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Abstract

This paper describes the relationship between two different binary choice
social interaction models. The Brock and Durlauf (2001) model is essentially
a static Nash equilibrium model with random utility preferences. In the
Blume (forthcoming) model is a population game model similar to Blume
(1993), Kandori, Mailath, and Rob (1993) and Young (1993). We show that
the equilibria of the Brock-Durlauf model are steady states of a differential
equation which is a deterministic approximation of the sample-path behavior
of Blume’s model. Moreover, the limit distribution of this model clusters
around a subset of the steady states when the population is large.
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1 Introduction

This paper describes the relationship between two different binary choice
models with interdependent preferences in order to elucidate some general
properties of models of this type. One model is due to Brock and Durlauf
(2001) and is in essence a static Nash equilibrium model in which a random
utility framework is extended to include an effects of the expected choices of
others on individual payoffs. The second model is the strategy adjustment
model of Blume (forthcoming), in which binary choice evolve in response to
the past behavior of others via a stochastic population process similar to
Blume (1993), Kandori, Mailath, and Rob (1993) and Young (1993).

At one level, of course, these social interaction models are nothing
more than coordination games in which particular restrictions have been
made on the state space of choices and the ways in which payoffs between
agents are interdependent. What has made these types of models of general
interest is their both their ability to elucidate theoretical questions such as
the existence and local stability of multiple equilibria as well as their potential
to be applied in a range of econometric contexts (cf. Glaeser, Sacerdote, and
Scheinkman (1996) and Brock and Durlauf (2000)).

In our analysis, we link these two social interactions models by using
the dynamic ideas developed in Blume (1994, 1997) to calculate differential
equations whose steady states are precisely the equilibria studied by Brock
and Durlauf (2001). We show that for large player populations, the solu-
tion path of the differential equation from given initial conditions closely
approximates the sample path of the population process studied by Blume
(forthcoming) from the same starting point. This result is well-known in
the population biology literature and has also been demonstrated in some
population game models.

More interesting is that the differential equation also carries infor-
mation about the asymptotic behavior of the population process. As the
population size becomes large, any (weak convergence) accumulation point
of the sequence of invariant distributions has support contained in the set
of stable steady states of the differential equation. We characterize (weak)
accumulation points of the sequence of suitably scaled invariant distributions
for the population process. In general, the limit distributions distribute their
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mass among the mean field equilibria. For two particular cases, the constant
tremble probability model of Kandori, Mailath and Rob and Young and the
logit choice model of Blume and Brock and Durlauf, we demonstrate that
the sequence of invariant distributions converges and we compute the limit.

The typical population game analysis fixes a population size and in-
vestigates the limit behavior of the sequence of invariant distributions as the
stochastic component of choice disappears. These so-called “stochastic sta-
bility results” have been used to justify a particular selection from the set of
Nash equilibria of the static game which drives the population process. The
noisy choice is just a means to an equilibrium selection technique. We take
seriously both the dynamic models and noisy choice. Consequently for us
the invariant distributions are interesting in their own right rather than as a
means to an end, and we want to understand the behavior of these models
when there is a significant random component to choice.

Density-dependent population processes arise frequently in economic
analysis, and most often they are studied by examining a differential equa-
tion which describes the evolution of mean behavior. The rationale for this
approach is an appeal to a law of large numbers. For a particular class of
game-theoretic models we make the large numbers argument precise, and
clarify what can be learned from it. We expect that our results can be ex-
tended to some of the literature on search and sorting which proceeds in this
manner, and we believe this to be an important area for future research.

2 The Structure of Interactions-Based Mod-

els

The object of interactions-based models is is to understand the behavior of a
population of economic actors rather than that of a single actor. The focus of
the analysis is the externalities across actors. These externalities, the source
of the social interactions, are taken to be direct. The decision problem of
any one actor takes the decisions of other actors to be parametric. Hence
the interactions approach treats aggregate social behavior as a statistical
regularity of the individual interactions. A second feature of these models
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is that individual behavior is not as tightly modeled as it is in traditional
economic equilibrium models. Individual choice is guided by payoffs, but has
a random component. This randomness can be attributed to to some form of
bounded rationality. In static equilibrium models it may also be interpreted
as an unobserved agent characteristic.

