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Abstract 

 In this paper we provide a brief review of how out-of-sample methods can be used to construct tests that 

evaluate a time-series model's ability to predict.  We focus on the role that parameter estimation plays in 

constructing asymptotically valid tests of predictive ability.  We illustrate why forecasts and forecast errors that 

depend upon estimated parameters may have statistical properties that differ from those of their population 

counterparts.  We explain how to conduct asymptotic inference, taking due account of dependence on estimated 

parameters. 
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1. Introduction 

 Traditionally, statistical evaluation of an econometric model focuses on �in-sample� analysis of the residuals 

from a fitted model.  This methodology has powerful theoretical and practical justification.  However, it is not 

always particularly natural or effective.  A number of studies (see references below) find that models that seem 

to fit well by conventional in-sample criteria do poorly at out-of-sample prediction.  This has led observers such 

as Klein (1992) to argue that the �...ability to make useful ex-ante forecasts is the real test of a model.� 

 In this paper we provide a brief review of how out-of-sample methods can be used to construct tests that 

evaluate a time-series model's ability to predict.  Although we touch on a wide range of issues, we focus on the 

role that parameter estimation plays in constructing asymptotically valid tests of predictive ability.  We explain 

why forecasts and forecast errors that depend upon estimated parameters do not necessarily have the statistical 

properties of their population counterparts: asymptotic inference sometimes requires explicitly accounting for 

uncertainty about the population values of such parameters.  Although this is well known when using fitted 

values and residuals (e.g., Durbin, 1970, and Pagan and Hall, 1983), it is commonly ignored when using out-of-

sample methods. 

 We survey a literature that evaluates forecasts and forecast errors generated over an �out-of-sample� period.  

The forecasts may be truly ex-ante, generated before the data on the predictand are available.  More commonly, 

the investigator sets the out-of-sample period aside, specifically to allow model evaluation.  Dawid (1984), who 

refers to it as the �prequential� approach to testing, has paid considerable attention to this method. 

 Because the sample is split into in-sample and out-of-sample portions, this method of evaluating a model is 

somewhat different from that commonly taught in econometric textbooks, in both minor and major ways.  An 

example of a technical difference is that in many applications parameters are updated as more data becomes 

available throughout the out-of-sample period; if so, each new forecast is constructed using a potentially 

different estimate of the population level parameter vector.  More generally, since forecasts of (say) yt+1 may lie 

off of the time t empirical support, we expect the predictions to be less prone to biases induced by parameter 

estimation and, more generally, to overfitting and pre-test biases. 

 The remainder of the paper proceeds as follows.  Section 2 provides a review of the literature in which out-

of-sample methods have been used to test for predictive ability.  Section 3 consists of four subsections.  The first 

is an analytical example illustrating why error in estimation of regression parameters used to make forecasts 

affects the asymptotic distribution of test statistics.  The second and third subsections present general discussions 

of the asymptotic effects of such error, and of how to feasibly account for such error in construction of test 

statistics.  The final subsection reviews Monte Carlo evidence on the importance of such accounting.  Section 4 

concludes and provides directions for future research. 

 One bit of terminology: because we need to refer frequently to error induced by estimation of regression 

parameters used to make forecasts, we denote such error as �parameter estimation error� or �parameter 

uncertainty.�  Similarly, �parameter estimation� is used as short hand for �estimation of regression parameters 

used to make forecasts,� an abuse of terminology in that the out-of-sample object of interest (say, mean squared 

forecast error) is also a parameter that is estimated. 
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2. Literature Review 

 While use of out-of-sample forecasts for model evaluation is less common than use of in-sample evidence, 

forecast evaluation has a long and distinguished history in economics.  Early references include Christ (1956) 

and Goldberger (1959), each of which evaluates the predictive ability of the Klein-Goldberger model of the U.S. 

economy.  Here we review more recent papers, citing both methodological contributions and recent 

representative applied papers. 

 There are many measures of forecast quality, but most tests that are used in practice can be grouped into one 

of five categories: equal forecast accuracy between two (or more) predictive models, forecast encompassing, 

forecast efficiency, zero forecast bias and sign predictability.  We discuss each in turn while referencing relevant 

methodological and applied work.  Throughout, we assume that the forecasting model is parametric and, for 

expositional ease, that the (scalar) predictand is yt+1.  The parameter estimate t
�β  is a function of observables 

known at time t.  Let the forecast be based upon a function )(y� 1t β+  such that the time t = R,�,T−1 forecast of 

yt+1 is 1ty� +  ≡ )�(y� t1t β+ .  If we let P denote the number of one-step ahead forecast errors 1tu� +  = yt+1 − 1ty� +  then 

 
  R + P = T + 1.                  (2.1) 

 
When two forecasting models exist, an additional index i = 1,2 will be used to distinguish between the parameter 

estimates, forecasts and forecast errors from each of the two models. 

 A very general test of predictive ability is one that tests for equal forecast accuracy across two or more 

models.  To construct a test of this type one needs to select a measure of accuracy.  McCulloch and Rossi (1990), 

Leitch and Tanner (1991) and West, Edison and Cho (1993) compare predictive ability using economic measures 

of accuracy.  It is more common to use statistical measures.  In particular the most common comparison is 

whether two predictive models have the same mean squared error (MSE). 

 Granger and Newbold (1977) propose a test for equal MSE that is similar to a test suggested by Morgan 

(1939).  They note that if the sequence of forecast errors form a random sample from a bivariate normal 

population then the sample correlation coefficient, associated with )u�u�( 1t,21t,1 ++ +  and )u�u�( 1t,21t,1 ++ − , can be 

used to construct a test for equal MSE.  This test has been applied by a number of authors including Granger and 

Deutsch (1992) who compare the predictive ability of models of the unemployment rate.  Ashley, Granger and 

Schmalensee (1980), Ashley (1981), Alpert and Guerard (1988) and Bradshaw and Orden (1990) use the statistic 

to test for causality between two nested models. 

 Extensions include Brandt and Bessler (1983) who explicitly adjust for the fact that forecast errors may be 

biased away from zero.  A test used by Meese and Rogoff (1988) and Diebold and Rudebusch (1991) allows for 

serial correlation in the forecast errors.  Park (1990), Tegene and Kuchler (1994) and Granger and Swanson 

(1997) apply a variant of this statistic based upon Fisher's z-test. 

 A more general test for equal forecast accuracy is that suggested by Diebold and Mariano (1995).  They 

base their test for equal MSE upon the loss differential, 1td +  = 2
1t,1u� +  − 2

1t,2u� + .  Let γj = Edt+1dt+1-j and let ddS�  
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denote a consistent estimate of Sdd = ∑ γ+γ ∞
=1j j0 2 , the long-run covariance associated with the covariance 

stationary sequence dt+1.  The authors argue that the statistic ∑ −+
= +

− 1PR
Rt 1t

2/1 dP / 2/1
ddS�  converges in distribution to 

a standard normal variable and hence normal tables can be used to test the null of equal forecast accuracy. 

