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reformulations of the concept of integrated processes of order zero, and we demonstrate the
means to operationalize new concepts of “short memory” for economic time series. Limited
Monte Carlo evidence is provided with respect to power against the non-stationary and
non-ergodic alternative of unit root processes. The method is used to investigate debates
over stability of monetary aggregates relative to GDP, and the mean reversion hypothesis
with respect to high frequency data on exchange rates. The test also is applied to other
macroeconomic time series, as well as to very high frequency data on asset prices. Both
the Monte Carlo and data analysis results suggest that the test has very promising size and
power performance.
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A Consistent Nonparametric Test of Ergodicity
for Time Series with Applications

lan Domowitz and Mahmoud A. El-Gamal

1 Introduction

The concept of ergodicity is fundamental in the analysis of economic time series and of
dynamic models calibrated by time series data. It is, therefore, surprising that no general
testing procedure has been proposed to examine this important hypothesis. The objective
of this paper is to fill this gap for the case of Markov processes.

Over the last decade, failure of the ergodic assumption has been largely studied for linear
models (see Stock (1995), and Phillips (1995), and the references therein). The emphasis
in this literature is on unit roots and the potential cointegration of multiple time series. A
number of tests of the unit root hypothesis, in particular, have been proposed and analyzed.
Research in the area has been aided enormously by clear definitions and application of the
concept of an I(0) random process, signifying stationary ergodic behavior of the process
under study.

More recently, however, Granger (1995) demonstrates that the I(0) concept is not well
defined for nonlinear models. The importance of the latter class has grown, as computational
power and theoretical sophistication in dynamic modeling have both increased. Granger
proposes a replacement for I(0), namely “short memory in mean” (SMM), but notes that
how a test of this property is to be performed is not clear.

Building on our previous work in Domowitz and El-Gamal (1993), we provide an answer
to this question, in the context of a more general testing strategy for the ergodic property
in economic time series. In the latter paper, we propose a set of algorithms for testing
the ergodicity of a known law of motion, showing that the resulting test asymptotically
obtains the correct size and maximal power against stationary nonergodic alternatives. The
reasoning behind the test is fairly simple. Stationary ergodicity of a data generating process,
which is the most familiar form of ergodicity, is equivalent to the convergence of Cesaro
averages of the transition probabilities to a unique invariant measure. A Markov operator
on the space of densities is defined, which corresponds to the transition kernel on the state
space. Testing the convergence of the Cesaro averages of the transition kernel is equivalent
to testing the convergence of Cesaro averages of iterates of all initial densities to the same
(unique) stationary density. The test is based on algorithms to draw i.i.d. samples from the
Cesaro averages of iterates of any two initial densities through the Markov operator. Another
algorithm then is used to randomly choose a pair of initial densities. It then could be shown
under the assumption of stationarity of the underlying process that the probability of drawing
two densities, whose Cesaro averages converge to the same limit under the alternative of
nonergodic behavior, is zero, implying a consistent test.
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The contribution of the present paper is to demonstrate that this testing strategy can
be made operational when the law of motion is unknown. As a result, we obtain the first
test for the ergodic behavior of an observed time series outside the unit root framework,
to the best of our knowledge. Beyond our own earlier work, and that of Madsen (1975)
on deterministic assessment of ergodicity for finite-dimensional Markov chains with known
transitions, we know of no other literature on the problem. The present research is further
motivated by several practical considerations.

The SMM concept proposed by Granger (1995) has the potential to be fundamental in
extending our knowledge of persistence and cointegration in nonlinear models, if it can be
operationalized. SMM is basically a restatement of the proposition that the data generating
process has a mixing property. The relationship between testing for ergodicity and a test
for mixing is explored conceptually in Domowitz and El-Gamal (1996). The techniques
suggested here may be used directly to test the mixing property, replacing convergence
of Cesaro averages of iterated densities with the weak convergence of the iterated densities
themselves. The potential importance of such a result lies in the modeling question addressed
by Granger (1995), namely identification of the proper “balance” of the right and left sides
of a dynamic relationship, expressed in terms of persistence properties.

As a practical matter, theoretical modeling issues motivating our analysis go beyond such
questions of balance in a posited relationship. The work of Duffie et al. (1994) demonstrates
the difficulties of analytically verifying ergodicity in equilibrium models. Ergodic failure of
processes arising from dynamic models can be common, however, and often may be impos-
sible to verify analytically. Arthur (1989)’s analysis of production, for example, considers
models of market share based on network considerations. Taking the probability of future
market share to be dependent on the relative sizes of current market share, he shows that
simple positive feedback leads to a failure of the ergodic property, in that the dynamics give
many possible outcomes, based on initial conditions, rather than a unique non-cooperative
equilibrium solution. Similar considerations enter the work of David (1986). Majumdar et al.
(1986) demonstrate that the decision variables from a general class of dynamic programs can
have an arbitrarily large number of ergodic subclasses associated with them. This possibility
finds additional support in the rational expectations growth models of Eckstein et al. (1991).
Other examples exist, most based on nonconvexities in the underlying problem of interest.

Estimation of such models relies on some variant of maximum likelihood or method of
moments. The large literature on unit root analysis for linear structures has demonstrated
the problems with estimation and inference for a very particular class of nonergodic statistical
models. Similar problems with respect to more general models incorporating nonergodic
processes, such as the non-normality of asymptotic distributions of estimators and the power
properties of standard tests of hypotheses, are pervasive (e.g., Basawa and Scott (1983)).
An operational test for the ergodicity of the relevant time series will enable a researcher to
identify appropriate inference methods in empirical applications.

In some cases, an attempt to reach policy conclusions is based directly on data, as
opposed to precise model formulations. A leading example concerns investigations of wealth
distributions (e.g., Durlauf and Johnson (1992), Durlauf and Johnson (1995); Quah (1992)).



A typical exercise is to check whether or not per capita income converges towards a steady
state growth path. Quah (1992), in particular, examines such convergence in the context
of wealth distributions estimated from the data. Interestingly, the limit distributions found
have the characteristics of mixtures, a feature of nonergodic laws of motion (Durret (1991)).
The economic implication is that any convergence across countries potentially depends on
country-specific conditions, even in the long run. The finding would suggest refutation of
models predicting convergence of wealth distributions internationally. The test proposed
here can be used to provide a more rigorous framework for a statistical examination of such
problems.

The plan of the paper follows. We introduce the maintained hypothesis behind our
analysis and provide two motivating examples in the next scction. The first application
addresses the question of trend versus difference stationarity of different measures of money
velocity; and the second concerns the issue of mean reversion in high frequency exchange
rates. Both problems are rephrased in terms of the ergodicity of the process as exhibited
by the data series. The basic framework of the test is covered in section 3. Rigorous
definitions of the concepts of ergodicity and stationary-ergodicity are given, and an outline
of the overall algorithm leading to the test statistic is presented. In section 4, we establish the
consistency of the test for nonparametrically estimated laws of motion against the stationary
but nonergodic alternative. A variety of nonstationary behavior is permitted under the null
hypothesis of ergodicity, and this is formalized for the case of regime switches, in particular.
Some practical issues of implementation also are treated in this section, with details of the
algorithms underlying the test statistic relegated to an appendix. Section 5 is devoted to
considerations of 1(0) processes and the short-memory definition of Granger (1995). We
present. generalizations that permit tests of short-memory related to his original concept. A
Monte Carlo analysis of the performance of the test with respect to size and power, against
the nonstationary and nonergodic unit root alternative in an AR(1) framework is offered in
section 6. We return to the applications of the test to money velocity and exchange rates
in section 7. We supplement these examples with other applications to both low and high
frequency data. Our intention in the latter case is to further illustrate the type of analysis
involved in data applications, and to demonstrate the performance of the test and reasons
for rejection of the null (and failure thereof) under a wide variety of circumstances. Some
concluding remarks close the paper.

2 Occasional Shocks and Motivating Applications

The maintained hypothesis for this paper is that each time series we consider contains two
components: (i) a systematic transition density p(zi,.|s;+1) defining the density of x4,
conditional on its lagged value z; and a “state” variable s,y1, and (ii) an idiosyncratic
“noise” term with density v(.) having full support. Since the state is not observable, and the
noise term is typically not of economic interest, we restrict our attention to the systematic
part of the process {z,;}. Formally, our goal is to obtain a consistent test of the ergodicity
of the systematic part of the marginal process on {z,}. The state variable s, allows us to
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encompass regime switching and other forms of nonstationarity which may or may not be
accompanied by non-ergodicity. The stochastic process governing s, € {1,...,n} is assumed
to have a unique invariant distribution defining the proportion of time s, spends in each
state (e.g. Hamilton (1989), Engle and Hamilton (1990) achieve this through an aperiodic
irreducible Markov transition matrix for s.).

In addition to possible changes in the state s;, we assume that the observed process {z,}
includes occasional idiosyncratic shocks. The transition density of the observed process, may
thus be defined as follows:

-~ _ p(.Tt, ~|Si+l) if ShOth =0
Pz, Jsin) = { (1 —a)p(z:, |se41) +av  if shock, = (%),
where shock, = 1 according to some stochastic process. Unlike the process on s, which

enriches our model, the process on shock, is motivated by technical considerations. We shall
return to the technical assumptions on the processes {s;} and {shock,} in sections 3 and 4.
In this section, we wish to motivate this model within the context of two economic examples
where policy prescriptions rest on the assumption of stationary ergodicity or lack thereof for
particular processes.

