanism with the mediocre equilib-

rium if one were convinced that the Bayesian Nash equilibriums of both mechanisms would actually

be played.

This tension between e±ciency of outcome allocations and stability in the sense of uniqueness

of Bayesian Nash equilibrium (and of characterization of equilibrium in terms of strategic dominance)

is the speci¯c topic of this paper. We review some basic concepts of implementation theory in section

3., and in section 4.we use this implementation framework to present a version of the Diamond-

Dybvig environment with aggregate risk. (The environment that we study di®ers from Diamond

and Dybvig's in having only ¯nitely many traders and, in section 4., not having a sequential-service

constraint. We consider this ¯nite-trader version both to introduce aggregate risk in a natural and

explicit way, and also, in section 5., to clarify the formulation of the sequential-service constraint.) A

naturally-de¯ned mechanism makes it a dominant strategy for each trader to communicate his type

truthfully, and via this dominant-strategy equilibrium it implements the symmetric, ex-ante e±cient

allocation. That is in sharp contrast to Diamond and Dybvig's deposit-with-suspension mechanism,
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since for our mechanism the distinction between environments with and without aggregate risk is

immaterial. Finally, in section 5., we consider the analogous allocation mechanism in environments

with aggregate risk and also a sequential-service constraint. We show that, under the assumption

that traders' utility functions exhibit non-increasing absolute risk aversion, for traders truthfully to

communicate their types remains the unique strategy pro¯le that survives iterated elimination of

strictly dominated strategies. Thus, again, the mechanism has a unique Bayesian Nash equilibrium

that possesses an intuitively compelling stability property, and the outcome of that equilibrium

being played is the symmetric, ex-ante e±cient, equilibrium.1

2. An informal theory of implementing the e±cient allocation

Consider a population of I agents each of whom is endowed with one unit of a (divisible)

good. The good can be transformed into a consumption good available at either date 0 or date 1.

For each unit of the good, the transformation leads to R > 1 units of consumption at date 1. But

if the transformation process is terminated at date 0, only one unit of consumption good can be

obtained. At the beginning of their lives, each agent is uncertain about how long they are going to

live. With some probability, an agent will become \short-lived," in which case she values the date 0

consumption only. A \long-lived agent," on the other hand, cares about the sum of date 0 and date

1 consumption. The agents each learn about their individual lifetimes at the beginning of date 0.

A state of nature speci¯es which agents are \short-lived" and which are \long-lived."

Given the transformation technology, a feasible consumption path for each agent is to con-

sume her endowment if she turns out to be \short-lived," and to enjoy R units of consumption at

date 1 if she is \long-lived." But, the population can do better by pooling their resources in order to

insure against the event of becoming \short-lived." To see what the e±cient insurance arrangement

looks like, consider the optimization problem of a social planner whose objective is to maximize the

sum of agents utilities. Here we consider ex post utility-maximization in each state of nature. Later

in the paper, we will show that the solution achieves ex ante e±ciency as well.

To simplify, suppose that the utility of a typical short-lived agent is a piecewise linear function

of consumption (at date 0). (See Figure 1.) In particular, the marginal utility for consumption levels

beyond a threshold point, c¤; is much smaller than the marginal utility for consumption levels below

1An antecedent result in this spirit is due to De Nicol¶o (1995), who constructs a mechanism having a unique Bayesian
equilibrium and implementing an allocation arbitrarily close to being e±cient in Wallace's (1988) sequential-service
version of the Diamond-Dybvig model.
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c¤: Since one unit of date 0 good can be transformed into R > 1 unit of date 1 consumption,

the corresponding indirect utility of endowment for a long-lived agent, who will consume after

transforming it, lies above that of a short-lived agent but with threshold point R¡1c¤.

R¡1c¤ c¤
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯̄
©©

©©
©©

©©
©©

©©
©©©

·
·
·
·
·
·
·
·
·
·
·
·
·
··
³³

³³
³³

³³
³³

³³

Figure 1

A. Full-information case

First, suppose that the realization of types is observed by the planner. In a given state

of nature, the social planner can count the number of long-lived agents and then based on this

distribute the aggregate endowment. Given the speci¯cation of the preferences, ex post e±ciency

requires the following way of allocating the resources. The ¯rst unit of the resources should go to

the long-lived agents because they have the highest marginal utility. In fact, the long-lived agents

should each receive an amount up till their threshold R¡1c¤, at which point the remaining resources

should be used to serve the short-lived agents conditional on that each of them gets at most c¤: After

this, if there are still resources left, they should be divided equally among the long-lived agents as

their extra consumption. The short-lived agents never consume more than c¤.

B. Case with unobservable types.

If agent's types are private information, then the planner has to allocate the resources based

on agents' reported types. Ideally, in this case, one would want to implement the full-information
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(ex post) e±cient allocation. To accomplish this, the social planner can announce the following

arrangement. At date 0, each agent is going to tell the planner whether they are short-lived or

long-lived. The reported messages are then going to be regarded as the \true" state of nature,

and, based on this, each agent's consumption is determined by the algorithm in the case of perfect

information. Resources assigned to long-lived agents are invested by the social planner up till date

1. Also assume that resources received by "short-lived" agents must be consumed at date 0. (This

assumption will be dropped in the formal analysis below.)

The above arrangement may have a problem supporting the full-information e±cient alloca-

tion if the agents do not truthfully communicate with the planner about their types.. But, it is easy

to see that under this arrangement, the agents have no incentive to lie about their types no matter

what the other agents' reports are. First, short-lived agents never want to claim to be long-lived

because the resource kept up till date 1 has no value to them. If an agent turns out to be long-lived,

then by reporting truthfully, she receives R¡1c¤ at date 0 which will grow into c¤ by date 1. If she

claims to be short-lived, then at most she receives c¤ which must be consumed at date 0. Given the

speci¯cation of utility function, the agent prefers to report her true type, regardless of the other

agents' actions. Thus, the (ex post) e±cient allocation can be supported as a strictly dominate

strategy equilibrium. Since the ex post e±cient allocation is implementable, it is necessarily ex ante

e±cient.

In the formal analysis below, we will extend the above arguments to the case with smooth

concave utility function and sequential service.

(Note that in the above algorithm (with or without private information), how much an agent

consumes depends not only on her realized (or claimed) type, but also on the type pro¯le of the entire

population. In particular, the date 0 consumption of a short-lived depends the number of long-lived

agents and thus varies across the states of nature. The reason that the arrangement of Diamond and

Dybvig (1983) posses a \run" equilibrium is directly related to that an agent consumption bundle

depends only on her reported type. In the absence of a suspension scheme, a claimed short-lived

agent always gets the consumption level speci¯ed by the social optimal allocation, no matter what

reports the other agents send to the bank. In a sense, the arrangement in Diamond and Dybvig is

an ill-de¯ned or incomplete mechanism.)

