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TESTING FOR LINEARITY

Bruce E. Hansen

University of Wisconsin

Abstract. The problem of testing for linearity and the number of regimes in the
context of self-exciting threshold autoregressive (SETAR) models is reviewed. We
describe least-squares methods of estimation and inference. The primary
complication is that the testing problem is non-standard, due to the presence of
parameters which are only defined under the alternative, so the asymptotic
distribution of the test statistics is non-standard. Simulation methods to calculate
asymptotic and bootstrap distributions are presented. As the sampling
distributions are quite sensitive to conditional heteroskedasticity in the error,
careful modeling of the conditional variance is necessary for accurate inference on
the conditional mean. We illustrate these methods with two applications —
annual sunspot means and monthly U.S. industrial production. We find that
annual sunspots and monthly industrial production are SETAR(2) processes.

Keywords. SETAR models; Thresholds; Non-standard asymptotic theory;
Bootstrap

1. Introduction

If a researcher proposes a non-linear time series model, the question will
invariably arise: Is the non-linear specification superior to a linear model? The
statistical analog is: Can you reject the hypothesis of linearity in favor of the non-
linear model? This question is quite central to the analysis of self-exciting
threshold autoregressive (SETAR) models. More generally, we are interested in
determining the number of thresholds or regimes in a SETAR model, and
hypothesis tests are useful tools in this determination.

In this paper we describe the least-squares (LS) approach to estimation and
inference in SETAR models. LS methods are conceptually and computationally
straightforward. As the SETAR models are nested, testing is based on classic F
statistics which are computationally straightforward to calculate. Inference is
complicated, however, as the asymptotic distributions of the tests are non-standard
due to the presence of nuisance parameters which are only identified under the
alternative hypothesis. As a result, simulation-based methods are necessary for
correct inference. Luckily, with the advancement in computing power, simulation-
based inference is relatively easy to implement on modern personal computers.
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The SETAR model, which is a particular class of piecewise linear autoregressions,
is attributed to Tong (1978). For detailed reviews see Tong (1983, 1990). The subject
of testing for non-linearity in the context of threshold models has been studied by
Tsay (1989), Chan (1990, 1991), Chan and Tong (1990), Hansen (1996, 1997), and
Caner and Hansen (1998). The testing problem is algebraically quite similar to the
issue of testing for structural change of unknown timing, which dates back to
Quandt (1960). Tests for single structural change in stationary models has been
studied by Andrews (1993) and Andrews and Ploberger (1994), and in the context of
non-stationary models by Hansen (1992, 1999a), Seo (1998), and Kuo (1998). Tests
for multiple structural change have been studied by Bai (1997) and Bai and Perron
(1998), and similar techniques have been applied to threshold models by Hansen
(1999Db). Both testing problems fall in the class of tests in the presence of unidentified
nuisance parameters, which have been studied by Davies (1977, 1987), Andrews and
Ploberger (1994), Hansen (1996), and Stinchcomb and White (1998).

The class of SETAR models is a restriction on the class of smooth transition
autoregression (STAR) models, considered by Chan and Tong (1986), Luukko-
nen, et al. (1988), and extensively reviewed in Granger and Terasvirta (1993) and
Terasvirta, et al. (1994). The testing issues which apply to SETAR models also
apply to STAR models, and the methods discussed in this paper could easily be
extended to cover STAR models as well.

SETAR and STAR models may be viewed as parsimonious approximations to
general nonlinear autoregressions. While linear autoregressions dominate the
empirical modeling of time series, there is no compelling a priori reason to presume
that the true dynamic structure is linear. The primary argument for linearity is
simplicity (estimation, interpretation, forecasting), yet current research is showing
that the analysis of SETAR and STAR models is reasonably straightforward.
Furthermore, there is no compelling theoretical reason to focus exclusively on linear
models. Models derived from first-principles (utility and production functions) will
only have linear dynamics under narrow functional form restrictions. Non-linearities
becomes especially important in the presence of asymmetric costs of adjustment,
irreversibilities, transactions costs, liquidity constraints, and other forms of rigidities.

Non-linear autoregressions been used in several economic applications,
including: Industrial production (Terasvirta and Anderson (1992), Granger and
Terasvirta (1993); GNP (Granger, Terasvirta, and Anderson (1993), Potter (1995),
Hansen (1996), Galbraith (1996), Koop and Potter (1999)): Unemployment
(Rothman (1991), Burgess (1992), Hansen (1997), Montgomery, et al. (1998),
Caner and Hansen (1998); Stock volatilities (Cao and Tsay (1992). See also Brock
and Potter (1993) for a review.