 This statistic has been frequently used in recent years.  Engel (1994), Chinn and Meese (1995) and 

Blomberg and Hess (1997) test whether regime-shifting models, error correction models and models of political 

behavior respectively, outperform the random walk in the prediction of exchange rates.  Mark (1995) and Kilian 

(1999) use a bootstrapped version of this statistic to compare the predictive ability of long-horizon models of 

exchange rates to the random walk.  Bram and Ludvigson (1998) use a modified version of this test, suggested 

by Harvey, Leybourne and Newbold (1997), to determine a causal relationship between consumer confidence 

and household expenditure. 

 An advantage of the technique proposed by Diebold and Mariano (1995) is that it can be extended to other 

measures of loss (say) L(.).  To do so we need only define 1td +  = )u�(L 1t,1 +  − )u�(L 1t,2 +  and proceed to construct 

the test as we did when the loss was quadratic.  Based upon this observation, Chen and Swanson (1996) use 

squared forecast error, absolute forecast error and absolute percentage forecast error as loss functions to evaluate 

several parametric and semiparametric forecasting models of U.S. inflation.  Swanson and White (1997a, b) use 

the same three loss functions to evaluate how well parametric and neural net models predict several 

macroeconomic variables.  

 The test of forecast encompassing is related to the literature on the combination of forecasts introduced by 

Bates and Granger (1969) (see Diebold, 1989).  The idea of forecast combination is that if two (or more) 

forecasting models are available then taking a weighted combination of the available forecasts may generate a 

better forecast.  Granger and Ramanathan (1984) suggest doing this using regression-based methods.  Suppose 

that 1t,1y� +  and 1t,2y� +  are competing forecasts for yt+1 and that we already have an observed series of these ex-

ante forecasts.  They construct future forecasts using the weights α0, α1 and α2 estimated by the OLS regression 

 
  yt+1 = α0 + α1 1t,1y� +  + α2 1t,2y� +  + error term.            (2.2) 

 
 Based upon this regression, Chong and Hendry (1986) observe that under the null that forecasts from model 

1 encompass the forecasts from models 2, α1 and α2 should be 1 and 0 respectively.  If this is the case then a test 

for forecast encompassing can be constructed using the t-statistic associated with α2 in the OLS estimated 

regression 

 
  1t,1u� +  = α0 + α2 1t,2y� +  + error term.              (2.3) 

 
Under the null that model 1 forecast encompasses model 2 they argue that the t-statistic should be asymptotically 

standard normal and hence normal tables can be used to conduct a test of encompassing. 

 Tests related to that in (2.3) include one suggested by Fair and Shiller (1989, 1990).  They construct a 

regression-based test that is closer to (2.2) than (2.3).  Their test for �information content� in m-step ahead 
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forecasts does not impose the null that one particular model forecast encompasses the other and hence can be 

considered more general than that in (2.3).  Ericsson (1992) constructs a regression-based test that is designed to 

allow for forecasts generated by models with cointegrating relationships.  He notes that if the population level 

forecast errors are I(0) but the population level forecasts are I(1) then equation (2.3) is �unbalanced�.  To rectify 

this possibility he suggests using the t-statistic associated with )y�y�( 1t,11t,2 ++ −  when it and a constant are 

regressed on 1t,1u� + . 

 These tests of encompassing have been implemented by a number of authors.  Day and Lewis (1992) 

determine the information content in volatility forecasts.  Ericsson and Marquez (1993) test whether certain 

models of the U.S. trade balance forecast encompass other models.  They also argue that by estimating the 

equation using GLS they can account for the �asymptotically negligible� autocorrelation in the forecast errors 

due to parameter uncertainty.  Oliner, Rudebusch and Sichel (1995) determine whether �new� models of 

business investment forecast encompass �old� models.  Lo and MacKinlay (1997) test for forecast encompassing 

in models of asset returns from the stock and bond markets.  Amano and van Norden (1995) test whether or not 

error correction models forecast encompass the random walk model.  Andrews, Minford and Riley (1996) 

conduct a series of tests of encompassing that includes (2.3).  Fair (1998) compares the information content in 

structural models of exchange rates with the random walk model.  Stock and Watson (1999a, b) test for 

information content in forecasts of inflation and several other macroeconomic variables.  

 Mincer and Zarnowitz (1969) introduce the test of forecast efficiency.  The test for forecast efficiency is 

based upon the observation that if the forecast is constructed using all available information, then the optimal 

forecast (in the sense of minimum mean square error) and the forecast error should be uncorrelated.  If this is the 

case then a test of efficiency may be constructed using the t-statistic associated with the estimate of α1 in the 

OLS estimated regression 

 
  1tu� +  = α0 + α1 1ty� +  + error term.              (2.4) 

 
 Authors who have used this test of efficiency include the following.  McNees (1978) estimates (2.4) by both 

OLS and GLS to allow for multi-step forecasts and then applies the method to predictions of the unemployment 

rate, real GNP and the GNP deflator.  Berger and Krane (1985) evaluate the efficiency of forecasts of real GNP 

made by D.R.I. and Chase Econometrics.  Pagan and Schwert (1990), Day and Lewis (1992) and West and Cho 

(1995) evaluate the efficiency of volatility forecasts.  Stock and Watson (1993) construct a comparable test for 

the efficiency of forecasts of the probability of recessions.  Hatanaka (1974) and Keane and Runkle (1989) have 

suggested extensions to this type of test. 

 The test for zero forecast bias is sometimes referred to as a test for zero-mean prediction error.  Mincer and 

Zarnowitz (1969) introduce this test in the context of tests of efficiency.  For example, note that in (2.4) we have 

included an intercept term in the regression.  They note that if the forecasts are unbiased then the intercept term 

should be zero.  Ericsson and Marquez (1993) also give this argument in the context of regression-based tests of 

encompassing like that in (2.3).  Because of this, tests for zero bias are commonly reported along with (and 
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tested jointly with) tests of efficiency and encompassing.  Day and Lewis (1992) report the t-statistics associated 

with the intercept term in both regression-based tests of efficiency as in (2.4) and regression-based tests of 

encompassing as in (2.3).  Berger and Krane (1985) use an F-test to construct a joint test for both efficiency and 

zero bias.  Ericsson and Marquez (1993) do the same but for encompassing and zero bias.  It is also possible to 

take a more direct approach when testing for zero bias.  Stock and Watson (1993) and Oliner, Rudebusch and 

Sichel (1995) construct a test for zero bias by regressing the forecast error on a constant.  They then use the t-

statistic associated with the intercept term to test for zero bias. 