One property of the mechanism in our paper is that the consumption of a short-lived agent

is a nondecreasing function of the number of long-lived agents ((d)=(d´)(¡(´))=(I ¡ ´) ¸ 0; see the

5



proof of lemma 3). This property seems to correspond a partial suspension scheme: the more people

claim to be short-lived, the less consumption each and every one of the short-lived agents (not just

the late-arrived) receives.

3. Intermediation as an allocation mechanism

One way of viewing a ¯nancial intermediary is as a trading club. People want to join such

a club because features of the environment (including the informational features that engender

problems of \adverse selection" and \moral hazard") make arms-length transactions infeasible or

unsatisfactory. Instead, a trading club operates according to a charter that speci¯es which trades

are to be made as function of information provided by members according to an explicitly de¯ned

protocol of communication and negotiation.

A. The environment of a Bayesian allocation mechanism

Consider a formal representation of an environment where such an intermediary would have a

rationale. Let I = f1; 2; : : : ; Ig be a set of traders who live in a risky environment. The possible states

of this environment are the sample points of a probability space (; B; Pr). There is a measurable

space of ex-post allocations which will be denoted by (A;A). A state-contingent allocation is simply

a B-measurable function from  to A. Denote the set of such B-measurable functions by A. If

~a 2 A and ! 2 , then ~a(!) is the ex-post allocation that the state-contingent allocation ~a speci¯es

for state !. (Henceforth a state-contingent allocation or an ex-post allocation will often be called

simply an allocation, when it is clear from context which type of entity is being discussed.)

There is a set F µ A of feasible state-contingent allocations. (That is, F is a set of B-

measurable functions f :  ! A.) The speci¯cation of F is supposed to re°ect both individual

restrictions such as nonnegativity of consumption and also aggregate restrictions such as materials

balance.

This model will incorporate the Harsanyi doctrine that all traders are Bayesian utility max-

imizers, and that moreover Pr characterizes the prior beliefs common to all traders at \birth."

Typically the model is used to understand the traders' behavior in \adulthood" after they have

revised their beliefs in light of experience. The experience of trader i is called his type, and is rep-

resented as a sub ¾-algebra Ei of B. When a trader's type is described in terms of a B-measurable

random variable which the trader is assumed observe, Ei will be taken to be the smallest ¾-algebra
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with respect to which the random variable observed by i is measurable. (Typically Ei is strictly

smaller than B itself.)

In addition, assume that there is a sub ¾-algebra E0 of B that represents information that

is directly usable for allocation. That is, an allocation can be made contingent on this information

without traders having to reveal it.

Each trader i has a state-dependent utility function ui:A £  ! R, and maximizes the

expectation of this function conditional on his type. Denote this conditional expectation by the

function by Ui:A £  ! R, which is de¯ned by 2

Ui(~a; !¤) = E[ui(~a(!); !)jEi](!¤): (1)

B. Speci¯cation of an allocation mechanism

An allocation mechanism is speci¯ed in terms of two structures, a communication protocol

and an allocation rule. The allocation rule is a function which determines an ex-post allocation on

the basis of the data generated by traders' use of the communication protocol.

A communication protocol is described formally in terms of a ¯nite message space M . Each

trader i chooses, on the basis of his type, a message mi 2 M to send. As a function of the state of

the environment, then, trader i's message is an Ei-measurable function ¹i:  ! M . This function

¹i will be called i's communication strategy. When each trader follows his communication strategy

in state !, a pro¯le ¹(!) = (¹1(!); : : : ; ¹I(!)) is generated which can be used as an informational

basis for allocation.

Thus the allocation rule of the mechanism is a measurable function

®:  £ MI ! A (2)

such that

8m 2 MI ®(!; m) is E0-measurable and 8¹ 9f 2 F 8! f(!) = ®(!;¹(!)): (3)

2See Breiman (1968) or another graduate-level textbook of probability theory for the de¯nition of expectation
conditional on a ¾-algebra. In the following de¯nition, a trader's conditional expected utility is written for notational
convenience as depending on the entire ex-post allocation. Actually, in the model to be studied here, a trader i's own
consumption will be the only aspect of the allocation that matters for the determination of i's utility.
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(The domain of quanti¯cation of ¹ is the set of all communication-strategy pro¯les. The function ®

must be restricted in the way speci¯ed by (3), in order to guarantee that the mechanism will always

determine a feasible allocation regardless of which communication strategies traders choose.) An

allocation rule ® and a communication-strategy pro¯le ¹ together determine an allocation ®±¹ 2 F.3

An equilibrium (speci¯cally a Bayesian Nash equilibrium) of the allocation mechanism (M;®)

is a communication-strategy pro¯le ¹¤ such that, for any trader i and any pro¯le ¹ that i can

obtain by unilaterally changing his communication strategy while others' strategies remain the

same, Ui(® ± ¹;!) · Ui(® ± ¹¤; !) almost surely.

If ¹¤ is an equilibrium of (M; ®) and ~a = ® ± ¹¤, then ~a will be called an implementable

allocation of (M; ®). Let I denote the set of every state-contingent allocation such that there exists

a mechanism that implements it. An allocation ~a 2 I is e±cient if

8 ~c 2 I
½

9 i 2 I
n
E[ui(~c(!); !)] < E[ui(~a(!); !)]

o

or 8 i 2 I
n
E[ui(~c(!); !)] = E[ui(~a(!); !)]

o¾
:

(4)

This de¯nition conforms to the usual de¯nition of ex-ante Pareto e±ciency (cf. Myerson, 1991).

Consider the allocation that, in each state of nature, maximizes the sum of traders' utili-

ties. Typically this allocation will not be implementable, so it cannot be e±cient. However, this

maximizing allocation is necessarily e±cient if it is implementable.

Lemma 1 Suppose that ~a is implementable and satis¯es

X

i2I
E[ui(~a(!); !)] = max

~c2F

X

i2I
E[ui(~c(!); !)]: (5)

Then ~a is e±cient.

Proof: It follows immediately from (5) that
P
i2IE[ui(~a(!); !)] ¸

P
i2IE[ui(~c(!); !)] for every

~c 2 I. This means that if E[ui(~a(!); !)] · E[ui(~c(!); !)] for every i 2 I, then E[ui(~a(!); !)] =

E[ui(~c(!); !)] for every i 2 I. That is, the condition (4) de¯ning e±ciency must hold.

Lemma 1 has the following, immediate corollary.

3We use the notation ®±¹ to denote the state-contintent allocation that takes each state ! to the ex-post allocation
®(!; ¹(!)).
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Lemma 2 Suppose that ~a is implementable and satis¯es

8! 2 
X

i2I
ui(~a(!); !) = max

a2F (!)