The organization of this paper is as follows. In Section 2 we introduce the
SETAR model, and discuss the general principle of least-squares estimation and
testing within the class of SETAR models. In Section 3 we introduce two time-
series which will serve to illustrate the methods for the remainder of the paper.
Section 4 discusses estimation methods. Explicit methods to estimate one-regime,
two-regime, and three-regime SETAR models are presented. Section 5 discusses
testing the SETAR(1) model against the SETAR(2) model. Asymptotic and
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bootstrap approximations are described, allowing both for homoskedastic and for
heteroskedastic errors. Part of the purpose of this section is to show how inference
can be sensitive to the assumptions and methods employed. Section 6 discusses
testing SETAR(1) against SETAR(3), and Section 7 discusses testing SETAR(2)
against SETAR(3). A conclusion follows.

GAUSS programs which replicate the empirical work can be downloaded from
the author’s webpage.

2. SETAR model classes

Let Y, be a univariate time series and let X,_=(1Y,_,Y,_»...Y,_,)', a kx 1
vector with k=1+p. A SETAR(m) model' takes the form

Y= Q{th lllt(% dy+---+ 04,21th Ui (7, d) + ey, (1)
where ’Y:(th-”)/m—l) with <7< <Ym-1, and Ijr(’}/ad):

I(yj—1 < Y,—4<7;), where I(-) is the indicator function® and we use the convention

70 = —o00 and 7,, = co. The parameters -; are called the thresholds, and d is called
the delay parameter. The latter may be any strictly positive integer less than some
upper bound d, where typically d=p.

The error ¢; in (1) is a uniformly square integrable martingale difference
sequence, hence

E(e,\%t,l)zo, (2)

where S, denotes the natural filtration,® and o* = Ee? < oo.

A SETAR(m) model has m ‘regimes’, where the jth regime occurs when
I;(v,d)=1. Our interest in this paper is the determination of the number of
regimes m. The class of SETAR(m) models is strictly nested, with m =1 being the
most restrictive. Hence it is conceptually convenient to consider the sequence of
SETAR(m) models as a sequence of nested hypotheses, which lends itself readily
to hypothesis testing.

The class SETAR(1) is the class of (linear) autoregressions, which can be
written as

Yi=ajX,_1+e,. 3)

Thus testing for linearity (within the SETAR class of models) is a test of the null
hypothesis of SETAR(1) against the alternative of SETAR(m) for some m > 1.
Similarly, we can test the null hypothesis of the SETAR(2) model

Yz:anr—lllt('Vsd)+a£Xr—112r('Vad)+€ty 4)

against the alternative of a SETAR(m) for some m > 2.

Note that we are implicitly assuming that there are no additional constraints
placed on the vectors oy, while in some applications it may be desirable to impose
constraints (such as exclusion restrictions). We will not consider such constraints
in our analysis, but the following should be noted. If the same constraints are
imposed on all vectors oy, then there are no complications. If different constraints
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are imposed on the different vectors o, then the SETAR(m) classes are no longer
strictly nested, so the testing problem concerns non-nested hypotheses which are
more delicate to handle.

The parameters of (1) may be collected as 0=(ay,an, ..., a7, d). Under
assumption (2) the appropriate estimation method is least-squares (LS). The LS
estimator 6 solves the minimization problem

éza@?m S i—alX, Ly d) = =l X (v, ) (5)

t=1

We discuss computational solutions to this problem in Section 4. Collect the LS
residuals into the n x 1 vector é,,. Then the sum of squared residuals is S, = e, é,,
a natural by-product of LS estimation.

The natural LS test of the hypothesis of SETAR(j) against SETAR(k) (k >j) is
to reject for large values of

(6)

This is the likelihood ratio test when the errors e, are independent N(0, 0?). It is
also the conventional F (or Wald) test, and is equivalent to the conventional
Lagrange multiplier (or score) test. These observations suggest that this test is
likely to have excellent power relative to alternative tests.

One important testing issue is that it is necessary to restrict the thresholds v; so
that each regime contains a minimal number of observations. Let

n

nj= > Li(y,d),

t=1

be the number of sample observations in the jth regime. The asymptotic theory
suggests that we should constrain the thresholds so that as n— oo, n;/n>7 for
some 7 > 0. While there is no clear choice for 7, a reasonable value (which we use
in our applications) is 7=0.1.

3. Data

We illustrate our methods with applications to two univariate time series. The first
is annual sunspot means for the time period 1700—1988. The numbers are well
known, ours are taken from Appendix 3 of Tong (1990). We follow Ghaddar and
Tong (1981) and make a square-root transformation N, = 2(y/1 + Nj — 1), where
N7 denotes the raw sunspot series. The series N, is displayed in Figure 1.