In this paper we focus on a simple class of interaction models with
strategic complementarities. Formally, consider a population of I individuals.
Suppose that each individual chooses one of two actions, labeled −1 and +1.
Suppose that each individual’s utility is the sum of utilities from pairwise
interactions with every other player. Actor i’s expected utility is

Vi(ωi) = hiωi − E
{

∑

j

Ji,j(ωi − ωj)
2
}

+ ε(ωi)

This specification can be decomposed into a private component, hiωi + ε(ωi),
and the interaction effect, E

{
∑

j Ji,j(ωi − ωj)
2
}

. The private component
can be further decomposed (without loss of generality) into its mean, hiωi,
and a mean-0 stochastic deviation ε(ωi). The terms Ji,j is a a measure of
the disutility of non-conformance. When the Ji,j are all positive there is an
incentive to conform. The presence of positive conformity effects gives rise to
multiple equilibria and interesting dynamics. Our methods also encompass
the case of negative conformity effects, but the results are less interesting
both economically and technically.

For binary choice, this specification of preferences is quite general.
Any model in which the utility of action ωi to individual i is the sum of
the utilities from pairwise interactions with other players can be modeled
this way. This specification does not include some interesting models of
strategic complementarities, such as the stag hunt game. Multiplying out
the quadratic and renormalizing,1

Vi(ωi) = hiωi + 2E
{

∑

j

Ji,jωiωj

}

+ ε(ωi) (1)

The random terms are independent, and so the random variable εi(−1)−εi(1)
has mean 0. Let F (z) be its cdf. Then

Prob(ωi = 1) = Prob
(

Vi(1) > Vi(−1)
)

= F (2hi + 4E
∑

j

Ji,jωj)
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Different specifications of the hi and Jij coefficients give rise to models with
very different kinds of behavior. In this paper we will study uniform global
interaction. That is, Jij ≡ J/2(I −1) and hi ≡ h. Interactions with all other
players are weighted equally, and so mean utility is the sum of a private
effect, the hiωi term, and a social effect which places a weight of J on the
covariance of i’s play with mean play of all other players. Also, the private
terms are identical across players.2 Under these assumptions, the individual
choice probabilities are

Prob(ωi = 1) = F

(

2h + 2
J

I − 1

∑

j 6=i

Eωj

)

(2)

An important special case arises when the random terms are assumed
to be distributed according to the extreme value distribution with parameter
βi. That is,

Prob
(

ε(−1) − ε(1) < z
)

=
1

1 + exp(−βiz)
, βi > 0

This model reduces to an instance of the standard logit binary choice frame-
work when there are no interaction effects; that is, when Ji,j ≡ 0.

From the extreme value distribution the individual choice probabilities
can be computed.

Prob(ωi = 1) =
1

1 + exp−2β

(

h +
J

I − 1
E

∑

j

ωj)

) (3)

When β is very large, individual i will choose an action to maximize mean
utility

EVi(ωi) =

(

h +
J

I − 1

∑

j 6=i

Eωj

)

ωi

with probability near 1. When β is 0 the player will choose by flipping a
coin.

Another important special case is that where the random terms are
assumed to be distributed such that they take on the values A, 0 and −A
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with probability δ, 1− 2δ and δ respectively, where A > |EV (1)−EV (−1)|.
Then3

Prob(ωi = 1) =











δ(2 − 3δ) if EVi(1) < EVi(−1),

1 − δ(2 − 3δ) if EVi(1) > EVi(−1),

1/2 if EVi(1) = EVi(−1).

(4)

This model is the “tremble” or “mistakes” model of Kandori, Mailath, and
Rob (1993) and Young (1993). As ε becomes small, the probability of best
responding approaches 1.

In the general model, equation (2) describes the probabilities with
which the actions available to player i will be taken. This choice model is
not closed, however, because we have not specified how the expectation in
equation (2) is to be taken. In the special cases just examined, we have yet
to specify how EVi(ωi) is computed. In fact it is a conditional probability,
and different choices for on what it is conditioned give rise to the different
models which we consider in this paper.