X

i2I
ui(a; !): (6)

Then ~a is e±cient.

4. Banking|A schematic model

Bryant (1980) and Diamond and Dybvig (1983) introduce models of banking which Jacklin

(1987) simpli¯es further to study capital-structure issues.4 Now we formulate a ¯nite-trader version

of Jacklin's maturity-transformation model.

A. An environment where a maturity-transforming intermediary has a role

De¯ne  and Pr by

 = f0; 1gI and 8! Pr(!) = 2¡I ; (7)

and de¯ne E0 and Ei by

E0 = f;; g and 8i 2 I Ei = f;;; f!j!i = 0g; f!j!i = 1gg: (8)

Suppose that there is an aggregate endowment of one unit of a good per person, which can be

transformed into a consumption good available at either date 0 or date 1. The transformation is

simply storage until date 0, but whatever is not consumed at date 0 is augmented by a gross factor

of R > 1 at date 1. Thus feasible ex-post allocations are the elements of the set

A =
½

a: I ! R2+
¯̄
¯
X

i2I
[a0(i) + R¡1a1(i)] · I

¾
: (9)

and

F = A: (10)

A trader's utility from allocation a in state ! is given by a function v:R+ ! R of a con-

sumption aggregate which includes consumption at both dates if i is of type 1, but which consists

4Jacklin deliberately neglects the sequential service constraint, which Diamond and Dybvig discuss informally and
which Wallace (1988) formalizes and analyzes. Wallace emphasizes that a serious treatment of this constraint shows
the institutional arrangement of deposit insurance as modelled by Diamond and Dybvig to be infeasible.
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of consumption at date 0 alone if i is of type 0.5 That is,

8i 8! ui(a; !) = v(a0(i) + !ia1(i)): (11)

Assume that6

v(0) = 0;

v is strictly increasing, continuously twice di®erentiable and strictly concave;

v satis¯es the Inada conditions lim°!0 v0(°) = 1 and lim°!1 v0(°) = 0;

8° °v00(°)=v0(°) · ¡1 (Relative risk aversion ¸ 1 everywhere). (12)

Consider the problem of choosing ~a 2 F to maximize the sum of traders' expected utilities, if

the allocation could be made measurable in the traders' types (that is, the \fully-informed utilitarian

social planner's problem"). By strict concavity of v, Jensen's inequality, and the fact that R > 1

while consumption goods at the two dates are perfect substitutes for type-1 traders, the following

conditions should hold. In each state !, all type-0 traders should receive identical consumption

bundles (c0(!); 0) and all type-1 traders should receive identical consumption bundles (0; c1(!)).

Letting µ(!) =
P
i2I !i as in the preceding example, each ex-post allocation a = ~a(!) should satisfy

the following two equations (a ¯rst-order condition and a feasibility condition derived from (9),

respectively).

v0(c0(!)) = Rv0(c1(!)) (13)

and

[I ¡ µ(!)]c0(!) + R¡1µ(!)c1(!) = I: (14)

These two equations determine ~a(!) uniquely. It is evident that c0(!) and c1(!) depend on ! only

through µ(!). The following lemma explains the signi¯cance of the assumption regarding relative

risk aversion in (12).

5This formulation follows Diamond and Dybvig. Jacklin also considers a utility formulation in which both types
of trader receive positive marginal utility from consumption of each date, but in which type-0 traders discount con-
sumption at date 1 more heavily than type-1 traders do.

6Phil Dybvig has pointed out to us that the assumption that v(0) = 0 is inconsistent with the assumption that
relative risk aversion is greater than 1 everywhere. Fortunately, this speci¯cation of v(0) was adoped solely for
notational convenience. The assumption that v(0) = 0 is related to the proof of Lemma 7 only in terms of the
existence of function Á : R+ ! R+ (the middle of p. 17 below (53)). Without restricting the domain of Á to be R+,
one can claim that there exists a function Á : S ! R+; where S µ R is the image of v; such that Á0 < 0; Á00 > 0,
and for all c, v0(c) = Á(v(c)): In fact, the function Á(s) ´ v0(v¡1(s)) will work. This Á is decreasing because v¡1 is
increasing and v00 < 0: By assumption (44), Á00 = (d)=(dc) [(v00(c))=(v0(c))] ¢ (dc)=(ds); where c = v¡1(s); is positive.
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Lemma 3 Suppose that v satis¯es the assumptions (12), including that 8° °v00(°)=v0(°) · ¡1.

(Relative risk aversion ¸ 1 everywhere.) Then the allocation ~a de¯ned from (13) and (14) by

[~a(!)]i = ((1 ¡ !i) c0(!); !i c1(!)) (15)

is e±cient. The consumption level c1(!) of type-one traders is a nondecreasing function of µ(!).

More generally, let ´ be a real variable taking values in (0; I) and consider the problem of maximizing

(I ¡ ´)v
µ °

I ¡ ´

¶
+ ´v

µR(I ¡ °)
´

¶
: (16)

The solution, parametrized by ´, is a function ¡(´) that satis¯es

d
d´

R(I ¡ ¡(´))
´

¸ 0: (17)

Proof: By (13) and (14) and the concavity of v, ~a satis¯es the optimality condition (6) of lemma

2. Therefore ~a is e±cient by lemma 2.

To see that the general monotonicity assertion (17) implies the more speci¯c assertion re-

garding c1, note that if 0 < µ(!) = ´ < I, then c0(!) = ¡(´)=(I ¡´) and c1(!) = R(I ¡¡(´))=´) by

(13) and (14). This equivalence can be extended to µ(!) 2 f0; Ig, in view of the Inada conditions

on v. (That is, de¯ning ¡(0) = I and ¡(I) = 0 extends the de¯nition of ¡ on (0; I) continuously.)

Corresponding to (13), the ¯rst-order condition for (16) is

v0
µ ¡(´)

I ¡ ´

¶
¡ Rv0

µR(I ¡ ¡(´))
´

¶
= 0: (18)

Taking the derivative of (18) with respect to ´ yields

·
¡0(´) +

¡(´)
I ¡ ´

¸
v00(¡(´)=(I ¡ ´))

I ¡ ´
+ R2

·
¡0(´) +

I ¡ ¡(´)
´

¸
v00(R(I ¡ ¡(´))=´)

´
= 0: (19)

Now consider the derivative in (17).

d
d´

R(I ¡ ¡(´))
´

=
¡R
´

·
¡0(´) +

I ¡ ¡(´)
´

¸
: (20)
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In order to prove the lemma by establishing (17), then, it must be shown that the bracketed

expression in (20) is negative. This expression is identical to one of the two bracketed expressions

in (19), and (19) shows that either those two expressions are both zero or else they have opposite

signs. Thus the inequality

¡0(´) +
I ¡ ¡(´)

´
· 0; (21)

which proves the lemma, is equivalent to

I ¡ ¡(´)
´

·
¡(´)
I ¡ ´

: (22)

Inequality (22) follows from the assumption that 8° °v00(°)=v0(°) · ¡1. To see this, note

that the assumption implies that
@
@r

[rv0(rs)] · 0: (23)

This inequality and equation (18) imply that

v0
µ

I ¡ ¡(´)
´

¶
¸ v0

µ
¡(´)
I ¡ ´

¶
; (24)

which implies (22) by the concavity of v.

