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Abstract

The properties of prices, especially with respect to initial conditions related to
market startup and unusual shocks to the market environment, are of concern
to regulators assessing alternative financial market structures. A natural way
to investigate the importance of initial conditions is to evaluate the ergodicity of
the price process. A consistent nonparametric test for ergodic failure is
introduced for this purpose. We compare the ergodic properties of prices
across (i) a computerized market, characterized by an electronic limit order
book and a separate batch opening protocol; and (ii) a traditional open-outcry
floor market. The work is enabled in part by unusual matched high-frequency
trading data on identical financial instruments traded in both markets over the
same 24-hour period. We find that differences in market structure matter, in
the sense that prices in the automated market exhibit ergodic failure, while
prices generated by floor trading are ergodic. Variations in information
environments over the course of the day also are considered, but cannot
account for the results.
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1. Background

A primary contribution of work on auction mechanisms and financial market
microstructure is that the form of the trading institution affects behavior and the
stochastic properties of prices (e.g., Friedman, 1993, on auctions and Madhavan,
1992, on trading market structure). In this paper, we focus on the persistence
properties of prices, and more narrowly, on the ergodicity of price processes across
trading market structures. Our vehicle for the analysis is a newly developed test for
the ergodicity of a time series. The experiment considered is a comparison of pricing
across computerized and traditional floor trading markets in precisely the same
financial instruments. The work is motivated by several considerations.

Computerized trading markets constitute the fastest growing institution in
financial market structure, and are sharply differentiated from open-outcry floor
trading venues. While both generally consist of a form of continuous double auction,
the former implements this paradigm through mathematical algorithms that process
allowable trader messages into prices and quantity allocations via the operation of an
electronic limit order book. There is no similar consolidated order book on the typical
floor, where trading is conducted orally. An automated system accepts and processes
orders which do not represent improvement of the existing best market quotes, while
the rules of floor trading mandate matching or improving quotes in order to have
standing in the market. These fundamental differences already have been shown to
have effects on pricing equilibria (Glosten, 1994} and on the dynamics of second
moment properties of prices (Bollerslev and Domowitz, 1991).

Ergodic failure is important in the assessment of market designs. The
properties of prices, including those with respect to initial conditions related to
market startup and unusual shocks to the market environment, are of continuing
concern to regulators (see, for example, Domowitz, 1990). There are two notable
points relevant to the markets under consideration and to the general analysis in this
paper.

First, computerized markets begin with an automated batch auction procedure
to set an initial price, while many floor markets, including that under study here,
simply start continuous trading without any opening protocol. In regulatory
communication, Donovan (1988), for example, articulates the concern that
continuous trading over the remainder of the day can be persistently influenced by
the design and operation of a separate opening auction. This point has been taken
seriously by some exchange policy makers. For example, it is clearly stated in the
description of the automated APT market, a part of the London International Financial
Futures and Options Exchange (LIFFE), that traders may not enter orders prior to
continuous trading. The rationale is quotable: “...to ensure that the market trades its
way to an opening price without having to impose an artificial algorithm that attempts
to match trades on the market opening” (LIFFE, 1991, section 5.2.4; italics added).
The opening price represents an initial condition for the day’s trading. If the opening
price is not representative, and system design encourages ergodic failure, pricing over
the remainder of the day cannot fully reflect market fundamentals. Such a result
violates the public interest requirements embodied in existing market regulation
pertaining to reliable price discovery (e.g., U.S. Commodity Exchange Act of 1974,
section 3).



Second, the acceptance and processing of orders on an electronic book away
from the best prices in the market can decrease the speed of information revelation
through prices, also hindering efficient price discovery. This may result in increased
dependence on an initial condition following a shock to the market, as well as that
induced by natural trading halts, including, but not limited to, the close of the market
for the day.

A natural way to investigate the importance of initial conditions is to evaluate
the ergodicity of a process. One loose characterization of ergodicity is the lack of
dependence of the process on the initial condition in the long run, a conceptualization
made rigorous in section 2 below. We introduce a consistent nonparametric test for
ergodicity in this paper, and apply it to an examination of the issues above.