3 Static Equilibrium: The Mean Field Model

One approach to closing the model of equations (1) and (2) is that suggested
by Nash equilibrium. That is, each individual i has beliefs about all the
ωj, and these beliefs are correct. This specification gives the Brock and
Durlauf (2001) model. Formally, suppose that each player believes that the
expectation of the action of each of his opponents is m. Equation (2) becomes

Prob(ωi = 1) = F (2h + 2Jm) (5)

If this guess is to be correct, it must be that

m = 1 · Prob(ωi = 1) + (−1) · Prob(ωi = −1) (6)

which is the equilibrium condition that closes the model. It will be convenient
to rewrite this condition in terms of the log-odds function g(z) = log F (z)−
log

(

1 − F (z)
)

. In all that follows we need to make sure that the support of
F ( · ) is large enough that g(z) is everywhere defined and that the population
externality is present.
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Axiom 1. F (z) > 0 for all z in the interval [2h − 2J, 2h + 2J ] and F (2h −
2J) < F (2h + 2J).

Substituting into equation (6),

m =
exp g(2h + 2Jm)

1 + exp g(2h + 2Jm)
−

1

1 + exp g(2h + 2Jm)

=
exp 1

2
g(2h + 2Jm) − exp

(

−1
2
g(2h + 2Jm)

)

exp 1
2
g(2h + 2Jm) + exp

(

−1
2
g(2h + 2Jm)

)

= tanh

(

1

2
g(2h + 2Jm)

)

(7)

For the logit model, equation (5) becomes

Prob(ωi = 1) =
1

1 + exp
(

−2β(h + Jm)
) (5’)

The log-odds function is g(z) = βz, and so the equilibrium condition (7) is

m = tanhβ(h + Jm) (7’)

Equation (7′) is well-known in the world of statistical physics, where it has
an important physical interpretation, and is known as the Curie-Weiss model
of magnetization. The following theorem characterizes the solutions to (7′).
See Brock and Durlauf (2001).

Theorem 1 (Static Equilibrium — Logit Model).

1. If βJ ≤ 1 and h = 0, then m = 0 is the unique solution to (7′).

2. If βJ > 1 and h = 0, then there are three solutions: m = 0 and
m = ±m̂(βJ). Furthermore, limβJ→∞ m̂(βJ) = 1.

3. If h 6= 0 and J > 0, then there is a threshold C(h) > 0 (which equals
+∞ if h ≥ J) such that (a) for βh < C(h), there is a unique solution,
which agrees with h in sign; and (b) for βh > C(h) there are three
solutions, only one of which agrees with h in sign. Furthermore, as β
becomes large the extreme solutions converge to ±1.

4. If J < 0, then there is a unique solution which agrees with h in sign.
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This theorem illustrates both the nonlinearities and the multiple steady states
which are the hallmarks of interacting systems. The model is nonlinear with
respect to a change in h, the private component of preference, on the mean
behavior m of the population. Indeed, the effect of a change in h may be to
increase the number of equilibria, which will exceed one when the strength
of interactions is great enough.

The underlying strategic situation for J > |h| corresponds to a co-
ordination game played by a population of opponents, wherein player i’s
preferences are the mean preferences h + J

∑

j 6=i ωj/(I − 1). The strategy
choice +1 (−1) is risk-dominant if h ≥ 0 (h ≤ 0). As β becomes large, the
two extreme solutions converge to the pure strategy Nash equilibria. When
h 6= 0 the middle equilibrium will not converge to the mixed Nash equilibrium
because the choice probabilities (5′) impose a particular randomization when
Vi(1) = Vi(−1) which will be incompatible with that required to implement
the mixed equilibrium.

For the mistakes model, equation (5) becomes

Prob(ωi = 1) =











δ(2 − 3δ) if 2h + 2Jm < 0,

1 − δ(2 − 3δ) if 2h + 2Jm > 0,

1/2 if 2h + 2Jm = 0.

(5”)

Let mδ = 1− 2δ(2− 3δ). The equilibrium condition is that m is any solution
to the following equations:

m =











mδ if h + Jmδ > 0,

−mδ if h − Jmδ < 0,

0 if h = 0.

(7”)

Again multiple solutions are possible. If J > h and δ ≈ 0 both m = mδ and
m = −mδ are equilibria. Due to the discontinuities in the choice probabilities
(5′′), there will typically either be one or two solutions, but never three
solutions unless h = 0.