B. A mechanism with a unique, e±cient equilibrium

Next we will show that conditions (13) and (14) imply that the e±cient allocation can be

implemented by a truth-telling equilibrium of an allocation mechanism The mechanism here pos-

sesses a property that the mechanism in that other model lacks: that truth-telling is the strictly

dominant strategy for each trader. By de¯nition, this condition means that whether a trader is of

type 0 or of type 1, he receives a higher utility level from revealing his type truthfully than from

misrepresenting it|regardless of what reports other traders give. It follows (cf. Myerson, 1991) that

the truth-telling equilibrium is the unique Bayesian Nash equilibrium of the mechanism. Therefore

no alternative, ine±cient, \run" equilibrium of this mechanism can exist.

After having characterized the allocation that maximizes ex-ante expected utility (which has

been done already by deriving conditions (13) and (14)), the mechanism possessing the dominant-

strategy property is de¯ned by depending on the truthfulness of traders' reports, and using them

as the basis for assigning traders the ex-post consumption bundles determined by that allocation.
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Recall that, ordinarily, such a straightforward approach would be unsuccessful because truth-telling

would not be a trader's equilibrium strategy. However, because of the particular form (11) of

the state-contingent utility function and special features of the e±cient, symmetric allocation, the

approach does work in this case.

Theorem 1 Let M = f0; 1g be the set of signals for each trader. De¯ne x: M £ f0; : : : ; Ig ! R by

the conditions (analogous to (13) and (14)) that

v0(x(0; ´)) = Rv0(x(1; ´)) (25)

and

[I ¡ ´]x(0; ´) + R¡1´x(1; ´) = I: (26)

De¯ne ®:  £ MI ! A by

[®(!; m)]i =

0

@(1 ¡ mi)x(mi;
X

j2I
mj); mi x(mi;

X

j2I
mj)

1

A : (27)

The truthful communication strategy ¹̂i(!) = !i is the strictly dominant strategy for each trader

i. The mechanism thus implements the e±cient, symmetric allocation in strictly dominant strate-

gies, and consequently the pro¯le of truthful communication strategies is its unique Bayesian Nash

equilibrium

Proof: If ´ = µ(!), then conditions (25) and (26) on (x(0; ´); x(1; ´)) are identical to conditions

(13) and (14) on (c0(!); c1(!)). Lemma 3 therefore implies that the mechanism implements the

e±cient, symmetric allocation if the pro¯le of truthful communication strategies is a Bayesian Nash

equilibrium.

By Myerson (1991), a pro¯le of strictly dominant strategies for a mechanism is the unique

Bayesian Nash equilibrium of the mechanism. Therefore, to prove the lemma, it is su±cient to

show that truthful communication is the strictly dominant strategy for each trader. To verify this,

consider separately each of the two possible values of !i. If !i = 0, then by (25) and (27), i

will receive a positive amount of consumption at date 0 if he sends message 0, but will receive 0

consumption at date 0 if he sends message 1. Because he has utility only for consumption at date

0 (by the de¯nition (11) of his utility function), and because his utility is strictly increasing in the
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amount of this good that he consumes (by (11) and (12)), he strictly prefers to send message 0

rather than message 1 in state !.

Now consider the alternative case that !i = 1. The strict concavity of v assumed in (12),

together with (25), implies that

x(1; 0 +
X

j 6=i
¹j(!)) > x(0; 0 +

X

j 6=i
¹j(!)) (28)

regardless of which communication strategies ¹j the other traders use. By (17) of lemma 3 and the

fundamental theorem of calculus,

x(1; 1 +
X

j 6=i
¹j(!)) ¸ x(1; 0 +

X

j 6=i
¹j(!)): (29)

Therefore, given the functional form of i's utility function (equations (11) and (12)) and the spec-

i¯cation of the mechanism (equation (27)), inequalities (28) and (29) together imply that trader i

must strictly prefer to send message 1 rather than message 0.

5. Banking in an environment with sequential service

The schematic model of banking studied above abstracts from an important feature of an

actual bank: that traders do not all contact the bank at the same time, and that the bank must

deal promptly with traders who contact it early. The bank therefore is constrained from making its

treatment of those traders contingent on information yet to be provided by later traders, especially

if the early traders wish to make withdrawals. This feature plays an important role in Diamond

and Dybvig's (1983) intuitive discussion of their model, and it is formalized by Wallace (1988)

who derives further consequences from it. In view of the striking discepancy between theorem 1 and

Diamond and Dybvig's analyisis, and of the closer analogy between the theorem and Jacklin's (1987)

analysis that also abstracts from the sequential-service constraint, it is a salient question whether

or not theorem 1 can be extended to an environment with sequential service. Now we investigate

this question and ¯nd an answer that is more or less in the a±rmative. Speci¯cally, if v satis¯es

non-increasing absolute risk aversion as well as the conditions speci¯ed in (12), then the pro¯le of

truthful communication strategies is the unique pro¯le that survives iterated elimination of strictly

dominated strategies. It follows that, as in theorem 1, this is the unique Bayesian Nash equilibrium

of the natural mechanism that implements the e±cient allocation.
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In the present formalization of the sequential-service constraint, every trader contacts the

bank at some time during date 0, these \arrival times" for di®erent traders are stochastic and

independently distributed, and each trader's arrival time is in his own information set. This last

detail is crucial, for it implies that a trader who arrives very late can be almost certain that he is

the last trader to arrive. Conditional on being last, truthful communication is the trader's unique

utility-maximizing action. That is, any strategy that involves some untruthful communication by a

trader when he arrives very late can be eliminated as being dominated by the strategy that agrees

with it except at very late times, but that speci¯es truthful communication at those times. This

result can then be \bootstrapped" to apply to communication at earlier times as well. One should

note that, in Wallace's formalization of sequential service, a trader's time of arrival is not in his

own information set. Under Wallace's assumption, it seems that iterated elimination of strictly

dominated strategies may not lead necessarily to truthful communication.

A. Formalization of sequential service

Modelling sequential service requires that the maturity-transformation model must be mod-

i¯ed by enlarging the state space  to represent information about arrival times, and by making

corresponding changes in the de¯nitions of agents' types and of feasible allocations.

