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THRESHOLD AUTOREGRESSION WITH A UNIT ROOT

BY MEHMET CANER AND BRUCE E. HANSEN1

This paper develops an asymptotic theory of inference for an unrestricted two-regime
Ž .threshold autoregressive TAR model with an autoregressive unit root. We find that the

asymptotic null distribution of Wald tests for a threshold are nonstandard and different
from the stationary case, and suggest basing inference on a bootstrap approximation. We
also study the asymptotic null distributions of tests for an autoregressive unit root, and
find that they are nonstandard and dependent on the presence of a threshold effect. We
propose both asymptotic and bootstrap-based tests. These tests and distribution theory

Ž . Žallow for the joint consideration of nonlinearity thresholds and nonstationary unit
.roots .

Our limit theory is based on a new set of tools that combine unit root asymptotics with
empirical process methods. We work with a particular two-parameter empirical process
that converges weakly to a two-parameter Brownian motion. Our limit distributions
involve stochastic integrals with respect to this two-parameter process. This theory is
entirely new and may find applications in other contexts.

We illustrate the methods with an application to the U.S. monthly unemployment rate.
We find strong evidence of a threshold effect. The point estimates suggest that the
threshold effect is in the short-run dynamics, rather than in the dominate root. While the
conventional ADF test for a unit root is insignificant, our TAR unit root tests are arguably
significant. The evidence is quite strong that the unemployment rate is not a unit root
process, and there is considerable evidence that the series is a stationary TAR process.

KEYWORDS: Bootstrap, nonlinear time series, identification, nonstationary, Brownian
motion, unemployment rate.

1. INTRODUCTION

Ž . Ž .THE THRESHOLD AUTOREGRESSIVE TAR MODEL was introduced by Tong 1978
Žand has since become quite popular in nonlinear time series. See Tong 1983,

.1990 for reviews. A sampling theory of inference has been quite slow to
Ž .develop, however. Among the more important contributions, Chan 1991 and

Ž .Hansen 1996 describe the asymptotic distribution of the likelihood ratio test
Ž .for a threshold, Chan 1993 showed that the least squares estimate of the

threshold is super-consistent and found its asymptotic distribution, Hansen
Ž .1997b, 2000 developed an alternative approximation to the asymptotic distribu-

Ž .tion, and Chan and Tsay 1998 analyzed the related continuous TAR model and
found the asymptotic distribution of the parameter estimates in this model.

In all of the papers listed above, an important maintained assumption is that
the data are stationary, ergodic, and have no unit roots. This makes it impossible
to discriminate nonstationarity from nonlinearity. To aid in the analysis of
possibly nonstationary and�or nonlinear time series, we provide the first rigor-

1Caner thanks TUBITAK and Hansen thanks the National Science Foundation and the Alfred P.
Sloan Foundation for research support. We thank Frank Diebold, Peter Pedroni, Pierre Perron,
Simon Potter, four referees and the co-editor for stimulating comments on earlier drafts.
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ous treatment of statistical tests that simultaneously allow for both effects.
Ž .Specifically, we examine a two-regime TAR k with an autoregressive unit root.

Ž .Within this model, we study Wald tests for a threshold effect for nonlinearity
Ž .and Wald and t tests for unit roots for nonstationarity . We allow for general

autoregressive orders, and do not artificially restrict the coefficients across
regimes.

We find that the Wald test for a threshold has a nonstandard asymptotic null
distribution. This is partially due to the presence of a parameter that is not

Ž Ž . Ž .identified under the null see Davies 1987 , Andrews and Ploberger 1994 , and
Ž ..Hansen 1996 , and partially due to the assumption of a nonstationary autore-

gression. The asymptotic null distribution has two components, one that reflects
the unit root and deterministic trends but is otherwise free of nuisance parame-
ters, and the other component that is identical to the empirical process found in
the stationary case, and is nuisance-parameter dependent. Hence the asymptotic
distribution is nonsimilar and cannot be tabulated. We propose bootstrap
procedures to approximate the sampling distribution.

We find that Wald tests for a unit root have asymptotic null distributions that
depend on whether or not there is a true threshold effect, and construct bounds
that are free of nuisance parameters. Our simulations suggest that these
asymptotic approximations are inferior to bootstrap methods, which we recom-
mend for empirical practice. Using simulations, we show that our threshold unit

Žroot tests have better power than the conventional ADF unit root test Said and
Ž ..Dickey 1984 when the true process is nonlinear.

Our distribution theory is based on a new set of asymptotic tools utilizing a
double-indexed empirical process that converges weakly to a two-parameter
Brownian motion, and we establish weak convergence to a stochastic integral
defined with respect to this two-parameter process. This theory may have
applications beyond those presented here.

The results presented here relate to a growing literature on threshold autore-
gressions with unit roots. In a Monte Carlo experiment, Pippenger and Goering
Ž . Ž .1993 document that the power of the Dickey-Fuller 1979 unit root test falls

Ž .dramatically within one class of TAR models. Balke and Fomby 1997 introduce
a multivariate model of threshold cointegration, but offer no rigorous distribu-

Ž .tion theory. Tsay 1997 introduces a univariate unit root test when the innova-
tions follow a threshold process. He finds the asymptotic distribution when the
threshold is known, and provides simulations for the case of estimated thresh-
old. His model requires the leading autoregressive lag to be constant across
threshold regimes, and is a special case of the model we consider. Gonzalez and

Ž . Ž .Gonzalo 1998 carefully examine a TAR 1 model allowing for a unit root. They
provide conditions under which the process is stationary and geometrically

Ž .ergodic, and discuss testing for a threshold in the TAR 1 model.
We illustrate our proposed techniques through an application to the monthly

U.S. unemployment rate among adult males. There is a substantial literature
documenting nonlinearities and threshold effects in the U.S. unemployment

Ž . Ž .rate. A partial list includes Rothman 1991 , Chen and Lee 1995 , Montgomery,
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Ž . Ž .Zarnowitz, Tsay, and Tiao 1998 , Altissimo and Violante 1996 , Chan and Tsay
Ž . Ž . Ž .1998 , Hansen 1997b , and Tsay 1997 . This literature is connected to a
broader literature studying nonlinearities in the business cycle, which includes

Ž . Ž . Ž .contributions by Neftci 1984 , Hamilton 1989 , Beaudry and Koop 1993 ,
Ž . Ž .Potter 1995 , and Galbraith 1996 . Empirical researchers are faced with the

fact that the conventional unit root tests are unable to reject the hypothesis that
the post-war unemployment rate is nonstationary. Prior statistical methods
cannot disentangle nonstationarity from nonlinearity because of the joint model-
ing problem of unit roots and thresholds. With our new methods, we are able to
rigorously address these issues. In our application, we find very strong evidence
that the unemployment rate has a threshold nonlinearity. Furthermore, we find

Žstrong evidence against the unit root hypothesis, and fairly strong although not
.conclusive evidence in favor of a stationarity threshold specification. Our

methods point to the conclusion that the unemployment rate is a stationary
nonlinear process.

This paper is organized as follows. Section 2 presents the TAR model. Section
3 introduces a new set of asymptotic tools that are useful for the study of
threshold processes with possible unit roots. Section 4 presents the distribution
theory for the threshold test, including a Monte Carlo study of size and power.
Section 5 presents the distribution theory for the unit root test, including critical
values and a simulation study. Section 6 is the empirical application to the U.S.
unemployment rate. The mathematical proofs are presented in the Appendix.

A GAUSS program that replicates the empirical work is available from the
webpage www.ssc.wisc.edu��bhansen.

2. TAR MODEL

Ž .The model is the following threshold autoregression TAR :

Ž . � �1 � y �� x 1 �� x 1 �e ,t 1 t�1 �Z � �4 2 t�1 �Z � �4 tt� 1 t�1

Ž � .t�1, . . . , T , where x � y r � y ��� � y �, 1 is the indicator function,t�1 t�1 t t�1 t�k ��4
e is an iid error, Z �y �y for some m�1, and r is a vector of determinis-t t t t�m t
tic components including an intercept and possibly a linear time trend. The

� �threshold � is unknown. It takes on values in the interval ���� � , � where1 2
Ž . Ž .� and � are picked so that P Z 	� �� �0 and P Z 	� �� �1. It is1 2 t 1 1 t 2 2

typical to treat � and � symmetrically so that � �1�� , which imposes the1 2 2 1
restriction that no ‘‘regime’’ has less than � % of the total sample. The1
particular choice for � is somewhat arbitrary, and in practice must be guided1
by the consideration that each ‘‘regime’’ needs to have sufficient observations to
adequately identify the regression parameters. This choice is discussed in more
detail at the end of Section 4.2.

The particular specification for the threshold variable Z is not essential tot�1
the analysis. In general, what is necessary for our results is that Z bet�1
predetermined, strictly stationary, and ergodic with a continuous distribution
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function. Our particular choice Z �y �y is convenient because it is en-t t t�m
Ž . Ž .sured to be stationary under the alternative assumptions that y is I 1 and I 0 .t

For some of our analysis, it will be convenient to separately discuss the
components of � and � . Partition these vectors as1 2

	 	1 2

� � , � � ,
 
1 21 2� 0 � 0� �1 2

where 	 and 	 are scalar, 
 and 
 have the same dimension as r , and �1 2 1 2 t 1
Ž . Ž .and � are k-vectors. Thus 	 , 	 are the slope coefficients on y , 
 , 
2 1 2 t�1 1 2

Ž .are the slopes on the deterministic components, and � , � are the slope1 2
Ž .coefficients on � y , . . . , � y in the two regimes.t�1 t�k
Ž .Our model 1 specifies that all the slope coefficients switch between the

regimes, but in some applications it may be desirable for only a subset of the
coefficients to depend on the regime. There is nothing essential in this choice
and other parameterizations may be used in other contexts. For the theoretical

Ž .presentation, we retain the general unrestricted model 1 for ease of exposition.
We impose the following maintained conditions on the model:

ASSUMPTION 1: e is an iid mean-zero sequence with a bounded density function,t
� � 2�and E e � for some ��2. For some matrix � and continuous 
ectort T

Ž . Ž .function r s , � r � r s . The following parameter restrictions apply: 	 �	 �0;T �T s � 1 2
� � � � � � � �for constants � and � , 
 r �� and 
 r �� ; and � � �1 and � � �1,1 2 1 t 1 2 t 2 1 2

where � is a k-
ector of ones.

The assumption that e is an independent sequence is essential for ourt
asymptotic distribution theory and for our bootstrap approximations, and ap-
pears to be a meaningful restriction on the model. The parameter restrictions
ensure that the time-series � y is stationary and ergodic, so that y is integratedt t
of order one and can be described as a unit root process. The restriction that

 � r �� and 
 � r �� implies that the only ‘‘trend’’ component that enters the1 t 1 2 t 2
true process is the intercept. This restriction is standard in the unit root testing
literature, and guarantees that there are no quadratic trends in y .t

An important question in applications is how to specify the deterministic
component r . If the series y is nontrended it would seem natural to set r �1,t t t

Ž .while if the series is highly trended then a natural option is to set r � 1 t �.t
The inclusion of the linear trend will be necessary to ensure that the unit root
tests we discuss in Section 5 have power against trend stationary alternatives.

The coefficient restrictions on � and � given in Assumption 1 are sufficient1 2
Žto ensure that the series � y is stationary and ergodic see Pham and Trant

Ž ..1985 , which is the only role of these restrictions. While these are a known set
of sufficient conditions, they are not necessary. The region of ergodicity is larger
than these assumptions, which is what is essential for our results.

Ž . Ž .The TAR model 1 is estimated by least squares LS . To implement LS
Ž .estimation, it is convenient to use concentration. For each ���, 1 is esti-
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Ž .mated by ordinary least squares OLS :

ˆ ˆŽ . Ž . Ž . Ž .2 � y �� � �x 1 �� � �x 1 �e � .ˆt 1 t�1 �Z � �4 2 t�1 �Z � �4 tt� 1 t�1

Let

T
22 �1Ž . Ž .� � �T e �ˆ ˆÝ t

1

be the OLS estimate of � 2 for fixed �. The least-squares estimate of the
2Ž .threshold � is found by minimizing � � :

ˆ 2 Ž .�� argmin � � .ˆ
���

The LS estimates of the other parameters are then found by plugging in the
ˆ ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž .point estimate �, vis. � �� � , and � �� � . We write the estimated model1 1 2 2

as

�̂ �̂Ž .3 � y �� x 1 �� x 1 �e ,ˆˆ ˆt 1 t�1 �Z � �4 2 t�1 �Z � �4 tt� 1 t�1

which also defines the LS residuals e . Let � 2 �T�1ÝT e2 denote the residualˆ ˆ ˆt t�1 t
variance from the LS estimation.

Ž .The estimates 3 can be used to conduct inference concerning the parameters
Ž .of 1 using standard Wald and t statistics. While the statistics are standard,

their sampling distributions are nonstandard, due to the presence of possible
unidentified parameters and nonstationarity. We explore large-sample approxi-
mations in the following sections.

3. UNIT ROOT ASYMPTOTICS FOR THRESHOLD PROCESSES

The sampling distributions for our proposed statistics will require some new
asymptotic tools. Rather than develop these tools for our specific model, we first
develop the needed results under a set of more general conditions. Let ‘‘� ’’

� �2denote weak convergence as T� with respect to the uniform metric on 0, 1 .