The parameter m is of interest to the modeler as well as to the actors.
Because this model preserves the factorization of the joint distribution of
choices into the product of the distribution of individual choices, a strong law
of large numbers guarantees that m is approximately the (sample) average
choice when I is large.
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4 Dynamics

Since Blume (1993), Kandori, Mailath, and Rob (1993) and Young (1993),
interest has developed in stochastic processes wherein individuals in a pop-
ulation of players adapt their strategic choice to the play of the population.
At randomly chosen moments players observe the play of their opponents
and respond by by choosing a new strategy according to a random utility
model. The stochastic processes of individual response have implications for
the emergent dynamics of population behavior.

4.1 The Population Process

We formalize this model by giving each individual a Poisson alarm clock.
When it rings, she revises her choice. Formally, each actor i is endowed with
a collection of random variables {τ i

n}
∞
n=1 such that each τ i

n − τ i
n−1 is exponen-

tially distributed with mean 1, and all such differences are independent of
all others, hers and the other actors’. At each time τ i

n individual i chooses a
new action by applying the random utility model of equation (2). Here she
takes the expectation given certain knowledge of the ωj at time t. That is,
she chooses according to the transition probability

Prob(ωi t+ = 1|ωt) = F

(

2h + 2
J

I − 1

∑

j 6=i

ωjt

)

(8)

Implicit in this equation is the fact that players are myopic in (stochas-
tically) best-responding to the current play of the population rather than
some forecast of future paths of play. This assumption is much discussed in
the literature and will not be defended here.

The process of individual strategy revision is a continuous time Mar-
kov process that changes state in discrete jumps. We are interested in track-
ing only the aggregate St =

∑I
i=1 ωit rather than the behavior of each indi-

vidual. The process {St}
∞
t=0 is also a Markov jump process, whose states are

SI = {−I,−I+2, . . . , I−2, I}. This process changes state whenever an actor
changes her choice. If an actor changes from −1 to +1 St increases by 2, and
it decreases by 2 whenever an actor changes in the opposite direction. These
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are the only possible transitions, and so the process {St}t≥0 is a birth-death
process. The transition rates can be computed from the conditional proba-
bility distribution (8). Suppose the system is in state S. It transits to state
S + 2 only when a revision opportunity comes to one of the (S − I)/2 actors
currently choosing −1, and that actor chooses +1.4 The probability of a −1
actor making this choice is5

F

(

2h + 2
J

I − 1
(St + 1)

)

It will be convenient to make use of the log-odds function g(z) = log F (z) −
log

(

1 − F (z)
)

. In terms of g(z), F (z) = exp g(z)/
(

1 + exp g(z)
)

.

Putting this together, the transition rate from S to S + 2 in a popu-
lation of size I is

λI
S =

I − S

2

exp g

(

2h +
2J

I − 1
(S + 1)

)

1 + exp g

(

2h +
2J

I − 1
(S + 1)

) .

A similar computation gives the transition rate in the other direction. To
transit from S + 2 back to S requires that one of the (S + 2 + I)/2 actors
choosing +1 switches to −1. The transition rate is

µI
S+2 =

I + S + 2

2

1

1 + exp g

(

2h +
2J

I − 1
(S + 1)

) .

Since we will study the behavior of processes with different population sizes,
we scale them so they all sit in the same state space, [−1, 1], by defining
mt = St/I. The process with population size takes values in {−1,−1 +
2/I, . . . , 1 − 2/I, 1} = MI ⊂ [−1, 1]. The process has birth rates and death
rates

λI
m =

I

2
(1 − m)

exp g
(

∆(m)
)

1 + exp g
(

∆(m)
)

(9)

µI
m+2/I =

I

2
(1 + m +

2

I
)

1

1 + exp g
(

∆(m)
)
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respectively, where

∆(m) = EV {(1)} − E{V (−1)}

= 2

(

h +
J

I − 1
(S + 1)

)

= 2

(

h + J
I

I − 1
m +

J

I − 1

)

≈ 2(h + Jm)

for large I.