Many authors have analyzed this series. In particular, Tong and Lim (1980)
estimated a constrained SETAR(2) with p=11 for the period 1700—1920, and
Ghaddar and Tong (1981) fit a similar specification for the period 1700—1979. We
follow their lead and set p =11 for our applications.
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Figure 1. Annual sunspot means, 1700—1988.
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Figure 2. U.S. Monthly industrial production annual growth, 1960—1998.

The second application is to U.S. monthly industrial production for the period
1960.01 through 1998.09. Smooth SETAR models have been used to model
quarterly industrial production by Terasvirta and Anderson (1992). See also
Section 9.1 of Granger and Terasvirta (1993). SETAR models have been fit to a
similar series (U.S. GNP) by Potter (1995) and Hansen (1996). We transform the
series to approximate stationarity by taking annualized growth rates setting
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0,=100* (In(IP;) —In({P,_5)), where IP; denotes the raw industrial production
series. The series Q, is displayed in Figure 2. Some experimentation with a
baseline SETAR(1) model suggested that p =16 is sufficient to reduce the errors
to white noise.

4. Estimation

4.1. SETAR(1) model

The SETAR(1) is the linear autoregression (3). The solution to the LS problem (5)
is ordinary least squares (OLS):

a1 =X"X)"'(X'Y),

where X is the n x k matrix whose ith row is X | and Y is the n x 1 vector
whose ith element is y,. The residual vector is é; = ¥ — X&; and the sum of squared
errors is S} =¢1¢é). Table 1 reports the OLS estimates of SETAR(1) models fit to
our two data series. The reported standard errors (here and throughout the paper)
are computed as in White (1980) to be robust to heteroskedasticity of unknown
form.

As in many testing contexts, the sampling distribution of the test statistics F},
and Fi; will depend upon the conditional variance properties of the error ¢;. To

Table 1. Least squares estimates of SETAR(1) models.

Annual sunspots Industrial production
a s.e. aj s.e.

Const. 1.39 (0.45) 0.22 (0.07)
Vo1 1.22 (0.07) 1.22 (0.06)
Viea —0.48 (0.12) —0.13 (0.08)
Vio3 —0.15 (0.12) 0.01 (0.07)
Vi—a 0.27 (0.10) —0.05 (0.06)
Vis —0.24 (0.10) —0.14 (0.06)
Yi-6 0.01 (0.09) —0.04 (0.06)
Vi1 0.16 (0.09) 0.13 (0.06)
Yi-8 —0.21 (0.10) 0.03 (0.07)
Vi—o 0.30 (0.10) —0.02 (0.07)
Yi-10 0.02 (0.10) 0.03 (0.06)
Yi—11 —0.02 (0.06) —0.04 (0.07)
Vi—12 —0.49 (0.08)
Vi—13 0.57 (0.09)
Vi 14 —0.13 (0.08)
YVi—15 0.15 (007)
Yi—16 —0.16 (0.05)
M 1135 362

n 278 437

63 4.08 0.817
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assess the presence of conditional heteroskedasticity, we regressed the squared
residual on squares of the regressors, and tested the joint significance of the
regressors using a Wald statistic. For the sunspot series N, the statistic was 58,
which is highly significant with a p-value near zero (based on the x?(11)
distribution). For the industrial production series Q,, the statistic was 15, with an
asymptotic p-value (based on the x*(16) distribution) of 0.52. This difference will
turn out to be important in the inference procedures we discuss later.

4.2. SETAR(2) model

In the SETAR(2) model, v=+;, so we let I,(v,d)=I1IY,_4<v) and
L(v,d)=1(y< Y,_y). Let a=(aja}) and

X — 11 (7, d))

X d)=
t 1(77 ) (Xrllzz(’)/,d)

Let X(~,d) be the n x 2k matrix whose ith row is X, _(v,d)’.
Observe that the minimization problem (5)

Sz = min (¥ — X(v, d)e) (Y = X(v, d)ev)
y Wy &

can be solved sequentially through concentration. That is, for given (d,~),
minimization over « is an OLS regression of Y on X(v,d). We can write the
solution as

a(y.d)=(X(7,d) X(7,d))""(X(~,d)'Y). (7
Let

So7,d)=(Y = X(v,d)a(7,d))'(Y = X(7, d)i(, d))

be the residual sum of squared errors for given (d,~y). Then

G, d) = argmin $x(7, d). (8)
7, d

Once the solution to (8) is found, we find & through (7), vis &= a/(71, ci), and then
obtain S, = Sx(§1,d) and Fi,=n((S; — S,)/S,) as natural by-products.
Now observe that