� 4ASSUMPTION 2: For the sequence U , e , X , w , let � denote the naturalt t t t t
filtration.

� 41. U , e , w is strictly stationary and ergodic and strong mixing with mixingt t t
coefficients � satisfying Ý � 1�2�1� r � for some r�2;m m�1 m

� �2. U has a marginal U 0, 1 distribution;t
Ž . � � 43. e is independent of � , E e �0, and E e ���;t t�1 t t

4. there exists a nonrandom matrix � such that the array X �� X satisfiesT T t T t
Ž . � � Ž .X �X s on s� 0, 1 , where X s is continuous almost surely;T �T s �

� � 2��5. E w � for some ��0.t
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The two most natural examples of processes X that satisfy condition 4 aret
Ž .integrated processes and polynomials in time. First, if X is an I 1 process, thent

�1�2 Ž . Ž .� �T and X s is a scaled Brownian motion. Second, if X � 1 t �T t
Ž .a constant and linear trend , then

1 0 Ž . Ž .� � and X s � 1 s �.T �1ž /0 T

Other polynomials in time, or higher-order integrated processes, can be handled
similarly.

Ž .Define 1 u �1 , the partial-sum processt �U � u4t

i

Ž . Ž .W u � 1 u eÝi t�1 t
t�1

and scaled array

1
Ž . Ž .W s, u � W uT �T s �'� T

� �Ts1
Ž .� 1 u e ,Ý t�1 t'� T t�1

where � 2 �Ee2 �.t

Ž . Ž . � �2DEFINITION 1: W s, u is a two-parameter Brownian motion on s, u � 0, 1
Ž . Ž .if W s, u �N 0, su and

Ž Ž . Ž . . Ž .Ž .E W s , u W s , u � � s �s u �u .1 1 2 2 1 2 1 2

THEOREM 1: Under Assumption 2,

Ž . Ž . Ž .4 W s, u �W s, uT

Ž . � �2 Ž .on s, u � 0, 1 as T�, where W s, u is a two-parameter Brownian motion.

It may be helpful to think of Theorem 1 as a two-parameter generalization of
the usual functional limit theorem. We now define stochastic integration with

Ž .respect to the two-parameter process W s, u . Let

1Ž . Ž . Ž .J u � X s dW s, uH
0

N j�1 j j�1
� plim X W , u �W , u ,Ý ž / ž / ž /ž /N N NN� j�1

where plim denotes convergence in probability. The integration is over the first
Ž .argument of W s, u , holding the second argument constant. We will call the

Ž .process J u a stochastic integral process.
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THEOREM 2: Under Assumption 2,
T1 1Ž . Ž . Ž .X 1 u e � X s dW s, uÝ HT t�1 t�1 t T T'� T 0t�1

1Ž . Ž . Ž .�J u � X s dW s, uH
0

� � Ž .on u� 0, 1 as T�, and J u is almost surely continuous.

This result is a natural extension of the theory of weak convergence to
Ž Ž ..stochastic integrals see Hansen 1992 .

Finally, we need to describe the asymptotic covariances between stationary
processes and the nonstationary process X when interacted with the indicatort

Ž . Ž . Ž Ž . .function 1 u . Define the moment functionals h u �E 1 u w andt�1 t�1 t�1
Ž . Ž Ž . � .H u �E 1 u w w .t�1 t�1 t�1

� �THEOREM 3: Under Assumption 2, on u� 0, 1 as T�,
Ž . T Ž . � Ž . 1 Ž .1. 1�T Ý 1 u w X �h u H X s � ds;t�1 t�1 t�1 T t�1 0
Ž . T Ž . � Ž .2. 1�T Ý 1 u w w �H u ;t�1 t�1 t�1 t�1
Ž . T Ž . � 1 Ž . Ž .3. 1�T Ý 1 u X X �uH X s X s � ds.t�1 t�1 T t�1 T t�1 0

Theorems 1�3 will serve as the building blocks for the subsequent theory
developed in this paper.

4. TESTING FOR A THRESHOLD EFFECT

4.1. Wald Test Statistic

Ž .In model 1 a question of particular interest is whether or not there is a
threshold effect. The threshold effect disappears under the joint hypothesis

Ž .5 H : � �� .0 1 2

2 Ž .Our test of 5 is the standard Wald statistic W for this restriction. ThisT
statistic can be written as

� 2ˆ0
W �T �1T 2ž /�̂

2 Ž . 2where � is defined above as the residual variance from 3 , and � is theˆ ˆ0
residual variance from OLS estimation of the null linear model.

The following relationship may be of some interest. Let

� 2ˆ0Ž .W � �T �1T 2ž /Ž .� �ˆ

2 In applications it may also be useful to consider statistics that focus on subvectors of � and � .1 2
See Section 4.5.
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Ž . Ž .denote the Wald statistic of the hypothesis 5 for fixed � from regression 2 .
Ž . 2Ž .Then since W � is a decreasing function of � � we see thatˆT

ˆŽ . Ž . Ž .6 W �W � � sup W � .T T T
���

Thus the Wald statistic for H is often called the ‘‘Sup-Wald’’ statistic.0

4.2. Asymptotic Distribution

Ž .Under the null hypothesis 5 of no threshold effect the parameter � is not
identified, rendering the testing problem nonstandard. The asymptotic distribu-

Ž .tion of W for stationary data has been investigated by Davies 1987 , ChanT
Ž . Ž . Ž .1991 , Andrews and Ploberger 1994 , and Hansen 1996 . Our concern is with
the case of a unit root, which has not been studied previously.

Ž . Ž .Let G � denote the marginal distribution function of Z , set � �G � andt 1 1
Ž . Ž . Ž .� �G � , and define 1 u �1 and w � � y , . . . , � y .2 2 t �GŽZ .� u4 t�1 t�1 t�kt

THEOREM 4: Under Assumption 1, H : � �� ,0 1 2

Ž .W �T� sup T u ,T
� 	u	�1 2

where

Ž . Ž . Ž . Ž .7 T u �Q u �Q u ,1 2

Ž . Ž . Ž .and Q u and Q u are the independent stochastic processes defined in 8 and1 2
Ž .9 below.

Ž . Ž . Ž .1. Let W s, u be a two-parameter Brownian motion; set W s �W s, 1 . Set
Ž . Ž Ž . Ž . . Ž . 1 Ž . Ž .X s � W s r s � �, J u �H X s dW s, u �, a stochastic integral process as1 0

� Ž . Ž . Ž .defined in Section 3, and set J u �J u �uJ 1 . Then1 1 1

�1
1� �Ž . Ž . Ž . Ž . Ž . Ž . Ž .8 Q u �J u � u 1�u X s X s � ds J u .H1 1 1ž /0

Ž . Ž .2. Let J u be a zero-mean Gaussian process, independent of W s, u , with2
Ž Ž . Ž . . Ž . Ž . Ž .co
ariance kernel E J u J u � � � u � u , where � u � H u �2 1 2 2 1 2

�1 Ž . Ž . Ž . Ž Ž . � . Ž . Ž Ž . .u h u h u �, H u �E 1 u w w , and h u �E 1 u w . Thent�1 t�1 t�1 t�1 t�1

�1�1� �Ž . Ž . Ž . Ž Ž . Ž . Ž . Ž .. Ž .9 Q u �J u � � u �� u � 1 � u J u .2 2 2

Theorem 4 gives the large sample distribution of the conventional Wald
Ž .statistic for a threshold for the nonstationary autoregression 1 under the unit

root restriction 	 �	 �0. Notice that the distribution T can be written as the1 2
Ž . Ž .supremum of the sum of two independent processes Q u and Q u . The1 2

Ž .process Q u is a chi-square process, taking the same form as found by Hansen2
Ž . Ž .1996 for threshold tests applied to stationary data. The process Q u takes a1
very different form, and is a reflection of the nonstationary regressors. We see
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that the presence of nonstationarity in the data changes the asymptotic distribu-
tion of the threshold test, and this will need to be taken into consideration for
correct asymptotic inference.

The case of stationary data can be deduced from Theorem 4 by removing
Ž . Ž .W s from the definition of X s , which is the result of omitting y from thet�1

Ž .regression model 1 . The asymptotic distribution corresponds to that found by
Ž .Hansen 1996 .

In general, the asymptotic distribution T is nonpivotal and depends upon the
Ž .nuisance parameter function � u . The dependence on the data structure is

quite complicated, so as a result, critical values cannot be tabulated. In the
following section, we discuss a bootstrap method to approximate the null
distribution of W .T

It is also helpful to observe that Theorem 4 shows that the critical values of T
will increase as � decreases and�or � decreases. This means that larger1 2
values of W will be needed to reject the null of stationarity when extremeT
values of � and�or � are used. In analogy to the discussion in Andrews1 2
Ž .1993 concerning the choice of trimming in tests for structural change, the
distribution of T diverges to positive infinity as � �0 or � �1. Thus setting1 2
� �0 or � �1 renders the test inconsistent. It follows that it is necessary to1 2

Ž .select values of � and � in the interior of 0, 1 , and values too close to the1 2
endpoints reduce the power of the test. On the other hand, it is desirable to

Ž . � �select � and � so that the true value of G � lies in the interval � , �1 2 0 1 2
Ž .under the alternative hypothesis ; otherwise the test may have difficulty in

Ž .detecting the presence of the threshold effect. Andrews 1993 suggests that
setting � � .15 and � � .85 provides a reasonable trade-off between these1 2
considerations, and these are the values we select in our simulations and
applications. Since the particular choice is somewhat arbitrary, it appears
sensible in practical applications to explore the robustness of the results to this
choice.

4.3. Bootstrap

In this section, we discuss two bootstrap approximations to the asymptotic
distribution of W , one based on the unrestricted estimates, and the otherT
enforcing the restriction of a unit root. These bootstrap approximations can be
used to calculate critical values and p-values.

Under the null hypothesis, � �� �� , say, so for simplicity we omit sub-1 2
scripts on the coefficients for the remainder of this section. Under H and the0

Žassumption that the only deterministic component is the intercept � see
˜.Assumption 1 the model simplifies to � y �	 y ���� �� y �e , wheret t�1 t�1 t

˜ Ž .� y � � y ��� � y �. As the distribution of the test is invariant to levelt�1 t�1 t�k
˜shifts, we can set ��0 so the model simplifies to � y �	 y �� �� y �e .t t�1 t�1 t

Since this is entirely determined by 	, � , and the distribution F of the error e ,t
we can use a model-based bootstrap.
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˜Ž .We first describe the unrestricted bootstrap estimate. Let 	, � , F be esti-˜ ˜
Ž . bmates of 	, � , F . The bootstrap distribution W is a conditional distributionT

˜ bŽ .determined by the random inputs 	, � , F . It is determined as follows. Let e˜ ˜ t
˜ b b b ˜ bbe a random draw from F, and let y be generated as � y �	 y �� �� y˜ ˜t t t�1 t�1

b ˜ b b bŽ .�e where � y � � y ��� � y �. Initial values for the recursion can bet t�1 t�1 t�k
set to sample values of the demeaned series. The distribution of y b is thet
bootstrap distribution of the data. Let W b be the threshold Wald test calculatedT
from the series y b. The distribution of W b is the bootstrap distribution of thet T

Ž b � .Wald test. Its bootstrap p-value is p �P W �W � , where conditioning onT T T T
� denotes that this probability is conditional on the observed data. Typically,T
the bootstrap p-value is calculated by simulation, where a large number of
independent Wald tests W b are simulated, and the p-value p is approximatedT T
by the frequency of simulated W b that exceed W .T T

˜Ž . Ž .To implement the bootstrap we need estimates 	, � , F . For 	, � we need˜ ˜
an estimate that imposes the null hypothesis; an obvious choice is to use the

Ž .estimate 	, � obtained by regressing y on x . An estimator for F is the˜ ˜ t t
empirical distribution of the OLS residuals e . In typical statistical contextst̃
Žwhen the asymptotic distribution is a smooth function of the model parameters

.and the parameter estimates are consistent bootstrap distributions will con-
Ž b . 3verge in probability to the correct asymptotic distribution denoted W � T ,T p

implying that the bootstrap p-value will be first-order asymptotically correct. In
our model, this convergence depends on the true value of 	. If the time-series is
stationary, then the bootstrap will achieve the correct first-order asymptotic
distribution, since the model parameters are consistently estimated and the

Žasymptotic distribution is a smooth function of these parameters a similar
Ž ..formal argument is presented in Hansen 1996 . If the time-series has a unit

root, however, this will not be the case. The asymptotic distribution is discontin-
uous in the parameters at the boundary 	�0, so the bootstrap distribution will
not be consistent for the correct sampling distribution.