4.2 Short Run Dynamics

The birth and death rates are the time derivatives of the transition probabil-
ities. Thus they can be used to characterize the rates of change of expected
values of functions of the state. For any differentiable function f : R → R,

d

dτ
E{f(mt+τ )|mt = m}

∣

∣

τ=0
= λI

m

(

f
(

m +
2

I

)

− f(m)

)

+

µI
m

(

f
(

m −
2

I

)

− f(m)

)

=
I

2

(1 − m) exp g
(

∆(m)
)(

f(m +
2

I
) − f(m)

)

1 + exp g
(

∆(m)
)

+
I

2

(1 + m)
(

f(m −
2

I
) − f(m)

)

1 + exp g
(

∆(m)
)

=
(1 − m) exp g

(

∆(m)
)

f ′(m) − (1 + m)f ′(m)

1 + exp g
(

∆(m)
)

+ O(I−2)

=

(

tanh
(1

2
g
(

∆(m)
)

)

− m

)

f ′(m) + O(I−2)
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When f(m) = m, this differential equation gives

d

dτ
E{mt+τ |mt = m}

∣

∣

τ=0
= tanh

(1

2
g
(

∆(m)
)

)

− m + O(I−2)

Taking the I → ∞ limit suggests the following differential equation, called
the mean field equation:

ṁ = tanh
(1

2
g(2h + 2Jm)

)

− m (10)

For large I solutions to the diffenrential equation (10) approximate the sam-
ple path behavior of the process {mI

τ} on finite time intervals. The following
theorem is an application of a standard strong law of large numbers for den-
sity dependent population processes. (An elementary proof is too long to be
given here. A quick high-tech proof can be found in Chapter 11.2 of Ethier
and Kurtz (1986).)

Theorem 2 (Sample-Path Behavior). Let {mI
t }t≥0 refer to the average

process with population size I. Suppose mI
0 = m0 and let m(τ) be the solution

to the mean field equation (10) with initial condition m(0) = m0. Then for
every t ≥ 0,

lim
I→∞

sup
τ≤t

|mI
τ − mτ | = 0 a.s.

The content of the Theorem is that when I is large, the stochastic
perturbations from individuals’ random choices more or less averages out,
and so the mean field path is nearly followed for some time. But notice that
the theorem is about finite time intervals. For any time horizon t, the mean
field solution m(τ) gives a good approximation to the sample path over a time
interval of length t. In the long run, however, large deviations will occur, and
ultimately the sample path will diverge from its mean field approximation.

4.3 Asymptotic Behavior

It is apparent that the steady states of the mean field equations (10) are
precisely those states which satisfy the equilibrium condition (7) of the Brock-
Durlauf model. Furthermore the sample path theorem suggests that there is
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motion towards at least the stable steady states of (10). This suggests that
the long run behavior of the process should tend to be concentrated around
the stable steady states of (10), a subset of the mean field equilibria.

The birth-death process with transition rates given by (9) is irre-
ducible, and so for each population size I the population process has a unique
invariant distribution ρI , which describes the long-run behavior of the pro-
cess. The next Theorem shows that the intuition of the previous paragraph
is correct. For large I the invariant distribution tends to pile up mass near
one or more of the stable steady states of (10).

Since the state space [−1, 1] is compact, the sequence of invariant mea-
sures {ρI} is relatively compact, and so has weakly convergent subsequences.
The next Theorem demonstrates properties about the subsequential limits.
In all the applications we have examined the sequence {ρI} converges, and
the proof of the Theorem suggests a sufficient condition for convergence.
Define the function

r(m) =

(

(1 + m

2

)
1+m

2
(1 − m

2

)
1−m

2

)−1

exp
1

2

∫ m

−1

g
(

∆(x)
)

dx (11)

Theorem 3 (Asymptotic Behavior). Let ρ be a weak subsequential limit
of the sequence {ρI}

∞
I=2 of invariant distributions for population processes

with population size I. Then supp ρ is the set of global maxima of r(m),
and is contained in the open interval (−1, 1). If the set of stationary states
of the mean field equations (10) is the finite union of points and intervals,
then supp ρ is the finite union of points and intervals, all of which are locally
stable.

This Theorem implies that if the population I is large, mean behavior is most
often near the stable states of the mean-field equation.

Proof. For a population of size I the invariant measure ρI on MI satisfies the
relationship

ρI(m)λI
m = ρI

(

m +
2

I

)

µI
m+ 2

I



Social Interaction Models 13

Consequently

ρI(m) = zI

(

I

I 1+m
2

)

exp
{

g
(

∆(−1)
)

+ · · ·+ g
(

∆(m)
)}

≈ z̃II
− 1

2

√

2

π(1 − m2)
r(m)I

≡ ρ̃I(m)

where zI and z̃I are normalizing factors.