Sa(v,d) = Y'(I = X(7, d)(X(7, d) X(7, )" X(, d)) Y ©)

involves X(v,d) only through a projection, so the result is invariant to linear
reparameterizations of X(7,d), and in particular, we can redefine X(~,d)=
[X  X(~,d)], where X(~,d) is the matrix whose ith row is X, _11,(~, d). Noting
the identity Y= Xa; + ¢, and since X lies in the space spanned by X(7,d), this
means that we can replace Y in (9) by é;. Since X'é; =0, standard partitioned
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matrix inversion calculations and the fact that X(v,d)'X=Xi(~,d)' Xi(~,d)
show that

52(77 d) = éllél - élle(’y, d)M;;(’Ya d)71X1(77 d)/él

=81 = fo(v, d)
where
M, (7, d) = Xi(, d) Xi(7, d) = (Xa(7, d)' X1 (7, )X X )~ (Xi(, d) X (7, d))
(10)
and
v d)=é1X:(y, M (7, d) ' X (v, d)'é. an

We thus see that the minimization (8) can be equivalently achieved through
maximization of f5(,d). It is also interesting to observe that we can rewrite the
linearity test statistic as
fGr,d)
F]2 =n 27/\,\ . (12)
St —/f(n, d)

The maximization (11) is best solved through a grid search, noting that the
argument d is discrete and that the function f>(~, d) is typically a highly erratic
function of ~. Since the parameter v only arises through the indicator functions
I(Y;_4<7), there is no loss in restricting the search to the observed values of Y, _ .
The requirement that n; > n7 and n, > nr further restricts the search to values of
Y,_ 4lying between the 7th and (1 — 7)th quantiles. For the bootstrap methods we
discuss latter, when n and p are large a full grid search can prove too costly for all
but the most patient researchers. A close approximation can be achieved by
restricting the search to N values of v lying on a grid between the 7th and (1 — 7)th
quantiles of Y,_,. If d=p, then a joint search over (d, ) will require pN function
evaluations. For the empirical work we report here, we set N =100. Since we set
p=11 in the sunspot application (and p=16 in the industrial production
application), this means that the maximization (11) requires a grid search over
1100 (respectively 1600) pairs of (v,d). While this may seem like an intensive
search, it only takes a few seconds on a personal computer. For example, a
GAUSS program running on a 400 Mhz Pentium II computes the SETAR(2)
model for the sunspot series in 2.5 seconds, and for the industrial production
series in 7.6 seconds.

We report in Table 2 our estimates of the SETAR(2) models for our two data
sets. For the sunspot series N, we find d=2 and 41 ="7.42. For the industrial
production series Q,, we find d =6 and ; =0.226. For both series, we find the F;
statistic for the test of SETAR(1) against SETAR(2) equals 70. The sampling
distribution of F»3, the test for SETAR(2) versus SETAR(3), will depend on
whether the SETAR(2) errors ¢, are conditionally heteroskedastic. We assessed
this through an OLS regression of the squared LS residual on the squares of the
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Table 2. Least squares estimates of SETAR(2) models.

Annual sunspots Industrial production
N, »<74 N;_,>74 0:-6<0.23 0:-6>0.23
ay s.e. ap s.e. ay s.e. as s.e.

Const. —0.58 (0.90) 2.32 (0.55) —0.07 (0.13) 0.10 (0.11)
Y 1 1.22 (0.10) 0.95 (0.08) 1.34 (0.11) 1.04 (0.06)
Y, » —0.97 (0.26) —0.03 0.11) —0.37 (0.18) 0.03 (0.08)
Y, 3 0.49 (0.29) —0.48 (0.10) —0.01 (0.13) 0.07 (0.07)
Y, 4 —0.19 (0.26) 0.32 (0.09) —0.07 (0.13) —0.05 (0.07)
Y s —0.14 (0.28) —0.21 (0.08) 0.06 (0.12) 0.21 (0.07)
Y, s 0.12 (0.26) —0.04 (0.08) —0.22 0.11) 0.04 (0.07)
Y, 0.13 (0.21) 0.18 (0.08) 0.16 0.12) 0.16 (0.07)
Y, s —0.22 (0.23) —0.22 (0.09) 0.13 0.11) —0.02 (0.06)
Y o 0.46 (0.26) 0.19 (0.09) —0.11 (0.11) 0.02 (0.07)
Y, 10 —0.07 (0.20) —0.02 (0.09) 0.03 0.14) 0.03 (0.06)
Y11 —0.07 0.12) 0.12 (0.07) 0.04 (0.19) —0.04 (0.06)
Y, 12 —0.88 (0.19) —0.37 (0.09)
Y. 13 0.95 0.12) 0.40 (0.09)
Y. 14 —0.32 (0.16) —0.07 (0.08)
Y, 1s 0.25 (0.16) 0.16 (0.07)
Y, 16 —0.25 0.12) —0.15 (0.05)
n; 86 192 96 341

S 907 312

Fp 70 70

lagged dependent variable, and on dummy variables indicating the regime. These
results are reported in Table 3. The F statistic for the exclusion of all variables
other than an intercept (Fjenero) 18 highly significant for the sunspot series, but not
for the industrial production series.