We can achieve the correct asymptotic distribution by imposing the true unit
root. This is done by imposing the constraint 	�0. This can be done by setting

˜ ˜Ž . Ž . Ž .the estimates of 	, � , F to be 0, � , F , where � , F are defined above. Then˜ ˜
b b ˜ b b bgenerate random samples y from the model � y �� �� y �e with e˜t t t�1 t t

˜drawn randomly from F. These samples are unit root processes. For each
sample y b, calculate the test statistic W b. The estimated bootstrap p-value is thet T
percentage of simulated W b that exceed the observed W .T T

This constrained bootstrap is first-order correct under H if the true parame-0
ter values satisfy 	�0. If the true process is stationary, however, the con-
strained bootstrap will be incorrect. We see that we have introduced two
bootstrap methods, one appropriate for the stationary case, and the other
appropriate for the unit root case. If the true order of integration is unknown
Ž .as is likely in applications , then it appears prudent to calculate the bootstrap

3The symbol ‘‘� ’’ denotes ‘‘weak convergence in probability’’ as defined in Gine and Zinnp
Ž .1990 , which is the appropriate convergence definition for bootstrap distributions.
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Ž .p-values both ways, and base inference on the more conservative the larger
p-value.

4.4. A Monte Carlo Experiment

In order to examine the size and power of the proposed test a small sample
Ž .study is conducted. The model used is equation 1 with k�1, a linear time

trend, and z �� y :t�1 t�1

Ž . Ž .10 � y � 	 y �
 t�� �� � y 1t 1 t�1 1 1 1 t�1 �� y � �4t� 1

Ž .� 	 y �
 t�� �� � y 1 �e ,2 t�1 2 2 2 t�1 �� y � �4 tt� 1

Ž .and e iid N 0, 1 . The sample size we use is T�100. We examine nominal 5%t
Ž .size tests based on estimation of model 10 using bootstrap critical values, the

latter calculated using 500 bootstrap replications. All calculations are empirical
rejection frequencies from 10,000 Monte Carlo replications, and in all experi-
ments the tests are based on least-squares estimation of the unrestricted model
Ž .10 .

ŽWe first examined the size of the bootstrap tests used on the unconstrained
.estimates and the unit-root-constrained estimates . Under the null hypothesis of

Ž .no threshold, data are generated by the AR 1 process � y �	 y ��� y �t t�1 t�1
e . We explored how the size is affected by the parameters 	 and � . The resultst
are presented in Table I.

For all cases considered, the size of both tests is excellent. Interestingly, the
two bootstrap procedures have near identical size in our simulations, with the
unit-root-constrained bootstrap being slightly liberal in some cases, and the
unconstrained bootstrap being slightly more conservative in some cases. This
evidence suggests that it might not matter much which procedure is used;
however, our recommendation is to compute both procedures and take the more
conservative results.

Next, we explore the power of the test against local alternatives. Because of
the minor differences between the two bootstrap procedures, we calculate the
power using the unconstrained bootstrap method. We consider three alterna-
tives allowing � �� , 	 �	 , and � �� separately. The first alternative1 2 1 2 1 2
allows a switching intercept:

� y �	 y �� 1 �� 1 ��� y �e ,t t�1 1 �� y � �4 2 �� y � �4 t�1 tt� 1 t�1

TABLE I

SIZE OF 5% BOOTSTRAP THRESHOLD TESTS

Unconstrained Bootstrap Constrained Bootstrap

	 � � .25 	 � � .15 	 � � .05 	 � 0 	 � � .25 	 � � .15 	 � � .05 	 � 0

���.5 .038 .055 .051 .048 .060 .054 .041 .059
�� .5 .040 .050 .049 .042 .043 .047 .044 .058

Note: T � 100. Nominal size 5%. Rejection frequencies from 10,000 replications.
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TABLE II

POWER OF 5% BOOTSTRAP THRESHOLD TEST

Change in �

�� � .2 �� � 1.0 �� � 2.0

	��.05 .054 .389 .982
	�0 .052 .357 .979

Change in 	

�	 � � .05 �	 � � .10 �	 � � .20

	 ��.05 .165 .430 .7381
	 �0 .821 .931 .9551

Change in �

�� � .5 �� � 1.0 �� � 1.9

	��.05 .157 .575 .996
	�0 .047 .100 .344

Note: T � 100. Nominal size 5%. Rejection rates from 2000 replications.

setting �� .5, and ��0, and varying 	 among 0 and �.05. We control the size
of the threshold effect by varying ���� �� and set � ��� for simplic-2 1 1 2
ity. The power of the 5% bootstrap test is presented in the first two rows of
Table II.

The second alternative allows a switching slope on y :t�1

� y �	 y 1 �	 y 1 ����� y �e ,t 1 t�1 �� y � �4 2 t�1 �� y � �4 t�1 tt� 1 t�1

setting ��1, �� .5, and ��0, and varying 	 among 0 and �.05. The1
threshold effect is controlled by �	�	 �	 . The power of the 5% bootstrap2 1
test is presented in the second section of Table II.

The third alternative allows a switching slope on � y :t�1

� y �	 y ���� � y 1 �� � y 1 �e ,t t�1 1 t�1 �� y � �4 2 t�1 �� y � �4 tt� 1 t�1

with ��1, and ��0, and varying 	 among 0 and �.05. The threshold effect is
controlled by ���� �� , and we set � ����2. The power of the 5%2 1 1
bootstrap test is presented in the third section of Table II.

In all three alternatives, the power of the test is increasing in the size of the
threshold effect. Even in the small sample setting of T�100, the power of the
test is quite large against moderate alternatives.

4.5. Subset Tests

Ž .It is possible that while an unconstrained model of the form 1 may have
Ž .been estimated by 2 , a researcher is interested in testing for the equality of

only a subset of the coefficients of � . We now briefly discuss inference in such
Žcases. It turns out that the correct asymptotic distribution and bootstrap

.method depends on the unknown true properties of the coefficients.
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If the goal is to test for the presence of a threshold effect, the relevant null
hypothesis is that there is no threshold, in which case � �� . This is the same1 2
null hypothesis as studied in Theorem 4, and it follows that a subset Wald test
will have an asymptotic distribution with a similar form. The bootstrap methods
of Section 4.3 can be directly applied to calculate critical values and p-values.

On the other hand, the goal may be to test the equality of some coefficients,
taking for granted that some of the other coefficients indeed differ. For
example, the goal may be to test the hypothesized equality H : � �� , under0 1 2
the maintained assumption that 	 �	 . In this case, the asymptotic distribution1 2
is quite different than in Theorem 4. Since the truth is that there is a threshold
effect, the threshold parameter is consistently estimated by the threshold

Ž Ž ..estimate Chan 1993 , and the Wald test will have the same asymptotic
distribution as if the threshold parameter were known a priori. If the hypothesis
concerns the equality � �� , the asymptotic distribution of the Wald test is1 2
chi-square with degrees of freedom equal to the number of coefficients tested
for equality. However, if the test concerns the equality 	 �	 , the asymptotic1 2
distribution will be nonstandard, due to the estimated unit root. The statistical
significance of these tests, however, should never be taken as evidence in favor
of the existence of the threshold effect, since the latter requires the rejection of
the null hypothesis H : � �� .0 1 2

5. TESTING FOR UNIT ROOTS AND NONSTATIONARITY

5.1. Test Statistics

Ž .In model 1 under Assumption 1, the parameters 	 and 	 control the1 2
‘‘stationarity’’ of the process y . A leading case of interest ist

Ž .11 H : 	 �	 �0.0 1 2

Ž . Ž .When 11 holds, then the model 1 can be rewritten as a stationary threshold
Ž .autoregression in the variable � y , so that y is I 1 and can be described ast t

having a ‘‘unit root.’’
Another case of interest is when the series is stationary and ergodic. In

Ž .general models of the form 1 the region of stationarity is not completely
understood. However in the special case of p�1 the model is stationary if

Ž .Ž . Ž .	 �0, 	 �0, and 1�	 1�	 �1. See Chan and Tong 1985 . This sug-1 2 1 2
gests that the natural alternative to H is0

H : 	 �0 and 	 �0.1 1 2

There is a third case of interest however. This is the intermediate case of a
partial unit root:

	 �0 and 	 �0,� 1 2H : or2 �	 �0 and 	 �0.1 2
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If H holds, then the process y will behave like a unit root process in one2 t
regime, but will behave like a stationary process in the other. Under H , the2
process is nonstationary, but it is not a classic unit root process. In applications,
it will be interesting to distinguish between the cases H , H , and H .0 1 2

We now discuss possible tests to discriminate between these cases. The
Ž .standard test for 11 against the unrestricted alternative 	 �0 or 	 �0 is the1 2

Ž .Wald statistic from 3 . This statistic is

R � t 2 � t 2
2T 1 2

Ž .where t and t are the t ratios for 	 and 	 from the OLS regression 3 . Asˆ ˆ1 2 1 2
the alternatives H and H are one-sided, however, this two-sided Wald statistic1 2
Ž .hence the subscript ‘‘2’’ is ill-focused and thus may have less power than a

Ž . 4one-sided version. While it is unclear in our context how to form an optimal
one-sided Wald test, it seems prudent for the test to focus on negative values of
	 and 	 . Hence, we consider the simple one-sided Wald statisticˆ ˆ1 2

R � t 21 � t 21 ,1T 1 � 	 � 04 2 � 	 � 04ˆ ˆ1 2

which is testing H against the one-sided alternative 	 �0 or 	 �0.0 1 2
Both tests R and R will have power against both alternatives H and H .1T 2T 1 2

Thus while a ‘‘significant’’ test statistic can justify the rejection of the unit root
hypothesis, it cannot discriminate between the stationary case H and the1
partial unit root case H . This calls for a test focused on the stationary2
alternative H . We suggest examining the individual t statistics t and t . To1 1 2
retain the convention that the test rejects for large values of the statistic, we will
actually consider the negative of the t statistics, vis., �t and �t . If only one of1 2
�t or �t is statistically significant, this would be consistent with the partial1 2
unit root case H , allowing us to distinguish between H , H , and H .2 0 1 2

All the above test statistics are continuous functions of the t ratios t and t .1 2
To unify the presentation, we therefore consider the class of all test statistics

Ž .R �R t , tT 1 2

Ž . Ž .where R x , x is a continuous function of x and x . We presume that R �, �1 2 1 2
has been normalized so that H is rejected for large values of R , as is true for0 T
the specific tests described above.

We have described a class of test statistics R for H against H and H , andT 0 1 2
have suggested that H should be rejected for significantly large values of R .0 T
To determine ‘‘significance’’ we need the sampling distribution of the test under
H . We develop appropriate approximations in the next sections.0

4 Ž .Andrews 1998 shows how to construct optimal one-sided tests in the context where the
unrestricted estimators have asymptotic normal distributions. It is not clear if these results extend to
the nonstandard case of unit root distributions, and we do not pursue this extension in this paper.
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5.2. Asymptotic Distribution

We now derive large sample approximations to the distribution of the test RT
Ž .under the null hypothesis of a unit root 11 . A difficulty arises in specifying the
Ž .threshold effect, as the null of a unit root 	 �	 �0 is compatible with either1 2

Ž . Ž .the existence � �� or nonexistence � �� of a threshold effect. It turns1 2 1 2
out that the asymptotic distributions are different in these two cases. Since the
truth is typically unknown we consider both.

5.2.1. Unidentified Threshold

We first examine the case that there is no threshold effect.

THEOREM 5: Under Assumption 1 and � �� , then1 2

Ž . Ž Ž . Ž ..t , t � t u* , t u*1 2 1 2

and

Ž Ž . Ž .. Ž Ž . Ž ..R �R t u* , t u* 	 sup R t u , t uT 1 2 1 2
� �u� � , �1 2

where

Ž .u*� argmax T u ,
� �u� � , �1 2

Ž . Ž .T u is defined as in 7 ,

1 Ž . Ž .H W * s dW s, u �0Ž .t u � ,1 1�221 Ž .uH W * s dsŽ .0

1 Ž .Ž Ž . Ž ..H W * s dW s, 1 �dW s, u0Ž .t u � ,2 1�221Ž . Ž .1�u H W * s dsŽ .0

Ž . Ž . Ž .W s, u is a two-parameter Brownian motion, W s �W s, 1 , and

�1
1 1Ž . Ž . Ž . Ž . Ž . Ž . Ž .W * s �W s � W a r a �da r a r a �da r s .H Hž /0 0

Several facts about this limiting distribution are interesting. The distributions
Ž . Ž .of the t statistics are the random functions t u and t u evaluated at the1 2

Ž . Ž .random argument u*. The distributions of the random functions t u and t u1 2
do not depend on any nuisance parameters. By symmetry, we can see that the

Ž . Ž .pointwise distribution of t u is the same as that of t 1�u . But since the1 2
Ž .random maximizer u* depends on the nuisance parameter function � u , so

does the limiting distribution of the t statistics, and hence any test constructed
from the t statistics. A bound, however, can be obtained by maximizing over the
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argument u. This bound is free of nuisance parameters other than the trimming
� � Žrange � , � and hence can be tabulated although it depends on the particu-1 2

Ž . Ž .lar functional R �, � . Critical values for the bound for several choices of R �, �
Ž .and trimming ranges are reported in Table III. Due to the symmetry of t u1

Ž .and t 1�u the asymptotic bounds for t and t are the same under symmetric2 1 2
trimming. The critical values were calculated by simulation from the asymptotic
formula in Theorem 5. The simulated draws approximated the stochastic inte-
grals using a grid with 10,000 steps over the argument s and 100 steps over the
argument u. The critical values were computed as the empirical quantiles from
100,000 independent draws from these distributions.