 Perhaps the most well known test of sign predictability was developed in a series of papers by Merton 

(1981) and Henriksson and Merton (1981).  These authors are interested in evaluating whether decisions based 

upon 1ty� +  are useful in the absence of knowing the actual value of yt+1.  The context that the authors had in mind 

was one where decisions had to be made to either buy or sell an asset. 

 For example, let yt+1 denote the return on an asset and let 1ty� +  denote the forecasted return.  If the sign of 

1ty� + , denoted sgn( 1ty� + ), is positive then the decision is made to buy shares of the asset.  If sgn( 1ty� + ) is negative 

then the decision is made to sell shares of the asset.  Notice that the actual value of the forecast is not important 

per se, just the sign of the forecast. 

 In this decision-based forecasting literature, we are interested in whether the sign of 1ty� +  is useful as a 

predictor of the sign of yt+1.  If it is not useful then sgn( 1ty� + ) is independent of sgn(yt+1).  To test this null 

hypothesis, Henriksson and Merton (1981) suggest a test using the t-statistic associated with α1 in the following 

OLS estimated regression 

 
  1( 1ty� +  ≥ 0) = α0 + α11(yt+1 ≥ 0) + error term            (2.5) 

 
where the function 1(.) takes the value one if the argument is true and zero otherwise. 

 Applications of this test of sign predictability include Breen, Glosten and Jagannathan (1989) who are 

concerned with the sign predictability of indices of stock returns.  Park (1990) tests for sign predictability of 

changes in the price of U.S. cattle.  Tegene and Kuchler (1994) evaluate the sign predictive ability of changes in 

farmland prices in the U.S. Midwest.  Kuan and Liu (1995), Chen and Swanson (1996) and Swanson and White 

(1995, 1997a, b) evaluate sign predictive ability of both parametric and neural net models. 

 Other sign tests include one suggested by Cumby and Modest (1986) who argue that their test of sign 

predictability is more powerful than that in (2.5).  Pesaran and Timmermann (1992) suggest a test, similar to that 

in (2.5), that they use in Pesaran and Timmermann (1995).  More recently, Pesaran and Timmermann (1994) 

extend the Henriksson and Merton (1981) test to situations where there are more than two choices available.  

This is potentially useful since, for example, when making investment decisions one usually has the choice to not 

only buy or sell an asset but also to hold and not act in the relevant market.  Chinn and Meese (1995) use a test 

of sign predictability that is based upon the binomial distribution. 

 It is interesting to note that this literature on sign prediction runs parallel to the literature on probability 

forecasting that is particularly important in meteorology.  For example suppose that a decision is made to take an 
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action based upon the probability forecast, 1tp� + , of rain.  A farmer has to make a decision as to whether to 

spread fertilizer onto his fields.  If it rains then the fertilizer may wash away and not have time to penetrate the 

soil.  In this case, the farmer makes the decision to spread the fertilizer only if the probability forecast of rain is 

(say) less than 20%.  In this case, the farmer is interested in the sign of 1ty� +  ≡ 1tp� +  − 20%.  The obvious 

difficulty with evaluating these types of forecasts is that we do not have the luxury of observing the actual 

probability pt+1 unless pt+1 = 1.00.  See Brier (1950) as well as the review by Murphy and Daan (1985) for a 

discussion on the evaluation of probability forecasts in meteorology.  See Granger and Pesaran (1996) and Lopez 

(1999) for discussions relevant to economists. 

 One common feature of all of the applied papers cited above is that the predictions are made using estimated 

regression models.  This is in sharp contrast to all of the methodological papers cited above.  None of these 

explicitly consider possible effects from use of an estimated regression model to construct forecasts.  That is, 

their arguments make use of conditions that are not obviously applicable when such models are used. 

 This difference, between the applied papers and the methodological papers, raises a question.  Do the results 

of the methodological papers remain valid when regression models are estimated rather than known?  West 

(1996) and McCracken (2000) use first order asymptotics to address this question, assuming parametric 

regression models and stationary data.  Their results delineate conditions under which the results of these papers 

remain valid, and, more generally, present the appropriate limiting results when forecasts rely on estimated 

regression parameters.  A discussion of these and other theoretical results, along with some related Monte Carlo 

evidence, is provided in the next section. 

 
3. Theoretical and Monte Carlo Evidence 

 This section contains four subsections.  The first illustrates how parameter estimation error can affect the 

asymptotic distribution of out-of-sample test statistics.  The second section presents general asymptotic results, 

focusing on the results in West (1996) and McCracken (2000).  The third section describes how to feasibly 

account for parameter estimation error.  The final section summarizes some Monte Carlo results. 

 
3.1 How Parameter Estimation Affects Inference: An Example 

 Before presenting the theoretical results, we provide a simple illustrative example of how parameter 

estimation error can affect the limiting distribution of out-of-sample test statistics.  Suppose that the forecasting 

model is a simple univariate linear regression estimated by OLS.  If we let yt denote the scalar predictand and xt-1 

denote the scalar covariate then we have the regression model 

 
  yt = *

0β  + *
11tx β−  + ut = *'

1tX β−  + ut             (3.1) 

 
where Xt-1 = (1, xt-1)' and *β  = '*

1
*
0 ) ,( ββ .  For the sake of presentation let ut be an i.i.d. zero mean conditionally 

homoskedastic disturbance term with unconditional variance σ2 and let Xt-1 be covariance stationary.  Suppose 

that the one-step ahead predictions are made in the obvious way using 1ty� +  = t
'
t
�X β .  Write the one step ahead 
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forecast error as 1tu� +  = yt+1 − 1ty� + .  For ease of presentation assume that the parameter estimate t
�β  is estimated 

once by OLS using information available through s = 1,�,R.  Hence for any t ≥ R, t
�β  = 

)yXR()XXR( R
1s s1s

11R
1s

'
1s1s

1 ∑∑ = −
−−

= −−
− . 

 Consider the test for zero-mean prediction error conducted by, for example, Oliner, Rudebusch and Sichel 

(1995).  The test for zero-mean prediction error can be constructed using the t-statistic associated with α from 

the regression 1tu� +  = α + error term.  The t-statistic has the form  

 
  2/12

1t
1PR

Rt
11PR

Rt 1t
2/1 ])u�u�()1P/[(u�P −∑−∑ +

−+
=

−−+
= +

−            (3.2) 

 
where u�  is the sample average of the forecast errors 1tu� + . 

