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ABSTRACT
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635-56). We introduce the property of steady-growth invariance—that the long-term growth of the
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1. Introduction

There appears to be little compelling theoretical reason for the widespread use of periodic
analysis in economics. The main justification, besides analytical convenience, is presumably to
be found in the necessary confrontation of model predictions with data, for which the sampling
is typically periodic. This justification may not be entirely appropriate, however. Indeed, there
is nothing to suggest that economic time series are collected at frequencies that enable the
researcher to fully capture the movements of the economy. Neither is there any reason to
believe that economic agents make decisions at fixed exogenously-specified intervals of time.
If it is assumed that they do so, why would this interval of time coincide with the data sampling
interval? Also, for many variables that are expensive to measure, data may be available at
irregular dates only. This problem, known as temporal aggregation, is well recognized in
particular in the time-series literature [e.g., Sims (1971), Geweke (1978), Marcet (1991)], and
its potential perverse consequences on parameter estimates and hypothesis testing are amply
documented in macroeconomics [e.g., Hansen and Sargent (1983), Christiano (1985),
Christiano and Eichenbaum (1987), Christiano, Eichenbaum and Marshall (1991), Burdett,
Coles and Van Ours (1994)]. A

To deal with this problem, researchers usually have resorted to the continuous-time
framework as a limiting case which provides a natural benchmark. In macroeconomic time-
series analysis, for instance, one uses the available discrete sampled data to infer the parameters
of the underlying continuous-time generation process [e.g., Hansen and Sargent, (1980,
1981)]. Similar in essence is the problem of the formulation of discrete-time finite-horizon
approximations of continuous-time infinite-horizon optimization programs. In a recent paper
(Mercenier and Michel 1994a), we showed that this apparently simple exercise hides
unexpected caveats overlooked in the applied literature and with potentially serious
implications. Restricting our attention to optimal growth programs which have a steady state,
we studied the conditions to be imposed on the discretization process for the property of
steady-state invariance to hold; that is, the temporally aggregated problem is required to have
the same steady state as the underlying continuous-time process. We established such
conditions and showed that failure to take these restrictions into account introduces a
dependency of the solution steady state (and, a fortiori, of the transitional dynamics) on the
arbitrarily chosen sequence of time intervals.

The theoretical treatment of temporal aggregation in models that exhibit long-term
endogenously-generated steady growth obviously requires even more care. In this paper, we
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extend our previous analysis (Mercenier and Michel 1994a) to this class of infinite-horizon
optimization problems. More specifically, we introduce the property of steady-growth
invariance--that the long-term growth of the continuous-time economy not be affected by the
discretization--which imposes consistency restrictions on the joint formulation of preferences
and stock accumulation of the discrete-time approximation. We establish, under mild
conditions, these restrictions in the form of necessary and sufficient conditions on the
discretization.

The results are potentially useful because of their generality. Firstly, they apply to
multidimensional problems and are fit, therefore, for the analysis of an important class of
general equilibrium models initiated by Uzawa (1965) and Lucas (1988) in which it is the
interaction among technologies, that allow for the accumulation of physical and human capital,
and consumers' preferences that determines endogenously the economy's rate of growth [see
Caball€ and Santos (1993) and Bond, Wang and Yip (forthcoming) for analyses of this class of
models]. Secondly, our results apply to models in which there may be inequality restrictions
on the decision set. Models of optimal growth with occasionally binding constraints have
attracted considerable attention in recent years [see Christiano and Fisher (1994) and McGrattan
(forthcoming)]. Thirdly, our results apply to models with converging externalities [such as
those of Shell (1967), Romer (1986), Lucas (1988)]. If the interest is in equilibrium rather
than in optimal allocations, then our results can be used after simple transformations of the
problem [see Kehoe (1991) or Kehoe, Levine and Romer (1992)]. Finally, our analytical
discussion fits into the nonlinear programming framework, for which robust and efficient
algorithms are available [see Jones, Manuelli and Rossi (1993) for a recent advocation and use
of such numerical techniques for solving endogenous-growth models].

In the next section, we present the continuous-time model and characterize its optimal
solution and balanced growth. Section 3 deals with time-aggregation: we state and prove our
theorem on the conditions for steady-growth invariance. In section 4 we discuss the case with
externalities.