2.1 1Is There a Stable Relationship between Money and GDP?

It is generally accepted that the velocity of M1 (calculated as nominal GDP/M1) in the U.S.
was stable from 1960 to 1980, in the sense of being trend stationary (with an average increase
of roughly 3% per year). As seen in Figure 1, the trend seemed to reverse in the early 1980s,
and its variance increased noticeably. The “shock” which most argue to have affected the
demand for M1 circa 1980 consists of technological advances and new financial options (e.g.,
money market mutual fund accounts on which customers can write checks) which severed the
tie between economic activity and the demand for M1.! As a result, many have argued that
M1 has become an unreliable tool for monetary policy since 1980 (Friedman (1988), Blinder
(1989)). Since the Federal Reserve began in the early 1980s to target M2 instead of M1 as
its main measure of the money supply, the velocity of M2 has come under scrutiny. The
failure of monetary policy in the early 1990s lent credibility to the hypothesis that the link
between M2 and nominal GDP may have been severed (e.g. Friedman and Kuttner (1992)).
However, Feldstein (1992) highlighted the fact that the statistical relationship between M2
and nominal GDP had not broken down, but that the Federal Reserve’s ability to target M2
was the source of ineffective monetary policy in the early 1990s. Feldstein and Stock (1993)
find further support “that the relation between M2 and nominal GDP is sufficiently strong

1 ATM networks started in Iowa in 1977, and quickly spread across the U.S. Merrill Lynch launched the
first cash management accounts in 1977, and this type of account became very popular in the 1980s. Visa
was created in 1977, with 5 million instant customers, leading to a mushrooming credit card industry. Money
market funds were also introduced in 1977, with the total balances in such accounts reaching $122 billion by
1980. All of those financial market innovations initiated in the late 1970s and taking full effect circa 1980
contributed to a reconfiguration of the liquidity profile of various portfolios, rendering M1 a poor predictor
of economic activity.



and stable to warrant a further investigation into using M2 to influence nominal GDP in
a predictable way” (p.1). They propose a simple Taylor (1985)-like rule of varying M2 in
response to movements in nominal GDP which would reduce the volatility of GDP.
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Figure 1: Velocity of M1: 1959:1-1995:2. Figure 2: Velocity of M2: 1959:1-1995:2.

It is clear from the literature (e.g. see Edwards (1996)) that the “predictability” of the
relationship between a measure of aggregate money supply and nominal GDP is determined
in the sense of trend stationarity. In other words, if the detrended series for Mi (i=1,2)
velocity is stationary and ergodic, we would say that the relationship between Mi and nominal
GDP is stable (e.g. velocity of M1 for the 1960-1980 period). We then might infer that
targeting the stock of Mi may be a useful tool for monetary policy. The stability of an
Mi-to-GDP relationship was studied for M2 in terms of structural breaks in Feldstein and
Stock (1993), and in terms of a cointegration relationships between M1, interest rates, and
nominal GDP, in Stock and Watson (1993).

As an illustration of our proposed test, we shall abstract from the parametric forms
necessary for conducting those types of stability tests, and conduct a non-parametric data-
based test on simple transformations of the Mi-velocity series. The results reported later
in the paper for quarterly data 1959:1-1995:2 suggest that the velocity of M1 is not trend
stationary, but that it is difference stationary over the period, which agrees with the result in
Stock and Watson (1993) that M1 and GDP follow unit root processes, and the cointegration
relationship includes interest rates. In contrast, we fail to reject the result that the velocity
of M2 series is ergodic, which agrees with the results of Feldstein and Stock (1993) and



Feldstein (1992).

2.2 Mean Reversion in High Frequency Exchange Rate Data

Mean reversion in exchange rates has been a topic of practical and academic interest since at
least the mid 1980s. Most recently, attention has turned to the role and importance of non-
linearity in the relationship between current and past rates in assessing the mean reversion
hypothesis (e.g., Hsieh (1989), Engle and Hamilton (1990), O’Connell (1996), Bleaney and
Mizen (1996a), as well as references therein). From the economic perspective, motivations
for considering potential nonlinearities include agents’ forecasting of discrete events, market
frictions, and trader behavior (Flood and Garber (1983), O’Connell (1996), and Bleaney and
Mizen (1996b), respectively).

Statistical investigations of the associated mean reversion hypotheses are carried out
by extending an augmented Dickey-Fuller test to incorporate some form of nonlinearity
related to the arguments above. Bleaney and Mizen (1996a), for example, add a third-
order polynomial in the level of the lagged rate. Alternatively, a switching regression model,
depending on a specification of large deviations of the lagged rate from its mean value, is
employed. Such models are used in the context of real exchange rates by O’Connell (1996).
A drawback of such parametric approaches is the need to tabulate additional critical values
of the test statistic for any new specification of the nonlinear relationship. Further, as yet
there is no stylized fact to be drawn from the data, with respect to persistence properties.

We use the theoretical and computational results of this paper to extend the empirical
investigation of the mean reversion hypothesis in three dimensions. First, we employ high
frequency trading data for currency rates, as opposed to the monthly, quarterly, and even
annual rates used in other studies. Such data correspond more closely to explanations of non-
linearities based on trading behavior, in particular. Second, we account for any nonlinearity
in the Markov process describing the evolution of currency prices through nonparametric
estimation of the transition densities that underly our test statistic. This approach not only
circumvents the problem of taking a parametric stand on the form of the model, but also
obviates the need for extra critical value computations, as the theory will make clear. Fi-
nally, we reformulate the problem in terms of general ergodic failure, as opposed to the more
specific case of a unit root in the data. We believe that this is more appropriate in nonlinear
settings, given the essential linearity of unit root analysis, as discussed in Granger (1995).
The occasional shock model used to obtain the power properties of our testing procedure
is consistent with the O’Connell (1996), Bleaney and Mizen (1996a), and regime-switching
specifications. The model is further used to motivate a decomposition of the series into
multiple ergodic subclasses, in line with the suggested explanations for simple nonlinearity
in the rate relationships.

We apply our test to the four series of futures currency prices for the British Pound,
Deutschemark, Japanese Yen, and Swiss Frank, using 5-minute data for 1984-1993, as shown
in Figures 3-6. There is a reasonably strong trend in all four series from 1984 through early
1987, followed by fluctuations around a constant mean. Such behavior suggests multiple
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ergodic subclasses with respect to the underlying process. One such “shock” might be the
Louvre Accord amongst G7 countries, reached in February, 1987. The Accord was based
on an agreement with respect to stabilizing the behavior of the dollar, relative to other
currencies, and was carried out by a series of central bank interventions, especially over the
so-called “Louvre period” between 1987 and 1989. The four series exhibit this form of “mean
reversion” post 1986. A previous “shock” associated with those series is the September 1985
G5 countries’ Plaza Accord which resulted in the downturn of the rates between 1985 and
1987. This idea of “occasional shocks” leading to switches (not necessarily instantaneous)
between ergodic subclasses will be the central assumption for our testing procedure.

Our test results, discussed in Section 6, strongly reject the null hypothesis of ergodicity
of those series. This result is consistent with the institutional considerations discussed above
(see further discussion in section 6), as well as the models considered by O’Connell (1996)
and Bleaney and Mizen (1996a).

3 A Consistent Test of Ergodicity

In this section, we reproduce the framework of Domowitz and El-Gamal (1993) for a known
transition function of a univariate time series. We restrict attention to univariate 1%*-order
Markovian time series {z;}. The extension to the multivariate case (and hence to the k-
order Markovian case) is straight-forward, but the implementation of the test becomes much
more tedious. We have illustrated in Domowitz and El-Gamal (1993, pp. 592-593) how we
can algorithmically convert a multidimensional version of our test into a univariate one. We
shall illustrate in Section 4 that a consistent test of the ergodicity of the {z;} process in
the presence of possible state s, transitions can be constructed based only on an estimated
Markovian transition on z;.

We consider a Markov process on R defined by a transition function pr(¢, A) for £ € R,
and A € B(R), where B(R) is the Borel o-algebra. For the remainder of this section, we
shall take pr as our given estimated law of motion (with density fr), and we shall discuss
the application of our testing strategy to this known law of motion. By following the steps
of Domowitz and El-Gamal (1993), we obtain a consistent test of the ergodicity of this given
law of motion. In section 4, we shall show that — for a consistent estimator pr, and under
suitable conditions — this will provide a consistent test for the underlying law of motion p as
T 1 o0.

We assume that for a given &, pr(€,.) is a probability measure on B(R), and for a given
A € B(R), pr(., A) is a Borel measurable function. We shall refer to pr(.,.) as the one-step
transition probability. As usual, we define the s-step transition probability recursively by:

P (€, A / py Y (€, dn) pr(n, A)

We assume that the probability measure pr(&,.) is absolutely continuous, and we denote the
corresponding (estimated) transition density by fr(.,.).



Starting from an initial density go(z) on the state space R, the probability of the process
falling in any Borel set A at period s can easily be defined by:

Pro{z, € A} = [ 0(€).pf (€ dn) = [ g.(n) d

This implicitly defines the Markov operator Pr: D(R) — D(R) (via g4(.) = P*go(.)), where
D(.) is the space of densities.