The approximation comes from Stirling’s formula and the Riemann
sum approximation to the integral. The approximation is such that ρI − ρ̃I

converges uniformly to 0 on compact subsets of the interior of M . Let m∗

denote a global maximum of r(m). The function r(m) is strictly increasing
in a neighborhood of m = −1, strictly decreasing in a neighborhood of m =
1, and r(−1) = 1. Consequently all its critical points are interior, and
maxm r(m) exceeds 1. Let O be an open neighborhood of argmax r(m) and let
C be a compact set disjoint from the closure of O. Then ρ̃I(O)/ρ̃I(C) → +∞,
so limI→∞ ρ̃I(O) = 1. Consequently limI→∞ ρI(O) = 1 and so supp ρ ⊂
argmax r(m). This proves the first part of the Theorem.

It remains only to show that argmax r(x) is contained in the set of
stable equilibria of (10). The derivative of log r(m) is

d

dm
log r(m) = −

1

2
log

1 + m

1 − m
+

1

2
g
(

∆(m)
)

= − arctanh(m) +
1

2
g
(

∆(m)
)

,

and so the critical points are those m which satisfy the equation

m = tanh

(

g
(

∆(m)
)

2

)

.

By hypothesis, the solution set is the union of a finite collection of points
p1, . . . , pK and intervals, [a1, b1], . . . , [aL, bL]. This union is the set of all
critical points of log r(m), and so the set of global maxima of r(m) is the
union of a sub-collection of these elements. Consider a point pk or a left
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endpoint al in supp ρ. For the point p in question there is an ε > 0 such
that on the interval (p − ε, p), d/dm log r(m) < 0. Suppose at some point

m in this interval, ṁ ≤ 0. Then m ≥ tanh
(

g
(

∆(m)
)

)

/2. Since arctanh

is an increasing function, applying it to both sides of the inequality gives
d/dm log r(m) ≥ 0, which is a contradiction. A similar argument works for
the right side of all singletons and right endpoints to show that on some
neighborhood to their right, ṁ < 0. Consequently they are all locally stable.

The next result follows from the proof of the Asymptotic Behavior Theorem.

Corollary 1 (Convergence). If the function r(m) defined in equation (11)
has a unique global maximum m∗, then the sequence {ρI} converges weakly
to δm∗ , point mass at m∗.

4.4 Examples

In the following examples we assume J > 0. There is no loss of general-
ity in assuming h > 0 because our examples treat the different strategies
symmetrically. For more on this, see Blume (forthcoming).

For logit choice, g(x) = βx. The mean field equation (10) is

ṁ = tanh β(h + Jm) − m

For generic values of the parameters there are either one or three equilibria,
and if there are three, the center equilibrium is unstable. When β is small
there is a unique stable equilibrium. When β is large and h = 0 the dis-
tributions ρI are symmetric, and so ρI converges to the distribution which
places mass 1/2 on each stable steady state. If h > 0 then for all m > 0,
r(m) > r(−m). r(m) has three critical points, two of which are negative and
one which is positive. The positive critical point is the unique global maxi-
mizer of r(m), and so ρI converges to point mass on the positive equilibrium.
In the following picture, the bottom plot shows the mean field equilibria and
the top plot shows invariant distribution probability functions for I = 100
(flatter) and I = 400 (more peaked), for the logit choice model with β = 1.5,
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h = 0.05 and J = 1. The top figure is drawn so that the area under the each
of the two curves is identical. The probability of states away from the upper
equilibrium is negligible. The two insets show the invariant distribution con-
ditioned on regions around the other equilibria: The interval (−1.0,−0.6)
on the left and the interval (−0.24,−0.04) on the right. In each case the
flatter curve corresponds to the smaller population. Notice that the unstable
steady state is a local minumum of the probability functions, and that the
stable steady state is a local maxima. This is a general feature of the models
discussed here, and can be proved using similar techniques.

-0.818 -0.152 0 0.886

m

Figure 1: The Logit Model

For the tremble model, the mean field equation is

ṁ =











−mδ − m if h + Jm < 0,

−m if h + Jm = 0,

mδ − m if h + Jm > 0.