To enlarge the state space, replace the de¯nition (7) by

 = f0; 1gI £ [0; 1]I, and p 2 (0; 1);

For all i · I Pr(!i = 1) = P ;

For all i · I !I+i is uniformly distributed;

The projections of ! on its coordinates are independent r.v.'s. (30)

Replace the de¯nition in (8) of agent i's type by

Ei = ff!j!i = 0 and !I+i 2 Ag [ f!j!i = 1 and !I+i 2 BgjA 2 F and B 2 Fg; (31)

where F is the ¾-algebra of Borel sets on [0; 1]. That is, in each state a trader knows his own utility

function and his own arrival time at the bank, but he knows nothing about the other traders.

Also replace the speci¯cation in (8) that the algebra E0 is trivial by the following de¯nition,

which intuitively speci¯es that information about all traders' arrival times may be used directly
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(that is, without having to be revealed by the traders' communication) as a basis for allocation.

E0 = f!j8i · I !I+i 2 AijA1 2 F ; : : : ; AI 2 Fg (32)

In order to formulate the sequential service constraint, de¯ne the arrival-order statistics by

¿ : f0; : : : ; Ig £  ! I. That is, ¿(1; !); ¿(2; !); : : : ¿(I; !) are the ¯rst, second, : : : Ith traders in

order of arrival determined by the coordinates !I+1; !I+2; : : : !2I of !. Ties can be assumed to be

broken arbitrarily in the zero-probability event that several traders arrive simultaneously at the

bank. De¯ne the rank statistics ½: I £ f0; : : : ; Ig £  ! f0; : : : ; Ig, which are inverse to the order

statistics in each state of nature, by ½(¿(i; !); !) = i.

Suppose that ~a = ((X1
0 ;X1

1 ); : : : ; (XI
0 ; XI

1 )) 2 A is an allocation.7 The intuitive content of

the sequential service constraint is that the mechanism represents a ¯nancial intermediary (call it

a bank) operating at a speci¯c location that the trader visits at some time during date 0. When

trader i visits, he communicates a message m 2 M determined by a communication strategy ¹i that

is measurable with respect to Ei, and he then receives Xi
0(!) immediately. This quantity thus must

not depend on information from traders who arrive later in state ! than i does, since those traders

have not yet communicated their information to the bank. Since all traders are envisioned to arrive

at the bank at some time before date 1, when the consumption amounts Xj
1(!) are distributed,

those date-1 quantities are not analogously constrained.

That is, the amount X¿(1;!)
0 (!) of consumption given to trader ¿(1; !) at date 0 must depend

only on the identity of ¿(1; !) and the time !I+¿(1;!), both of which the bank observes, and on

that trader's utility parameter !¿(1;!), which he has the opportunity to communicate to the bank.

(Whether or not he actually does communicate his utility parameter in equilibrium is irrelevant

to the formulation of this constraint, which expresses the limitation imposed by the exogenous

sequential nature of the opportunities for the bank to acquire information.) Next, the information

that the bank can use to determine the date-0 consumption of the second trader to arrives consists of

both this information about the ¯rst trader, which the bank remembers, and also the corresponding

information about the second trader himself. And so forth. Formally, ((X1
0 ; X1

1); : : : ; (XI
0 ;XI

1 ))

7In this section, since  is a continuum, A denotes the set of Borel-measurable functions from  to A.
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satis¯es the sequential service constraint if

8i X¿(i;!)
0 = E

h
X¿(i;!)
0 j¿(1; !); : : : ; ¿(i; !); !¿(1;!); : : : ; !¿(i;!); !I+¿(1;!); : : : ; !I+¿(i;!)

i
: (33)

In view of this constraint, F should be de¯ned by

F =
n
~aj~a 2 A and ~a satis¯es (33)

o
: (34)

B. The e±cient, symmetric, state-contingent allocation

In this section, we consider the solution of the optimization problem posed in equation (5),

that is,

Maximize
X

i2I
E[ui(~c(!); !)] subject to ~c 2 F;

with F de¯ned by (34). Subsequently we will consider the problem of implementing this allocation,

which is e±cient by lemma 1.

The key to solving problem (36) is the observation, formalized below in lemma 4, that the

arrival-order statistics ¿(i; !) provide all of the relevant information about traders' arrival times.

More precise arrival-time information is relevant neither to traders' enjoyment of utility nor to the

technical feasibility of allocations in the sequential service environment.8 In view of this observation,

de¯ne mappings ¾i:  ! f0; 1gi for 1 · i · I by

8j · i ¾ij(!) = !¿(j;!): (35)

De¯ne the set of 0{1 sequences of length at most I, including the null sequence, as S. For s 2 S, let

`(s) denote the length of s. De¯ne h0i to be the sequence consisting of I consecutive zeros. De¯ne

µ¤(s) =
P
i<`(s) si and ¼(s) = P µ¤(s)(1 ¡ P )`(s)¡µ¤(s). De¯ne the weak and strict extension-ordering

relations on S by
r · s () `(r) · `(s) and 8i · `(r) [ri = si];

r < s () `(r) < `(s) and 8i · `(r) [ri = si]. (36)

Lemma 4 Suppose that ~a = ((X1
0 ; X1

1 ); : : : ; (XI
0 ;XI

1 )) solves problem (5) in the sequential-service

8Each trader will use his information about his precise arrival time to make inference about his probable rank in
the arrival queue (which he does not observe directly) though, so this information is relevant to implementation.
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environment. Then there exists a vector x 2 RS+ such that

X

r·h0i

xr = I and 8s 2 S

2

4
h
s`(s) = 1 =) xs = 0

i
and

X

r·s
xr · I

3

5 (37)

and, almost surely for all i,

X¿(i;!)
j =

8
>><

>>:

x¾i(!) if j = 0 and ¾ii(!) = !¿(i;!) = 0;
R
µ(!)

³
I ¡

P
r·¾I(!) xr

´
if j = 1 and ¾ii(!) = !¿(i;!) = 1;

0 otherwise.

(38)

If ~a and x are related according to (38), then

X

i2I
E [ui(~a(!); !)] =

X

`(s)=I
µ¤(s)>0

¼(s)

2

4

0

@
X

r·s
v(xr)

1

A

+µ¤(s)v

0

@ R
µ¤(s)

0

@I ¡
X

q·s
xq

1

A

1

A

3

5 + ¼(h0i)
X

r·h0i

v(xr): (39)

Proof: One can alternatively characterize ~a in terms of a vector of random variables

((Y 1
0 ; Y 1

1 ); : : : ; (Y I
0 ; Y I

1 )), where Y i
j (!) = X¿(i;!)

j (!) a.s. for each i and j. Consider the state-

contingent allocation ~c = ((Z10 ; Z11); : : : ; (ZI0 ; ZI1 )), de¯ned by Z¿(i;!)j (!) = E[Y i
j (!)j¾i] a.s. It is

easily veri¯ed that ~c 2 F, and for every i, E[ui(~a(!); !)] · E[ui(~c(!); !)], with strict inequality for

at least one i if ~a 6= ~c. (This inequality must hold because v is strictly concave and ~c is obtained by

taking conditional expectation with respect to ~a.) That is, ~a 6= ~c would contradict the hypothesis of

the lemma. By construction, ~c|that is to say, ~a|can be characterized in terms of a vector x 2 RS+.