If a stationary density ¢g* exists for Pr, following Loeve (1978, p.89), we say the stochastic
process defined by pr : R x B(R) — [0,1], or alternatively by Pr : D(R) — D(R), is
stationary-ergodic if there exists a unique measure 7 with a corresponding density g* such
that

hm Zp (&, A) = 7(A)
for all sets A € B(X), or alternatively

ls 1 .
lim — ZPTg = g*(z)
stoo §
for all z € X, and for all ¢ € D(R). If there does not exist a stationary density for Pr, we

define ergodicity by:
: s—1

lim |~ Z Prgi(z) — Prga(z)] =0,

stoo 8§

for all z € X, and for all g1, ¢s € DZ(IR), The relationships between stationarity, ergodicity,
and other concepts are discussed in detail in Section 4. In particular, non-stationary but
ergodic processes, which are part of our null hypothesis, are discussed in detail.

We may apply the test of ergodicity of Domowitz and El-Gamal (1993) to the estimated
law of motion Pr with the corresponding transition density fr(.,.). We shall discuss in
detail all the algorithms involved in implementing this test in the Appendix. The major
steps needed to conduct the test are:

Algorithm 0

1. Choose a compact set in the support of fr (practical rules will be discussed
in Section 4).

2. Randomly draw two initial densities g and ¢’ from the class of polynomial
densities of degree k, using Algorithm A of the Appendix.

s—1
3. Construct two i.i.d. samples of size n from the Cesaro averages % Y. Prg
i=0

and 1 E %g', using Algorithm B of the Appendix.

4. Conduct a test of equality of two distributions (e.g. Kolmogorov Smirnov),
and obtain the p-value for this test.

9



5. Repeat steps 2-4 to obtain a number of p-values. Under the null of ergod-
icity, the p-values so obtained should be uniformly distributed on [0,1].

When considered as a test of the ergodicity of the given (estimated) law of motion Pr,
we can consider a single test using steps 1-4 of Algorithm 0. The test would reject the null
hypothesis of ergodicity if the p-value of this single randomized test is smaller than a pre-
specified value. The nature of the alternative hypothesis of non-ergodicity against which we
obtain asymptotic power 1 is discussed in Section 5. The following result holds for this test:

Theorem 1 The test using steps 1-4 of Algorithm 0 obtains the correct asymptotic size
under the null hypothesis of ergodicity, and asymptotic power unity (as s T oo and then
n 1 0o) under the alternative hypothesis of non-ergodicity in the presence of stationarity.

Proof: Domowitz and El-Gamal (1993, Theorem 1, pp. 596-598).2
Remarks

o Step 1 of the algorithm is linked to the necessity of estimating the law of motion.
The theoretical rationale, consequences, and the link to structural break methods are
discussed in section 4.

o Step 4 leaves open the possibility of using alternative statistics in the procedure. In our
applications to follow, we use the Kolmogorov-Smirnov test, based on the distribution
of the sup-norm. An alternative might be that of Cramer-von Mises, based on the L?
norm. Other possibilities are reviewed in Shorack and Wellner (1986).

o Step 5 recommends multiple replications. This is not required for the consistency of
the test, as the proof would show. On the other hand, the test is randomized, in the
sense of Bierens (1990), for example. Such procedures present the possibility that two
researchers, with the same data and method, might reach two different conclusions,
based on any single run. The replication recommended in step 5 rules this possibility
out through the law of large numbers. In fact, the uniform distribution under the null
could conceivably be tested formally, via an additional empirical distribution statistic.

o Step 2 refers to draws from densities represented by polynomials of degree k. As k
approaches infinity, the set of such representations is dense in the space of densities.
Letting k go to infinity poses no problems for the theory presented here, but moder-
ate k gives very good approximations to most densities.3 We will take k=10 in our
applications, for example.

2 The idea of the proof proceeds as follows: Obtaining the correct size of the test under the null hypothesis

follows directly from the equality of the two Cesaro average densities under the null. Obtaining asymptotic
power of unity results from the violation of Harris recurrence (Harris (1956, p.115)). This violation makes
the probability of drawing two initial densities using Algorithm A such that the Cesaro average densities
generated from those two converge to the same limit under the alternative hypothesis is zero (Domowitz and
El-Gamal (1993, Lemma 2, p. 597)).

3 See, for example, Gallant and Tauchen (1989), who examine the asymptotics, but implement their
procedures for very small k.
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4 Application of the Test in Time Series Contexts

In this section, we extend our analysis to prove that we can construct an estimator pr(.,.)
of the marginal transition on z, perform the test on pr following Algorithm 0, and obtain
a consistent test for the ergodicity of the process {z,}. The consistency of the test entails
obtaining the correct asymptotic size and power unity against the stationary non-ergodic
alternative as T 1 oo first, then as s T 00, and n 1 oo. The following lemma establishes the
foundation for applying our test of ergodicity in a time-series context:

Lemma 1 Letq(z,.) be the transition probability for a Markovian time series and let pr(z,.)
be a consistent estimator which satisfies for all y € R and B € B(R):

lpr(y, B) — q(y, B)| = 0
in probability as T 1 oo, then:
As T 1 oo, pr is ergodic if and only if q is ergodic.

Proof: For the “if” part, let p be ergodic, and by the hypothesized convergence of
pr(y, B) to q(y, B) for all y € R and B € B(R), it follows immediately that for all ¢,

P9 (v, B) — ¢ (y, B)| = 0,

in probability as T 1 oo, which in turn implies

I—Zq(’ (v,B ——Zp B)| - 0,
i=0
in probability as T 1 oco. Now, this implies the convergence of Cesaro iterates of initial
measures under py to the Cesaro iterates of the same measures under g, and hence pr
inherits the ergodic property of g. The “only if” part follows equally directly by reversing
the roles of pr and ¢ in the above argument. |

4.1 The Maintained Hypothesis: Occasional Shocks

Following the standard procedure in econometric analysis, we model our given time series
{z,} as consisting of two components: (i) a systematic law of motion, and (ii) an idiosyncratic
shock process. Let the law of motion of the observed series be:

- | plyy - |s041) if shock, =0
P(zes |sen) = { (1 — a)p(zs,.|st41) +av  if shock, =1 ()

where v is a measure with full support, a is some scalar in (0,1), and shock; is a stochastic
process taking values in {0,1}. We assume that the law governing shock; is independent of

{"Eta St}‘
We are interested in testing the ergodicity of the systematic component of the marginal
process on z. Towards that end, we make the following assumption:
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A.0 The stochastic process governing s, is independent of {z,}, and has a unique invariant
distribution ¢ = (0, ..., 0,) defining the asymptotic frequency o; > 0 of 5, = .

This assumption is satisfied, for example, by Hamilton (1989)’s setup, where s, follows an
ergodic Markov chain. Now, define

pH(ze, ) = ) oiplzy, s = 1),

i=1
and .
(e, = 2 0ip(m, Jsie = 9).
i=1
The transition p* defines the average law for the observable marginal process z;, and the
transition p* defines the systematic component of that marginal process. We are interested
in the ergodicity of the systematic law of motion p defined in (x). Since the s; process
is not observable, we need our test to depend only on the observable series {z;}. Due to
the assumed independence of s, from {z,}, the observed process {z,} still follows a Markov
process. Moreover, the transition density for {z,} is always defined by one of n possible tran-
sitions P;(z¢,.) = p(zt,.|s: = ¢). Now, the transition p*(z,.) defined above is the expected
transition density under the invariant measure o on {s;}, and p*(z,,.) is the systematic part
of that measure. In what follows, we shall construct the test by first estimating a Markovian
transition density pr on z, and testing the ergodicity of the estimated pr. We shall make
assumptions under which this estimator py will be shown to be consistent for p*. Moreover,
we shall make assumptions to guarantee that pr is also consistent for the systematic com-
ponent p*. Using Lemma 1, this will imply that a consistent test of the ergodicity of pr will
be asymptotically consistent for p*, as T 1 co. In the following lemma, we show that the
transition p* is ergodic if and only if the transition p is ergodic, thus yielding the consistency
of the test for p.

Lemma 2 The transition density p(z,,.|s,+1) is ergodic if and only if the averaged transition
p*(zy,.) is ergodic.

Proof: For the first direction, let the process {z,} generated by z;1; ~ p(zy,.|s;) be
ergodic. This implies that there does not exist an ergodic decomposition of the state space
X = AU A€ such that if 7, € A, Prp{z;4s € A;Vs} = 1. This in turn implies that for all
nontrivial measurable sets A, A°, there exists an ¢ € {1,...,n} such that [, [,. p(z,y|s =
t)dydz > 0. Since o; > 0,Vi, this in turn implies that for all nontrivial measurable sets
A, AC [4 [ae p*(z,y)dydz > 0, i.e. that the process defined by the transition p* is ergodic.