Also reported in Table III are p-value functions based on chi-square approxi-
Ž .mation and computed using the methods of Hansen 1997a . The approxima-

tions take the form

c �c R �c R2 �� 2 ,0 1 T 2 T q

Ž .with c , c , c , q as free parameters. The approximations can be used to0 1 2
compute asymptotic p-values for the statistics R , by using the � 2 distributionT q
on c �c R �c R2 . For the R and R asymptotic distributions, the0 1 T 2 T 1T 2T

TABLE III

ASYMPTOTIC CRITICAL VALUE BOUNDS FOR UNIT ROOT TESTS UNIDENTIFIED CASE

Demeaned Case, r � 1t

Critical Values p-Value Function

� �� , � 20% 10% 5% 1% c c c q1 2 0 1 2

� �.15, .85 8.78 10.84 12.75 16.97 1.113 1.130 8
� �R .10, .90 9.01 11.09 13.00 17.23 0.959 1.119 81T
� �.05, .95 9.26 11.35 13.29 17.51 0.784 1.107 8
� �.15, .85 9.23 11.31 13.24 17.50 �0.011 1.064 7
� �R .10, .90 9.55 11.66 13.59 17.85 �0.262 1.054 72T
� �.05, .95 9.93 12.04 14.03 18.24 �0.572 1.044 7
� �.15, .85 2.61 2.97 3.26 3.82 1.476 �0.023 1.048 6
� ��t , �t .10, .90 2.66 3.01 3.31 3.85 1.212 �0.562 1.070 51 2
� �.05, .95 2.71 3.05 3.34 3.89 1.044 1.636 1.040 11

Ž .Detrended Case, r � 1 t �t

Critical Values p-Value Function

� �� , � 20% 10% 5% 1% c c c q1 2 0 1 2

� �.15, .85 8.78 10.84 12.75 16.97 0.456 1.104 10
� �R .10, .90 9.01 11.09 13.00 17.23 0.282 1.098 101T
� �.05, .95 9.26 11.35 13.29 17.51 0.102 1.091 10
� �.15, .85 9.23 11.31 13.24 17.50 �0.285 1.043 9
� �R .10, .90 9.55 11.66 13.59 17.85 �0.020 1.092 102T
� �.05, .95 9.93 12.04 14.03 18.24 �0.350 1.085 10
� �.15, .85 2.61 2.97 3.26 3.82 6.479 3.382 0.975 22
� ��t , �t .10, .90 2.66 3.01 3.31 3.85 5.930 3.742 1.006 221 2
� �.05, .95 2.71 3.05 3.34 3.89 4.963 3.960 0.986 22

Note: Calculated from 100,000 simulations.
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Žquadratic term was unnecessary for an accurate approximation reported p-val-
.ues within 0.003 of actual , so c was set to zero, but the quadratic term was2

necessary for the �t statistics.

5.2.2. Identified Threshold

We now assume that there is a threshold effect, or that � �� , in which case1 2
Ž .� is identified. We also assume that E� y �0, which holds in model 1 under0 t

Ž . Ž . ŽAssumption 1 if � P Z �� �� P Z �� �0. If E� y �0, then a time1 t�1 2 t�1 t
Ž .trend should be included in the model 1 and the following results still hold,

.with � y replaced by � y �E� y .t t t
Under the unit root null, � y is strictly stationary and geometrically ergodic.t

Let


2Ž . Ž .12 � � E � y � yÝy t t�k
k��

denote its long-run variance, and define the long-run correlations


Ž .E e 1 � yÝ t �Z � � 4 t�kt� 1 0
k��Ž .13 � � ,1 1�22 2Ž . Ž .E e G � �Ž .t 0 y



Ž .E e 1 � yÝ t �Z � � 4 t�kt� 1 0
k��Ž .14 � � ,2 1�22 2Ž .Ž Ž ..E e 1�G � �Ž .t 0 y

which satisfy the inequality � 2 �� 2 	1. Roughly, � 2 �� 2 is smaller when the1 2 1 2
threshold effect is stronger. To see this, note that in the limiting case of no
threshold effect, � y is a linear function of lagged values of e 1 andt t �Z � � 4t� 1 0

e 1 , so we find that � 2 �� 2 �1.t �Z � � 4 1 2t� 1 0

Let ‘‘X�Y ’’ denote the X is first-order stochastically dominated by Y,
Ž . Ž .meaning that for all x, P X	x �P Y	x .

THEOREM 6: Under Assumption 1 and � �� , if E� y �0 and � 2 �0, then1 2 t y

1�22Ž .�t � 1�� Z �� DF�DF ,1 1 1 1

and
1�22Ž .�t � 1�� Z �� DF�DF2 2 2 2

where

Z 1 �1 210Ž .15 �N ,ž /ž / ž /ž /Z 0 � 12 21
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is independent of

H1W * dW0
DF�� 1 2H W *0

Ž .the negati
e of the con
entional detrended Dickey-Full t distribution , and

�� �1 2Ž .16 � � .21 2 2Ž .Ž .' 1�� 1��1 2

Also,

21�22 2 2 2Ž .R �� � 1�a Z�aDF �� �DFŽ .2T 1 1

2 Ž .where � is chi-square with one degree of freedom and is independent of Z�N 0, 1 ,1
and

2 2Ž . Ž �'17 a� � �� � 0, 1 .1 2

Theorem 6 shows that if the threshold is identified, the two t ratios are
asymptotically linear combinations of normal and Dickey-Fuller variates. The
distributions depend on the unknown mixing parameters � and � , but the1 2
result provides a useful bound on the asymptotic distribution, as the mixture
distribution is stochastically dominated by the standard Dickey-Fuller t distribu-
tion, and so the Dickey-Fuller provides a conservative bound.

Ž . Ž .Since R �R t , t is a continuous function of the arguments t , t , Theo-T 1 2 1 2
rem 6 can be used in principle to give an expression for the asymptotic
distribution of the test R . For some functions, such as the one-sided Wald testT
R , these expressions do not appear to be very useful. For the two-sided Wald1T
statistic R , however, we have found a useful expression and bound, which is2T
reported in Theorem 6. The limiting distribution takes a mixture form that can
be bounded by the sum of the squared Dickey-Fuller and chi-square distribu-
tions. This bound is free of nuisance parameters, and can be calculated numeri-
cally. We found the 10%, 5%, and 1% critical values to be 11.17, 13.12, and
17.29, respectively.

Theorems 5 and 6 together give asymptotic approximations to the null
distribution of the TAR unit root tests R under differing assumptions concern-T
ing the threshold. The source of the difference lies in the identification of the
threshold parameter �. When there is no threshold effect, then � is not

ˆidentified, so � remains random in large samples, and R inherits the random-T
ˆness from �. In contrast, when there is a threshold effect, then � is identified

ˆand � will be close to the true value � in large samples. In this case the0
asymptotic distribution of R is equivalent to the case where � is known.T 0
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5.3. Bootstrap

While the distributions of R have asymptotic approximations, improvedT
finite sample inference may be conducted using a bootstrap distribution. One
has to be careful, however, as there is not a unique bootstrap distribution. Most
importantly, it is possible to construct a bootstrap distribution that imposes an
identified threshold effect or imposes an unidentified threshold effect. Theorems
5 and 6 show that the asymptotic distribution of R is different in these twoT
cases, implying that the bootstrap distribution will likely differ substantially as
well. In this section, we discuss how to calculate these two bootstrap distribu-
tions, and in the next section compare their performance using Monte Carlo
methods.

ŽThe unidentified threshold bootstrap imposes the restrictions ��� �� no1 2
. Ž .threshold and 	�0 unit root . This can be done using the constrained

bootstrap method introduced in Section 4.3, since the null hypothesis is identi-
˜Ž . Ž .cal. To repeat, let 	, � , F be estimates of 	, � , F discussed in Section 4.3˜ ˜

˜Ž 	,� are obtained by a linear autoregression, and F is the empirical distribution˜ ˜
. bof the OLS residuals . Then generate random samples from the model � y �t

˜ b b b ˜ b� �� y �e with e drawn randomly from F, and for each sample y calculate˜ t�1 t t t
the test statistic Rb . The estimated bootstrap p-value is the percentage ofT
simulated Rb that exceed the observed R .T T

The identified threshold bootstrap, on the other hand, requires simulation
˜ ˜ ˆ ˆŽ .from a unit root TAR process. Let 	 , 
 , � , 	 , 
 , � , �, F be the estimates˜ ˜ ˜ ˜1 1 1 2 2 2

obtained from the unrestricted model. Then generate samples y b from modelt
˜ ˜ ˆ ˆŽ . Ž .1 using the restricted estimates 0, 
 , � , 0, 
 , � , �, F . Again, for each˜ ˜1 1 2 2

sample calculate Rb , and estimate the bootstrap p-value by the percentage ofT
Rb that exceed R .T T

5.4. Monte Carlo Experiment

5.4.1. Size

Using Monte Carlo methods, we now examine the finite sample performance
Ž .of the unit root tests in the context of an AR 2 model with intercept and linear

time trend, and contrast their performance with the conventional Augmented
Ž .Dickey-Fuller ADF t test.

We first study the size of nominal 5% tests. The data are simulated under the
Ž . 5null from model 1 with k�1, m�1, setting 	 �	 �0. For simplicity, we1 2

allow for a threshold effect in the intercept �, but not the AR lag � . Thus the
null model is

� y �� 1 �� 1 ��� y �e .t 1 �� y � �4 2 �� y � �4 t�1 tt� 1 t�1

Ž .We use samples of size T�100 and generate e as iid N 0, 1 . For simplicity, wet
set � ��� , and denote the size of the threshold effect as ���� �� . We1 2 2 1

5We performed a limited set of experiments with a switching AR slope � and with samples of size
200, and found similar results.
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� 4set ��0 and vary �� among 0, 1, 2, 3 . Note that when ���0, the threshold �
� 4is not identified. We vary � among �.5, �.2, 0, .2, .5 .

The tests compared are the two-sided Wald test R , the one-sided Wald test2T
Ž .R , the individual t ratio t the size for t is similar and omitted , and the1T 1 2

Ž .conventional ADF test based on a fitted AR 2 with linear time trend. The
asymptotic critical values are taken from Table III for the R , R , and t2T 1T 1

Žtests. Also the asymptotic critical values for R from Theorem 6 the ‘‘Identi-2T
.fied Case’’ are included for comparison.

Table IV reports rejection frequencies from 1000 Monte Carlo replications. In
this experiment, we can see that both the t and ADF tests have reasonable size,1

Ž .at least for smaller threshold effects smaller �� . The R and R tests,1T 2T
however, substantially over-reject for some parameter configurations. For the

Ž .R test, the critical values from Table III the ‘‘Unidentified Case’’ perform2T
Ž .much better than those from Theorem 6 the ‘‘Identified Case’’ , and based on

these results we recommend that practitioners use the critical values from Table
III for asymptotic inference.

Due to the substantial size distortions, we explored the performance of the
two bootstrap methods described in Section 5.3. Due to the substantial computa-

� 4tional costs, we restricted � to �.5, 0, .5 . The results are reported in Table V.
From these results, we can see that both bootstrap procedures have meaningful
size distortions, but are substantially reduced relative to the size distortions of
the asymptotic tests. The rejection rates using the unidentified threshold model
appear to be less sensitive to the nuisance parameters, and are our preferred
choice.

Based on this information, our recommendation is to calculate p-values using
the unidentified threshold bootstrap. For a quick calculation, an asymptotic
p-value may be calculated from Theorem 3, but is not as reliable.

TABLE IV

SIZE OF ASYMPTOTIC UNIT ROOT TESTS

R Test2T

Unidentified Case Identified Case R Test1T

� �� : 0 1 2 3 0 1 2 3 0 1 2 3

.5 8.4 9.1 20.5 22.7 21.2 22.1 35.6 34.3 8.5 10.8 24.7 21.8

.2 7.8 6.5 8.5 24.4 18.7 19.0 21.7 39.1 7.2 7.9 10.4 26.0
0 7.4 7.5 7.3 13.9 17.0 16.3 17.7 26.1 7.0 5.6 8.2 13.3

�.2 7.9 7.3 6.1 7.2 19.9 15.5 16.6 17.7 5.7 7.0 6.9 9.6
�.5 7.6 5.2 6.2 7.3 17.5 18.9 18.8 15.4 5.9 6.7 7.9 8.7

t test ADF test1

� �� : 0 1 2 3 0 1 2 3

.5 4.2 7.0 7.0 0.4 6.9 5.2 7.6 11.2

.2 5.4 2.7 1.4 4.2 5.5 5.2 3.0 7.8
0 5.2 4.7 3.2 2.4 6.1 5.9 4.0 1.6

�.2 4.5 5.3 3.7 2.0 7.5 7.7 4.8 1.8
�.5 3.1 4.6 4.5 4.1 6.1 5.8 6.1 2.5

Note: T � 100. Nominal size 5%. Rejection rates from 1000 replications.
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TABLE V

SIZE OF BOOTSTRAP UNIT ROOT TESTS

R Test R Test2T 1T

Unidentified Case Identified Case Unidentified Case

�� : 0 1 2 3 0 1 2 3 0 1 2 3

�� .5 6.2 4.0 8.2 11.0 9.0 7.1 13.9 14.1 5.6 3.9 7.1 9.2
��0 4.4 3.8 1.1 2.2 6.6 4.6 1.5 3.2 4.8 2.0 1.8 1.6
���.5 6.0 3.3 1.4 0.7 5.3 3.3 0.7 0.8 4.4 2.5 1.7 0.5

Note: T � 100. Nominal size 5%. Rejection rates from 1000 replications.