Generically there are either one or two steady steady states, depending upon
the size of h and J . Candidate steady states are at ±mδ. Assuming h > 0
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and that δ is small enough that mδ > 0, mδ will be a stable steady state of
the mean field equation. The other candidate, −mδ, will be a steady state
iff h − Jmδ < 0. If it is a steady state, it is stable. The state m = −h/J
corresponds to the mixed equilibrium of the unperturbed game. In the logit
model (and in any continuous model) it is a steady state, but not here unless
h = 0. At m = −h/J , any individual is equally likely to choose +1 or −1 at
a choice opportunity. But because if h > 0 (for instance), individuals with a
choice are more likely to be −1-players, and so ṁ > 0.

In the trembles model the invariant distribution is easily calculated.
Let m′ = max{m ∈ MI : h + Jm ≤ 0}. To avoid tedious explication of the
boundary case, assume the generic condition that h + Jm′ < 0.

ρI(m) =

(

I
mI+1

2

)

·











(

2δ(2−3δ)
1−2δ(2−3δ)

)I 1+m

2

if m ≤ m∗,
(

2δ(2−3δ)
1−2δ(2−3δ)

)I 1+m
′

2
(

1−2δ(2−3δ)
2δ(2−3δ)

)I 1+m−m
′

2

otherwise.

If m′ < 0, then for all r(m) > 0, r(m) > r(−m), and so the invariant
distribution will converge to point mass at the steady state m = mδ. Figure
2 displays the relationship between the short- and long-run dynamics for
the mistakes model. Here h = 0.1, J = 1.0 and mδ = 0.8. The leftmost
inset plots the conditional distributions on (−0.9,−0.7) and the rightmost
inset plots the log of the conditional distributions on (−0.16,−0.06). The
inset expanding the minimum of the stationary distributions is plotted in
logs because the “valley” is so steep. The sample sizes are 100 and 400 and
again, the steeper plots correspond to the larger sample size.

4.5 Risk-Dominance and Large Populations

The population games literature (Blume (1993), Kandori, Mailath, and Rob
(1993), Young (1993), etc.) comes at these problems from a different point
of view. We are given a symmetric 2 × 2 coordination game played by a
population of players who are randomly matched against each other. Label
the two strategies +1 and −1. The function ∆(m) measures the payoff
difference between +1 and −1 to a random match when fraction (mI +
1)/2I of the population plays +1. Players randomly receive opportunities to
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-0.8 -0.1 0 0.8

m

Figure 2: The Trembles Model

revise their choice. When they choose, they best-respond, but their choice is
then stochastically perturbed. In the mistakes model players get their best
response with probability 1− ε, and the other choice with probability ε. The
logit model can be similarly interpreted.

The central question of the population games literature has been
the behavior of population processes when the stochastic perturbation is
small. For example, the parameter β in equation (5′) and ε in equation (5′′)
parametrize the size of the perturbation. As β → ∞ and ε → 0, the probabil-
ity of an individual choosing something other than a best response converges
to 0. With strategic complementarities, ∆(m) is increasing. If ∆(−1) < 0
and ∆(1) > 0, then the game has three Nash equilibria: Pure equilibria at
m1 = 1, m2 = −1 and a mixed equilibrium at mm = ∆−1(0). If mm < 0,
then m1 is the risk dominant equilibrium.

The main result of this literature goes as follows: Suppose that ∆(m)
is increasing, and that mm < −1/I. Then as β → ∞ (or ε → 0), the invariant



Social Interaction Models 18

distribution for the population process converges weakly to point mass at m1.
That is, as choice becomes less noisy, population play converges to the risk-
dominant equilibrium. In other words, the risk-dominant equilibrium is said
to be stochastically stable.

This result does not depend upon the details of the noise process.
Following Blume (forthcoming), write g(∆) = βg̃(∆). If the odds of choos-
ing any one strategy over the other depend only upon the payoff difference
∆, then it follows that h(∆) must be skew-symmetric; that is, h(−∆) =
−h(∆). Blume (forthcoming) shows that if h(∆) is skew symmetric, the
risk-dominant equilibrium is stochastically stable. The stability result app-
plies to the logit and mistakes models. If mm < 0, the support of the limit
distribution is the strictly positive stable steady state. This property of the
invariant distribution is general.