Failure of the ergodic assumption has largely been studied for linear processes
in the parametric unit root framework (see Stock, 1995, for an overview and
references). Design and analysis of unit root tests have been feasible through clear
definitions and applications of the concept of an I(0) random process applied to
Markovian environments, signifying stationary ergodic behavior of the process under
consideration. Recently, however, Granger (1995) demonstrates that the I(0) concept
is not well defined for certain linear environments and nonlinear models more
generally.

The test proposed is differentiated from the unit root paradigm in several
respects. The nonparametric nature of the procedure does away with the need for
specifying precise models, beyond a characterization of transition densities, for both
the null and alternative hypothesis.  Nonlinear processes, in particular, are
accommodated. The concept of I(0) is replaced by its underlying motivation, namely
the definition of ergodicity itself, obviating the criticisms noted above. The test does
not require that failure of the ergodic property be linked to nonstationarity of the
process. In particular, it is capable of capturing ergodic failure that is not
characterized by explosiveness, as in trend or unit root models. The potential
importance of this generalization is illustrated by the analysis of the properties of
interactive Markov chains, as in Conlisk (1976), and by nonergodic solutions to
dynamic programs (e.g., Majumdar, et al., 1989, and Eckstein, et al., 1991).

We present the methodology underlying the test in the next section, with
additional detail in the Appendix. The data, including some information about the
institutional differences between market structures, are described in section 3. We
turn to the substantive application and results in section 4. The basic finding is
simply stated: price processes are found to be ergodic in the case of floor trading,
while they are nonergodic as produced by the automated market. We discuss
systems theory and differences in information environments that could represent
explanations of such results. Some concluding remarks are offered in the last
section.

2. A Consistent Test of Ergodicity
2.1  Concepts and Definitions

We consider a univariate Markov process on R, defined by a one-step transition
function p,(§,A), for £ e9land A €B(R), where B(R) is the Borel oc-algebra.



Although p.(§,A) must be estimated, accounting for the use of the time subscript, it
is convenient for the moment to treat it as though it were known. We denote the
corresponding transition density by f.(.,.). Starting from an initial density g,(x),
the probability of the process falling in any Borel set A at period s is defined by

Pr,, (%, €A) = | go(€)p’ (€, dn) = [ g, (n)dn.
This expression implicitly defines the Markov operator PL.:D(R)— D(R), via
g, = P°g,, where D(.) is the space of densities and ps(.,.) is the s-step transition
probability, defined recursively in the usual fashion.
If a stationary density g exists for Pr, we say the stochastic process is
stationary-ergodic iff

18, .
lim = Pig(x) = g (x)
$'® S %0
for all x € X and for all g € D(R). More generally, the process is said to be ergodic iff
L 1E i
lslgl S Z Prg, (%) - Prgy(x) =0
i=0

for all x € X and for all g,,g, € D*(R). These definitions are standard; see Loéve

(1978) and Isaacson and Madsen (1976), for example.

The intuition behind the testing strategy to follow may now be clarified. A
nonparametric estimate of fr permits recovery of pr, hence Pr, via integration. Given
two initial densities, random samples from the associated Cesaro average densities
are selected, and a test of equality of two distributions is used to evaluate the limits in

the definition of ergodicity above. Of course, the condition “for all g,,g, € D*(R)”

must be taken seriously; this is treated in depth in Domowitz and El-Gamal (1993),
and embodied in the algorithms described in the Appendix, via randomization. This
description ignores the complications induced by the necessity of estimating the law
of motion, and we now turn to the relevant issues.

2.2  The Maintained Hypothesis

We assume that any given time series contains two components: (i) a
systematic transition density p(x,,.|S,,,) defining the density of x\+; conditional on its

previous value x; and a “state” variable S..1; and (ii) an idiosyncratic shock process.
The law of motion for the observed series is given by

- S, if shock, =0
p(x,,.lsm):{p(x‘ 130) ‘

(1-a)p(x,,-1S,,,) +av if shock, =1
where v is a measure with full support, o is some scalar in (0,1), and shock: is a
stochastic process taking values in {0,1}, independent of {x; ,S.

The state variable S; permits us to encompass regime switching and other
forms of nonstationarity, which may or may not be accompanied by ergodic failure.
We assume that the process governing S; is independent of {xi, and has a unique
invariant distribution ¢ =(o,,...,0y), defining the asymptotic frequency o, >0 of St=i.