 To show that a statistic of this type is limiting standard normal usually requires three steps.  The first is to 

show that the numerator of the t-statistic is asymptotically normal with a limiting variance Ω.  The second is to 

show that the denominator converges in probability to Ω1/2.  The final step is simply to apply Slutsky's Theorem 

and conclude that the t-statistic is asymptotically standard normal. 

 Consider the numerator.  By definition 

 
  ∑ −+

= +
− 1PR

Rt 1t
2/1 u�P                  (3.3) 

   = ∑ −+
= +

− 1PR
Rt 1t

2/1 uP  + )uXR)R/P(()XXR)(XP( R
1s s1s

2/12/11R
1s

'
1s1s

11PR
Rt

'
t

1 ∑∑∑− = −
−−

= −−
−−+

=
− . 

 
If we assume, as in Hoffman and Pagan (1989), that  

 
  P,R → ∞, P/R → π < ∞,                (3.4) 

 
then it is straightforward to show that under general conditions 

 

  ∑ −+
= +

− 1PR
Rt 1t

2/1 u�P  = ( ) 










∑π
∑−

= −
−

−+
= +

−
−

R
1s s1s

2/12/1

1PR
Rt 1t

2/1
1'

tt
'
t uXR

uP)XEX)(EX(1  + op(1)     (3.5) 

 
Since the disturbance terms are i.i.d., zero mean and conditionally homoskedastic we know that the two 

components of the column vector in (3.5) are independent and hence  

 

  










∑π
∑

= −
−

−+
= +

−

R
1s s1s

2/12/1

1PR
Rt 1t

2/1

uXR
uP  →d N(03×1, 











πσ
σ

)XEX(0
0

'
tt

2

2

3×3)        (3.6) 

 
We then know that ∑ −+

= +
− 1PR

Rt 1t
2/1 u�P  →d N(0, Ω) where 

 
  Ω = σ2 + )EX()XEX)(EX( t

1'
tt

'
t

2 −πσ .             (3.7) 
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The right hand side of (3.7) should seem familiar.  It is directly comparable to the variance of a one-step ahead 

prediction error (Goldberger, 1991, p. 175).  It differs because it is the variance of a scaled sample average of 

one-step ahead predictions rather than just a single one-step ahead prediction error. 

 Now consider the denominator in (3.2).  To show that 21 R P 1
t R t 1� �(P 1) (u u)− + −
= +− −∑  = 1 2R P 1

t R t 1�(P 1) u− + −
= +− ∑  − 

2�P(u) /(P 1)−  converges in probability to σ2, first notice that equations (3.3) - (3.7) imply that 2�P(u) /(P 1)−  

converges in probability to zero.  We then need only show that ∑− −+
= +

− 1PR
Rt

2
1t

1 u�)1P(  converges in probability to 

σ2.  By definition, 

 
  ∑− −+

= +
− 1PR

Rt
2

1t
1 u�)1P(  = ∑− −+

= +
− 1PR

Rt
2

1t
1 u)1P(             (3.8) 

   − )�)(Xu)1P((2 *
R

1PR
Rt

'
t1t

1 β−β∑− −+
= +

−  + )�)(XX)1P(()�( *
R

1PR
Rt

'
tt

1'*
R β−β∑−β−β −+

=
− . 

 
Since the first right-hand side term in (3.8) converges in probability to σ2, the result will follow if the last two 

right-hand side terms converge in probability to zero.  This is evident since, ∑− −+
= +

− 1PR
Rt

'
t1t

1 Xu)1P(  →p 0, 

∑− −+
=

− 1PR
Rt

'
tt

1 XX)1P(  →p '
tt XEX  and *

R
� β−β  →p 0. 

 By Slutsky's Theorem we can now conclude that the t-statistic in (3.2) converges in distribution to a normal 

variable with limiting variance V, 

 
  V = 1 + )EX()XEX)(EX( t

1'
tt

'
t

−π .              (3.9) 

 
This limiting distribution is in direct contrast to that when the parameters are known.  If the parameters are 

known then the t-statistic is asymptotically normal but with a limiting variance V = 1.  Since parameters are 

generally not known, and since )EX()XEX)(EX( t
1'

tt
'
t

−π  is positive semi-definite, (3.9) will be greater than or 

equal to 1.  When (3.9) is greater than 1 any test that uses standard normal tables, without accounting for the 

extra term induced by parameter estimation, will reject the null of zero-mean prediction error too often and may 

lead to a less powerful test of the null. 

 
3.2 How Parameter Estimation Affects Inference: A General Result 

 The argument of the preceding section can be expanded to include parametric functions other than that used 

to construct the test of zero-mean prediction error.  Suppose that we are interested in testing the (scalar) null that 

for some parametric function ft+1(β), Eft+1(β*) = θ.  Here, β* is the unknown vector of parameters needed to make 

a forecast.  For one-step ahead forecasts, examples of f(.) include (in each case, θ = 0) 
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  Test         ft+1(β)            (3.10) 

  equal mean square error    (yt+1 − 1
'

t,1X β )2 − (yt+1 − 2
'

t,2X β )2 

  equal mean absolute error    |yt+1 − 1
'

t,1X β | − |yt+1 − 2
'

t,2X β | 

  forecast encompassing in (2.3)   (yt+1 − 1
'

t,1X β ) 2
'

t,2X β  

  forecast efficiency in (2.4)    (yt+1 − β'
tX ) β'

tX  

  zero-mean prediction error    yt+1 − β'
tX  

  sign predictability in (2.5)    [1( β'
tX  ≥ 0) − E1( β'

tX ≥ 0)][1(yt+1 ≥ 0) − E1(yt+1 ≥ 0)] 

 
In (3.10), we have assumed that when two forecasting models are needed, they both are linear with covariate 

vector Xi,t and parameter vector *
iβ  for models i = 1,2 respectively.  We then define β* = ( *'

1β , *'
2β )'. 

 West's (1996) results cover those functions in (3.10) associated with the tests of equal mean square error, 

encompassing, efficiency and zero-mean prediction error.  More generally, his results cover tests that use any 

twice continuously differentiable function f(.).  McCracken (2000) extends West�s results to situations where the 

moment function Ef(.) is continuously differentiable but where the function f(.) need not be differentiable.  This 

extension allows for the remaining tests in (3.10), those for equal mean absolute error and sign predictability.  

The key to both of their results is an asymptotic expansion like that in (3.5) that has two distinct components: a 

first component that involves the population level forecasts and forecast errors and a second that is due to the 

fact that parameters are not known and must be estimated. 

 Again suppose that we are interested in the (scalar) null Eft+1(β*) = θ.  To test this null we first construct a 

scaled sample average of the form ∑ θ−β−+
= +

− 1PR
Rt t1t

2/1 ))�(f(P .  Furthermore, let the sequence of parameter 

estimates be constructed using one of the three schemes that figure prominently in the forecasting literature: the 

recursive, rolling or fixed schemes.  These schemes are defined as follows, with the formulas applicable for OLS 

estimation given in (3.11) below. 