4.3. SETAR(3) model
The SETAR(3) model is

Yt:anr— (7, d)—l—aéX,, 1h(, d) +04§Xt7113t(% d)+e, (13)

where y=(71,72). In principle, this model can be estimated using the same
techniques described in the previous section, namely conditional on (-, d), the
parameters (o, ap, a3) may be estimated by OLS, and then a grid search over
(7, d) yields the LS estimates. The difficulty is that if N points are evaluated at
each of v, and ~,, then this search involves p x N> OLS regressions. While such
estimation is feasible, it does not lend itself easily to bootstrap evaluation of the
test statistics. (Estimation would take about 12 minutes for the industrial
production series, and 1000 bootstrap replications would take about 200 hours.)
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Table 3. Least squares estimates of SETAR(2) conditional variance.

Annual sunspots Industrial production

I, 3.765 (0.880) 0.761 (143)

by 1.858 (0.698) 0.504 (0.084)
v, 0.001 (0.005) —0.007 (0.006)
v, —0.000 (0.006) 0.017 (0.008)
v, —0.005 (0.007) —0.011 (0.006)
v, 0.008 (0.008) 0.004 (0.005)
v —0.011 (0.009) —0.004 (0.005)
y2 o 0.022 (0.010) 0.004 (0.005)
y: o, —0.028 (0.011) 0.000 (0.006)
y2 o 0.027 (0.013) —0.003 (0.005)
¥, —0.005 (0.009) —0.002 (0.005)
210 —0.005 (0.008) 0.014 (0.006)
AT 0.000 (0.004) —0.011 (0.007)
o, —0.000 (0.009)
o, 0.003 (0.007)
Ay 0.001 (0.007)
Yi_is ~0.008 (0.006)
26 0.008 (0.004)
F/wter() 48.1 20.8

Fortunately, a computational short-cut was proposed by Bai (1997) and Bai and
Perron (1998) in the change-point literature. Arguments analogous to those
suggested by these authors show that if the true model is (13), but the (misspecified)
SETAR(2) model (4) is actually estimated, the least-squares estimate d will be
consistent for d and 4, will be consistent for one of the pair (7,7,). They show
further that if y=(~,7,) is estimated by least-squares on (13), enforcing the
constraint that d=d and that one element of ~ equals 7, then the second-stage
estimate 7, will be consistent for the remaining element of the pair (71, ,). Thus
this two-step method yields consistent estimation of d and 4 = (9,,5,). Further-
more, Bai (1997) shows that these estimates can be made asymptoticaly efficient, in
the sense of having the same asymptotic distribution as estimates obtained from
joint estimation of (13), if this method is iterated at least once. That is, v = (y,72) is
estimated by least-squares on (13), enforcing the constraint that d= d and that one
element of v equals 7,, yielding a refined estimate ~;. Further iteration does not
affect the asymptotic distribution, but may yield finite-sample improvements.

This ‘one-step-at-a-time’ approach yields enormous computational savings.
Rather than pN? function evaluations, it involves approximately pN+2N
function evaluations, which is only a minor increase over the requirements for
estimation of the SETAR(2) model.

It is important to impose the requirement that all three regimes have at least nr
observations. In addition to the restrictions imposed on the search discussed in
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Table 4. Least squares estimates of SETAR(3) models.

Annual sunspots Industrial production

6661 "PYT swusiqnd [[pmyorlg O

N;_ »,<53 5.3<N,_»<8.0 N;_»>8.0 Q,,6<—2.5 —2.5<Q[,6<0.35 Ql—6>0~35
a s.e. A s.e. Aas s.e. A s.e. A s.e. Aas s.e.