2. The Model

We consider the following continuous-time infinite-horizon multi-sectoral optimal-growth
model with human capital:



Max J e=Pt h(0)* g(x(2), u(D) dt
0

(P1) .
st x() = fix(®),u®), x(0)=xo given,
% = @x(®),u(®) , h(0) = ho given,

where the state vector x(¢) is of dimension n, the vector of controls u(?) is of dimension m, and
the human capital h(f) is one dimensional. This simple form of the class of endogenous-
growth models considered by Lucas (1988) is obtained by trivial transformations of the
original problem (see the appendix). Here, a balanced-growth path is characterized by constant
values X and % of the state and control vectors x(£), u(t); the endogenous rate of growth of
human capital along this path is @(x,u). The assumption that functions g(.), f.), and ¢(.) are

continuously differentiable ensures that Pontryagin's maximum principle may be applied.

We now characterize the optimal balanced-growth path of this economy. Letz =log % so
that h% = ¢92 and A/h = 7 . The discounted Hamiltonian associated with (P1) is

H(x,u,z,0) = et e g(x,u) + Pfix,u) + G o(x,u).
For paths x*(¢), u*(#), and z*(#) to be optimal, it is necessary that

(i) the maximum of ﬁ(x*(t), u, 2*(t), t) is reached at u*(¢),
(i) @) = -V Ha*(0),u*(2),2*(#).9,

(iii) g = -V H@x*(@®),u*(®),2*©),0),

(v)  lim (Fox*) +qwz"®) =0,

(v)  and the dynamic constraints of (P1) are satisfied, i.e.,
() = e (O),u*@), x*(0)given, and () = e(x*®),u*(®), z*(0) given.

We now transform the problem so that the normalized shadow prices are constant along the
optimal balanced-growth path. Define

p() = ePe~aOP(r), q(t) = ePle=a2*(0g(2)
and the associated Hamiltonian

H(x,u) = g(x9u)+pf(x’u)+Q¢(x’u)-
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The necessary conditions for optimality become

(i')  the maximum of H(x*(¢),u) is attained at u*(z),

(ii')) p@) = [P —a(x*®, u*(t))] p(t) = Vi H(x™(),u(9),

(i) 40 = [p-aglc@,u* 1)) a@) — aglx®).u*®),

(iv)  lim e ®(px"®) +4(0z°() =0,

(v')  and stocks x*(¢) and z*(#) move according to the differential constraints in (P1).

For constant values x*,u*, p*,q* of x*(¢), u*(#), p*(), and g*(»), the optimality conditions
can be particularized further:

(i")  the maximum of H*(x*,u) = g(x*,u)+p*fix*,u) + g*(x*,u) is at u*,

(i) [p-aee uw)]p* = Ve H & u"),

(iii") [p—a(p(x*,u*)]q* = ag(x*,u").

The equations governing the motion of stocks imply that Ax*,u") = 0 and that the long-term
growth rate of human capital is ¥* = ¢(x*,u*). The transversality condition imposes that

ay" <p.
3. Temporal Aggregation

Our aim is to uncover the relationship that exists between the balanced-growth rates of
(P1) and of its discrete-time version. More specifically, we look for conditions to be imposed
on the discretization so as to preserve the asymptotic growth rate of the continuous-time
formulation. We refer to this desirable property of the discretization as the property of steady-
growth invariance.

Consider any strictly increasing infinite sequence of dates £9=0,t,- - -,Zp,- - - with limit
equal to +eo. We approximate the motion of x(f) between two successive dates , and Z,,1 by a
difference equation of the form

X(tne1) — X(tn) = Anflx(tn),u(tn))

where A,, is a scalar factor that converts the continuous flow into a stock increment; we place
no restriction on the choice of 4.



Theorem

(a) The discrete-time infinite-horizon optimization problem (P2),

oo

A .
M —r n)s U(tn
axg;) S 8kt u(en)
(P2)
St X(tne1) = x(tn) = An Lx(ty).u(ty)), x(to) = xo given,

Ytar) = ¥t {1+ An(p=a@(xt) s}, ¥(20) = yo given,

has the same stationary values (x*,u") and the same stationary shadow prices (p*,q*) as the
continuous-time problem (P1).