 The recursive scheme is used in, for example, Pagan and Schwert (1990).  In this scheme, the parameter 

estimates are updated as more data becomes available.  Hence for any time t = R,�,T−1 the parameter estimates 

use all relevant information from time s = 1,�,t. 

 The rolling scheme is used in, for example, Swanson (1998).  Here, the parameter estimates are updated as 

more data becomes available but always using only the most recent (say) R observations. This scheme is 

sometimes used when there are concerns about changepoints and biases from the use of older observations. 

 Finally, the fixed scheme is used in, for example, Ashley, Granger and Schmalensee (1980).  Here the 

parameter estimate is estimated only once, using data from (say) 1 to R and hence is not updated as forecasting 

moves forward in time from t = R,�,T−1.  This scheme may seem inefficient but is frequently used in the neural 

net literature where computational concerns are a serious issue.  This scheme was used for presentation purposes 

in the zero-mean prediction error example of (3.2). 
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 To see how each of these parameter estimation schemes differ consider the simple linear regression in (3.1).  

If the parameter estimate(s) is constructed using OLS then 

 
  Scheme    Estimator              (3.11) 

  Recursive   t
�β  = )yXt()XXt( t

1s s1s
11t

1s
'

1s1s
1 ∑∑ = −

−−
= −−

− ,      (a) 

  Rolling    t
�β  = )yXR()XXR( t

1Rts s1s
11t

1Rts
'

1s1s
1 ∑∑ +−= −

−−
+−= −−

− ,    (b) 

  Fixed    t
�β  = )yXR()XXR( R

1s s1s
11R

1s
'

1s1s
1 ∑∑ = −

−−
= −−

− .      (c) 

 
Notice that each has essentially the same form but vary because different observations are being used. 

 To present our asymptotic results, suppose that we are considering a univariate least squares model.  

Asymptotic results extend directly when considering multivariate models, or two or more non-nested models, 

say to compare their forecast accuracy.  They extend directly when the estimation method is maximum 

likelihood (ML) or generalized method of moments (GMM), as indicated in parenthetical comments in the 

exposition below.  Finally, they extend to multi-step rather than one-step ahead forecasts.  Essential technical 

conditions for these extensions include stationarity (no unit roots), existence of moments of sufficient order, and, 

if two or more models are being compared, that the models be non-nested.  See the cited papers for exact details. 

 In our least squares example, define hs = Xs-1us and let H(t) equal )ht( t
1s s

1 ∑ =
− , )hR( t

1Rts s
1 ∑ +−=

−  and 

)hR( R
1s s

1 ∑ =
−  respectively for the recursive, rolling and fixed schemes.  Let B = 1'

tt )XEX( − .  (In general, hs is 

the score if the estimation method is ML and is the set of orthogonality conditions used to estimate β* if the 

estimation method is GMM; B is the inverse of the expectation of the Hessian (ML) or the asymptotic linear 

combination of orthogonality conditions (GMM).)  Define  

 
  F = *

t 1Ef ( ) /+∂ β ∂β ,                 (3.12) 

 
For the test of zero-mean prediction error, for example, this is '

tEX−  (see (3.5)).  Then 

 
  ∑ θ−β−+

= +
− 1PR

Rt t1t
2/1 ))�(f(P  = ∑ θ−β−+

= +
− 1PR

Rt
*

1t
2/1 ))(f(P  + FB ∑ −+

=
− 1PR

Rt
2/1 )t(HP  + op(1).  (3.13) 

 
The first component involves the population level forecasts and forecast errors.  The second arises because 

parameters are not known and must be estimated. 

 Define S as the long-run covariance of ( θ−β+ )(f *
1t , '

th )' with diagonal elements Sff and Shh and off-

diagonal element Sfh.  That is, 

 

  S = 






hh
'
fh

fhff

SS
SS

                  (3.14) 
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Under mild conditions, ∑ θ−β−+
= +

− 1PR
Rt t1t

2/1 ))�(f(P  converges in distribution to a normal variable with limiting 

covariance matrix Ω defined by 

 
  ''

hhhh
''

fh
'
fhfhff FBFBS)FBSFBS(S λ++λ+=Ω           (3.15) 

where 

  Scheme     λfh     λhh          (3.16) 

  Recursive    )1ln(1 1 π+π− −   )]1ln(1[2 1 π+π− −  

  Rolling, π ≤ 1   π/2     π � π2/3 

  Rolling, 1 < π < ∞   1 � (2π)-1   1 � (3π)-1 

  Fixed     0     π. 

 
 The formulae in (3.15) and (3.16) illustrate the statement made in the introduction that parameter estimation 

can affect the limiting variance of out-of-sample test statistics.  In (3.15), the first component, Sff, is precisely the 

limiting variance accounted for by authors such as Diebold and Mariano (1995).  The remaining components 

arise from estimation of β*. 

 The intuition for the form of the variance can be seen in (3.13).  There are two sources of uncertainty.  The 

first is the uncertainty that would exist even if population level parameters were known.  This is represented by 

the term ∑ θ−β−+
= +

− 1PR
Rt

*
1t

2/1 ))(f(P .  Authors such as Mincer and Zarnowitz (1969), Granger and Newbold 

(1977), Diebold and Mariano (1995) and Harvey, Leybourne and Newbold (1997, 1998a, b) have accounted for 

this uncertainty when deriving their out-of-sample tests of predictive ability. 

 The second type of uncertainty arises because parameters are not known and must be estimated.  This is 

represented by the term FB ∑ −+
=

− 1PR
Rt

2/1 )t(HP  in (3.13).  This is the source of uncertainty not explicitly 

considered by the previously mentioned authors.  It generates a variance term, ''
hhhh FBFBSλ , and a covariance 

term, )FBSFBS( ''
fh

'
fhfh +λ .  Randles (1982) derives the in-sample equivalent of the expansion in (3.13) and the 

limiting variance in (3.15).  He also discusses the importance of accounting for parameter estimation uncertainty 

when in-sample tests are constructed.  As well, Hoffman and Pagan (1989) provide a similar result for out-of-

sample inference when the fixed scheme is used. 

 We close this subsection by discussing several papers that derive additional asymptotic results.  The first 

paper is White (2000), which develops a bootstrap test of predictive ability that accounts for potential effects due 

to parameter estimation.  The bootstrap, which is also suggested by Ashley (1998), potentially brings asymptotic 

refinements.  It is also a computationally convenient method to compare predictive ability across a potentially 

large number of models.  Perhaps most importantly, White�s bootstrap algorithm explicitly accounts for the 

potential existence of data snooping effects of the kind discussed by Lo and MacKinlay (1990). 