The opposite direction follows by reversing the argument. Assume that the process
defined by the average transition p* was not ergodic. Then, there exist nontrivial measurable
sets A, A° such that [, [, p*(z,y)dydr = 0. Since o; > 0,Vi, this implies that for all i,
Ja Jac p(z,y|s = t)dydz = 0, which implies that the process generated by p is not ergodic. |

In order to guarantee the consistency of our nonparametric estimate of p*(z,.), we need
the shock process to be sufficiently persistent. On the other hand, we need shocks to be
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sufficiently infrequent (at least in the limit) so that the ar component does not dominate
p*(x¢,.), thus allowing us to obtain a consistent estimator of p*. Our basic strategy is to
employ the following assumptions:

A.1 YT shock; — oo, almost surely.
A.2 %Ethl shock; — 0, almost surely.

Notice that there is a large number of scenarios under which both of those conditions are
satisfied.?

We shall prove that we can extend the consistency of our test of ergodicity (as stated
in Theorem 1) to the case of an unknown time series process satisfying our maintained
hypothesis (%) and assumptions A.0- - A.2. Towards this end we shall need the following
result:

Lemma 3 Under the maintained hypothesis (x) and assumption A.1, the following is true:

1. The marginal process {z,} has a unique stationary sigma-finite measure p on R (may
be infinite).

2. The following weaker version of Doeblin’s condition holds:

For each T, uniformly in &, € R (potential values for z.), there ezists a
finite-valued measure A of sets A € B(R) with A(R) > 0, an integer T > 7,
and a positive €, such that:

PO, A) <1—€ if MA)<e

3. Consider a set X € B(R), with 0 < p(X) < oo, then the “process on X ” as defined by
Harris (1956, p. 118) is stationary and ergodic.’

Proof: Under assumption A.1, condition C of Harris (1956, p.115) is satisfied, since the
shock process guarantees that for all starting conditions zy, all sets of positive v-measure
(and hence positive Lebesgue measure) will be visited infinitely often with probability 1.
Hence, by Harris (1956, Theorem 1, p. 116), the existence and uniqueness (up to constant
positive multiples) of a sigma-finite measure p which is invariant for the transition p* follows.

4 For example, if the shock process arrives at the Fibonacci numbers 1,2,3,5,8,13,21,... Another example
would be a Poisson process for shock arrivals, with the mean inter-arrival time diverging to infinity, etc.

5 “The process on X” is defined as follows: let zo € X, and notice that by part 1 of the Lemma, almost all
sequences g, T1,Z2,... will have infinitely many elements in X. Construct the process on X as g, ¥1,¥2,.- -,
where each y; is the first element of {2} in X after y;_;. In practice, we conduct our test by estimating the
transition density fr(z,z') over a compact interval. Theoretically, we treat that compact interval as though
it were fixed ex ante. In practice, we choose the interval by taking the middle 90% of any given sample. For
the asymptotic results in this paper to hold, we need to let T 1 for the given X, and then let X grow, but
the order of the limits is crucial. This is similar in spirit to the practice in the estimation and/or testing for
structural breaks, where one typically searches for the break point within the middle 90% of the sample.
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The measure p(R) may be finite (e.g. if the expected recurrence time is finite), or may be
infinite.
We now turn to the proof of part 2. Under A.1, ¥, shock, — co almost surely implies
that for all 7,
Pr{3 7' > 7|shock, = 1} = 1.

We can rewrite this condition as:

1*1%11 Pr{3 7,7 > 7' > 7|shock, = 1} = 1.

This convergence in turn implies that for all § > 0, 37* such that:
Pr{i3 77" >7" > 7|shock, =1} > 6.

Now, under the maintained hypothesis (x), construct A = av + (1 — ), and identify € in
our Doeblin-type condition with our § in the previous equation. Then, we have shown that
for all A € B(R) with A(A) < ¢, and for any starting time period 7, there exists a 7 such
that 7 < # < 7*, and shock; = 1. For this 7, an upper bound on the probability %7 (¢, A)
is given by A(A) (since, when a shock hits, the maximal probability of z,,7 € A under the
systematic part p(.,.) is (1 — ), and the probability due to the shock is av(A), and (by
construction) A(A) = (1 — &) + av(A)). Thus, taking € < 0.5, we have shown that there
exists a 7 such that (€, A) < € < 1 —¢, for all £ € R, hence concluding our proof.

For part 3 of the Lemma, notice that for the “process on X", the measure y on X defines
a unique invariant probability measure: for A € B(X), P,(A) = p(4)/u(z).b m

Now, we propose to estimate the transition density over a compact set X via the kernel
density estimator:

fr(z,7') = jr(z,2") /mr(z),
jr(z,z 12TT :K( ) K(I’ _h:”‘),

mr ThTZK( )

We assume that the invariant probability measure on X defined by P,(A4) = p(A)/p(X) is
absolutely continuous, with density m. By Lemma 2, the process deﬁned by p*(.,.) on X

where

and

6 In other words, if we observe the process whenever it is in X, and if the starting condition z, is drawn
from the unique invariant measure restricted to X, pu{.)/u(X), the average time it spends within any subset of
X is defined by the unique sigma-finite invariant measure p. For example, a random walk z; = z4_;+¢; hasa
unique (infinite) invariant measure 1 which coincides with Lebesgue measure on the Real line. Therefore, the
process on a compact set X generated by such a random walk, if z¢ is drawn from the uniform measure on X,
gives any set A € B(X) probability proportional to its Lebesgue measure. Indeed, this is the fundamental
idea in obtaining ergodic theorems for processes which admit an infinite invariant measure, as in Harris and
Robbins (1953).
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is stationary and ergodic, hence the stationary density m(.) and joint density j(.,.) of the
process on X are well defined objects to estimate via my(.) and jr(.,.). We now add the
following standard assumptions for consistency of kernel estimation:

A.3 m(.) and j(.,.) are continuous.
A.4 limpe |2| K (2) = 0.
A.5 hr |0, and Th2 1 0o, as T 1 oo.

We are now ready for our main result:

Theorem 2 Under Assumptions A.1-A.5, let

pT(-TvA) - /fT(l"y) d17
A

where fr(.,.) is estimated on a compact set X € B(R) as detailed above. Then, the test in
steps 1-4 of Algorithm 0, applied to pr, obtains the correct asymptotic size under the null of
ergodicity of p, and asymptotic power unity against the alternative of non-ergodicity of p, as

T 1 oo first, then X TR, s = O(T) 1 0o, and then n 1 co.

Proof: We first demonstrate the consistency of our estimator pr under the maintained
assumptions.” Using the stationary ergodicity under Lemma 2, a direct application of the
ergodic theorem to mr(z) and jr(z,y) produces the pointwise convergence of the averages:
mr(z) = E[mr(z)], and jr(z,y) = E[jr(z,y)], in probability.

Under the additional assumptions A.3-A.5, it is well known (e.g. Roussas (1969, asymp-
totic unbiasedness Theorem 2.2, p.75)) that E[mr(z)] —» m(z) and Eljr(z,v)] = j(z,y).
It follows directly that fr(z,y) = jr(z,y)/mr(z) = f(z,y) in probability, which directly
produces the required consistency result pr(z, A) — p*(z, A) in probability, for all z € X,
A € B(X).

Now, it is clear that for all z € X and A € B(X),

plimTToopT(a:,A) = Pr{shock = 1} [(1 — a)p(z, A) + av(A)| + Pr{shock = 0}p(z, A) ,

7 A stronger result of uniform consistency is available under assumptions A.3-A.5, and the sufficient

condition Dy ((a) Doeblin’s condition holds, and (b) p* has only a single ergodic set and it contains no
cyclically moving subsets). Roussas (1969, Theorem 3.1, p. 77) has shown under those conditions that:

Su/I: |pT(~'L', A) _ﬁ*(z,A)l -+ Oa

in probability. As we have shown in Lemma 2, the process on X is stationary and ergodic, and a weaker
condition similar to Doeblin’s condition holds. However, since Doeblin’s condition does not hold under
assumption A.2, and since uniform consistency is not needed for our purposes, we settle for the weaker
pointwise consistency result stated here.
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where
T

Pr{shock =1} = %ﬂl‘rm %Z shock,.

t=1

Since the last term is assumed to converge to zero under A.2, this in turn implies that:

plimTToopT('ra B) = plimTTooﬁ*(‘ra B) = p*(I’ B)

i.e. pr(z, B) is a consistent estimator of p*(z, B).

Under the null hypothesis of ergodicity of p*, the test applied to pr obtains the appro-
priate asymptotic size since pr inherits the ergodicity of px (as well as p) in the limit, as
shown in Lemmas 1,2.