Const 0.037 (1.14) 9.08 (2.99) 2.31 (0.55) 0.28 (0.29) —0.06 (0.20) 0.11 (0.11)
Yi—1 1.57 (0.12) 1.09 (0.10) 0.91 (0.07) 1.03 (0.16) 1.53 (0.12) 1.04 (0.06)
Yi-2 —1.18 (0.33) —1.10 (0.39) -0.02 (0.11) —0.13 (0.22) —0.52 (0.18) 0.04 (0.08)
Yi-3 0.62 (0.37) —0.11 (0.36) —0.44 (0.09) —0.03 0.17) —0.02 (0.14) 0.08 (0.07)
Vi-4 -0.57 (0.28) 0.00 (0.29) 0.27 (0.08) 0.15 (0.19) —0.31 (0.18) —0.05 (0.07)
Yi—s 0.36 (0.24) —1.11 (0.38) —0.17 (0.08) 0.03 (0.16) 0.31 0.17) —0.21 (0.07)
Yi—6 —0.31 (0.26) 0.70 (0.41) —0.05 (0.08) -0.28 (0.17) —0.36 (0.22) —0.05 (0.07)
Yi-17 0.43 (0.22) 0.11 (0.28) 0.16 (0.08) 0.11 (0.13) 0.34 (0.21) 0.16 (0.07)
Vg -0.30 (0.24) 0.58 (0.25) -0.21 (0.09) 0.14 (0.16) 0.09 (0.17) —0.03 (0.06)
Yi—9 0.30 (0.26) —0.48 (0.27) 0.17 (0.09) -0.37 (0.19) 0.03 0.11) 0.03 (0.07)
Yi—10 —0.02 (0.24) 0.33 (0.26) 0.03 (0.09) 0.24 (0.23) —0.12 (0.15) 0.03 (0.06)
Yi—11 —0.02 (0.13) -0.32 (0.15) 0.12 (0.06) 0.11 (0.28) —0.10 (0.18) —0.04 (0.06)
Vi 12 —0.96 (0.26) —0.65 (0.20) —0.36 (0.09)
Vi—13 0.74 (0.31) 0.97 (0.13) 0.39 (0.09)
Vi—14 -0.17 (0.31) —0.34 (0.16) —0.07 (0.08)
Vi 15 0.27 (0.31) 0.25 (0.14) 0.15 (0.07)
Vi 16 —0.16 (0.18) —0.30 (0.10) —0.15 (0.05)
n; 58 36 184 46 53 338

Sy 769 294

Fi3 132 101

Fo 50 27

ALTYVANIT 404 ONILSH.L
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Section 4.2, we need to impose the requirement in the second- and third-stage
searches that at least n7 observations lie in the regime where v, < Y,_ <7, (or
1< Y a<y1 if 2<m).

In Table 4 we report the least-squares estimates of the SETAR(3) models for
our two time-series. For the sunspot series, the two thresholds are 5.32 and 8.04.
We find that the F); statistic for the test of SETAR(1) against SETAR(3) is 132
and the Fj statistic for the test of SETAR(2) against SETAR(3) is 50.

For the industrial production series, the two thresholds are —2.53 and 0.348.
The Fi; statistic is 101 and the F»; statistic is 27.

5. Testing SETAR(1) against SETAR(2)

5.1. Homoskedasticity

While the standard theory of hypothesis testing suggests that a good test of the
SETAR(1) model against the SETAR(2) alternative is to reject for large values of
the statistic Fp,, the test cannot be implemented unless we know the distribution
of Fi, under the null hypothesis, as this is the only way to control the Type I error
of the test.

We start by imposing the assumption of conditional homoskedasticity

Ee;S-1)=0 (14)

and consider the general case of conditional heteroskedasticity in the next section.

In most testing contexts, test statistics such as Fj, can be expected to have an
asymptotic x*(k) distribution under (14). In the present context, however, this is
not the case. This can perhaps best be seen by examining the form of the statistic
Fy; as defined in (11) and (12) Let

Sy, d)

Fi(ydy=n| 2220
S

whicp is a monotonically increasing function of f5(~y, d). Since Fi; = Fi2(91, cf) and
(91, d) maximize f>(+y, d), it follows that

Fiz = max Fia(7, d). (15

Now Fiy(, d) is a fairly conventional test statistic. It is equivalent to the test for the
exclusion of X(~, d) (with (7, d) fixed) from a regression of Y on X and X(~, d). If
the data are weakly stationary and satisfy standard regularity conditions, we can
show that for any fixed (v, d), Fi2(~,d) has an asymptotic x(k) distribution. Now
the problem is that the maximization (15) involves not just a single value of (v, d),
but a very large number of values. Our proposed implementation involves
maximization over pN values of (v, d) (which is 1100 for the sunspot application),
so we are taking the maximum of pN distinct asymptotic chi-square random
variables. Thus the distribution of F, is distinctly greater than the y*(k). Thus if F,
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is not significant when compared to the x%(k), it will be certainly not significant
when compared to the correct asymptotic distribution. In most applications this will
not be a helpful bound, however, as typically the observed value of Fj; will be very
‘significant’ when compared to the y*(k) distribution.