Hamilton (1989), for example, achieves this through an aﬁeriodic irreducible Markov
transition matrix for S;. The test also will fail to reject in the presence of other forms
of nonstationary, but ergodic behavior. These include the asymptotically stationary
models of Kampe de Feriet and Frenkiel (1962), simple heteroskedasticity, as
illustrated by Mokkadem (1987), stable time-varying parameter models as in Rao
(1978), and Markov models exhibiting general forms of nonstationarity of the
transition kernel that admit so-called weak ergodicity (e.g., Isaacson and Madsen,
1976). Formalization for such cases requires an extension of the state space of {s¢
from finite to infinite, a complication we avoid to eliminate the need for measure-
theoretic niceties that are extraneous to the analysis.

Since the state is typically not observable, we are interested in testing the
ergodicity of the marginal process on x. This is facilitated by defining

N
p‘(Xt,.) = Zcip(xzr | St+1 = 1)
i=1
and
~ N ~ .
p (Xt,.) = Zoip(xz" ! St+1 = 1)
i=1

where the first equation defines the average systematic component for the observable
marginal process {x4, and the second defines the average law for the observed process
itself. In Domowitz and El-Gamal (1997) we show that the transition density p(x:,.|Si)
is ergodic if and only if the averaged transition p‘(x:.) is ergodic, providing a
foundation for the empirical application of the test to potentially nonstationary laws of
motion for x.

The process on shock; is motivated purely by technical considerations, with the
following intuition. In order to guarantee the consistency of a nonparametric estimate

of p'(x,,.) under both the null and alternative, the shock process must be sufficiently

persistent. Nevertheless, such shocks must be sufficiently infrequent in the limit so
that the av component does not dominate p'(x,,.) allowing a consistent estimate of

p*(xi,.}. This is achieved in Domowitz and El-Gamal (1997) by assuming that the
partial sum of shock; tends to infinity, as TTw, while the average of the shock process
tends to zero, almost surely, which can be satisfied by a reasonably large number of
possible scenarios.

2.3  Estimation and Testing

The test is constructed by nonparametrically estimating a Markovian transition
density pr on X, and using this estimate in the algorithm described below. The
assumptions on the state and shock process, together with standard conditions for
kernel density estimation, are sufficient to show that this estimator pr is consistent

for p°. Further, a consistent test of the ergodicity of pr is asymptotically consistent

for the systematic component p*, as Ttew, given the assumptions concerning the shock
process. These propositions are proved in Domowitz and El-Gamal (1997). Finally,
the result cited in section 2.2 yields the consistency of the test for p.

We estimate the transition density over a compact set X using the kernel
density estimator



£.(x,x") = j (x,x")/my(x)
1 &2 (x—-x X'-X
: ny — K 1 K t+1
JT(X,X ) Th-f- ; [ h-l- j [ h-r j

X — X,
hy )

Standard assumptions with respect to continuity of m(.) and j(.,.), as well as with
respect to the limiting properties of K(.) and hr are imposed; see, for example, Roussas
(1969).

Let

where

and

me() = ZK(

T t=1

pr(x,A) = [f1(x,y)dy

where fr is estimated on a compact set X € B(R), according to the formulas above.

We can now state the basic result underlying the test used in the application to
follow, expressed formally in Domowitz and El-Gamal (1997, Theorem 2). Let the
conditions discussed above on the nature of the law of motion, the laws governing the
state and shock processes, and assumptions permitting consistent kernel estimation
hold. Consider the following algorithm:

1. Choose a compact set in the support of fr.

2. Randomly draw two initial densities g and g’, using Algorithm A described in the

Appendix.

s-1
3. Construct two i.i.d. samples of size n from the Cesaro averages —ZPr}g and
i=0
1 s-1
— > P.g' using Algorithm B described in the Appendix.

i=

w

4. Conduct a test of equality of two distributions, e.g., Kolmogorov-Smirnov,
obtaining the p-value for this test.

5. Repeat steps 2-4 to obtain a number of p-values. Under the null of ergodicity,
the p-values so obtained should be uniformly distributed on [0,1].

Then the test in steps 1-4, applied to the estimated pr, obtains the correct
asymptotic size under the null of ergodicity of p, and asymptotic power unity against
the alternative of nonergodicity of p, as first TTw, then XTR, s=O(T)Tew, and then nTw.