Under the alternative hypothesis of non-ergodicity of p (and hence of p*), we consider the
case where p* has at least one stationary density (which we have called the stationary non-
ergodic case) In this first case, since p* does not satisfy Harris recurrence, it is decomposable
(Harris (1956)). Let A and B be two of the ergodic subsets of p*. As we let X 1, eventually
A and B will be subsets of X. Then given any initial density g, simulated sequence {27} of
length s, and using the estimated transition pr

18—1 T-1 1T—l
lm =35 Troe cpsenr = m =3 Ioor eloeay < lim = 3 shock, = 0.
s;{gsg (=1, €Blzf e} Tl,gng {eereBlzcA) ._Tlgng ock,

This proves that under the alternative, the probability of observing transitions between
ergodic subclasses of p* converges to zero as T' T oo. Hence, as in Domowitz and El-Gamal
(1993, Theorem 1, Lemma 2, pp. 596-598), the mass under two randomly drawn densities
from Algorithm A of section 5 must be the same for sets A and B, which requires a linear
relationship to hold between the coefficients of the two polynomial densities. This is a
probability zero event under Algorithm A, and hence, we obtain the asymptotic power of
unity against the non-ergodicity of p* (and, by Lemma 2, of p). |
Remarks:

e There are four possible properties a time series may possess in terms of stationarity
and ergodicity. We have shown under the maintained assumptions (x),A1-A5 that
our test obtains the correct asymptotic size under the stationary and non-stationary
ergodic cases included in the null hypothesis. Moreover, we have shown that under
the same conditions, the test obtains asymptotic power of unity against the stationary
non-ergodic case. Given our proof methodology under the maintained assumptions,
we are unable to prove that the test will obtain asymptotic power unity against the
non-stationary non-ergodic case.

e We have focused the analysis of nonstationarity under the null on behavior most akin
to discrete regime shifts, as in Hamilton (1989). The test also will fail to reject in
the presence of other forms of nonstationary, but ergodic behavior. These include
the asymptotically stationary models of Kampe de Fériet and Frenkiel (1962), simple
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heteroskedasticity, as illustrated by Mokkadem (1987), stable time-varying parameter
models, discussed by Rao (1978), and Markov models exhibiting general forms of non-
stationarity of the transition kernel that nevertheless admit so-called weak ergodicity
(e.g., Isaacson and Madsen (1976)). Formalization for such cases requires an extension
of the state space of {s;} from finite to infinite, a complication we avoid to eliminate
the need for measure-theoretic niceties that are extraneous to the analysis.

The reason for indeterminacy of power in our framework under the non-stationary non-
ergodic case is due to the necessity of conducting the test on a compact set to ensure
stationary ergodicity (using Lemma 2), and consistency of the estimated transition
density (first part of the proof of Theorem 2). The theoretical results let T' 1 oo, and
then allow the compact set on which the estimation and testing is implemented to
get large. Consider the leading example of a non-stationary non-ergodic process: a
random walk z; = z;_1 + ¢;. This process admits a unique invariant measure, which is
the (infinite) Lebesgue measure. When we consider “the process on (a compact) X”
for such a random walk, this process mimics a random walk with reflecting boundaries
(since the periods outside the boundaries of X are ignored by such a process), which
is stationary and ergodic. Considering such processes as 7' + oo and as X T R is
ill-defined since the order of taking the limits leads to different properties.

In Section 6, we shall conduct a small Monte Carlo analysis of AR(1) processes with
unit roots and stationary roots, using designs similar to those in the literature. The
Monte Carlo results suggest that our test does obtain reasonable power performance
and very good size performance in this environment. In some instances, our test’s size-
power combination compares favorably to tests under the unit-root null hypothesis, but
a more elaborate Monte Carlo study is needed to confirm those preliminary results.
Moreover, the data analysis in Section 7 consistently produce rejections of the null of
ergodicity for series which are traditionally considered to have unit-roots. Those results
in Sections 6 and 7 suggest that the test may have good power performance in practice
against non-stationary non-ergodic alternatives. A theoretical result of consistency
against such alternatives may require a different proof methodology for obtaining the
correct asymptotic size.

The use of standard critical values for the two-sample test in step 4 of Algorithm 0
suggests that uncertainty stemming from the estimation of P does not affect the test
statistic. This is technically correct, although somewhat unusual in comparison with
a variety of other specification tests in the literature. The main sources of uncertainty
in the procedure are from a combination of random selection of initial densities and
the sampling scheme for Cesaro averages of the density over possible trajectories of
the dynamic process. This is quite similar to the analysis of Koop et al. (1996), in
the context of nonlinear impulse response functions. In very small samples, estimation
uncertainty might be viewed as a more serious problem. The distribution of test p-
values then can be bootstrapped via a resampling scheme that permits replication of
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the estimation of P. Such a procedure also is commonplace, for example, in impulse
respounse analysis based on vector autoregressions.

4.2 Practical Considerations

In this section, we have extended the asymptotic size and consistency of our test of ergodicity
to the case of a time series with kernel estimated transition density. The asymptotics require
taking limits as T 1 oo first, then as s = O(T') 1 oo, and finally as n 1 co. Since s and n are
control parameters in our simulation-based test, this is not particularly restricting, and the
crucial asymptotic assumption is the familiar one of T' 1 oo.

In any given sample of size T, however, the choice of s and n (as well as k) is not pre-
specified. Our Monte Carlo analyses in Domowitz and El-Gamal (1993) and Domowitz and
El-Gamal (1996) suggest that values of k = 10, s = 50, and n = 200 produce reasonable
size and power performance in a particular set of examples. In the Monte Carlo simulations
and empirical applications in this paper, we shall always use those values. As we shall
see, the size and power performance of the test under those values is quite good in AR(1)
and ARMA(1,1) models with stationary roots (for size analysis), and unit roots (for power
analysis).

The empirical analysis of macroeconomic and financial time series results in rejection of
the null of ergodicity for most series, and failure to reject that null for first differences of the
series. In addition to the reasons given in the remarks following Theorem 2, these empirical
results suggest that the unit root hypothesis is the most relevant alternative for those series,
and our Monte Carlo studies suggest that those values of (s,n,k) are appropriate for ob-
taining the appropriate size and good power against that alternative. In other applications
where a different alternative hypothesis may be more relevant, some Monte Carlo analysis
to determine appropriate values of these parameters can be a valuable guide.

5 I(0), Short Memory, and Extended Memory

Deviations from ergodicity in linear models usually involve unstable or explosive behavior,
also entailing nonstationarity. There are three related points for nonlinear models. A nonlin-
ear model may exhibit unstable behavior leading to a rejection of the hypothesis of ergodicity,
but be stationary. An example is provided by a logistic transformation of a random walk,
which exhibits behavior akin to an I(1) variable, but has constant variance. Our test will
reject the null in this case. Second, a nonlinear dynamical process may fail to be ergodic
without exhibiting explosive behavior, also resulting in rejection of the null. Finally, a non-
stationary nonlinear process may possess the ergodic property. An illustration of the last
two points is given by the interactive Markov Chain concept developed by Conlisk (1976)
and Brumelle and Gerchak (1980).

One response, given in Granger and Swanson (1995), is purely pragmatic: an I(0) process
is one that does not fail a powerful test having some general form of I(0) as the null. This
is the view implicitly adopted here, for reasons which will be clarified below. In doing so,
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we relate Granger (1995)’s substitute for the standard I(0) definition, that of short memory
in mean, to the analysis in this paper. In the interest of clarity, we neglect some measure-
theoretic niceties, but the discussion can be made entirely rigorous.

The vast bulk of econometric work on failure of ergodicity relies on linearity and the
concept of an integrated process, say Y;, denoted I(1), such that AY; = X, is I(0), i.e.,
integrated of order zero. The concept rests on a clear definition of what one means by 1(0).
As part of an ambitious research program on persistence in nonlinear environments, Granger
(1995) finds a variety of ambiguities and difficulties in precisely defining I(0), especially
for nonlinear data generating processes. His conclusion is that the standard 1(0) and I(1)
classifications are not sufficient for general analysis. Amongst other things, he notes that
the concepts are too linear in form, differencing is a linear operation, and indeed the (1)
concept relies on linear sums of I{0) components.

Granger considers a series Y; and an information set I, which consists simply of the past
and present of the series. The unconditional mean of the series, p, is assumed to exist and
be a constant. He defines the short memory in mean concept (SMM), saying that Y} is SMM
if

B||EWoal) = ] < cu.

where ¢, is some sequence that tends to zero as n increases, and n indexes the forecast
horizon. As one forecasts into the future, the information in I; becomes less relevant, i.e.,
the process loses memory. He notes a possible extension of the concept, SMM of order
6 > 0, SMM(6), when c, = O(n?) , i.e., inclusive of a rate of convergence. Failure of SMM,
entailing the notion that the forecast is a function of I, for all n, is called eztended memory
in mean, denoted EMM. The SMM idea, while conceptually both simple and useful, fails the
pragmatic criterion noted above, in that Granger (1995) notes that how such a test is to be
performed is not clear. ‘

The SMM formulation is reminiscent of mixing conditions, and Granger indeed notes the
equivalence of his SMM concept with that of mixing in mean. More generally, a process is
mixing if and only if A\, — 0 as n 1 co, where, taking T to be the shift operator,

An = n(BONT™A) — n(A)n(B)|

for any two pairs of events A and B, where n is a probability measure.. The definition
implies a form of asymptotic independence, relating to distributions as opposed to means,
and a mixing process is certainly mixing in mean. We call a process satisfying such a mixing
condition SMM-M, since memory is obviously lost. Clearly, a similar rate of convergence
criterion to that proposed by Granger may be imposed here, leading to SMM-M(6). This
is, in fact, common, especially for stronger forms of the mixing assumption (e.g., a-mixing)
used in central limit theorem applications for nonstationary processes.