(b) Consequently, (P1) and (P2) generate the same steady growth. In the discrete-time
Sformulation,

108 h*(tns1) = log B*(t) = 2*(tws1) = 2°(t) = (ne1—t)Y"
where ¥* = @(x*,u*).

Observe that in (P2), the optimal values of x(#,) and u(#,) do not depend on the initial condition
Yo: we set yg=1.

Proof.  For convenience, we note x,, u,, and y, as the values of x, u, and y at t,. Write the

Lagrangian of (P2) as
— 1
L= n=20 Yn+1 Ln
where

L, = Ang(xn,u,) + Pn (Anf(xn,un) + Xp — Xni1)

+ gn ();z';,,l - Jc; - éan_p + Ap O(Xn,un)) .

The necessary conditions for a path (x,;, uy;, y5) to be optimal are

(@)  The maximum value of L,(xy,u,) with respect to u, is attained at u}; this value
coincides with the max,, of H,(x,, u,) where

Hp(xp,un) = g(Xn,un) + DPnf(xn,un) + gn Q(xXn, up).
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(b)  The gradient 'of L with respect to x, is null so that

Xn ~n—
Yn+1 Yn

0=-Lvir+ilv,L,,.
Using .\, /vi =1+ As(p - ag(xt, ut)), it follows that
Pn-1 [1 + Aﬂ(p_a(P(xr’:’u;))] = pn+ 4, Vx,, Hp(xn,upn).

(c)  The derivative of L with respect to y,,.; equals zero

0 - 1 aLn+1 _ 1 Ln + 1 aLn
y:+2 Wni1 Vit y:+1 Mne1

which, after multiplication by y: +%, yields

*

Qrg-l +L, = fmlg o %q,,[1+A,,(p—a<p(x§,u;))]-
ayn

With L, (x5, upn) = A, g(x5,us), we get
Qur1+ @ Ay gOmu) = gul L+ Anlp—a oGz, ud))).

Specialized for the constant values (xy,un,Pn.qn) = (x*,u*,p*,q*), these conditions are
identical to (i"), (ii"), and (iii'") of the continuous-time problem (P1). Since the continuous-
time and discrete-time economies both asymptotically grow at the same constant rate, the

transversality condition a@(x™,u") < p is satisfied.

If the optimal growth problem is concave, the necessary conditions for optimality, including
the transversality condition, are also sufficient (see Remark 1 below).

Q.E.D.

Remark 1.  Asis well known, the necessary optimality conditions are also sufficient if the
problem is concave. (P1) is obviously not concave, as eZ is a nonconcave function of z.
However, under standard assumptions (see the appendix), the original multi-sectoral
endogenous-growth model before its transformation into (P1) is a concave optimization
problem for which the first order conditions are also sufficient. It is the case that the optimality
conditions obtained after a change of variables are equivalent to those of the original problem.
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Therefore, if the latter is'concave, the necessary conditions used in the demonstration of the
theorem are also sufficient conditions for optimality.

Remark 2.  In a problem with additional constraints of the form [;(x(t),u(¢)) =0 (resp.20),
the associated multipliers appear in the necessary conditions for optimality. Write these
constraints as A,li(xn,u,) = 0 (resp.20) in the discrete-time version so that the same stationary
values are obtained for the multipliers as in the continuous-time case, and the theorem therefore
applies.

Remark 3.  The theorem provides an intuitive generalization to the first proposition of
Mercenier and Michel (1994a). To see this, define &, = 1/y(¢,.1) and substitute in the equation
governing the motion of y. Rearranging, we get

On
1+ A1 (p—a@(x(tne1),u(tn1)))

Onyt =

With @=0--the exogenous-growth case--this is the recurrence relation that defines the discount
factors in their first proposition.

4. Endogenous Growth With Externalities

Introducing converging externalities X(¢) = (x*(#),u™(#)) into (P1) does not affect the
conditions for steady-growth invariance. The modified continuous-time problem is

Max l e~ P! h(1)® g(x(®),u(r),X(0)) dt
0

(P1)
s.t. x() = fx@®),u®,X®), x(0)=xp given,
% = o((®,u(d),X®) , h(0) = ho given,

and its discrete-time form is

00

Ap
Max Z‘o Fnet) 8(x(tn), ultn), X(tn))
(P2")
site X(tai1) — X(tn) = An fx(tn)u(tn),X(t)), x(to) = xp given,

Y(tns1) = y(ta) {1+An(P_a(0(x(tn)7u(tn),X(tn))}v ¥(to) = Yo given.