5.4.2. Power

We next explore the power of the tests. The model and tests are the same as
before except that we fix the serial correlation parameter at ��0 and do not
impose 	 �	 �0. We report size-adjusted power for the R and R tests1 2 2T 1T
Ž .rejection rates based on finite sample critical values to control for the size
distortions reported in Table IV.

We consider three experiments. In the first, we restrict 	 �	 , and vary 	1 2 2
� 4 � 4among �.05, �.10, �.15 and �� among 0, 1, 2, 3 . This is the setting that is

the most favorable to the ADF test, as there is no difference in the serial
correlation coefficients between the two regimes. The results are presented in
the first section of Table VI. When ���0 there is no threshold effect and the
ADF test has considerably more power than the threshold unit root tests. As ��
is increased, however, the R and R tests gain more power than the ADF2T 1T

test, and the relative ranking switches. The R test has slightly more power1T

than the R test, and the t tests have significantly less power.2T

For our second power experiment, we allow for a threshold effect in 	, setting
� 4	 �0 and letting 	 vary among �.05, �.10, �.15 and �� as above. This is a1 2

partial unit root model. The results are presented in the second section of Table
VI. In this experiment, the R and R tests have substantially greater power2T 1T

than the ADF test in most parameterizations. In particular, the ADF suffers
when �� is large. The t test has even better power than R and R . The2 1T 2T

rejection rate of t is close to the nominal size, which means that the individual1
t ratio tests can help discriminate between the pure unit root, partial unit root,
and stationary cases.

For our third power experiment, we set 	 ��.05 and vary 	 and �� as1 2 2
above. This is a stationary model. Across most parameterizations, R has the1T

best power, with R a close second.2T

As expected, these calculations show that in the presence of threshold effects,
the threshold unit root tests have good power relative to the ADF test. In most
cases, the one-sided Wald test R has somewhat better power than two-sided1T

version R . The individual t ratio tests are able to successfully distinguish2T

between the pure unit root, partial unit root, and stationary cases.
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TABLE VI

POWER OF UNIT ROOT TESTS

R R t t ADF2T 1T 1 2

	 : � .05 � .1 � .15 � .05 � .1 � .15 � .05 � .1 � .15 � .05 � .1 � .15 � .05 � .1 � .152

	 � 	1 2
��

0 6 11 21 8 15 28 5 12 20 6 13 22 8 18 35
1 12 33 62 14 38 62 9 26 26 10 24 47 14 36 71
2 27 73 96 29 76 95 15 50 50 14 53 83 12 69 89
3 53 96 99 54 96 99 17 65 65 16 70 96 22 81 99

	 � 01

0 6 11 17 6 12 23 3 4 3 9 17 30 5 7 26
1 11 25 53 11 28 54 3 5 7 9 32 58 6 11 45
2 20 69 92 17 64 92 3 6 9 17 67 93 4 16 39
3 44 88 97 41 90 97 3 3 3 32 87 96 3 9 15

	 � � .051

0 6 10 20 8 12 20 5 6 7 6 15 25 8 12 17
1 12 23 42 14 28 47 9 13 14 10 25 49 14 33 36
2 27 58 85 29 58 87 15 21 32 14 49 83 12 41 63
3 53 87 99 54 89 99 17 21 30 16 79 98 22 67 85

Note: T � 100. Nominal size 5%. Rejection rates from 1000 replications.

6. U.S. UNEMPLOYMENT RATE

Our application is to the U.S. unemployment rate6 among adult males,
monthly from January, 1956 through August, 1999. A plot is given in Figure 1.

To establish a baseline, we first fit by OLS a linear model with k�12 lagged
Ždifferences. The point estimate for 	 is 	��0.014. Its t statistic the ADF testˆ

. Žfor a unit root is insignificant at �2.40 the 5% asymptotic critical value is
.�2.86. This leads to the standard conclusion that the linear representation for

the unemployment rate has a unit root.
Our first question is to ask if there is any statistical evidence to reject the

linear AR model in favor of a threshold model. An appropriate test statistic for
this question is the Wald test W of Section 4.1. In Table VII we report theT
Wald tests W , 1% bootstrap critical values, and bootstrap p-values for thresh-T
old variables of the form Z �y �y for delay parameters m from 1 to 12.t t t�m
Each statistic is highly significant and easily rejects the null hypothesis of
linearity in favor of the threshold model.

Since the W test rejects the null of no threshold for practically any choice ofT
m, it appears certain that we can reject the linear AR model in favor of the
TAR model. As a general rule, however, this testing methodology is subject to
the criticism that it conditions on m, while m is generally unknown. We can
address this criticism by making the selection of m endogenous. The least

6 Ž .The series is created by dividing the Citibase file LHMU Adult Male Unemployment by
Ž .LHMC Adult Male Labor Force , and is scaled to range from 0 to 100.
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FIGURE 1.�U.S. adult male unemployment rate, classified by threshold regime.

squares estimate of m is the value that minimizes the residual variance. Since
the Wald test W is a monotonic function of the residual variance, this isT
equivalent to selecting m as the value that maximizes W . This estimate isT
m�12, corresponding to the threshold test statistic of W �80.4. The reportedˆ T
bootstrap p-value of 0.000 in Table VII assumes that m is known and fixed. It is

TABLE VII

THRESHOLD AND UNIT ROOT TESTS UNCONSTRAINED MODEL

Unit Root Tests, p-Values

Bootstrap Threshold Test R t t1T 1 2

m W 1% C.V. p-Value Asym. Boot. Asym. Boot. Asym. Boot.T

1 34.9 39.3 0.034 0.091 0.052 0.254 0.104 0.351 0.138
2 53.2 40.1 0.000 0.148 0.084 0.713 0.362 0.157 0.589
3 35.5 38.8 0.027 0.057 0.064 0.089 0.037 0.566 0.252
4 42.7 39.5 0.005 0.071 0.042 0.068 0.026 0.747 0.397
5 54.1 39.3 0.001 0.054 0.034 0.029 0.013 0.925 0.634
6 62.2 39.3 0.000 0.069 0.042 0.080 0.033 0.681 0.341
7 48.5 39.3 0.001 0.131 0.078 0.113 0.046 0.793 0.438
8 70.0 39.2 0.000 0.095 0.058 0.056 0.025 0.909 0.608
9 77.8 39.4 0.000 0.042 0.029 0.036 0.015 0.786 0.435

10 75.9 39.1 0.000 0.056 0.038 0.065 0.027 0.681 0.348
11 67.8 38.8 0.000 0.086 0.058 0.096 0.040 0.693 0.360
12 80.4 38.7 0.000 0.105 0.072 0.141 0.057 0.619 0.303

Note: Bootstrap p-values calculated from 10,000 replications.
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easy, however, to incorporate estimation of m into the calculation of bootstrap
p-values. We can recalculate the bootstrap p-value allowing for the estimation
of m, and when we do so, we still calculate a bootstrap p-value of 0.000,

Ž .implying that it is extremely unlikely that the linear AR model 1 could
generate a test statistic this large. We conclude that there is very strong
evidence for a TAR model.

While the LS point estimate for the delay parameter is m�12, the choiceˆ
m�9 yields a near-identical value for the residual sum-of-squares and hence
test statistic W , as seen from Table VII. This means that m�9 is anT
equivalently good statistical choice, and all else held equal, we prefer models
with smaller delay parameters, leading us to take m�9 as our preferred model
specification.

Our second question concerns the presence of a unit root. We calculate the
threshold unit root test statistics R , R , t and t for each delay parameter1T 2T 1 2
m from 1 to 12, and in Table IX report both asymptotic and bootstrap p-values

Ž .for R , t and t . The R test results are nearly identical to the R test.1T 1 2 2T 1T
The asymptotic p-value bounds are calculated using the p-value functions

Ž .reported in Table III demeaned case , and the bootstrap p-values are calcu-
lated using the ‘‘unidentified threshold bootstrap’’ described in Section 5.3. For
all cases, the asymptotic p-value bounds are more conservative than the boot-
strap p-values, but not dramatically so. The bootstrap calculations suggest that
all twelve R statistics are significant at the 10% level, and four at the 5%1T
level. The most relevant statistics are for the m�9 and m�12 cases, which
have bootstrap p-values of 0.03 and 0.07, respectively.

Turning to the individual t ratios t and t , we see that the bootstrap p-values1 2
for t are 0.015 and 0.057 for the m�9 and m�12 specifications, respectively,1
giving strong evidence that indeed we can reject the unit root hypothesis in favor
of 	 �0. The t statistic is statistically insignificant, so we are unable to reject1 2
that 	 �0.2

For our preferred specification of m�9, we present the LS parameter
ˆestimates in Table VIII. The point estimate of the threshold � is 0.33. Thus the

TAR splits the regression function depending on whether the variable Z �t�1
y �y lies above or below 0.33. The first regime is when Z �0.33, whicht�1 t�10 t�1
occurs when the unemployment rate has fallen, remained constant, or has risen

Ž .by less than .33 points e.g. from 5.40 to 5.73 over a nine-month period.
Approximately 73% of the observations fall in this category. The second regime
is when Z �0.33, which occurs when the unemployment rate has risen byt�1
more than .33 points over a nine month period. Approximately 27% of the
observations fall in this regime.

In addition to the parameter estimates, we report in Table VIII tests for the
pairwise equality of individual coefficients, and bootstrap p-values based on the

Žnull of no threshold, which is the procedure described in Section 4.5. Condi-
tional on the presence of a threshold effect, a � 2 asymptotic approximation is1

.also appropriate, which implies a 5% critical values of 3.84. Looking at the
point estimates and test results, it appears that the coefficients on � y andt�1
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TABLE VIII

LEAST SQUARES ESTIMATES UNCONSTRAINED THRESHOLD MODEL

Estimates Tests for Equality
ˆm� 9, � � 0.33 of Individual Coefficientsˆ

ˆ ˆZ � � Z � �t� 1 t�1 BootstrapWald
Regressor Estimate s.e. Estimate s.e. Statistics p-Value

Ž . Ž .Constant 0.075 0.032 0.195 0.060 3.3 0.367
Ž . Ž .y �0.024 0.007 �0.014 0.011 0.1 0.887t�1
Ž . Ž .� y �0.163 0.054 0.109 0.081 21.5 0.000t�1
Ž . Ž .� y 0.036 0.054 0.346 0.078 7.1 0.068t�2
Ž . Ž .� y 0.046 0.053 0.146 0.083 0.7 0.572t�3
Ž . Ž .� y 0.090 0.055 0.012 0.076 1.86 0.359t�4
Ž . Ž .� y 0.030 0.054 �0.003 0.084 0.1 0.808t�5
Ž . Ž .� y �0.002 0.054 �0.191 0.089 0.7 0.567t�6
Ž . Ž .� y 0.010 0.055 �0.189 0.087 3.4 0.206t�7
Ž . Ž .� y �0.018 0.054 �0.201 0.089 0.3 0.692t�8
Ž . Ž .� y �0.011 0.052 0.008 0.090 0.3 0.700t�9
Ž . Ž .� y �0.021 0.050 0.164 0.081 3.5 0.214t�10
Ž . Ž .� y 0.091 0.050 0.015 0.080 3.4 0.217t�11
Ž . Ž .� y �0.197 0.050 �0.231 0.078 3.5 0.218t�12

� y are driving the threshold model, with the other coefficients either lesst�2
important or invariant across regimes. To verify this conjecture, we compute a
joint Wald test for the equality of the coefficients on � y through � y ,t�3 t�12
yielding a test statistic of 16.0, with a bootstrap p-value of 0.448, suggesting that
this restriction is compatible with the data. Imposing this constraint, we re-
estimate the model and report the results in Table IX. As expected, the
estimates are qualitatively quite similar to those in Table VIII. In particular, the

TABLE IX

LEAST SQUARES ESTIMATES CONSTRAINED THRESHOLD MODEL

ˆm� 9, � � 0.33ˆ

ˆ ˆZ � � Z � �t� 1 t�1

Regressor Estimate s.e. Estimate s.e.

Ž . Ž .Constant 0.056 0.033 0.193 0.059
Ž . Ž .y �0.022 0.007 �0.025 0.010t�1
Ž . Ž .� y �0.200 0.055 0.274 0.072t�1
Ž . Ž .� y 0.052 0.055 0.271 0.075t�2

Ž .� y 0.063 0.045t�3
Ž .� y 0.050 0.044t�4
Ž .� y 0.018 0.044t�5
Ž .� y �0.056 0.044t�6
Ž .� y �0.022 0.044t�7
Ž .� y �0.024 0.045t�8
Ž .� y 0.026 0.045t�9
Ž .� y �0.025 0.045t�10
Ž .� y 0.029 0.043t�11
Ž .� y �0.238 0.043t�12
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ˆestimate of the threshold � is identical, so the division of the data into regimes
is the same as for the unconstrained model. The estimated division of the data
into the two threshold regimes is shown in Figure 1.