SMM-M does not fail the pragmatic criterion for short memory. An alternative character-
ization of mixing is given in Domowitz and El-Gamal (1996, Theorem 1): a data-generating
process is mixing if and only if P*g = f, Vg € D, where = signifies weak convergence. A
test for mixing is then available by employing the same strategy as the test for ergodicity,
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but examining the convergence of P*g directly, as opposed to using the Cesaro limit. Details
of such a test are given in the Appendix. Notice that for such a test, the null hypothesis (of
mixing), and the alternative hypothesis (of non-ergodicity) are not exhaustive. This is not
uncommon (see Lehman (1986, Chapter 9) for a detailed discussion), and the set of processes
that are not mixing, but are ergodic, is very small and not generally of interest.

The link between ergodicity and mixing, and yet another alternative definition of short
memory, may be provided by defining a variant of the ergodic coefficient of Dobrushin (1956).

Let
1 n—1

&= =3 n(BNT"A) = n(A)n(B).
h=0

If £, = 0 as n T oo for any two events A and B, the underlying process might be called
SMM-E, representing an averaged form of asymptotic independence. The hyphenated E
stands for ergodic, since SMM-E is necessary and sufficient for the ergodicity of the process.®
The terminology of short memory still is justified, since ergodic processes are certainly char-
acterized by loss of memory, often corresponding to the original SMM concept in the case
of stationary Markov processes, in particular. Once again, a rate of convergence could be
posited, leading to SMM-E(6), but this is uncommon practice.

SMM-E satisfies the pragmatic criterion for I{ 0), which 1s one way to view the contri-
bution of this paper. In this case, the concept of EMM is simply failure of the ergodic
property.

We close this section with two related remarks. First, one could further define short
memory in terms of geometric ergodicity, SMM-G, say: ||P"(z,.) — 7| = O(p") for some
p < 1. This concept may fail the pragmatic criterion, however, relating to our second
point, which is that while short memory may be testable through the extensions proposed
here, short-memory(f) may not. Verification of rates of convergence typically involve rather
precise knowledge of the nature of the underlying process and, to the best of our knowledge,
cannot be ascertained directly from data.

6 A Limited Monte Carlo Analysis of the Unit Root
vs. Stationary Root AR(1) Case

In this section, we present some Monte Carlo evidence with respect to the performance of
the testing strategy previously described under the null of a stationary AR(1), against the
alternative of a non-stationary non-ergodic unit-root AR(1). The analysis is limited in two
dimensions. First, we make no attempt to cover all possible models containing unit roots
that have been studied in the literature. We consider the simple random walk, a model with a
moving average component, and a model with an additional stable autoregressive component,
all for mean zero series (i.e., without constant terms or deterministic trends). These models

8 Proofs of this proposition are commonplace for the case where T' is measure-preserving. Simply apply

the definition to an invariant set C, i.e. A = B = C. Since P(C)= 0 or 1, every invariant set is trivial, and
the result follows by the ergodic theorem. For results in more complicated environments, see Alpern (1976).
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correspond, however, to the leading cases considered by Schwert (1989) and Elliott et al.
(1996). Second, the work does not encompass a detailed comparison of various unit root
tests relative to the test proposed here. We avoid the complications entailed by the fact that
unit root testing schemes generally start from the null of nonergodic behavior, while our
test proceeds from the ergodic null.® Standardizations required for such comparisons would
involve computing a variety of Monte Carlo experiments for unit root tests themselves, a
topic for future research.

All tests are run for T = 200 and/or 500, loosely corresponding to the lengths of post-war
quarterly and monthly data series. A total of 1000 tests are computed for each experiment.
Rather than report simple rejection frequencies, we summarize the results through a kernel
density plot of p-values for the 1000 replications. Under the ergodic null, such densities
should be approximately uniform, providing a global, as opposed to purely local, perspective.
Under the alternative, the densities should exhibit a strong mode just to the right of p = 0,
e.g., between 0 and 0.10, say, with a steep decline in the density as p — 1.

The cases considered are based on the simple autoregressive model,

Ty = PTe-1 + €7,

under three specifications for the error process. Model I takes the error to be i.i.d. white
noise. Model II embodies a moving average assumption, ¢ = 7, — 01,—;. Model 1II posits
a stable autoregressive disturbance, namely, €; = ¢€;_; + 7, . Innovations in the latter two
specifications also are taken to be i.i.d. white noise, and all innovations are drawn from a
N(0, 10) distribution. Initial conditions zq are randomly drawn from N(0, 100). We compute
experiments for # and ¢ each = 0.8 and 0.5, corresponding to cases considered by Schwert
(1989) and Elliott et al. (1996). Model I simply takes these coefficients to be equal to zero.

Figures 1 and 2 show the densities of p-values from 1000 tests under Model I: z, =
pri_1 + er, for p = 0.8,0.9,0.95,0.99,1.0, with 7" = 200 in Figure 1 and 7" = 500 in Figure
2. It is clear from these two figures that for all values of p up to 0.95, the size of the test is
quite reasonable (the density of p-values is roughly uniform over [0,1]). Moreover, the power
performance of the test under the alternative p = 1.0 is quite reasonable, with 33% of the
p-values falling under the traditional significance level of 0.05, and 40% falling under 0.1 for
T = 200. With 7" = 500, 45% of the p-values are below 0.05, and 53% fall below 0.1. A
remarkable feature of the size performance under the null hypothesis for p < 0.95 is that
the density of p-values is unaltered for 7' = 200,500. On the other hand, we can clearly
see the improvement in power (for p = 1) as T' gets larger. Throughout, we note that for
the values of T analyzed here, p = 0.99 behaves virtually identically to p = 1. This is a
well known feature of near-unit-root processes mimicking unit-root processes for sufficiently
small T. We can see from Figures 1 and 2, however, that the size distortion is reasonable up
to p = 0.95, which is considered strongly near-unit-root by most researchers.

Figures 3 and 4 show the densities of p-values from 1000 tests each under Models II and
I1I. Under model 1I: z, = pz;_1 + €, €, = n; — 61,_1, the test obtains the correct size for the

9 Some notable exceptions exist; e.g. Kwiatkowski et al. (1992).

21



|
|
l
?
l

Kernel density of p values: AR(1), T=200 Kernel density of p values: AR(1), T=500

3.2
4.0

2.8
3.8

3.2

p=D.8 1
— — p=09 |
- - = p=0.85 |
© p=0.99 | i
P10 | i

) | H

2.4

2.8

p=0.8
— — p=00
- - = p=0.95
....... 0=0.99
e p= 1.0

2.0
2.4

densities
densities
2.0

%40 0.‘2 0j4 0.‘6 0.8 1.0 %40 012 0.‘4 0:6 OjB 1.0
p—value p—value
Figure 7: Density of 1000 p-values, Figure 8: Density of 1000 p-values,
T=200. ‘ T=500.

two cases (p = 0.8,0 = 0.8) and (p = 0.8,0 = 0.5). However, the performance under the unit
root hypothesis mimics the results of Schwert (1989), where the case (p = 1,6 = 0.8) is not
distinguished by unit root tests (nor by our test) from the stationary root cases, whereas the
case (p = 1,6 = 0.5) looks more like a pure unit root process, but our power against (like
the size of unit root tests) is not as satisfactory as in the pure AR(1) case. We note that this
problem for the size of unit root tests and the power of our test against that alternative is
a small-sample problem. The attenuation of the explosiveness in the series caused by higher
persistence in the residuals causes the unit root process in small samples to mimic stationary
processes.
In Figure 4, the error process is ¢, = ¢¢;_1 + 1;. Our test produces reasonable size under
= 0.8, and moderate power under p = 1, not dissimilar to the analogous size results in
Elliott et al. (1996). For instance, for the case (p = 1.0,¢ = 0.8) in Figure 4, 47% of the
p-values are below 0.05, and 55% of the p-values are below 0.1. In this small sample context,
we would conclude from Figures 1-4 that our test has very good power for the cases where
unit root tests have good size, and sometimes (as in the case of AR(1) residuals in Figure 4)
may also have good power for cases where traditional unit root tests do not have good size
performance. Moreover, our test has very good size (e.g. for p = 0.95 in Figures 1 and 2) for
cases where unit root tests have low power against “near-unit-root” stationary alternatives.
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7 Applications to Low and High Frequency Data

We now return to analyses of the stability of monetary aggregates and the mean reversion
hypothesis with respect to high frequency exchange rates, introduced in section 2. Some
additional points relevant to the performance of the test are discussed in the context of
other applications to both high and low frequency data in a subsection to follow. As with
the Monte Carlo analysis, results are presented in graphical form. For each series, a plot of
the time series itself is accompanied by graphs of the marginal density of the process and the
transition density, which are the essential inputs to the test. The test results themselves are
presented via a kernel estimate of the density of p-values over 100 replications of the test.

7.1 Velocities of M1 and M2

We applied the test to the velocity of M1 (M1V) as shown in Figures 7-10. It is clear in
Figure 10 that the test rejects a very large proportion of the time at all reasonable significance
levels, and hence we strongly reject the null hypothesis of ergodicity of M1V. One observation
we mentioned in Section 2.1 was the apparent trend stationarity of M1V between 1960 and
1980, before the trend reversal and increased volatility. Figures 15-18 report the results of
applying our test to the detrended M1V for 1959-1995, which again shows a strong rejection
of the null hypothesis of ergodicity of the detrended series. This is consistent with the results
of Stock and Watson (1993) that the cointegrating vector for M1 and nominal GDP for those
series extending beyond the 1980s must include interest rates. The agreement of our results
with those of Stock and Watson (1993) is further illustrated in Figures 19-22, where the
test fails to reject the null hypothesis of stationary ergodicity for the differenced M1V series,
which together with the rejection of stationary ergodicity of the M1V series itself, suggests
that M1V is I(1).