-8-

X(2) is held fixed in the optimization so the first order conditions are unchanged, and the
equilibrium steady-growth path is determined after substitution of (x*,u*,x*,u*) for
(x*(®),u*(?),X(?)) in these conditions.

The case of non-converging externalities requires some preliminary work before the
theorem can be applied. In absence of a canonic form for this type of externality, we illustrate
the point using Lucas' (1988) well known model:

Max I eP N c(®)? dt
0

st. K() = FK(®,NOu@®HOH®N - NOCE) - uK(#), KO) = Ko given,
H@® = 6(1-u®)H® , H(0) = Hy given,

where N is population (assumed to grow at constant rate n), ¢ is individual consumption, X
and H are physical and human capital, u is the share of non-leisure time devoted to the
production of goods and 1-u the share devoted to human capital accumulation, an overbar

denotes an externality, F(.) has constant returns, and ¥, &, and y are positive scalars. Using
the following transformations

h(z) = N@) H(®®) H(»)",
x(®) = K@)/h(),
v(®) = c(O/h@),

and rearranging, we get
Max I e~ (P—mt h(H% v(£)° dt
0

St MO = FOx(O,u()) = (u+m)x(e) = S(L-u(e)x(e) = y8(L~H@E)x() - v(9),
h) _ - %
o =M S(1-u(®) + y¥6(1-u(®),

x(0) = xp given, h(0) = hgy given,

which is now of the form (P1) so that the theorem applies. A parameterized version of this
model is used to illustrate the effectiveness of the property of steady-growth invariance (see
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Figure 1).1 There, we réport percentage aggregation errors on computed optimal values of
u(tn) when using two alternative draws of unequally dense samples of irregularly spaced points
on the time axis.2 We see that the property of steady-growth invariance is clearly very effective
in "protecting" the economy's long-term endogenous-growth rate from temporal-aggregation

CITOrS.

1

A quarterly model serves as a benchmark. The horizon is truncated at 200 quarters, and post-terminal
constant growth is assumed ever after. The economy is calibrated in steady-growth state and shocked by
setting xo = 2/3x". The functional forms and parameter values used are

Fie",u™y =x" ' with B=25, B M: 25, u"=75,

X

a=.1, n=.01, y=.01, 6=.05/4, p=.04/4, = .04/4.
Numerical optimization is performed using mathematical programming techniques.
The two grids have respectively 30 and 50 draws. For the sampling, we use the following formula;

log (1-—2)

In = —N-'*'l_,
1 10g (1)
N & N+1
which builds on a criterion we developed for exogenous growth models (Mercenier and Michel, 1994b).
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Appendix: A Multi-Sectoral Optimal Endogenous-Growth Model

Consider the following multi-sectoral endogenous-growth model:
Max f e=Pt U(C1(D),...,Cu(®) dt
0

st.  Ki® = V(&) - K@), K(0) = K;q given, i=0,...,m,
H() = Fo(Ko(2),Ho(®) —VH(?),  H(0) = Hp given,

FAR0,Hi®) = G+ 2, i Vi(o), j=Lsem,

i=1

H) = 2 Hip).

i=0

Physical capital K; is sector specific, whereas human capital H is assumed mobile.
Depreciation is exponential at rates i;, v. The technologies F;(.) for producing goods and
human capital have constant returns. Output serves for consumption and investment.
Instantaneous utility U(.) is homogeneous of degree a>0.

We express all variables per unit of human capital and use lowercase letters. In these new

notations, the model becomes

Max I e P H()*U(c1(t), ....cm(D) dt

st k(D) = vi(t) — (i + Folko(®),ho(®)) —Vki(t),  ki0) = kip given, i=0,...,m,
H@) _

7 - Fo(ko(9),ho(®)) — v, H(0) = Hy given,
Fikie1h®) = cfe) + 2 i vicd), j=1loem,
i=1
1= i hi(?).
i=0

The variables cj(#) and ho(f) may be substituted out by making use of the market equilibrium
conditions. This yields a model of the form (P1) in the text, with

X = (ko’kls"'7km)7

u = (hlv"'vhm, v17"'7vm)-