This vector must actually satisfy (38), by the same considerations that prove the e±ciency assertion

in lemma 3. (Note that, in the context of (38), condition (37) states that traders of type 1 consume

exclusively at date 2.) Condition (39) is veri¯ed by straightforward computation.

By lemma 4, a solution to optimization problem (5) can be found by optimizing over a set

of vectors in RS+. Speci¯cally, given the strict concavity of the right side of (39), a solution is

characterized by a vector that satis¯es the ¯rst-order conditions for optimization of (39) subject to

the constraint (37). That is, the following lemma holds.

Lemma 5 A necessary and su±cient condition for a state-contingent allocation
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~a = ((X1
0 ;X1

1); : : : ; (XI
0 ; XI

1 )) to solve problem (5) in the sequential-service environment is that there

should exist a vector x 2 RS+ that satis¯es (37), (38), and for all r 2 S such that r`(r) = 0,

¼(r)v0(xr) ¡ R

2

6666
4

X

`(s)=I
µ¤(s)>0
r·s

¼(s)v0
0

@ R
µ¤(s)

0

@I ¡
X

q·s
xq

1

A

1

A

3

7777
5

+ 0µ
¤(r)¼(h0i)v0(xh0i) = 0: (40)

C. Iterated elimination of strictly dominated strategies

Like theorem 1, the corresponding result for the sequential-service environment will guarantee

that the mechanism implementing the e±cient allocation has a unique Bayesian Nash equilibrium.

However, due to the sequential-service constraint, uniqueness cannot be established by the dominant-

strategy argument used to prove theorem 1. Rather a concept of iterated elimination of strictly

dominated strategies must be used. To state this concept, generalize the concept of strict dominance

for allocation mechanism (M;®) in the following way. First, for functions f :  ! R and g:  ! R,

de¯ne f < g if Pr(f(!) · g(!)) = 1 and Pr(f(!) < g(!)) > 0. Next, for an arbitrary subset

K µ MI , de¯ne the relation <K
i on the strategy set of trader i (that is, the subspace of M that is

measurable with respect to Ei) by specifying that Á <Ki Á0 whenever Á = ¹i for some ¹ 2 K, Á0 = ¹0i

for some ¹0 2 K, and

8¹ 2 K 8¹0 2 K [[Á = ¹i and Á0 = ¹0i] =) Ui(® ± ¹(!); !) < Ui(® ± ¹0(!); !)] (41)

(with Ui(® ± ¹(!); !) and Ui(® ± ¹0(!); !) being treated as functions of !). Finally, de¯ne M0
i = M

for each i, and for each n, let Kn =
Q
j·I(Mn

j ) and de¯ne

Mn+1
i = fÁ 2 Mn

i jnot 9Á0 2 (Mn
i ) Á <Kn

i Á0g: (42)

(Note that, for every j including i, (Mn
j ) refers to the space of functions that are measurable with

respect to Ej .)

The following lemma can be proved by an argument analogous to that in Myerson (1991)

regarding iterated elimination of strictly dominated strategies.
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Lemma 6 For each i, let M¤
i =

T
n2NMn

i . If each Mn
i contains a single element, then the unique

element of
Q
i·I M¤

i is the unique Bayesian Nash equilibrium of allocation mechanism (M;®).

D. A monotonicity lemma

The ¯rst-order condition (40) just derived for the sequential-service environment has anal-

ogous structure to the ¯rst-order condition (13) in the simultaneous-communication environment

studied in section 4.. The monoticity assertion of lemma 3, which provides the key to establishing

theorem 1 regarding the dominant-strategy implementability of the symmetric, e±cient allocation

in that environment, is proved by examining condition (13). A monotonicity result for a sequential-

service environment is provable on the basis of condition (40), and it plays an analogous role to

lemma 3 in establishing implementability.

To understand intuitively the way that this monotonocity lemma will be formulated, it helps

to know the order in which strictly dominated strategies will be eliminated. Essentially, that order

is according to backward induction on the arrival time of a trader at the bank. we will establish

that, if a trader arrives at the bank su±ciently late at date 0, then he can be sure that everyone

who arrives subsequently will give a truthful report, and that therefore the optimal report for the

trader in question is also truthful. Here \su±ciently late" means \not before some time t," and we

will show by working backward in time that actually t can be taken to be zero. That is, truthful

reporting is optimal for a trader regardless of what time he arrives at the bank.

The foregoing discussion should make it clear that, when we are characterizing implemen-

tation, we will have to consider the situation of a trader i who arrives at the bank at some time

during date 0 after I ¡ J ¡ 1 traders have already arrived, and before the last J traders will arrive,

and who knows that those J traders who follow him will give truthful reports. Some nonnegative

amount of the endowment good will have already been given to the earlier traders who have reported

themselves to be of type 0, and an amount y remains to be allocated.

Suppose that the I ¡J ¡1 traders who arrive prior to trader i have given a vector of reports

p 2 S, with `(p) = I¡J¡1. In terms of a representation like the one developed in lemma 4, the bank

must allocate consumption in a way speci¯ed by a vector ° 2 RS
0

+ , where S 0 = fs 2 Sj`(s) · Jg. The

amount °; represents the amount of date-0 consumption to be given to trader i, and for `(s) = n > 0,

°s represents the amount of date-0 consumption to be given to the nth trader to arrive after i if s

is the vector of reports of the ¯rst n traders to arrive following i. If i reports being of type 0, then
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the optimization problem of the bank is to maximize

v(°;) +
X

`(s)=J

¼(s)

2

4

0

@
X

;<r·s

v(°r)

1

A + (µ¤(p) + µ¤(s))v

0

@ R
µ¤(p) + µ¤(s)

0

@y ¡
X

q·s
°q

1

A

1

A

3

5 :

(The term

(µ¤(p) + µ¤(s))v

0

@ R
µ¤(p) + µ¤(s)

0

@y ¡
X

q·s
°q

1

A

1

A

is taken to be zero if µ¤(p) = µ¤(s) = 0, since in that case there is no trader who wishes to consume

at date 1.)

If i reports being of type 1, then the optimization problem of the bank is to optimize

X

`(s)=J

¼(s)

2

4

0

@
X

;<r·s

v(°r)

1

A + (µ¤(p) + µ¤(s) + 1)v

0

@ R
µ¤(p) + µ¤(s) + 1

0

@y ¡
X

q·s
°q

1

A

1

A

3

5 :

Analogously to what we have done in lemma 3, these formulae can be subsumed in a general formula.