Thus it is not helpful to think of the statistic F},(~y, d) for fixed values of (7, d).
Instead, we need to think of Fjy(v,d) as a random function of the arguments
(v, d), and view Fi, (as defined in (15)) as the random maximum of this random
function. To develop an asymptotic distribution theory for this statistic, we
therefore need an asymptotic theory appropriate for random functions, which is
known as empirical process theory. A good review can be found in Andrews
(1994). For the stationary SETAR model under (14), Hansen (1996) has shown
that the asymptotic distribution of the empirical process Fi»(7, d) is

Fiy(v,d) = T(v,d)
where
T(v,d)=G(7,d)' M*(7,d)”'G(~, d)
M* (7, d) = M(vy, d) = M(, d)M ~" M(~, d),
M=EX,_ X, _))
M(v,d) = EX, 1 X;_1i/(7, d))

(16)

and G(v,d) is a mean-zero Gaussian process with covariance kernel
E [G(’y: d)G(7l7 dl)l] = E(th IX[I — 111f(73 d)lll(’yla d/)) - M(’Ya d)M_IM(’y/v dl)
(17)

That is, for fixed (v, d) the distribution of G(~,d) is multivariate normal with
covariance matrix M*(v,d), and all pairs (G(~, d), G(~v',d')) are jointly normal
with covariance given in (17). Thus G(#,d) is a random function with arguments
(7.d).

Note that for fixed (v ,d) the random variable T(v.d) is x*(k). Thus for fixed
(v,d), Fia(v,d) —qx*(k). The statistic Fj, is the maximum of this random
function, so coverges in distribution to the maximum of this random limit
function, or

Fi —{) T= mztix T(’y, d).

a Y
While for fixed (v,d), T(v.d) is x*(k), the distribution of T is less easy to
characterize. Its distribution depends to a great extent on the degree of
dependence between the random variables T(~,d) for distinct values of (~, d),
which is determined through the covariance functional (17), and thus by moments
of the regressors X; | and the threshold variables Y, ;. Since the distribution of T’
depends upon these moments (which are application-specific), the distribution 7'
cannot be tabulated for general use. Rather, critical values and p-values must be
calculated for each and every application.
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Hansen (1996) describes an algorithm to calculate the asymptotic distribution.*
It can be described as follows. In the formula for the asymptotic distribution T’
given in (16), replace all population moments by sample counterparts (e.g., replace
M by M,=n"'X"X) to define a random variable T,. Since the sample moments
are consistent estimates of the population moments, 7, is the asymptotic
approximation of interest. An exact draw from the asymptotic distribution 7}, can
be made by letting u denote a random N(0, I,) vector, i =u— X(X'X)~'X'u, and
then setting

T,= rnadx 12/(’}/, d)M;(77 d)71X1(77 d)/LAl (18)
v,

where M (v, d) is defined in (10). This is similar (and asymptotically equivalent),
to a bootstrap replication where u is treated as the dependent variable, and the
regressors X; 1 and threshold variables Y, _ ;are held fixed at their sample values.
To calculate the distribution of T, a large number (we use 2000) of independent
draws are made from (18). Then critical values may be calculated from the
quantiles of these draws, or better yet, a p-value may be calculated by counting the
percentage of the draws which exceed the observed Fi».

This is similar to a bootstrap, but it should not be confused with a bootstrap
distribution. The distribution 7, is the asymptotic distribution of the test statistic,
and simply the fact that a simulation is used to compute the p-value does not
make it more accurate than any other asymptotic approximation. The main
advantage of the calculation of this asymptotic distribution is that it is
computationally less costly than a bootstrap calculation. Since most of the
computational work in implementing (18) comes through the matrix inversion of

T —— Chi-Square (k)
— —— Asymptotic (Homo.)
------------- Bootstrap (Homo.)
— — — - Asymptotic (Hetero.)
R - Bootstrap (Hetero.)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Bootstrap Distributions of F;,

Figure 3. Sunspot series asymptotic and bootstrap distributions of Fi,.
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M (v,d), and these are constant across draws of T, computational savings may
be made if the matrices M} (~,d)”" are stored, and not re-calculated for each
draw. The computational savings are such that this algorithm takes only one-
quarter the time of the bootstrap method to be described next.

The asymptotic distributions (18) were calculated using 2000 independent draws
for each of our two time-series. Estimates® of the density functions are plotted
(long dashes) in Figures 3 and 4, and labeled ‘Asymptotic (Homo.)’. The x*(k)
density is also plotted (solid line) for reference. It is clear that the x*(k)
distribution is highly misleading relative to the asymptotic distribution. Still, the
observed value of the test statistic Fi, is 70 for each application, which is in the far
right tail of the asymptotic distribution, so the observed value appears to be highly
significant. In Table 5 we report the asymptotic p-value, which is 0.000 in both
applications, since none of the 2000 simulations exceeded the test statistic in the
observed sample.