We close this section with a few practical remarks related to the methodology.
The asymptotics require taking limits as TTew, followed by limits with respect to s and
n. This is not very restrictive, because s and n are control parameters in the
simulations; the important assumption remains the familiar one of TTw. Monte Carlo
analyses in Domowitz and El-Gamal (1993, 1996, 1997) suggest that values of s=50
and n=200 produce good size and power performance. Details of the algorithm in the
Appendix also include the choice of k, the dimensionality of the polynomial
representation of initial densities, taken as k=10 here. While k should be arbitrarily
large to ensure that the set of such representations is dense in the space of densities,
moderate k gives very good approximations to many densities. These values for s, n,
and k are used in the application to follow.
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The method also requires the estimation of the transition density over a
compact interval X, which is assumed to grow. Two points are relevant in this regard.
First, although the theory treats this interval as though fixed ex ante, as a practical
matter we choose the interval by taking the middle 90 percent of any given sample.
This is similar to standard procedures involved in the estimation and/or testing of
structural breaks in regression frameworks. Second, the order of the limits with
respect to X is crucial, and theoretically rules out the application of the procedure to
random walk problems, for example. More formally, the test obtains the correct
asymptotic size under both stationary and nonstationary ergodic cases under the
null, and unit power against stationary nonergodic alternatives. The power of the test
is indeterminate in the case of nonstationary, nonergodic alternatives. On the other
hand, the issue appears to be a technical one of proof methodology, in that Monte
Carlo experiments and applications to data generally thought to be characterized by a
unit root demonstrate that the test has good power performance against a variety of
unit root and random walk alternatives (Domowitz and El-Gamal, 1997).

Finally, the replication recommended in step 5 is not required for the
consistency of the test. Given the randomized draw of initial densities, such
replication rules out the possibility that two researchers, each with the same data and
method, might reach two different conclusions, through the law of large numbers.
Formalization of this idea is contained in Delicado and Placencia (1997), and
references therein.

3. Institutions and Data

3.1. Market Mechanisms

The two markets under consideration are the Globex automated trading system
and the open-outcry floor market of the Chicago Mercantile Exchange (CME). A
complete description of the rules governing the Globex algorithm is provided in
Domowitz (1990), but the basic setup is easily summarized. Anonymous limit bids
and offers are entered via computer terminals, without a central trading location
{(other than the computer processing the data). New orders are filled at the best
available price. In case of ties, orders are filled on a first-in, first-out basis, with some
allowance for undisplayed order flow to be transacted at a lower priority. The
maximum possible quantity will be traded by completely filling an order, subject to
liquidity available in the system. Unfilled quantities remain on the electronic order
book until cancelled or filled. The limit order book is continuously displayed to
participants, and information on transactions is instantaneous. Trading is opened at
the beginning of a session by an automated batch auction, producing multiple trades
at a single opening price, before the commencement of the continuous double auction.
Unfilled orders at the open are routed automatically to the continuous limit order
book.

In contrast, trading on the CME occurs on a central floor, allowing the
identification of counterparties. There is no centralized limit order book. Recorded
data on quotations is sporadic, at best. Once a trader calls out a bid (offer), any
subsequent bid (offer) must be higher (lower) than the standing order in the market,
until the next transaction occurs. Contracts are traded when an outstanding bid or
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offer is accepted by another trader. If more than one trader attempts to accept the
bid, say, there are rules of thumb on the trading floor that determine how such orders
are split. Although time priority is in force, strong physical presence on the floor can
be a dominating factor in determining whose order is filled first. There is no separate
opening protocol; continuous trading simply starts at the opening bell of the session.

3.2. Data

Our comparisons of these two market structures are based on trading data for
the September futures contracts on the S&P 500 (SP) index, the Deutschemark (DM),
the Yen, and the Swiss Franc (SF), over the period 7/1/94 through 9/1/94. Trading
hours will be relevant in the discussion of results. On Central Standard Time, the
trading week opens with Globex trading on Sunday at 6:30 p.m., and closes on the
floor on Friday. If Monday is a holiday and Tuesday is not, trading starts on Monday
at 6:30 p.m. The floor stops trading in the SP contract at 3:15, and Globex opens at
3:45, with continuous trading up to a half hour before the floor again opens at 8:30
a.m. Currency floor trading ends at 2:00 p.m., with a Globex opening at 2:30. It
stays open until 6:45 a.m., and floor trading resumes at 7:20.