Speci¯cally they correspond to ´ = 0 and ´ = 1 in

(1 ¡ ´)v
µ

¡;(´)
1 ¡ ´

¶
+

X

`(s)=J

¼(s)

2

4

0

@
X

;<r·s

v(¡r(´))

1

A

+ (µ¤(p) + µ¤(s) + ´)v

0

@ R
µ¤(p) + µ¤(s) + ´

0

@y ¡
X

q·s
¡q(´)

1

A

1

A

3

5 : (43)

Our goal is to prove the following statement, which formalizes the idea that a trader of type

1 should reveal his type truthfully if all traders who will arrive at the bank after him are also going

to reveal their types truthfully.

Lemma 7 For each ´ 2 [0; 1], let ¡(´) 2 RS
0

+ maximize (43) subject to the constraint (37) (with S 0

replacing S in the statement of the constraint). Suppose that v satis¯es condition (12) and also the

condition that

8°
d
d°

v00(°)
v0(°)

¸ 0 (Absolute risk aversion is non-increasing everywhere). (44)
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Then

v (¡;(0)) <
X

`(s)=J

¼(s)v

0

@ R
µ¤(p) + µ¤(s) + 1

0

@y ¡
X

q·s
¡q(1)

1

A

1

A : (45)

Proof: Throughout the following arguments, we will assume that the function ¡, the image

of which is de¯ned at each ´ by optimization of (43), is continuously di®erentiable in the interval

(0; 1) and is continuous at ´ = 0 and ´ = 1. This assumption can be proved by using an implicit-

function theorem to establish di®erentiability and arguing from the Inada conditions on v to establish

continuity at the endpoints.

We will also assume that µ¤(p) > 0 This assumption avoids a complication that occurs when

all traders report being impatient, in which case it is optimal for the bank to use all remaining

endowment to provide date-0 consumption when the last trader to arrives. The ¯rst-order condition

will generally balance the marginal utility of trader i against the expected marginal utility of patient

traders, but when µ¤(p) = 0 the ¯rst-order condition will balance the marginal utility of trader i

against an expected value that includes the marginal utility of the last trader to arrive at the bank

in this special case. The logic of the proof is una®ected by this complication in the form of the

¯rst-order condition when µ¤(p) = 0, but extra terms would appear in all of the derivations if it

were to be considered explicitly.

The function ¡ satis¯es the following ¯rst-order condition at each value of ´ 2 (0; 1).

0 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

v0
³
¡;(´)
1¡´

´

¡ R
P
`(s)=J ¼(s)v0

³
R

µ¤(p)+µ¤(s)+´

³
y ¡

P
q<s ¡q(´)

´´
FOC for ¡;;

¼(r)v0 (¡r(´))

¡ R
P

`(s)=J
r·s

¼(s)v0
³

R
µ¤(p)+µ¤(s)+´

³
y ¡

P
q·s ¡q(´)

´´
FOC for ¡r, ; < r.

(46)

This condition implies the following three martingale-marginal-utility equations:

v0
µ¡;(´)

1 ¡ ´

¶
=

X

`(s)=1

¼(s)v0 (¡s(´)) ; (47)
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for 0 < `(r) < J and r`(r) = 0,

¼(r)v0 (¡r(´)) =
X

`(s)=`(r)+1

¼(s)v0 (¡s(´)) ; (48)

and, for `(r) = J and rJ = 0,

v0 (¡r(´)) = Rv0
0

@ R
µ¤(p) + µ¤(s) + ´

0

@y ¡
X

q·r
¡q(´)

1

A

1

A (49)

Since R > 1, equation (46) implies that

v0 (¡;(0)) >
X

`(s)=J

¼(s)v0
0

@ R
µ¤(p) + µ¤(s)

0

@y ¡
X

q<s
¡q(0)

1

A

1

A : (50)

By an argument analogous to lemma 3, involving the martingale conditions (47){(49),

d
d´

2

4
X

`(s)=J

¼(s)v0
0

@ R
µ¤(p) + µ¤(s) + ´

0

@y ¡
X

q·s
¡q(´)

1

A

1

A

3

5 · 0 : (51)

By the fundamental theorem of calculus and continuity at the endpoints 0 and 1, (51) implies that

X

`(s)=J

¼(s)v0
0

@ R
µ¤(p) + µ¤(s)

0

@y ¡
X

q·s
¡q(0)

1

A

1

A

¸
X

`(s)=J

¼(s)v0
0

@ R
µ¤(p) + µ¤(s) + 1

0

@y ¡
X

q·s
¡q(1)

1

A

1

A : (52)

Equations (50) and (52) imply that

v0 (¡;(0)) >
X

`(s)=J

¼(s)v0
0

@ R
µ¤(p) + µ¤(s) + 1

0

@y ¡
X

q·s
¡q(1)

1

A

1

A : (53)

Finally, by assumption (44) (non-increasing absolute risk aversion), there is a function Á:R+ !

R+ such that Á0 < 0, Á00 > 0, and for all c, v0(c) = Á(v(c)). Thus (53) can be rewritten as

Á (v (¡;(0))) >
X

`(s)=J

¼(s)Á

0

@v

0

@ R
µ¤(p) + µ¤(s) + 1

0

@y ¡
X

q·s
¡q(1)

1

A

1

A

1

A : (54)
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By convexity of Á and Jensen's inequality,

Á (v (¡;(0))) > Á

0

@
X

`(s)=J

¼(s)v

0

@ R
µ¤(p) + µ¤(s) + 1

0

@y ¡
X

q·s
¡q(1)

1

A

1

A

1

A : (55)

Since Á0 < 0 this equation implies that

v (¡;(0)) <
X

`(s)=J

¼(s)v

0

@ R
µ¤(p) + µ¤(s) + 1

0

@y ¡
X

q·s
¡q(1)

1

A

1

A ; (56)

which is the desired conclusion.

E. A mechanism with a unique, e±cient equilibrium

As we have explained at the beginning of section D., lemma 7 implies the analogue of theorem

1 in the sequential-service environment.

Theorem 2 Suppose that v satis¯es conditions (12) and (44). Let M = f0; 1g be the set of signals

for each trader. Let x:S ! R+ be the vector satisfying the optimality conditions (37) and (39).

De¯ne ®:  £ MI ! A by

[®(!; m)]i =

Ã

(1 ¡ mi)x(m¿(1;!); : : : ; m¿(½(i;!);!));

mi
R

P
j·I mj

0

@I ¡
X

j·I
x(m¿(1;!); : : : ;m¿(j;!))