 Corradi, Swanson and Olivetti (1999), extends some of the results of West (1996) and White (2000) to unit 

root environments.  One result concerns tests of equal forecast accuracy between two non-nested parametric 
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regression models that contain cointegrating relationships.  Based upon an expansion akin to that in (3.13) they 

show that when MSE is the measure of accuracy, parameter uncertainty is asymptotically irrelevant and hence 

the standard tests for equal forecast accuracy will be asymptotically standard normal.  When other measures of 

accuracy are used, they show that parameter uncertainty can have an effect.  That effect causes the standard tests 

to have nonstandard limiting distributions that are not well approximated by the standard normal distribution.  

They also extend the results in White (2000) by validating the use of White's bootstrap method in environments 

where forecasts are generated using estimated regression models with cointegrating relationships. 

 McCracken (1999) and Clark and McCracken (1999) derive results for tests of equal forecast accuracy and 

encompassing when the two models are nested rather than non-nested.  They show that these tests are not 

asymptotically normal but instead have nonstandard limiting distributions.  This occurs since, when models are 

nested and the parameters are known in advance, the forecast errors associated with the two models are identical.  

In particular, the difference in (say) the loss differential dt+1 must be zero by definition.  This set of results is 

potentially useful since tests of causality by Ashley, Granger and Schmalensee (1980), tests of long-horizon 

predictive ability by Mark (1995) and tests of market efficiency by Pesaran and Timmermann (1995) each 

involve the comparison of two nested rather than non-nested models. 

 Finally, Kitamura (1999) proposes bootstrap methods that can be used to improve the accuracy of point 

estimates of moments of functions of out-of-sample forecasts and forecast errors.  In particular he shows that the 

bootstrap can be used to smooth over the added variability in these point estimates induced by parameter 

estimation.  His results are general enough to be applied to functions f(.) that are either differentiable or 

nondifferentiable and hence can be applied to measures of forecast accuracy like MSE and sign predictability. 

 
3.3 Accounting for Parameter Uncertainty 

 We return now to the result in (3.15).  We remarked in Section 2 that the applied papers we cited do not 

explicitly account for error in estimation of parameters used to make forecasts.  Even so, the analysis just 

presented can be used to show that, in some cases, the extra terms introduced by such error vanish, at least 

asymptotically.  One important contribution of the preceding analysis is that it delineates an exact set of 

conditions under which there is no need to account for such error, thereby providing conditions under which the 

inference in those papers is asymptotically valid. 

 One such condition is that the out-of-sample size, P, is small relative to the in-sample size, R.  This is 

transparent if we return to the limiting variance in (3.15).  Each of the terms due to the existence of parameter 

estimation error depends upon the value π through λfh and λhh.  In either case if π = 0 then parameter estimation 

uncertainty is asymptotically irrelevant since both λfh = 0 and λhh = 0 (the result for the recursive scheme follows 

since )1ln(1 1 π+π− −  → 0 as π → 0).  When this is the case Ω = Sff and hence parameter uncertainty can be 

safely ignored.  As noted by Chong and Hendry (1986), the intuition behind this result is that when R is large 

relative to P, uncertainty about β* is small relative to uncertainty that would be present even if β* were known. 

Examples where this condition may be useful include Fair (1980, P/R = .156), Pagan and Schwert (1990, P/R = 

.132 and .4) and Kuan and Liu (1995, P/R = .042, .087 and .137). 
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 It is important to point out that it will not always, or perhaps even usually, be the case that P/R (the obvious 

sample analogue to π) is small enough for parameter estimation error to be irrelevant for inference.  There are 

many applications in which P/R is numerically large.  Examples include Mark (1995), for which P/R ranges from 

.69 to 1.11, and Pesaran and Timmermann (1995), for which P/R  ranges from .38 to 5.55.  In any case, 

inspection of the asymptotic variance formula (3.15) shows that the value of π alone does not determine the 

effects of parameter estimation error; the parameters of the data generating process, and the estimator used, are 

also relevant.  The Monte Carlo simulations summarized in Section 3.4 show that serious biases result when 

parameter estimation error is ignored, for data generating processes, and choice of P and R, that are calibrated to 

actual economic data. 

 A second set of circumstances is also immediate from (3.15).  When F = 0, the second and third terms 

disappear and hence Ω = Sff.  Perhaps the most useful application of this result is to the test of equal MSE.  

When the test of interest is one of equal MSE between two linear parametric models, F = ( '
t,11t,1 XEu2 +− , 

'
t,21t,2 XEu2 + ).  Note that both components of F are essentially the moment conditions used to identify the 

parameters when they are estimated by OLS.  Since these are both equal to zero we know that when OLS 

provides consistent estimates of the parameters it must be the case that F is a vector of zeroes.  When this is the 

relevant environment, the Granger and Newbold (1977) and Diebold and Mariano (1995) tests of equal MSE can 

be applied without adjustment and still obtain a statistic that is asymptotically standard normal. 

 A third set of circumstances is not quite so obvious.  We see in (3.16) that when the recursive scheme is 

used, λhh = 2λfh and hence )FBFBS2FBSFBS(S ''
hh

''
fh

'
fhfhff ++λ+=Ω . This is potentially useful since it is 

possible that 

 
  ' ' ' ' '

fh fh hhFBS S B F 2FBS B F+ +  = 0              (3.17) 

 
regardless of whether F or π equals zero. 

 A particularly intriguing example of this occurs when one is testing for first-order serial correlation, 

disturbances are i.i.d., and a lagged dependent variable is used as a predictor in a linear regression model.  From 

Durbin (1970) we know that when constructing an in-sample test for serial correlation this is potentially a 

problem.  When the test is constructed out-of-sample, and the recursive scheme is used, this problem does not 

occur.  The reason for this is that for this scalar test, it can be shown that '
fhFBS−  = ''

hh FBFBS . This implies 

that (3.17) is satisfied and hence parameter estimation error is asymptotically irrelevant.  For a discussion and 

other examples of this type of cancellation, see West (1996) and West and McCracken (1998). 

 Note that for the rolling and fixed schemes, parameter estimation error is asymptotically relevant for this test 

(because for these schemes, λhh ≠ 2λfh).  When this is the case, one must specifically account for parameter 

estimation error.  There are a number of ways to do so.  The obvious method is simply to use (3.18) when 

constructing tests, using the obvious sample analogues.  That is, if F� , B� , fhS� , hhS� , fh
�λ  and hh

�λ  are consistent 

estimates of their population level counterparts (see below), construct test statistics of the form 
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  ∑ θ−βΩ −+
= +

−− 1PR
Rt t1t

2/12/1 ))�(f(P�  where             (3.18) 

    Ω�  = )F�B�S�B�F�(�)F�B�S�S�B�F�(�S� ''
hhhh

''
fh

'
fhfhff λ++λ+ . 