The application of our test to M2V is illustrated in Figures 11-14. It is clear that we
fail to reject the null hypothesis of stationary ergodicity for M2V. As discussed in Section
2.1, this result is consistent with the conclusions of Feldstein (1992) and Feldstein and Stock
(1993) that there exists a stable relationship between M2 and nominal GDP, which renders
targeting M2 a useful tool for monetary policy. This conclusion is further strengthened by
the Feldstein and Stock (1993) result that the inclusion of interest rates does not eliminate
the predictive content of M2.

7.2 Mean reversion of exchange rates

Our results pertaining to the futures prices of foreign exchange are illustrated in figures 23-38.
The null of ergodicity is rejected soundly for all cases, as is obvious from the kernel estimate
of the density of p-values across 100 realizations of the test statistic. The marginal densities
exhibit the same multimodality as observed in the investigation of the money relationships.
Wen et al. (1992), for example, identify such multimodality with nonlinear systems under
disequilibrium and with transient periods of multistage growth. Such a characterization
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may indeed be reasonable for the high frequency currency prices, given the description in
Section 2. Multimodality also is consistent with mixtures of distributions, a defining feature
of nonergodic behavior Durret (1991).

Although we believe that our concept of occasional shocks to the process is best illustrated
by the institutional considerations discussed in Section 2.3, it also can be linked to the
models considered by O’Connell (1996) and Bleaney and Mizen (1996a). In the latter, the
relationship between changes in the exchange rate and the lagged level is S-shaped, with a
relatively flat interval surrounding an intercept of zero. In this case, a shock to the transition
would be such as to place an observation far to the right or left of the flat region, moving
the process into another ergodic subclass. In the former, such a shock would be linked to
“large” movements of an observation relative to the median of the data.

The motivation for both of the models above is the idea that the process may be ergodic
over some realizations of such shocks, but not over others. The issue of integrating structural
break analysis of this type into our proposed methodology is beyond the scope of this paper,
and is a topic for future research. Nevertheless, something may be said with respect to the
results of O’Connell (1996), in particular, based on an intuitive inspection of the available
results and the data. He finds that the process is “median-reverting” for small deviations of
the exchange rate relative to the sample median, but follows a random walk for large such
deviations. A plot of the median of our trading data against the raw series would suggest
a similar result, in the sense that the stable behavior observed post-1987 is characterized
by small deviations, while the observations in the pre-1987 look like large deviations, in
the sense of his model. If we ignore problems associated with estimation of breakpoints,
and simply assume that the Louvre Accord signals the break, formal testing would confirm
O’Connell’s basic results, though with a decidedly different interpretation.

7.3 Other applications

We have thus far illustrated the viability and power of the test via Monte Carlo analysis and
applications to low frequency monetary aggregates and high frequency exchange rates. Space
constraints preclude the detailed reporting of a variety of other applications undertaken.
These include tests on a variety of macroeconomic time series, reminiscent of Nelson and
Nelson and Plosser (1982) and Schwert (1987), as well as on an additional eight series of high
frequency asset prices, covering markets in stocks, miscellaneous commodities, and short and
long term interest rates. Details are available upon request, and we offer only a few comments
relevant to the performance properties of the methodology.

The test applied to macroeconomic data series exhibiting well-documented trends (nom-
inal and real GDP and GNP, M1 and M2, and GDP and GNP deflators) uniformly rejects
the ergodic null. We do not expect this to be a surprise to anyone. The test rejects strongly,
because low values observed early in such series are not revisited later in the sample with any
frequency. We simply remark that the moderate power of the test identified by the unit root
Monte Carlo evidence does not appear to translate into failure of the test in such empirical
applications.
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The multimodality of the marginal distribution noted in our previous applications carries
over to all such series, consistent with the theory and results of Wen et al. (1992). We further
note that multimodality, and associated failure of the ergodic property, may or may not be
associated with structural breaks, in the usual sense of that term. This comment is a corollary
to the discussion in Section 5, in which it was pointed out that time-varying parameter models
may be nonstationary, yet reveal ergodic behavior. Real GDP, for example, exhibits strong
multimodality, and the evidence on structural breaks in that series post-war is mixed. An
analysis of the first difference of real GDP yields a strictly unimodal density, and a density
of p-values for the test that is uniform, indicating failure to reject the ergodic null. Thus,
should there be structural breaks in “detrended” GDP, they do not translate into failure of
the ergodic property for the differenced series.

Tests pertaining to dependence properties of the high frequency time series involve be-
tween 95,000 to 190,000 observations over five to ten year periods. Such data provide a wider
variety of behavior in the levels of the series than the macro variables. Stock index and in-
terest rate series exhibit behavior similar to the macro time series, but over much shorter
time spans. Commodity prices share a pattern, largely consisting of apparently nonlinear
behavior, marked by little growth in levels. The null hypothesis is nevertheless rejected for
all but one scrics in the latter category, for example, as well as for the trending series. For all
rejections, the marginal densities exhibit the same multimodality as in the aggregate series,
although not all series are trending. These results demonstrate the ability of the test to
isolate deviations from ergodic behavior without long time spans of data, unlike unit root
tests, as discussed by Campbell and Perron (1991). Further, our findings confirm the ability
of the test to reject the null in the absence of any “explosive” behavior, as suggested by the
discussion in Section 4. Since the latter is most often associated with failure of the ergodic
property by economists, such results are of independent interest.

Finally, a comparison of results across some of the high frequency series suggests that
apparent “trends” may not obviate the ergodic property. This possibility is illustrated by
results on transaction prices for five-year government notes (FV) in Figures 39-42. Consider
this series relative to the SF and DM currency processes, for example. A casual examination
of the data might suggest that the SF and DM series are “more stationary”, at least in the
sense of trend, than FV. The test strongly rejects the null for the currencies, but not for
the interest rate series, however. Although it is tempting to ascribe this result to power
properties, there is another reasonable explanation to be gleaned from the data. The SF
series, for example, never returns to values below 0.55 after the early part of the sample.
Similar behavior is observed for the DM, which fluctuates around the same value later in the
period, but never returns to values below 0.4 observed earlier. In contrast, the FV process
exhibits occasional returns to earlier price points, with enough frequency to result in failure
to reject the null. Such behavior implies that a decomposition into ergodic subclasses is not
possible. The process may return from subclass 2, say, to subclass 1, and from subclass 3 to
2, and so on, with positive probability, implying ergodic behavior.
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8 Concluding Remarks

We have presented a procedure for a test of the null hypothesis of ergodicity of a process,
under the assumption that the process is first-order Markov. It is shown that the test
asymptotically obtains the correct size and maximal power against stationary nonergodic
alternatives. The test will fail to reject for nonstationary processes that nevertheless have the
ergodic property. This implies, for example, that simple heteroskedasticity or time-variation
in model parameters will not result in spurious rejections. Examples of such processes are
given by Kéampe de Fériet and Frenkiel (1962), Rao (1978), Gray (1988), Mokkadem (1987),
and Isaacson and Madsen (1976).

The test may be applied to a known data generating process, in calibration exercises, for
example, or to data, for which the specific form of the underlying process is unknown. In
that case, the procedure is made operational through the nonparametric estimation of certain
transition and marginal densities. Although we rely on an explicitly stochastic framework,
Domowitz and El-Gamal (1996) show that the results apply equally well to nonlinear deter-
ministic models. In that case, the theorems of El-Gamal (1991) can be used to generalize
the procedure to unknown data generating processes, which are thought to be deterministic
based on theoretical considerations.

The restriction to the first order univariate Markov case does not constrain the analysis
as much as one might first presume. Higher order Markov processes may be reduced to multi-
variate first order schemes, as is well known. In that case, and for other considerations man-
dating multivariate analysis, Domowitz and El-Gamal (1993) provide a dimension-reduction
algorithm, and prove that should the resulting univariate process be ergodic (nonergodic),
then the multivariate process is ergodic (nonergodic). Those results are completely unaf-
fected by the additional complication of estimating the unknown law of motion dealt with
here. Thus, at the expense of adding one more algorithm to those described here, the test
is generalized to the multivariate setting.

The test is randomized, in the spirit of Bierens (1990), for example. For this reason,
we suggest that the test be run multiple times, basing inference on the density of observed
p-values. This should mitigate a common criticism of randomized tests, namely that two
researchers could reach very different conclusions based on the same data and procedure.
Under the null, the density should be approximately uniform, a condition that could be
checked using an additional goodness-of-fit test. Under the alternative, the density is sharply
peaked at p-values close to zero, with a steep decline to relatively constant lower values of
the statistic. We illustrate this procedure in Monte Carlo experiments against unit root and
stable autoregressive processes, as well as in applications to low frequency macroeconomic
data and high frequency asset prices.