Data are time-stamped to the minute, and any multiple observations within a
minute are ordered in terms of time of arrival. Globex prices are computed as the log
of the midpoint of the best bid and ask quotes at any point in time, a common
transformation and practice for proxying transactions prices (see, for example, Engle,
1996). Although transactions prices are available, there are far fewer of them, and we
prefer the quote midpoints for sample size considerations. We have, however, verified
that the results reported below are maintained if transactions prices are used,
replacing the automatic cross-validation procedure in the Appendix with Silverman’s
original rules of thumb; the former tends to oversmooth, based on the relative paucity
of observations. Quotes are only sporadically available from the CME, and log
transactions prices are used. The average number of observations per series for the
floor is 73,465, with a range from 67,059 to 81,150. For Globex, the average is
38,996, ranging from 25,992 to 55,800.

4., Price Dynamics Across Trading Mechanisms

The results of our analysis are presented in graphical form. For each series, a
plot of the time series is given together with a kernel-smoothed density of p-values
over 100 replications of the test.

4.1. Currency Futures

Sharp results are obtained for the DM and SF futures prices, presented in
figures 1-4 and 5-8, respectively. Ergodicity is rejected for trading in the automated
market, but we fail to reject the ergodic null for the floor. Rejections in the former
case are clearly exemplified by the strong peak in the density of p-values in the range
of 0 to 0.1, approximately, with the frequency of remaining p-values dropping sharply
thereafter. In the case of the floor, the distribution of values is nearly uniform, taking
into account the scale of the vertical axis. For example, were the density of p-values



for the floor-traded DM graphed on the same scale as for Globex, the graph would be
virtually a horizontal line.

Beyond arguments with respect to trading mechanisms, discussed below, the
reason for the rejections can be clarified based on the time series plots. Consider
figures 5 and 7 for the SF contract, for example. The Globex price pattern is marked
by sharp increases and decreases in the series. Following each such movement, the
price often remains for some time within a relatively narrow range before another
jump. This suggests the existence of multiple ergodic classes, confirmed by the
testing procedure. Although market fundamentals necessarily result in similar
patterns on the floor, the movements are significantly smoother. Prices tend to
oscillate around the short-lived trends, as well as around peaks and troughs, and so
multiple ergodic classes cannot be identified.

The pattern of trading in the Yen fails to reveal the same sort of disparity
between market systems. Abrupt shifts in Globex are much smaller than observed in
the DM or SF, and the market tends not to linger around particular price points. We,
therefore, fail to reject the ergodic null in both cases. We conjecture that the result is
due in part to increased intervention activity aimed at stabilizing the Yen, with
Japanese central bank announcements during Globex hours, as suggested by Bonser-
Neal (1996). This would obviate jumps between ergodic subclasses, but we cannot
confirm the hypothesis, since official data on interventions are not available for the
period in question.

4.2. S&P 500 Futures

We present two sets of results for the SP series. Figures 13-16 contain results
for the log levels of the series. Although the Globex series is marked by the same sort
of jump behavior as observed for the currencies, there is also a weak rejection of the
ergodic null for the floor-traded series. Both series, however, are characterized by a
secular trend that reflects the general bull market in stocks of the period under study.
It is, therefore, no surprise that the test is biased towards rejection, regardless of
market mechanism.

The obvious response is simply to detrend both series. Results are reported in
figures 17-20. The detrended series again exhibit behavior as described for the
currencies on Globex, and the mitigation of such jumps for the floor. The p-value
densities now clearly show a rejection of the ergodic null for Globex, and failure to
reject for the floor-traded series.

4.3. Information Environments

The use of matched data within the same 24-hour period for both markets
controls for differences in underlying market fundamentals to a large extent. One
might conjecture, however, that variations in outside information flow over the 24-
hour period explain the results.

Floor trading in the SP contract, for example, occurs during the same hours as
trading in the stocks underlying the index in New York. There is very little trading in
the vast majority of stocks comprising the S&P 500 index during the hours of Globex
operations. Occasional shocks overnight, followed by little information flow, might



account for the patterns and results discussed above, compared with a steady flow of
new information during the day, and the associated smoothing of price response.