 
In this way the test statistic is limiting standard normal, and standard normal tables can be used to construct an 

asymptotically valid test of the null. 

 To compute the terms in (3.18), begin with the scalars λfh and λhh.  Since these are both continuous functions 

of π = lim P/R, they can be computed by substituting P/R for π.  Since the term B varies with the methodology 

used to estimate the parameters (i.e. OLS, maximum likelihood, GMM, etc.) so will it's estimator.  When OLS is 

used to estimate the parameters, as in the zero-mean prediction error example of (3.2), B = 1'
tt )XEX( − .  Here, a 

consistent estimate of B could take the form B�  = 11PR
Rt

'
tt

1 )XXP( −−+
=

− ∑ .  Similarly, since the term F varies with 

the function of interest, f(.), so will it's estimator.  In the zero-mean prediction error example of (3.2), F = 
'
tEX− .  A consistent estimate of F could take the form F�  = ∑− −+

=
− 1PR

Rt
'
t

1 XP . 

 The remaining terms, Sff, Sfh and Shh require a bit more knowledge of the data that is being used.  At times, 

consistent estimates are quite simple.  For example, under the conditions assumed for the linear model in (3.1) 

and the test of zero-mean prediction error in (3.2), Sff = σ2, Sfh = '
t

2EXσ−  and Shh = '
tt

2 XEXσ .  Consistent 

estimates of Sff, Sfh and Shh include 0
ffS�  = ∑ −+

= +
− 1PR

Rt
2

1t
1 u�P , 0

fhS�  = )XP)(u�P( 1PR
Rt

'
t

11PR
Rt

2
1t

1 ∑∑− −+
=

−−+
= +

−  and 0
hhS�  = 

)XXP)(u�P( 1PR
Rt

'
tt

11PR
Rt

2
1t

1 ∑∑ −+
=

−−+
= +

− .  These estimates, however, are based upon knowledge that the disturbances 

are i.i.d. and conditionally homoskedastic.  If the disturbances are i.i.d. but conditionally heteroskedastic, then 

0
ffS�  remains consistent for Sff but 0

fhS�  and 0
hhS�  are no longer consistent for Sfh and Shh.  In this case, consistent 

estimators include 1
fhS�  = ∑− −+

= +
− 1PR

Rt
'
t

2
1t

1 Xu�P  and 1
hhS�  = ∑ −+

= +
− 1PR

Rt
'
tt

2
1t

1 XXu�P .  More generally, if the 

disturbances are serially correlated and conditionally heteroskedastic, then standard nonparametric kernel 

estimators, such as the Bartlett or quadratic spectral, can be used to consistently estimate the long-run 

covariances Sff, Sfh and Shh.  See West and McCracken (1998) and McCracken (2000) for further discussion on 

estimating these quantities. 

 Such calculations may be quite involved.  Fortunately, in some cases, the formula for Ω simplifies.  For 

example, in the test for zero-mean prediction error above, it can be shown that not only does '
fhFBS−  = 

''
hh FBFBS , but also '

fhFBS−  = ''
hh FBFBS  = Sff.  Using (3.15) we see that Ω can be rewritten as λSff where λ 

is defined as 1 − 2λfh + λhh.  When this is the case, one need only estimate Sff and λ to form a consistent estimate 

of Ω.  This technique can be particularly useful when the test of interest is for either efficiency or zero-mean 

prediction error.  See West and McCracken (1998) for further examples. 

 As well, judiciously designed regression-based tests, which introduce seemingly irrelevant variables, can 

cause the usual least squares standard errors to be the appropriate ones.  West and McCracken (1998) 

demonstrate this, building on related results for in-sample tests in Pagan and Hall (1983) and Davidson and 
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MacKinnon (1984).  Leading examples of tests that can be constructed using augmented regression-based tests 

include those for serial correlation in the forecast errors and forecast encompassing.  For an illustration consider 

the encompassing test and assume that the putatively encompassing model is linear with vector of predictors X1,t.  

An adjustment for parameter uncertainty can be made using the augmented regression 

 
  1t,1u� +  = α0 + 1t,22 y�~

+α  + t,1
'
3Xα  + error term.           (3.19) 

 
(Compare to the usual regression in (2.3).)  Under mild conditions, the least squares standard errors associated 

with the estimate of 2
~α  can be appropriate even when those associated with the estimate of α2 are not.  See 

West and McCracken (1998) for a discussion on how to choose the augmenting variables. 

 
3.4 Monte Carlo Evidence 

 Here we briefly summarize some Monte Carlo evidence on the adequacy of the asymptotic approximations 

referenced above.  In choosing the Monte Carlo studies, we restrict attention to ones that evaluate the finite 

sample size and size adjusted power properties of tests that use estimated regression models.  Thus we do not 

discuss simulations of out-of-sample tests that do not involve the estimation of parameters, such as those in 

Diebold and Mariano (1995), Harvey, Leybourne and Newbold (1997, 1998a, b) and Clark (1999). 

 Unfortunately, the number of Monte Carlo studies that evaluate predictive ability using estimated regression 

models is extremely limited.  We cite West (1996, 2000a, 2000b), West and McCracken (1998), McCracken 

(2000), Corradi, Swanson and Olivetti (1999), and Clark and McCracken (1999).  All of these studies consider 

one-step ahead forecast errors and use linear DGPs.  Although Corradi, Swanson and Olivetti (1999) allow the 

disturbances to be autoregressive, the remaining authors restrict attention to i.i.d. disturbances (usually normal).  

No doubt equally good finite sample behavior would require larger sample sizes for multi-step forecasts and 

conditionally heteroskedastic disturbances. 

 The basic results from these papers are as follows.  First, test statistics relying on the asymptotic 

approximation in (3.13) can work quite well even in sample sizes as small as 8.  For example, one set of 

experiments in West (1996) considers certain tests in which parameter estimation error is asymptotically 

irrelevant (that is, tests in which ''
hhhh

''
fh

'
fhfh FBFBS)FBSFBS( λ++λ  = 0 in (3.15)).  Of 30 nominal .05 tests 

computed from sample splits in which R ranges from 25 to 100 and P from 25 to 175, all but one had an actual 

size between .03 and .08 (the remaining actual size was .10.).  Results in the other papers cited in the previous 

paragraph are generally comparable.  There are, however, occasional exceptions.  A dramatic one is the 

regression-based test of encompassing in (3.19), when the rolling scheme is used.  West and McCracken (1998) 

find that sample sizes greater than a thousand are required for test statistics to be reasonably accurately sized.  