What is quite striking about the point estimates from Table IX is that the
coefficients on y in the two regimes are quite similar, about �0.02, suggest-t�1
ing that the difference between the two regimes is probably not the ‘‘stationar-
ity’’ of the regime. The major difference in coefficients is the coefficient on
� y , which switches from �0.20 to 0.27, having a big impact on the first-ordert�1
serial correlation properties of the series.

Since the constrained model of Table IX has many fewer parameters than the
unconstrained model, the threshold and unit root tests applied in this context
may have additional precision. These results are presented in Table X. As found
in Table VII for the unconstrained model, the threshold tests overwhelmingly
reject the null of no threshold effect, and the delay orders 9 and 12 are the best
least-squares fits. Some differences are found in the unit root tests, where the
results in Table X lend much greater support to the stationarity hypothesis. For
m�9, the R , t and t tests have bootstrap p-values of 0.004, 0.010, and1T 1 2
0.172, respectively, strongly rejecting the null of a unit root, yet being unable to
distinguish between the partial unit root and stationary cases. For m�12 the
results are similar, except that the bootstrap p-value for t drops to 0.106,2
lending more support to stationarity. Combined with the point estimates from
Table IX, which suggest that 	 and 	 do not differ greatly, the combined1 2
evidence points quite strongly to the hypothesis that both 	 �0 and 	 �0,1 2
which means that the unemployment rate series is a stationary threshold
process.

To assess robustness with respect to subsamples, the constrained TAR model
with m�9 was re-estimated on the two subsamples obtained by splitting the

TABLE X

THRESHOLD AND UNIT ROOT TESTS CONSTRAINED MODEL

Unit Root Tests, p-Values

Bootstrap Threshold Test R t t1T 1 2

m W 1% C.V. p-Value Asym. Boot. Asym. Boot. Asym. Boot.T

1 20.4 20.0 0.008 0.027 0.023 0.026 0.015 0.745 0.405
2 27.0 20.1 0.001 0.067 0.052 0.177 0.090 0.374 0.188
3 22.7 20.3 0.004 0.060 0.045 0.061 0.033 0.726 0.385
4 27.0 20.1 0.001 0.040 0.032 0.076 0.042 0.493 0.242
5 38.1 20.5 0.000 0.021 0.020 0.020 0.013 0.743 0.407
6 40.0 20.2 0.000 0.018 0.017 0.021 0.014 0.673 0.354
7 34.0 19.9 0.000 0.019 0.018 0.062 0.035 0.338 0.164
8 46.9 20.7 0.000 0.011 0.012 0.032 0.022 0.393 0.193
9 61.1 20.4 0.000 0.003 0.004 0.010 0.010 0.349 0.172

10 56.8 20.8 0.000 0.008 0.010 0.028 0.021 0.347 0.168
11 52.8 20.3 0.000 0.013 0.013 0.048 0.029 0.311 0.157
12 62.6 20.5 0.000 0.012 0.013 0.076 0.046 0.202 0.106

Note: Bootstrap p-values calculated from 10,000 replications.
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TABLE XI

SUBSAMPLE COMPARISONS, CONSTRAINED MODEL, m�9

First Half Sample Second Half Sample

�̂ .479 .267
	 �.029 �.049ˆ1
	 �.033 �.031ˆ2
� �.090 �.309ˆ1Ž1 .
� .241 .165ˆ2Ž1 .

Ž .W p-value .000 .001T
Ž .R p-value .167 .0131T

m 12 8ˆ

Note: Bootstrap p-values calculated from 10,000 replications.

Ž .sample at its midpoint December, 1978 . The subsample estimates of the
parameters �, 	 , 	 , and the first elements of � and � , denoted as � and1 2 1 2 1Ž1.
� , respectively, are reported in Table XI. They appear7 to be remarkably2Ž1.
stable across the two regimes. We also report the bootstrap p-values for the
threshold test W and the unit root test R . On each subsample, the thresholdT 1T
test W easily rejects the null of linearity in favor of threshold nonlinearity. TheT
unit root tests are split, with the first subsample failing to reject the null
hypothesis, while the null of a unit root is rejected in the second subsample.

We also assessed robustness with respect to alternative specifications of the
dependent variable y . In our preferred model, the dependent variable is UR ,t t
the unemployment rate scaled to range from 0 to 100. By construction, this
variable is bounded, and hence cannot strictly be a linear unit root process. It is
tempting to think that the boundary effect may bias our results, as the estimated
threshold effect may be merely to incorporate this boundary condition. To
explore this issue, we experimented with four transformations of the dependent
variable that are unbounded in either or both directions. The specific transfor-

Žmations and results are listed in Table XII. For each transformation setting

TABLE XII

SUMMARY RESULTS FOR ALTERNATIVE SPECIFICATIONS

UNCONSTRAINED MODEL

Dependent Variable ADF Statistic Log-Likelihood W p-Value R p-ValueT 1T

UR �2.40 174 0.000 0.029t
Ž Ž ..log UR � 1�UR �2.41 161 0.000 0.078t t
Ž .log UR �2.42 159 0.000 0.095t

Ž .�100 log 1�UR �100 �2.41 172 0.000 0.025t
Ž Ž . .100 exp UR �100 �1 �2.41 172 0.000 0.026t

Note: Bootstrap p-values calculated from 10,000 replications.

7 While it is tempting to attempt a formal test for parameter stability by comparing the estimated
parameters, we have no theory that is appropriate in this context and interpretation of the tests
could be highly misleading.
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. 8m�9 , the linear ADF statistic, Gaussian log-likelihood, and the bootstrap
p-values for the W and R tests are reported. Two important results emerge.T 1T

First, none of the results are sensitive to the transformation selected. The linear
ADF statistic is virtually unchanged, and the p-values of the threshold tests are
all overwhelmingly significant. The unit root tests yield minor differences, with
small changes in the p-values across specifications. The differences, however,
are not sufficient to alter our conclusions. Second, our preferred specification
Ž .which sets y �UR has the highest Gaussian log-likelihood. While we have not t

formal test to compare the models, the Gaussian log-likelihood is still a valid
model selection criteria, and its value certainly does not provide any evidence
against our preferred specification.

Furthermore, we explored the sensitivity of our results to the trimming region
� � � � � � � �� , � . Our reported results set � , � � .15, .85 , but we also tried � , �1 2 1 2 1 2

� � � � � �� .10, .90 and � , � � .05, .95 . The point estimates are unchanged, and the1 2
p-values for the threshold test statistics remain as reported. The only difference
arises for the p-values for the unit root tests, which increase somewhat. For
example, the bootstrap p-value for the R statistic rises from 0.029 to 0.035 to1T

0.043, for the three respective trimming regions. The model was also re-esti-
mated adding a fitted linear time trend to each regime. None of the point
estimates or test statistics changed meaningfully, except that the unit root tests
were reduced in statistical significance. For example the bootstrap p-value for
the R statistic rises to 0.103.1T

The stationarity of the post-war unemployment rate in a TAR model has also
Ž .been recently explored by Tsay 1997 . His conclusions are quite similar to ours,

although his methods differ. His analysis is based on quarterly data over
1948�1993, and uses a lagged first difference for the threshold variable. His unit
root test imposes the restriction 	 �	 , and he compares his unit root t1 2
statistic to the standard Dickey-Fuller distribution,9 while we base our infer-
ences on a bootstrap distribution.

7. CONCLUSION

This paper developed a new asymptotic theory for threshold autoregressive
models with a possible unit root. The joint application of the two tests�for a
threshold and for a unit root�allows a researcher to distinguish nonlinear from
nonstationary processes. We illustrate the methods with an application to the
U.S. unemployment rate, and find evidence to support the hypothesis that the
process is a stationary nonlinear threshold autoregression.

8 Properly adjusted for the Jacobian of the transformation of the dependent variable.
9 This is justified in Tsay’s paper only for the case of known threshold. An analog of our Theorem

7, however, shows that Tsay’s test with an estimated threshold continues to have the standard
Dickey-Fuller distribution under the auxiliary assumption that the threshold is identified.
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It would be useful to generalize our analysis in several directions, including
Ž .multivariate models, multiple thresholds, and smooth threshold STAR models.

Such extensions may require different methods than those presented here.
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APPENDIX

2 � Ž . 4PROOF OF THEOREM 1: For simplicity, normalize � �1. For all u, 1 u e , � is a strictlyt�1 t t
Ž Ž . 2 . Ž Ž ..stationary and ergodic MDS with variance E 1 u e �E 1 u �u. By the MDS central limitt�1 t t�1

Ž .theorem, for any s, u ,

� �Ts1
Ž . Ž . Ž .Y s, u � 1 u e � N 0, su .ÝT t�1 t d'T t�1

Furthermore, the asymptotic covariance kernel is determined by

� � � �Ts � Ts1 21
2Ž Ž . Ž .. Ž Ž . Ž . .E Y s , u Y s , u � E 1 u 1 u eÝT 1 1 T 2 2 t�1 1 t�1 2 tT t�1

Ž .Ž .� s �s u �u .1 2 1 2

Combined with the Cramer-Wold device, this can be used to yield the convergence of the finite
dimensional distributions.

Ž .The stochastic equicontinuity of Y s, u over � follows from that ofT

� �Ts1
� Ž . Ž Ž . .Y s, u � 1 u �u e .ÝT t�1 t'T t�1

For any 0	s �s 	1 and 0	u �u 	1, let1 2 1 2

� � Ž . � Ž . � Ž . � Ž .Y *�Y s , u �Y s , u �Y s , u �Y s , uT T 2 2 T 1 2 T 2 1 T 1 1

� �Ts2
�1 �2�T e aÝ t t�1

� �t� Ts1

Ž .where a �1 � u �u .t �u 	 U � u 4 2 11 t 2

We show below that for any constant ��0 such that

� �
Ž .A.1 	u �u and 	s �s ,2 1 2 1T T

then

� �2�� �1Ž . � � � �Ž . Ž .A.2 E Y * 	K 1�� s �s u �uT 2 1 2 1
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Ž .for K� and ��1�1�r. Bai 1996, Theorem A.1 established the stochastic equicontinuity of
� Ž .Y s, u in a similar context. While he used a different set of dependence and moment bounds, aT

Ž .careful reading of his proof shows that these conditions are only used to prove inequality A.2
Ž . Ž Ž . Ž .. Ž . Ž . Ž .under A.1 his equations 23 and 24 . Thus A.1 � A.2 are sufficient to establish that Y s, u isT

stochastically equicontinuous.
Ž . Ž . Ž .We now prove A.2 under A.1 . First, from A.1 we deduce

Ž .1�r 1�1�r�1 �1Ž . Ž . Ž .A.3 T 	� s �s u �u2 1 2 1

Ž . Ž .��1 ��2�r�1 Ž . Ž .�� s �s u �u .2 1 2 1

Ž .Second, the uniform distribution of U Assumption 2.2 impliest�1

22� � Ž . Ž .E a �E 1 �21 u �u � u �uŽ .t�1 �u 	 U � u 4 �u 	 U � u 4 2 1 2 11 t 2 1 t 2

2Ž . Ž .Ž . Ž .� u �u �2 u �u u �u � u �u2 1 2 1 2 1 2 1

Ž .	 u �u .2 1

� � 2Since a 	1, then for any ��2,t�1

Ž . � � � � � 2 Ž .A.4 E a 	E a 	 u �u .t�1 t�1 2 1

� � 2 � � 2 � � r r�1Ž .Third, set q � a �E a and note that E q 	2 u �u by the c inequality andt t�1 t�1 t 2 1 r
Ž . � � 2 � � 2A.4 . Using the expansion a �E a �q , the c inequality, and Corollary 3 of Hansent�1 t�1 t r
Ž . Ž .1991 which holds under Assumption 2.1 for some K �� , we find

2 2� � � �Ts Ts2 21 12 2Ž . � � Ž . � �A.5 E a �E s �s E a � qÝ Ýt�1 2 1 t�1 tT Tž / ž /� � � �t� Ts t� Ts1 1

2� �Ts212 2Ž . Ž .	2 s �s u �u �2 E qÝ2 1 2 1 tT � �t� Ts1

2 K � 2� r2 2 rŽ . Ž . Ž .Ž � � .	2 s �s u �u � s �s E q2 1 2 1 2 1 tT
8 K �2 2 2�rŽ . Ž . Ž .Ž .	2 s �s u �u � s �s u �u .2 1 2 1 2 1 2 1T

� 4 Ž Ž ..Finally, since e a , � is an MDS, by Rosenthal’s inequality Hall and Heyde 1980, p. 23 fort t�1 t
Ž . Ž . Ž .some C�, Assumption 2.3, A.5 , A.4 , and A.3 ,

4� �Ts2
4� �1�2� �E Y * �E T e aÝT t t�1

� �t� Ts1

2� � � �Ts Ts2 21 12 4Ž � � � . � �	C E E e a � � E e aÝ Ýt t�1 t�1 t t�12T Tž /� � � �t� Ts t� Ts1 1

2� �Ts21 2 4 4�1� � Ž . � � � ��C E a �T s �s E e E aÝ t�1 2 1 t t�1Tž /� �t� Ts1

2 2 2�r�1� Ž . Ž . Ž .Ž .	C 2 s �s u �u �8T K � s �s u �u2 1 2 1 2 1 2 1

�1 Ž . Ž .��T s �s � u �u2 1 2 1

� ��1Ž .Ž . Ž .	K 1�� s �s u �u2 1 2 1
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Ž . Ž .2Ž .2 Ž .�Ž .�where K�C max 2, 8 K ��� , using the fact that s �s u �u 	 s �s u �u . This is2 1 2 1 2 1 2 1
Ž .A.2 and completes the proof. Q.E.D.