This line of reasoning cannot account for the results obtained for the
currencies, however. The analogue of the New York stock market is the interbank
currency spot market, which is the main source of information revelation through
prices. Interbank currency trading in the DM and SF, for example, is particularly
heavy from 2:00 a.m. to 10:00 a.m. CST, largely covering Globex hours. Asian
markets, with an emphasis on Yen trading, open even earlier, by about 8 hours.
Similar strong activity is observed for New York banks, from roughly 7:00 a.m
through 3:00 p.m., now encompassing CME hours for the most part. Although
outside information flow is thin for a short period during the Globex session, it is
difficult to ascribe the overall pattern of results to information differences.

4.4  Automated Mechanism Design and Ergodic Failure

Domowitz and Wang (1994) identify two general conditions for the existence of
stationary invariant distributions of prices in an order book environment such as
Globex.  First, arrival processes of bids, offers, cancellations of orders, and
instructions to hit the bid or lift the offer, must be stationary. The information
environments discussed above may contribute to a failure of this requirement.

Second, stationarity of price distributions depends on net inflows and outflows
to the system, summed over all priority classes in the queue generated by the order
book. The intuition is the same as for single-server queues, that the mean number of
arrivals be strictly less than the mean number of departures for stationarity of queue
length. In more practical terms, the requirement is that the probability that an order
is immediately executed upon arrival is strictly positive. Relative illiquidity in the
overnight market (compared with the floor) could conceivably generate violation of
such a condition. On the other hand, Bollerslev and Domowitz (1991) show that the
limit order book generally increases persistence in pricing dynamics, consistent with
the results presented here.

We also have noted some differences across markets in terms of display and
dissemination of market data, with the automated market reflecting greater
transparency of price information. Greater price transparency does not necessarily
translate into more efficient pricing, however, as demonstrated by Madhavan (1995).

5. Conclusion

We find that, in three of four cases, trading on an automated market results in
nonergodic price processes, while floor trading produces prices that retain the ergodic
property. The implication is that the automated mechanism does not encourage
information revelation through prices in such a way as to escape the effects of initial
conditions induced by an opening auction, trading halts or other large shocks to the
market environment. Such failure is inconsistent with requirements pertaining to
reliable price discovery, in the regulatory assessment of alternative market structures.
Given that both market mechanisms are in the form of standard double auctions, the
source of this result appears to lie in the operation of a consolidated limit order book
in the automated venue. This feature makes the automated market particularly
vulnerable to nonstationarity in order and information flow, as well as to any
illiquidity in the market environment.



The findings are particularly relevant when combined with the existence of an
opening protocol in the automated market. A separate opening algorithm may
produce misleading information about fundamentals, which are only slowly reversed
over the course of the regular trading day. Such an effect is exacerbated by ergodic
failure. Interestingly, the London International Financial Futures Exchange has
refused to institute an opening protocol even for its automated APT system, citing
such openings as being “artificial,” and reinforcing this intuition in practice.

The vehicle for our analysis is a newly developed test of ergodicity for time
series. Beyond the particular empirical issue addressed here, the test should be
useful in other situations of practical interest. Policy conclusions other than those
considered in this paper also depend on an evaluation of ergodicity. A leading
example is the analysis of income distributions across countries (e.g., Quah, 1997).
The test may be used to assess the proper “balance” of the right and left hand sides of
a dynamical relationship, expressed in terms of persistence properties; see, for
example, Granger (1995). Granger also introduces a concept to replace that of I(0),
which he calls “short memory in mean.” The idea is reminiscent of mixing conditions,
and it is shown in Domowitz and El-Gamal (1997) how the test presented here can be
modified to test the null of mixing with respect to a stochastic process. Dynamic
behavioral models may easily result in nonergodic processes (e.g., Arthur, 1989,
Majumdar et al., 1989, and Eckstein et al., 1991), but explicit verification is usually
difficult, and must be ascertained from the data. Finally, statistical inference
problems exist with respect to evaluation of estimates based on nonergodic processes
(e.g., Basawa and Scott, 1983). An operational test for the ergodicity of the relevant
time series will enable a researcher to identify appropriate inference methods in
empirical applications.
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Appendix
This appendix is devoted to a statement of the algorithms used in the

test. The implementation of these algorithms used in the data analysis was
conducted in GAUSS™ version 3.2.39 for Solaris 5.x, and using the GAUSS™
Maximum Likelihood Version 4.0.22/1 module. All computations were
performed on a Sun Ultra2 with two 168 Mhz procesors. For a given series, the
code reads in the data and conducts the test by implementing the following
steps.