There are many possible directions for future research, based on the ideas presented here,
and we mention only a few. Extensions to nonlinear cointegration problems, one goal of the
Granger (1995) research program, may be investigated. The application of the procedure to
calibration exercises is yet to be fully explored. Christiano and Harrison (1996) make a start
in that direction, but stop short of a formal testing strategy. The relevance of such research
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lies in the determination of ergodic behavior in equilibrium, because ergodic behavior implies
that macroeconomic policy results only in transitory changes, a prior motivation for the
extensive literature on persistence via unit root processes. With respect to the latter class
of processes, in particular, a more extensive comparison study of the relative performance of
tests for unit roots and our more general procedure is called for, controlling for the differences
in null and alternative hypotheses. Finally, we mention an application for which the ergodic
properties of a process are known, but where the procedure may still prove useful, namely
in Bayesian econometrics. Sampling algorithms used to produce posterior distributions for
parameters of interest are stationary and ergodic by construction. It is often difficult to
judge, however, whether a simulated distribution is sufficiently close to the unique invariant
distribution based on examination of any given sequence in the process. Variants of the
procedure introduced here may prove useful in providing a probabilistic assessment as to
whether a simulation of any given length produces a sample path distribution close enough
to the limit to be empirically useful, i.e., a stopping rule.
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Algorithms
This appendix is devoted to a statement of the algorithms used in our test. The im-
plementation of those algorithms in our Monte Carlo analyses and data analysis reported
below was conducted in GAUSS version 3.2.29 for SunOS5.x Ultra, and using the GAUSS
Maximum Likelihood Version 4.0.22/1 module.!® All of the computations in this paper were
performed on a Sun Ultra2 with two 168Mhz processors.!! For a given series, the code reads
in the data and conducts the test by implementing the following steps:

Algorithm 1

1. Calculate cross-validation bandwidth for kernel estimation, using the GAUSS
maximum likelihood module, and initializing the maximum likelihood search
by a Silverman rule of thumb hr = 1 x T~1/5, where 1 was selected to be the
difference between the 55th and 45th percentiles (this choice is less sensitive
to outliers than Silverman’s choice of n = o, the standard deviation in the
series).!?

2. Obtain kernel density estimates my, jr and fr as discussed in Section 4,
using standard Normal kernels. The estimated transition density fr(z,y)
is estimated on a 100 x 100 grid, and implies a finite approximation to the
Frobenius-Perron operator on density space: (Prg)(z) = [ g(y) fi(y, ) dy.1?

3. Perform ntests tests (in the empirical applications in Section 7, ntests =
100). Each test is constructed as follows (where, as discussed earlier, in all
applications in this paper, s = 50, n = 200, k = 10):

(a) Use Algorithm A (below) to generate random coefficients (cy, ..., cx),
and (c},...,c), draw n data points, each i.i.d., from g(z) = 3%, ¢z
and ¢'(z) = o5, dx.

(b) Use Algorithm B (below) to randomly draw n i.i.d. samples each from
(1/5) £ia P%_lg and (1/s) 7, P:;‘—lg-

(c) Use Algorithm C to perform a Kolmogorov-Smirnov test of the equality
of the distributions of the two samples, and obtain p-value for the test.

4. Plot the time series, the estimated marginal density and transition density,
and a kernel smoothed density of the p-values so obtained. Under the nuli-

19 GAUSS is a trademark of Aptech Systems, Inc.

11 However, the code is easily portable to other platforms under which GAUSS code can be run. The
current code is available upon request from the authors, who aim to make a fully portable version available
on the internet in the near future.

12 For an excellent survey of different methods of bandwidth selection for kernel density estimation, see
Jones et al. (1996). For a discussion of the applicability of essentially the same bandwidth selection methods
in time series contexts, see Bosq (1996, pp.88-91).

13 For a justification of using finite approximations of the Frobenius-Perron operator on the density space,
see Li (1976). Alternative analysis justifying finaite approximations to continuous processes is contained in
Guihenneuc-Jouhaux and Robert (1996).
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hypothesis of ergodicity, this density should be uniform over [0,1], and under
the alternative, it should put a significant weight on low values of p.

We now proceed to a documentation of the three component algorithms A, B and C.
The steps in those three algorithms are very similar to those implemented in Domowitz and
El-Gamal (1993) and Domowitz and El-Gamal (1996), and we include them for completeness.

Algorithm A

1. Choose a compact interval [a, b], the support of initial densities.

2. Generate a random vector py,...,p; on the k + 1-dimensional simplex as
follows:

(a) Generate Uy,...,Us, i.1.d. U[0,1].
(b) Generate the order statistics Uy, . .., Uwy, and Uy = 1, and U1y = 1.
(¢) Set pi = Uiigry — Ugy.
3. Compute ¢, ..., C:
(a) Fori=1,...,k, generate V; i.i.d. U[0,1].
(b) Set ¢; = (i + 1)p; if V; > 0.5, otherwise, set ¢; = —(i + 1)/7 p;.
(c) Set co = po — Li.c;<o-

4. Generate i.i.d. from the density g(z) = Y% ,c;z° using the algorithm of
Ahrens and Dieter (1974).

5. Transform the i.i.d. draws (on [0,1]) by multiplying them by b and adding
a, to produce i.i.d. draws on the compact set [a, b].

Algorithm A provides us with samples of z.2.d. draws from a polynomial density of order
k whose coefficients are drawn randomly. The product of each application Algorithm A is a
sample of n i.i.d. draws from the density g(z) = Zf:o c;x'. To obtain a sample of n i.i.d.
draws from the Cesaro averaged density: E;;(l) P%g, we use the following algorithm:

Algorithm B
1. For each of the n observations z¥, draw a value t; € {0...s} with probability
1/(s + 1) for each value.
2. For the i*" observation, iterate for j = 1,...,¢;:

(a) Given z¥, normalize fr(Z?,.) to sum to one; where Z{ is the closest
point on the 100 x 100 grid to z¥.

(b) Replace z{ with a random draw from the multinomial random variables
with probabilities defined by the normalized fr(z?,.).

(c) Repeat steps (a) and (b) ¢; times.
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Now that we can apply Algorithm A and Algorithm B twice each to produce two i.i.d.
samples from the Cesaro averages of two randomly drawn initial densities, we apply the
two-sample Kolmogorov-Smirnov test of equality of two distributions to those two samples.
Algorithm C was implemented by coding the algorithms kstwo and probks from Press et al.
(1988, pp. 493-4) in GAUSS (using the built-in sorting function in GAUSS). We note that
as in Domowitz and El-Gamal (1996), a test of mixing would be constructed by setting all
the t;’s in step 1 of Algorithm B at t; = s. Note, however that such a test would attain the
correct asymptotic size under the null hypothesis of mixing, but it is only guaranteed to be
consistent (i.e. have asymptotic power of unity) against nonergodic (and not necessarily all
non-mixing) alternatives.
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Figure 11: Trajectory of M1 velocity, 1959:1— Figufe 12: Marginal density of M1 velocity,
1995:2 : 1959:1-1995:2
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Figure 13: Transition density of M1 velocity, Figure 14: Density of p-values of test for M1
1959:2-1995:2 velocity, 1959:1-1995:2
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Figure 15: Trajectory of M2 velocity, 1959:1- Figure 16: Marginal density of M2 velocity,
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Figure 17: Transition density of M2 velocity, Figure 18: Density of p-values of test for M2
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Figure 19: Trajectory of detrended of M1 Ve- Figure 20: Marginal density of detrended M1
locity, 1959:2-1995:2 velocity, 1959:2-1995:2
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Figure 21: Transition density of detrended of Figure 22: Density of p-values of test for de-
M1 Velocity, 1959:2-1995:2 trended M1 velocity, 1959:2-1995:2
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Figure 23: Trajectory of 1st diffeernces of M1 Figure 24: Marginal density of 1st differenced
Velocity, 1959:2-1995:2 M1 velocity, 1959:2-1995:2
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Figure 25: Transition density of 1st differences Figure 26: Density of p-values of test for 1st
of M1 Velocity, 1959:2-1995:2 differenced M1 velocity, 1959:2-1995:2



British Pound: 1/3/84 — 4/30/93, 5 Minute Data
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Figure 27: Trajectory of BP
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Figure 29: Transition density of BP
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Figure 28: Marginal density of BP
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Figure 30: Density of p-values of test for BP



Deutschemark: 1/3/84 — 4/30/93, 5 Minute Data
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Figure 31: Trajectory of DM
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Figure 33: Transition density of DM
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Figure 32: Marginal density of DM
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Figure 34: Density of p-values of test for DM



Japanese Yen: 1/3/84 — 4/30/93, 5 Minute Data
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Figure 35: Trajectory of JY
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Figure 37: Transition density of JY

Kernel density estimate: JY
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Figure 36: Marginal density of JY
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Figure 38: Density of p-values of test for JY
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Swiss Franc: 1/3/84 — 4/30/93, 5 Minute Data
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Figure 39: Trajectory of SF
w
w
3
o
£
>
L
pol
G
[=¢
L3
o
c
2
b=
w
<
o
e
®
c
S
@
x
T, Bl
-4
:
i
2
H

Figure 41: Transition density of SF
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Figure 40: Marginal density of SF
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Figure 42: Density of p-values of test for SF



5-Year Treasury Notes: 6/1/88 — 4/30/93, 5 Minute Data
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Figure 43: Trajectory of FV Figure 44: Marginal density of FV
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Figure 45: Transition density of FV Figure 46: Density of p-values of test for FV