(Peculiarly, the same regression-based test works well with small sample sizes when the recursive or fixed 

schemes are used, for reasons that are not clear to us.) 

 Second, when the approximation calls for adjusting for parameter estimation error (that is, when 
''

hhhh
''

fh
'
fhfh FBFBS)FBSFBS( λ++λ  ≠ 0 in (3.15)), test statistics adjusting for parameter estimation error 
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perform better than those that do not, sometimes dramatically so.  West (2000a, 2000b) conducts simulations in 

which parameter estimation affects the limiting distribution of tests of encompassing.  In both papers the 

simulated tests are conducted with and without adjustment (�Without adjustment� means use only Sff [the first 

term in (3.15)].).  Consider, for example, the simulations in West (2000a).  P and R ranged from 8 to 512.  For 

nominal .05 tests, sizes of adjusted test statistics ranged from .04 to .10; the range for unadjusted test statistics 

was .04 to .25.  (In this particular experiment, it can be shown that failure to adjust will asymptotically result in a 

size greater than .05.  In other setups, it is possible that failure to adjust will result in asymptotic sizes less than 

.05.)  Consistent with the asymptotic theory and with the intuition of Chong and Hendry (1986), the smaller is 

P/R, the better the performance of the unadjusted test statistic.  For example, for the unadjusted test statistic, with 

P = 32, nominal .05 tests behaved as follows: when R = 16 (i.e., P/R = 2), actual size = .208; when R = 256 (i.e., 

P/R = .125) actual size = .055.  (The comparable figures for the test statistic that adjusts for parameter estimation 

error are .065 for R = 16 and .050 for R = 256.) 

 Third, when the approximation calls for adjusting for parameter estimation error, size-adjusted power 

typically is better for adjusted than for unadjusted test statistics.  Both Clark and McCracken (1999) and 

McCracken (2000) conduct simulations in which parameter estimation affects the limiting distribution.  In both 

papers, the asymptotically valid version of the test has greater size-adjusted power than the asymptotically 

invalid version.  Consider, for example, one of the setups in McCracken (2000), in which R = 432 and P = 87 

(i.e., P/R = .20), the recursive scheme is used and the nominal size of the test is 0.01.  As the deviation from the 

null decreases across four experiments, the adjusted tests have size-adjusted power of 1.000, 0.988, 0.748 and 

0.118 while the unadjusted tests have size-adjusted power of 0.999, 0.948, 0.383 and 0.054 respectively. 

 In addition, for size-adjusted tests, power is increasing in P/R.  This tendency occurs in each of the 

simulations conducted by Corradi, Swanson and Olivetti (1999), Clark and McCracken (1999) and McCracken 

(2000).  For example, in the first of two simulations conducted by Corradi, Swanson and Olivetti (1999) they 

construct tests for equal MSE estimating parameters associated with both stationary regressors and those with a 

unit root.  They find that nominal .05 tests have size-adjusted power that ranges across .170, .261, .466, .632, 

.764 and .847 when R = 50 and P = 25, 50, 100, 150, 200, 250 (i.e., P/R = .50, 1, 2, 3, 4, 5) respectively. 

 
4. Conclusion 

 We hope that we have made four contributions in this paper.  The first is simply to introduce the 

methodology of out-of-sample hypothesis testing.  We think this is important.  The applied papers cited in 

Section 2 convince us that out-of-sample methods provide an insight into econometric models that is not easily 

obtained with standard in-sample methods. 

 The second contribution is to emphasize that economic forecasts and forecast errors usually are generated 

using estimated regression models.  Because of this feature, test statistics constructed using forecasts and 

forecast errors often have statistical properties that differ from those of statistics constructed when the population 

level forecasts and forecast errors are known.  For those tests that are asymptotically normal, we show that the 

limiting variance may depend on uncertainty about the parameters used to make forecasts. 
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 Our third contribution is to outline how to feasibly account for the uncertainty introduced when estimated 

regression parameters are used to construct forecasts.  We describe circumstances under which such estimation 

error washes out asymptotically and thus can be ignored in large samples.  For other circumstances we outline 

how adjustments can be made. 

 The fourth, and perhaps most important, contribution that our paper can make is to promote future use of 

and research on out-of-sample tests of predictive ability.  There are more than a few unanswered questions 

regarding out-of-sample tests of predictive ability.  Perhaps the most obvious is how to choose the sample split 

parameter π (defined in (3.4)).  The Monte Carlo results in Section 3.4 seem to indicate that this can play a 

significant role in determining both the size and power properties of the test.  Further Monte Carlo results and 

perhaps even local asymptotics may shed light on the optimal choice of π.  Steckel and Vanhonacker (1993) 

provide some suggestions but conclude that in finite samples a split where P/R ≈ 1 is not �too� suboptimal. 

 Other lines of research include extending the work of Corradi, Swanson and Olivetti (1999) in ways that 

allow for a broader range of tests than just for equal forecast accuracy between two non-nested models.  

Examples include tests of efficiency, encompassing, serial correlation in the forecast errors and zero-mean 

prediction error when cointegrating relationships exist within the estimated regression model(s).  Moreover, 

since tests of causality often involve regression models that include cointegrating relationships (Stock and 

Watson, 1988) it would be useful to extend their work along the lines of that by McCracken (1999) and Clark 

and McCracken (1999).  In that way tests of equal forecast accuracy and encompassing between two nested 

models can be constructed when cointegrating relationships exist. 

 Another line of work involves tests of predictive ability when nonparametric methods are used to estimate 

regression functions.  Swanson and White (1997a, b), Chung and Zhou (1996) and Jaditz and Sayers (1998) each 

construct tests of predictive ability based upon forecasts and forecast errors estimated using series-based, kernel-

based and local-linear nonparametric methods respectively.  Since each of these methods use regression 

estimators that have slower rates of convergence than parametric estimates it seems likely that they, too, would 

affect the distributions of out-of-sample tests of predictive ability. 

 Other potential questions include determining the importance of parameter uncertainty in the evaluation of 

probability or interval forecasts.  There is also the question of whether out-of-sample methods should be used at 

all.  Fair and Shiller (1990) suggest that this methodology provides a protection against data-mining and 

overfitting.  It would be useful to determine whether their heuristic arguments in favor of out-of-sample methods 

can be validated analytically.  Another question is whether standard information criteria can be used as a 

consistent testing methodology in an out-of-sample environment.  In particular, information criteria are 

sometimes used to choose among multiple nested and non-nested models based upon out-of-sample forecast 

errors.  Although Swanson (1998) argues in its favor, there is no theoretical evidence to support its use. 
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