1

A

1

A : (57)

Then the pro¯le of truthful-communication strategies ¹̂i(!) = !i is the unique pro¯le that survives

iterated elimination of strictly dominated strategies. The mechanism thus implements the symmetric,

ex-ante e±cient allocation by a unique Bayesian Nash equilibrium.

Proof: De¯ne Si ´ f¹i : f0; 1g £ [0; 1] ¡! f0; 1gg and Sit ´ f¹i 2 Si : ¹i(!) = !i for

!I+i ¸ tg;where t is a number between 0 and 1. That is, Si is the space of trader i's reporting

strategies as functions of state !, and Sit is the collection of such strategy functions that involve

truthful reporting if trader i arrives at the bank after time t.

Our goal is to prove that there exists a unique Bayesian Nash equilibrium which is the element

of
Q

i2I
Si0: Given the form of state contingent utility functions, truth-telling is obviously the optimal
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strategy for trader i if !i = 0, no matter at which time it arrives at the bank and what strategies

the other traders adopt. Next we prove that truth-telling is also the dominant strategy for trader i

in states in which !i = 1:

Consider the reporting decision of trader i if his arrives at the bank later than time t1 ´ 1¡"1.

Once he arrives at the bank, y units of date 0 good have been given out to the traders who have

already approached the bank. In deciding its reporting strategy, trader i compares the expected

utility he will receive from announcing his type truthfully with that from lying. Since trader i does

not observe other agents' arrival times, the conditional probability of trader i being the last one to

approach the bank is 1¡ ±1 ´ (1 ¡ "1)I¡1 (given the uniform distributions of arrival times of all

traders).

By telling the truth, i.e., ¹i = 1 = !i;trader i receives a utility equal to

(1 ¡ ±1) v ((R(I ¡ y))=(µ¤(¹))) + ±1E (v ((R(I ¡ y))=(µ¤(¹))) j¿(i; !) < I),

where ¹ is the vector of the reports of all the traders. If he lies about his type, trader i's

utility will be v(¡(0; y)): By Lemma 7, v ((R(I ¡ y))=(µ¤(¹))) > v(¡(0; y)). So, if "1 is small enough

(i.e., if ±1 is close enough to 0) then reporting truthfully yields higher utility: (Since there is a ¯nite

number of agent types, there exists a ±1 > 0 such that the above inequality holds uniformly for all

y:) This establishes that any strategy that involves untruthful communication by a trader when he

arrives at the bank later than time t1 is strictly dominated by a strategy in Sit1 :

Next, suppose that trader i arrives at the bank before time t1 but no earlier than time

t2 ´ t1¡ "2: Let ±2 denote the probability that some trader(s) will arrive between time !I+i and t1:

The utility of trader i from truth-telling is then

(1 ¡ ±2)E (v ((R(I ¡ y))=(µ¤(¹))) j!I+j =2 (!I+i; t1)forallj)

+ ±2E (v ((R(I ¡ y))=(µ¤(¹))) j!I+j 2 (!I+i; t1)forsomej) :

From the above arguments, traders who arrive later than t1 will report truthfully. This, along

with Lemma 7, implies that the ¯rst term of the above expression is greater than the utility trader

i receives from reporting lying , namely v(¡(0; y)); provided that ±2 is small. In other words, any

strategy in Sit1 that involves untruthful report at some time in (t2, t1) is strictly dominated by a

strategy in Sit2 .

Repeat the above process backward towards time 0. Let t¤ denote the limit of such process.

There is 0 · t¤ < ::: < tn < ::: < t1 < 1: It must be that t¤ = 0 because otherwise one could go
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through the above reasoning process one step further to time t¤ ¡ "; contradicting to the de¯nition

of t¤: The resulting strategy space Sit¤ then consists of only one element, namely ¹i = !i for all !:

According to Lemma 6, the unique element in
Q

i2I
Si0 is the unique Bayesian Nash equilibrium

of the game (M; ®).

6. Conclusion

In a ¯nite-agent version of the Diamond-Dybvig (1983) model with sequential service, we have

analyzed the question of maturity transformation. Like Diamond and Dybvig, the (direct revelation)

mechanism in our model implements the symmetric, ex ante e±cient allocation as a truth-telling

equilibrium. Unlike in Diamond and Dybvig, however, our mechanism, which does not contain

government intervention (e.g., deposit insurance) of any sort, has no \bank-run" equilibrium.

The work of Diamond and Dybvig has been widely regarded as having shown both the

desirability and the fragility of banking industry. In the \good" equilibrium of their model, banking

deposit contract supports the e±cient allocation, while the \bad" equilibrium entails bank run.

When there is aggregate uncertainty, government regulation in the form of deposit insurance is

called for to eliminate the run-equilibrium. Wallace (1988), however, showed that the deposit

insurance policy is not feasible in the presence of sequential service. One the one hand, the result of

Wallace shows that the deposit insurance scheme advocated by Diamond and Dybvig is unfounded.

On the other hand, it seems to reinforce the belief that bank-runs are an intrinsic feature of the

banking industry. The implication of our result is that bank-runs may not be inherent to banking

contracts, at least in the environment of Diamond and Dybvig.

The existence of run-equilibrium of Diamond and Dybvig has been interpreted as an expla-

nation of the numerous observed bank-runs in the United States history. In light of our ¯nding, one

would argue that the rational agents in the DD model who are ex ante utility-maximizers would

adopt the arrangement of our model which does not leads to runs whatsoever. What this implies

then is that certain features of the reality are not captured by the DD environment in order to have

a theory that matches the US history.

To begin, one obvious feature of an actual banking system that our model fails to capture is

its ongoing nature. If the population of the economy has a overlapping generation structure, then no

trader is the last one to arrive the bank as the backward induction methodology in our model would

require. The same problem will arise if the size of the population is not observable to individual
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traders so that no trader is certain whether or not she is almost the last one in line. When these

features are present, the validity of our "no-run" result needs to be reconsidered.

Another feature of a real banking industry which is absence in our model is the incentive

problem of banking executives whose objectives may be di®erent from that of a social planner.

Suppose that the mechanism in our model is run by a banker, instead of the planner. The traders

report their realized types to the banker who then distributes the resources individually back to the

traders, supposedly in the way speci¯ed by the mechanism. But, if the traders cannot observe each

others' reports, then there is no guarantee that the banker allocates the resources based on the true

reported state of nature. The bank may keep part of the endowment for his own consumption and

then claim that a great deal of resources has been already withdrawn by a number of short-lived

agents that is in fact larger than actually reported. Anticipating this possibility and its consequences

that less resources will be available at time 1, the long-lived agents may be tempted to withdraw

early. This would increase the likelihood of a bank-run. Diamond (1984) and Krasa and Villamil

(1992) have looked the issues of monitoring and incentives of bankers which our model does not

address. This might be another explanation of why our contract is not observed, and why runs have

historically occurred.
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