Ž .PROOF OF THEOREM 2: For all u, Y s, u is a martingale with square integrable innovationsT
�1 �1�2 Ž . Ž .� T 1 u e . For fixed u, Theorem 1 above and Theorem 2.2 in Kurtz and Protter 1991t�1 t

� �yield the stated result. Their result can be extended to the needed uniformity over u� 0, 1 as their
Ž .equation 1.13 holds uniformly in u, which can be verified using the bounded convergence theorem.

Q.E.D.

PROOF OF THEOREM 3: We prove part 1 under the weaker assumption that

Ž . � �1� � �2A.6 E w �.t

Parts 2 and 3 follow directly by redefinition of w and X .t T t
Ž . Ž . Ž . Ž . Ž . T 1 Ž .Let 
 u �1 u w �h u so that E
 u �0. Since 1�T Ý X �H X s ds by Assumptiont t t t t�1 T t 0

Ž .2.4 and the continuous mapping theorem CMT , it is sufficient to show that

T1
Ž .sup X 
 u � 0.Ý T t t pT0	u	1 t�1

� �Fix ��0 and let c�E w �. Observe thatt

Ž . � Ž . � � �A.7 sup 
 u 	 w �c.t t
0	u	1

Ž .Since X s is continuous almost surely, there is some ��0 such that

Ž . � Ž . Ž . �A.8 P 2c sup X s �X s� 	� �1�� .ž /
� �s�s� 	�

� � � � � Ž .Set N� 1�� , and for k�0, . . . , N�1 set t � kT� �1 and t � t �1. By A.7 , the Ergodick k k�1
Theorem, Assumption 2.4, and the CMT,

t�
N�1 Tk1 1

Ž . � � � Ž . � � � � Ž . �A.9 X �X sup 
 u 	 sup X �X sup 
 uÝ Ý ÝT t T t t T t T t � tkT T0	u	1 � � 0	u	1t�t � 	T�k�0 t�t t�1k

T1
� � Ž � � .	 sup X �X w �cÝT t T t � tž /T� �t�t � 	T� t�1

� Ž . Ž . ��2c sup X s �X s� .
� �s�s� 	�

Ž .Lemma 1 of Hansen 1996 states that

N1
Ž . Ž .A.10 V � sup 
 u � 0.ÝN t pN0	u	1 t�1

1 1� � �2NŽ . � � � � Ž .Since A.7 implies that V 	 Ý w �c, and E w � by A.6 , it follows that V isN t�1 t t NN
Ž . Ž .uniformly integrable. Theorem 25.12 of Billingsley 1986 states that uniform integrability and A.10

imply EV �0. This impliesN
� �t tN�1 k k1 1

Ž . Ž .E sup 
 u �E sup 
 u �EV �0Ý Ý Ýt t T�T T�0	u	1 0	u	1k�0 t�t t�tk k

as T�, which implies
�tN�1 k1

Ž . Ž .A.11 sup 
 u � 0Ý Ý t pT 0	u	1k�0 t�tk
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Ž . Ž . Ž .by Markov’s inequality. A.9 , A.11 and the fact that X �O 1 uniformly in t implyT t p

�tT N�1 k1 1
Ž . Ž .sup X 
 u � sup X 
 uÝ Ý ÝT t t T t tT T0	u	1 0	u	1t�1 k�0 t�tk

�tN�1 k1
� � Ž .	 sup X sup 
 uÝ ÝT t tT1	t	T 0	u	1k�0 t�tk

t�
N�1 k1

� � � Ž . �� X �X sup 
 uÝ Ý T t T t tkT 0	u	1k�0 t�tk

� Ž . Ž . ��2c sup X s �X s�
� �s�s� 	�

	�

Ž .where the last inequality holds with probability exceeding 1�� by A.8 . This establishes the result.
Q.E.D.

Ž . � �PROOF OF THEOREM 4: Set U �G Z �U 0, 1 . Due to the equality 1 �1 , thet t �Z � �4 �U � G Ž�.4t�1 t�1
Ž .change-of-variables u�G � allows us to re-write the test statistic as

� Ž .W � sup W u ,T T
� �u� � , �1 2

� Ž .where W u is the Wald statistic for the equality of � �� in the regressionT 1 2

Ž . � �A.12 � y �x � 1 �x � 1 �e .t t�1 1 �U � u4 t�1 2 �U � u4 tt�1 t�1

Define

T

1 wÝ �U � u4 t�1t�1
t�1Ž .w u �w �1 t�1 t�1 T

1Ý �U � u4t�1
t�1

and

T

1 wÝ �U � u4 t�1t�1
t�1Ž .w u �w � ,2 t�1 t�1 T

1Ý �U � u4t�1
t�1

which is w projected orthogonal to 1 and 1 , respectively. Since the interceptst�1 �U � u4 �U � u4t�1 t�1
Ž .1 and 1 are included in the regression A.12 , we can replace w 1 and�U � u4 �U � u4 t�1 �U � u4t�1 t�1 t�1

Ž . Ž .w 1 by w u 1 and w u 1 , respectively, without affecting the testt�1 �U � u4 1 t�1 �U � u4 2 t�1 �U � u4t�1 t�1 t�1� Ž . � Ž .statistic W u . We can also rescale y and t without affecting the value of W u , so that theT t�1 T
latter can be calculated as the Wald statistic from the regression

Ž � Ž . . Ž � Ž . .� y � X w u � � 1 � X w u � � 1 �e ,t T t�1 1 t�1 1 �U � u4 T t�1 2 t�1 2 �U � u4 tt�1 t�1

where

yt�1 �Ž .X � � r � .T t�1 T t1�2ž /Ž .��a T
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Ž .Now define 1 u �1 . Assumptions 2.1, 2.2, 2.3, and 2.4 are directly implied byt�1 �U � u4t�1

Assumption 1, so Theorem 1 yields

� �Ts1
Ž . Ž . Ž .A.13 1 u e �W s, u ,Ý t�1 t'� T t�1

Ž .where W s, u is a two-parameter Brownian motion. Furthermore,

T1
Ž . Ž . Ž .A.14 1 u w e �W u ,Ý t�1 t�1 t 2'� T t�1

Ž .where W u is a mean-zero vector Gaussian process with kernel2

Ž Ž . Ž . . Ž .E W u W u � �H u �u ,2 1 2 2 1 2

Ž . Ž . Ž .by Theorem 1 of Hansen 1996 . Furthermore, equations A.13 � A.14 hold jointly. Namely, the
Ž . Ž .processes W s, u and W u are jointly Gaussian with covariance kernel2

Ž Ž . Ž .. Ž .E W u W s, u �h u �u .2 1 2 1 2

The convergence of the joint finite dimensional distributions may be obtained by the MDS central
Ž . Ž .limit theorem and the Cramer-Wold device. Stochastic equicontinuity follows from A.13 and A.14

Žand the fact that our convergence is in respect to the uniform metric since the limit processes are
.continuous .

The inclusion of the intercept and trend variables in the regression means that the test statistic
� Ž .W u is invariant to the actual value of �. We can thus without loss of generality set ��0. UnderT

Ž . Ž .H we see that y is generated by the stochastic process a L � y �e where a L is a lag0 t t t
Ž . Ž .polynomial satisfying a 1 �a�1�� �t. As a consequence of A.13 ,

� �Ts1
Ž . Ž .e �W s, 1 �W sÝ t'� T t�1

and

Ž . �1 �2 Ž . Ž .A.15 T y � ��a W s .�T s �

Ž . Ž Ž . Ž . .It follows that X �X s � W s r s � �, establishing Assumption 2.4.T �T s �
� Ž .Standard algebra shows that W u can be written asT

�1�1� �Ž . Ž Ž . Ž . Ž . Ž .. Ž .S u � M u �M u M 1 M u S uT T T T T T� Ž .W u � ,T 2 2Ž .� u ��ˆ

� Ž . Ž . Ž . Ž .�1 Ž .where S u �S u �M u M 1 S 1 ,T T T T T

Ž .S u1TŽ .S u �T Ž .ž /S u2T

T1
Ž .1 u X eÝ t�1 T t�1 t'� T t�1� ,T1

Ž . Ž .1 u w u e� 0Ý t�1 1 t�1 t'� T t�1
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and

Ž . Ž .M u M u �11T 21TŽ .M u �T Ž . Ž .ž /M u M u21T 22T

T T1 1
�Ž . Ž . Ž .1 u X X 1 u X w u �Ý Ýt�1 T t�1 T t�1 t�1 T t�1 1 t�1T Tt�1 t�1� .T T1 1

�Ž . Ž . Ž . Ž . Ž .1 u w u X 1 u w u w u �� 0Ý Ýt�1 1 t�1 T t�1 t�1 1 t�1 1 t�1T Tt�1 t�1

Theorem 3 yields

1Ž . Ž . Ž .M u �u X s X s �ds,H11T
0

T

Ž .1 u wÝ t�1 t�1T T1 1 t�1� �Ž . Ž . Ž .M u � 1 u w X � 1 u XÝ Ý21T t�1 t�1 T t�1 t�1 T t�1TT Tt�1 t�1Ž .1 uÝ t�1
t�1

Ž .h u1 1Ž . Ž . Ž .�h u X s �ds� u X s �ds�0,H Hu0 0

and

T T
�Ž . Ž .1 u w 1 u wÝ Ýt�1 t�1 t�1 t�1T1 t�1 t�1�Ž . Ž .M u � 1 u w w �Ý22 T t�1 t�1 t�1 TT t�1 Ž .1 uÝ t�1

t�1

Ž . Ž .h u h u �
Ž . Ž .�H u � �� u .

u

Ž .Hence M u is asymptotically block-diagonal. It follows thatT

�1�1� � �Ž . Ž . Ž Ž . Ž . Ž . Ž .. Ž .W u �S u � M u �M u M 1 M u S uT 1T 11T 11T 11T 11T 1T

�1�1� �Ž . Ž Ž . Ž . Ž . Ž .. Ž . Ž .�S u � M u �M u M 1 M u S u �o 1 ,2T 22T 22T 22T 22T 2T p

where

�1� Ž . Ž . Ž . Ž . Ž .S u �S u �M u M 1 S 11T 1T 11T 11T 1T

and

�1� Ž . Ž . Ž . Ž . Ž .S u �S u �M u M 1 S 1 .2T 2T 22T 22T 2T

Theorem 2 yields

1Ž . Ž . Ž . Ž .S u � X s dW s, u ��J u ,H1T 1
0

and

�1
1 1� �Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .S u �J u �u X s X s �ds X s X s �ds J 1 �J u .H H1T 1 1 1ž / ž /0 0
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Ž .A.13 implies

T

Ž .1 u wÝ t�1 t�1T T1 1 t�1Ž . Ž . Ž .S u � 1 u w e � 1 u eÝ Ý2T t�1 t�1 t t�1 tT' '� T � Tt�1 t�1Ž .1 uÝ t�1
t�1

Ž .h u
Ž . Ž . Ž .�W u � W u �J u ,2 2u

and
�1� Ž . Ž . Ž . Ž . Ž .S u �J u �� u � 1 J 1 .2T 2 1

Ž . Ž .Observe that J u is a Gaussian process with kernel � u . To see this, note that if u 	u ,2 1 2

Ž . Ž .h u h u1 2Ž Ž . Ž . . Ž . Ž . Ž . Ž .E J u J u � �E W u � W u W u � W u2 1 2 2 2 1 1 2 2 2ž / ž /ž /u u1 2

Ž . Ž . Ž . Ž .h u h u � h u h u �1 2 1 2Ž . Ž . Ž .�H u � h u ��h u � u1 1 1 1u u u u1 2 1 2

Ž . Ž .h u h u �1 1Ž . Ž .�H u � �� u .1 1u1

Ž . Ž .Also, J u is independent of W s, u , since they are Gaussian and orthogonal:2

Ž .h u
Ž Ž . Ž .. Ž Ž . Ž .. Ž Ž . Ž ..E J u W s, u �E W u W s, u � E W u W s, u2 2 2u

Ž .h u
Ž .�h u s� su�0.

u

It follows that J and J are independent processes.1 2
Together, we find that

�1
1� �Ž . Ž . Ž . Ž .J u � X s X s �ds J uH1 1ž /0� Ž .W u �T Ž .u 1�u

�1�1� �Ž . Ž Ž . Ž . Ž . Ž .. Ž .� J u � � u �� u � 1 � u J u2 2

Ž . Ž . Ž .�Q u �Q u �T u .1 2

We conclude that
� Ž . Ž .W � sup W u � sup T u ,T T

� � � �u� � , � u� � , �1 2 1 2

which is the stated result. Q.E.D.