In this paper we have fixed the parameters of the noise distribution,
and vary only the population size. Nonetheless here too we see a similar kind
of stochastic stability result.

Theorem 4 (Risk dominance). Suppose that mm < 0 and g(∆) is skew-
symmetric. Then limI ρI

(

(0, 1]
)

= 1.

Proof. The function r(m) is the product of two terms. The first term is
symmetric around m = 0, where it takes a maximum. The second term is
symmetric around m = mm, where it takes a minimum. If mm < 0, then for
all m > 0, r(m) > r(−m), because the first term takes the same values at
±m while the second term is always greater at m than at −m. Consequently
the global maxima of r(m) must all be positive.

In particular, g is skew-symmetric for both the logit and the mistakes
models. If h > 0, then m∗ < 0 and so the Risk Dominance Theorem implies
that for these models, if h > 0 then the invariant distribution converges to
point mass on the unique positive steady state of the mean field approxima-
tion.
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5 Conclusion

We have shown that the equilibria of the Brock-Durlauf model are steady
states of the mean-field differential equation of Blume’s model, which is a
deterministic approximation of sample-path behavior. Moreover, the limit
distribution of this model clusters around a subset of the steady states when
the population is large. This large-numbers result is an analog of the stochas-
tic stability results of Blume (1993), Kandori, Mailath, and Rob (1993) and
Young (1993). The relationship between deterministic and stochastic evolu-
tionary dynamics uncovered here is similar to results in Binmore, Samuelson,
and Vaughn (1995).

We conjecture that these results have a straightforward extension to
n-ary choice when the underlying game described by the expected utilities
has a potential. In this case, computing the invariant distribution to what is
now a multitype birth-death process comes down to finding global maxima
of a function like r(m). This fact is true because if the game has a potential,
the multitype birth-death process is reversible and the invariant distribution
is characterized by the so-called detailed balance conditions, that the proba-
bility of state x times the flow rate from x to y equals the probability of state
y times the flow rate from y to x. If the game has no potential, the popu-
lation process is not reversible and the invariant distribution has no simple
characterization. The role of the potential function is discussed more fully
in Blume (forthcoming). It is important to note that the existence of the
deterministic approximation, the mean field equation, is independent of the
existence of a potential. The state of the art on deterministic approximations
to stochastic processes for general n-ary social interaction models is Benaim
and Weibull (2000). Among other things, they show that the asymptotic
behavior of the stochastic process clusters around stable steady states of the
deterministic approximation when the population size is large.6 In our model
these are the local maxima of r(m). The existence of r(m), however, allows
us to get a sharper characterization of limit behavior.

An important substantive implication of our analysis is that the in-
efficient equilibria in the static Brock-Durlauf model will only be visited
infrequently in dynamic versions of the model, at least from the perspective
of invariant measures. Of course, this says nothing about lengths of time for
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passages across equilibria and so these models can still have much to say em-
pirically. However, to the extent that models such as this are used to make
claims about cross-section differences in group rates of high school grad-
uation, nonmarital fertility, etc., our finding implies that these differences
presumably are due to differences in initial conditions. This is of course
plausible in cases such as differences between ethnic groups. However, our
finding also implies that models of this type may not be empirically relevant
for understanding how similar groups diverge in the short run, as may be
observed in the paths of residential neighborhoods in large cities. For such
cases, one will either need an alternative framework or an appeal to changes
in fundamentals such as employment opportunities. Hence analyses of the
type we have provided should have some value in guiding applied work on
social interactions.
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Notes

1We have subtracted off the constant term −2
∑

j Jij.

2The other leading example of social interaction is uniform local interac-
tion, studied by (Blume 1993) and (Ellison 1993). Here hi ≡ h and Ji,j = J
or 0 depending upon whether or not i and j are neighbors. (Ellison uses a
different model of the stochastic component.)

3When EVi(1) = EVi(−1), individual i draws until she gets a non-
identical realizations of ε(−1) − ε(1).

4There are other imaginable transitions, such as where two −1 actors
switch to +1 and one +1 actor switches to −1, but these transitions all
involve the simultaneous arrival of revision opportunities to more than one
actor, and is thus a 0-probability transition.

5St + 1 rather than St because we are interested only in
∑

j 6=i ωjt, which
equals St + 1 if ωit = −1.

6More generally, the Birkhoff center of the deterministic flow.
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