Algorithm 1

1.

11

Calculate cross-validation bandwidth for kernel estimation, using the
GAUSS maximum likelihood module, and initializing the maximum
likelihood search by a Silverman rule of thumb hr=nxT-1/S, where n was
selected to be the difference between the 75th and 25t percentiles, a choice
less sensitive to outliers than Silverman’s choice of n=c, the standard
deviation of the series. For a survey of methods of bandwidth selection for
kernel density estimation, see Jones et al. (1996). For discussion of the
applicability of essentially the same selection methods in time series
contexts, see Bosq (1996, pp. 88-91).

Obtain kernel density estimates mr, jr, and fr as discussed in section 1.3,
using standard Normal kernels. The estimated transition density fr is
estimated on a 100x100 grid, and implies a finite approximation to the

Frobenius-Perron operator on density space: (PTg)(x)zjg(y)fT(y,x)dy.

Justification for the use of finite approximations of the Frobenius-Perron
operator on the density space is given by Li (1976). Alternative analysis
justifying finite approximations to continuous Markov processes is
contained in Guihenneuc-Jouhaux and Robert (1996).

Perform ntests tests (equal to 100 in the applications here), choosing values
for s, n, and k (50, 200, and 10, respectively in our applications), as
follows:

a) Use Algorithm A below to generate random coefficients (ci,...,cx) and

(c1,...,¢k); draw n data points, each i.i.d. from g,(x)=zl:=lcixi and

' k 1l
gx)=> cx.
b) Use Algorithm B below to randomly draw n i.i.d. samples each from

(/)3 Pr'g and (/)3 P

c) Use Algorithm C below to perform a Kolmogorov-Smirov test of the
equality of the distributions of the two samples, and obtain a p-value for
the test.

Plot the time series, the estimated marginal and transition densities, and a

kernel-smoothed density of the p-values so obtained. Under the null

hypothesis of ergodicity, this density should be uniform over [0,1], and

under the alternative, it should put a significant weight on low values of p.



Algorithm A

1. Choose a compact interval [a,b], the support of initial densities.
2. Generate a random vector po,...,px on the k+l-dimensional simplex as
follows:
a) Generate Uy,...,Ux i.i.d. U[0,1].
b) Generate the order statistics Upy,...,Uy and Ui=1, Ux+y=1.
c) Set pi=Upsy-Ug.
1. Compute co,...ck as follows:
a} Fori=1,... .k, generate V;i.i.d. U[0,1].
b) Set ci=(i+1)p: if Vi>0.5; otherwise set c;=-((i+1)/1i) pi.

c) Set ¢, =p, ——Zic,<0
1. Generate i.i.d. variables from the density g(x)= Zio ¢;x' using the algorithm

of Ahrens and Dieter (1974).
2. Transform the i.i.d. draws on [0,1] by multiplying them by b and adding a,

to produce i.i.d. draws on the compact set [a,b].

Algorithm A provides samples of i.i.d. draws from a polynomial density of
order k, whose coefficients are drawn randomly. The product of each
application of the algorithm is a sample of n i.i.d. draws from the constructed

density g(x), x}, i=1,...n. To obtain a sample of n i.i.d. draws from the Cesaro

averaged density Z:)P%g , the following algorithm is used:

Algorithm B

1. For each of the n observations x?, draw a value t, € {0,...,s}, with probability

1/(s+1) for each value.
2. For the ith observation, iterate for j=1,...,t:

a) Given x?, normalize f (X%,)) to sum to one, where X® is the closest point
on the 100x100 grid to x?.
b) Replace x? with a random draw from the multinomial random variables

with probabilities defined by the normalized f (X%,.).

c) Repeat steps (a) and (b) ti times.

The joint product of Algorithms A and B, applied twice, is two i.i.d. samples
from the Cesaro averages based on two randomly drawn initial densities.
Algorithm C is simply the implementation of the two-sample Kolmogorov-
Smirnov test of equality of two distributions to those two samples. The
algorithm was implemented by coding the procedures kstwo and probks from
Press et al. (1988, pp. 493-494) in GAUSS™.
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