PROOF OF THEOREM 5: Since the regression includes a trend, the test statistic is invariant to the
intercept ��� �� , so we set ��0 to ease exposition. We reparameterize the model as in1 2
Ž . Ž . Ž .A.12 , letting u�G � . Standard algebraic results for linear regression show that t � t u andˆ1 1

Ž . Ž . Ž . Ž . Ž . Ž .t � t u where t u and t u are the t ratios for 	 u and 	 u in equation A.12 with u fixed,ˆ ˆ ˆ2 2 1 2 1 2
and

� Ž .u� argmax W uˆ T
� �u� � , �1 2
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� Ž . Ž .where W u is defined before A.12 . To find the limit distribution of R , we find the limitT T
Ž . Ž .distributions of t u and t u considered as a function of u, find the limit distribution of u, andˆ1 2

combine these results with the continuous mapping theorem.
Ž . Ž . Ž .Let r � � r � and set w u as in the proof of Theorem 4. We can write t u explicitly asT t T t 1 t�1 1

� Ž .N uTŽ . Ž .A.16 t u � ,1 1�2� 2Ž Ž . Ž ..D u � uˆT

where

�1� Ž . Ž . Ž . Ž . Ž .N u �N u �B u �C u G u ,T T T T T

�1� Ž . Ž . Ž . Ž . Ž .D u �D u �B u �C u B u ,T T T T T

T1
Ž . Ž .N u � y e 1 u ,ÝT t�1 t t�1T t�1

T1
2Ž . Ž .D u � y 1 u ,ÝT t�1 t�12T t�1

T1
Ž .r y 1 uÝ T t t�1 t�13�2T t�1Ž .B u � ,T T1

Ž . Ž .w u y 1 uÝ 1 t�1 t�1 t�13�2T t�1

T T1 1
� Ž . Ž . Ž .r r 1 u r w u �1 uÝ ÝT t T t t�1 T t 1 t�1 t�1T Tt�1 t�1Ž .C u � ,T T T1 1

�Ž . Ž . Ž . Ž . Ž .w u r 1 u w u w u �1 uÝ Ý1 t�1 T t t�1 1 t�1 1 t�1 t�1T Tt�1 t�1

and

T1
Ž .r e 1 uÝ T t t t�11�2T t�1Ž .G u � .T T1

Ž . Ž .w u e 1 uÝ 1 t�1 t t�11�2T t�1

Ž . Ž . Ž . Ž .From A.15 we see that y � ��a W s . Also, note that r � r s . Hence�T r � T �T s �

12Ž . Ž . Ž . Ž .N u � � �a W s dW s, u ,HT
0

1 22 2Ž . Ž . Ž .D u � � �a W s ds,HT
0

1Ž . Ž . Ž .��a u r s W s dsHŽ .B u � ,0T

0

1 Ž . Ž .u r s r s �ds 0HŽ .C u � ,0T

Ž .0 � u
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and

1 Ž . Ž .� r s dW s, uHŽ .G u � .0T
Ž .� J u2

� Ž . Ž 2 . 1 Ž . Ž . Ž .Thus N u � � �a H W * s dW s, u , where W * s is detrended Brownian motion as definedT 0
� Ž . Ž 2 2 . 1 Ž .2in the statement of Theorem 5. Similarly, D u � � �a H W * s ds. It follows thatT 0

1 Ž . Ž .H W * s dW s, u0Ž . Ž . Ž .A.17 t u � � t u .1 11�221Ž Ž . .uH W * s ds0

Using similar arguments, we can show that

� 1 Ž .Ž Ž . Ž ..�H W * s dW s, 1 �dW s, u0Ž . Ž . Ž .A.18 t u � � t u ,2 21�221ŽŽ . Ž . .1�u H W * s ds0

Ž . Ž . Ž . Ž .and A.17 and A.18 hold jointly. Theorem 2 shows that t u and t u are continuous functions of1 2
Ž .u almost surely .

� Ž . Ž .Finally, we need the limit distribution of u. In Theorem 4 we showed that W u �T u . Thisˆ T
Ž . � �limit process T u is continuous in u and has a unique maximum in � , � with probability one.1 2

Ž .This allows the application of Theorem 2.7 of Kim and Pollard 1990 ; hence

Ž . � Ž . Ž .A.19 u� argmax W u � argmax T u �u*.ˆ T
� � � �u� � , � u� � , �1 2 1 2

Ž . Ž . Ž .Equation A.17 , A.18 , and A.19 combine to yield the first statement of the theorem:

Ž . Ž Ž . Ž ..t , t � t u* , t u* .1 2 1 2

Ž .The convergence of R follows from the continuity of R �,� and the continuous mapping theorem.T
Q.E.D.

Ž .PROOF OF THEOREM 6: As in the previous proof we use the reparameterized model A.12 where
ˆ 2 2Ž . Ž . Ž .u�G � , u�G � , and u �G � . Since the test statistic is invariant to � , we set � �1.ˆ 0 0

Ž . Ž . Ž . Ž . Ž .As in the prior proof, t � t u and t � t u . Consider t u . For u�u , t u is given by A.16 .ˆ ˆ1 1 2 2 1 0 1
For u�u , note that0

� y �� � x 1 �� � x 1 �et 1 t�1 �U � u 4 2 t�1 �U � u 4 tt�1 0 t�1 0

�� � x 1 �� � x 11 t�1 �U � u4 2 t�1 �U � u4t�1 t�1

ŽŽ . Ž . .� � �� � � �� �w 1 �e ,2 1 2 1 t�1 �u 	 U � u4 t0 t�1

so by linear projection,

� Ž . Ž .N u �A uT TŽ . Ž .A.20 t u � ,1 1�2� 2Ž Ž . Ž ..D u � uˆT

� Ž . � Ž . Ž .where N u and D u are defined below A.16 ,T T

T1
���Ž . Ž . �Ž . Ž .�A u � y u � �� �w � �� 1 ,ÝT t�1 2 1 t�1 2 1 �u 	 U � u40 t�1T t�1

�� Ž .and y u is y 1 projected orthogonal to the other regressors.t�1 t�1 �U � u4t�1
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Ž .We now show that A u � 0. LetˆT p

Ž . � Ž .� � � �� �w � �� ,t 2 1 t�1 2 1

Ž . Ž .� u �E � 1t �u 	 U � u40 t�1

Ž .Ž . Ž . Ž Ž . Ž ..� � �� u�u � � �� � h u �h u ,2 1 0 2 1 0

and

T1
Ž . Ž Ž ..G u � � 1 �� u .ÝT t �u 	 U � u40 t�1'T t�1

Then

T1 1
��Ž . � Ž . �A u 	 max y u � 1ÝT t�1 t �u 	 U � u40 t�1' 't	TT T t�1

'Ž . � Ž . Ž .�	O 1 � G u � T � u ,p T

'Ž . Ž .uniformly in u. We complete the claim by next showing that G u � 0 and T � u � 0.ˆ ˆT p p
Ž . Ž . Ž .In the context of an identified ergodic TAR, Chan 1993 has shown that T u�u �O 1 , andˆ 0 p

10 Ž .his proof extends to the present model. The empirical process G u satisfies the conditions ofT
Ž . Ž . Ž .Theorem 1, application 4, of Doukhan, Massart, and Rio 1995 , so G u �G u , a GaussianT

Ž . Ž .process with continuous sample paths. As u� u , it follows that G u �G u �0. Since e hasˆ ˆp 0 T 0 t
Ž � .a continuous distribution, E w U �u is continuous in u, so is bounded in the neighborhoodt�1 t�1

of u . Thus0

d d
Ž . Ž . Ž . Ž .� u � � �� � � �� � h u2 1 2 1du du

Ž . Ž . Ž � .� � �� � � �� �E w U �u2 1 2 1 t�1 t�1

is bounded in this neighborhood, and hence

d' ' '� Ž . � � Ž . Ž . � Ž . � � Ž .T � u � T � u �� u 	 � u T u�u �o 1 .ˆ ˆ ˆ ˆ0 0 pdu

Ž .We conclude that A u � 0 as desired.ˆT p
Ž .Combined with A.20 , it follows that

� Ž .N ûTŽ . Ž .t u � �o 1 .ˆ1 p1�2� 2Ž Ž . Ž ..D u � uˆ ˆ ˆT

2 Ž .Let � be defined as 12 , and as noted before the statement of Theorem 6, � y is zero-mean,y t
strictly stationary and geometrically ergodic. An extension of Theorem 1 is the joint convergence

Ž . � �2over s, u � 0, 1 :

� �Ts1
Ž .e 1 uÝ t t�1'T Ž .t�1 W s, u�� �Ts Ž .W sž /1 3

� yÝ t� 0'� Ty t�1

10 This extension is available on request from the authors.
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Ž 2 2 . Ž .recall that we have set Ee �� �1 , where W s, u is a two-parameter Brownian motion and Wt 3
is a standard Brownian motion. This implies

� �Ts� �1
e 1Ý t �U � u 4t�1 0'u T' 0 t�1

Ž .W s� � 1Ts1
Ž . Ž .e 1 W s� �W sÝ t �U � u 4 2t�1 0'1�u T' 0 t�1 � 0Ž .W s3

� �Ts1
� yÝ t� �'� Ty t�1

where alternative expressions are

Ž .W s, u0Ž .W s � ,1 u' 0

Ž . Ž .W s, 1 �W s, u0Ž .W s � .2 1�u' 0

Ž .By construction, the vector Brownian motion W s has covariance matrix

1 0 �1

Ž . Ž . Ž . 0 1 �A.21 EW 1 W 1 �� ,2� 0� � 11 2

Ž . Ž .where � and � are defined in 13 and 14 . These results imply that1 2

1
Ž .y �� W s .�T s � y 3'T

Using an arguments identical to that of the previous proof, we see that

1 2� �2Ž . Ž .D u �u� W s dsHT y 3
0

and

1� �Ž . Ž . Ž .N u �� W s dW s, uHT y 3
0

� Ž . Ž . 1 Ž . Ž . Ž 1 Ž . Ž . .�1 Ž .where W s �W s �H W a r a �da H r a r a �da r s .3 3 0 3 0
Since these limits are continuous in u almost surely and u� u , it follows thatˆ p 0

1 � Ž . Ž .� W s dW s, uHy 3 0
0Ž . Ž .A.22 t � t u �ˆ1 1 1�22�2 1 Ž .u � H W s dsŽ .0 y 0 3

1 � Ž . Ž .W s dW sH 3 1
0� .1�2

1 2� Ž .W s dsH 3ž /0

Similar arguments yield

1 � Ž . Ž .W s dW sH 3 2
0Ž .A.23 t � .2 1�2

1 2� Ž .W s dsH 3ž /0
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Ž . 11Using A.21 we can write

1�22Ž . Ž . Ž .W s 1�� W s �1 1 1�3 1Ž . Ž .A.24 � � W s ,31�2 �Ž . ž /ž / 2W s 2ž /2 Ž . Ž .1�� W s2 2 �3

Ž .where W , W � is independent of W and has covariance matrix1�3 2 �3 3

1 �21 ,
� 1ž /21

Ž . Ž . Ž .where � is defined in 16 . From A.22 � A.24 we find that21

1 1� �Ž . Ž . Ž . Ž .W s dW s W s dW sH H3 1�3 3 3
1�2 0 02Ž .t � 1�� ��1 1 11�2 1�2

1 12 2� �Ž . Ž .W s ds W s dsH H3 3ž / ž /0 0

and

1 1� �Ž . Ž . Ž . Ž .W s dW s W s dW sH H3 2 �3 3 3
1�2 0 02Ž .t � 1�� �� ,2 2 21�2 1�2

1 12 2� �Ž . Ž .W s ds W s dsH H3 3ž / ž /0 0

which can be written as

1�22Ž .1�� Zt �1 11 1Ž . ˆA.25 t� � � DF
1�2t �ž / ž /22 2ž /Ž .1�� Z2 2

Ž . Ž .where Z , Z has distribution 15 and is independent of DF. This establishes the first stated result1 2
of the theorem.

Now set

� �a �� �a1 2H�
� �a � �až /2 1

Ž . Ž .where a is defined in 17 , and note that H�H�I. Then some algebraic manipulations and A.25
show that

1�22Ž .1�� Z �1 1 1ˆH�t�H� �H� DF
1�2 �ž /2 2ž /Ž .1�� Z2 2

N1 a� � DFž /N 0ž /2

11 The derivation is straightforward, yet cumbersome, so is omitted; it can be obtained on request
from the authors.
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Ž 2 . Ž .where N �N 0, 1�a , N �N 0, 1 , and DF are mutually independent. Hence since HH��I,1 2

R � t 2 � t 2
2T 1 2

ˆˆ� t�t

ˆ ˆ� t�HH�t

N N�1 1a a� � DF � DFž / ž /N 0 N 0ž / ž /2 2

2 2Ž .� N �aDF �N ,1 2

Ž 2 .�1 �2 2 2which is the final statement of the theorem, setting Z� 1�a N and � �N . Q.E.D.1 1 2
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