Since a fair amount of computation is involved in calculating the asymptotic p-
value, one might ask: Why not make a little extra effort and calculate the p-values
using a bootstrap approximation? There is a considerable body of statistical
theory (e.g. Hall (1992), Shao and Tu (1995), Davison and Hinkley (1997)) that
the bootstrap is a better approximation to finite sample distributions than first-
order asymptotic theory. Under certain technical conditions (such as the existence
of an Edgeworth expansion), the bootstrap distribution of an asymptotically
pivotal statistic achieves a higher rate of convergence to the sampling distribution
than the first-order asymptotic approximation. These conditions have not been
verified for the SETAR model (and may in fact not hold) so it is unclear if the
boostrap will achieve an accelerated rate of convergence.

Chi-Square (k)

—— Asymptotic (Homo.)
------------- Bootstrap (Homo.)
—  Asymptotic (Hetero.)
------- Bootstrap (Hetero.)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

o

10 20 30 40 50 60 70 80
Bootstrap Distributions of F;,

Figure 4. Industrial production asymptotic and bootstrap distributions of Fi,.
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Table 5. Asymptotic and bootstrap tests of SETAR(1) against SETAR(2).

Homoskedastic p-values Heteroskedastic p-values
Fip Asymptotic Bootstrap Asymptotic Bootstrap
Sunspots 70 0.000 0.000 0.030 0.031
Industrial 70 0.000 0.001 0.047 0.010

production

An argument in favor of the bootstrap is that it appears to work globally in the
parameter space. While the asymptotic approximation of Hansen (1996) outlined
above requires that the process Y, be stationary, excluding unit roots or near unit
roots, Caner and Hansen (1998) show that the bootstrap achieves a good
approximation even if there is a unit root or near unit root.

While there is no Monte Carlo study comparing the bootstrap and asymptotic
approximations in the context of testing for SETAR models, Diebold and Chen
(1996) present an analogous study of the Andrews structural change test in the
AR(1) model. They find that the bootstrap yields an excellent approximation, a
certain improvement over the asymptotic distribution.

There is no free lunch, and the downside to any bootstrap implementation is
that it requires taking a position on the distribution of the errors e,. This requires
the imposition of more structure on the model than might be desirable. For
example, the bootstrap algorithm that we now describe imposes the condition
that the errors ¢, are independent of ;_, which is considerably stronger than
the martingale difference assumption (2) and the homoskedasticity condition
(14).

An appropriate bootstrap distribution will calculate the distribution of the
statistic F|, under the assumption that the data satisfy the SETAR(1) hypothesis
and the parameters are calibrated to match the observed data. The natural
method to do this is to use the SETAR(1) estimates and add an auxiliary
assumption on the errors ¢;, The assumption we make is that the errors e, are
independent over time, and estimate the distribution of the errors by the empirical
distribution of the SETAR(1) residuals ¢, The bootstrap distribution also
depends on how the initial conditions (yo,y-1,y-2,...,Y—p+1) are modeled. We
take the simple approach of conditioning on the observed values, so hold these
values fixed in repeated samples.

Thus the algorithm is as follows. Generate a random sample e}, t=1,...,n by
sampling (with replacement) from the OLS residuals from the SETAR(1) model.
Then using the fixed initial conditions ( yo, y—1, Y2, ..., V_p+ 1), Tecursively generate
asample y;, t=1,...,n using the SETAR(1) model (3) with the parameter ¢ taken
from the SETAR(1) estimates. On this simulated series y;, calculate the statistic
F7, using the same methods as to calculate Fj, on the actual series. Repeat this a
large number of times. (We make 2000 replications.) The bootstrap p-value is the
percentage of simulated F7;, which exceed the observed Fi,.
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Estimated density functions for this bootstrap distribution of F7}, are displayed
using dotted lines (closely spaced) in Figures 3 and 4, labeled ‘Bootstrap (Homo.)’.
In both applications, the bootstrap distribution takes a similar shape to the
asymptotic distribution, but is noticeably shifted to the right and has a thicker
right tail. There is no simple explanation for this phenomenon, but it suggests that
for many potential values of Fj,, the asymptotic distribution and bootstrap
distribution would give contrary results. In our applications, the value of Fy; is
sufficiently high that there is no meaningful difference between the asymptotic and
bootstrap p-values reported in Table 5.

5.2. Heteroskedasticity

The previous section evaluated the distribution of Fj, under homoskedasticity of
the error term. This might seem innocuous, but is actually quite powerful. As we
discussed in Section 4.1, there is strong evidence that this assumption is violated
for at least the sunspot series. We now turn to sampling approximations which do
not impose (14).

Hansen (1996) has shown how to calculate the asymptotic distribution for the
case of stationary data with possibly heteroskedastic error terms. It is identical to
(16), except that G(+, d) is a mean-zero Gaussian process with covariance kernel

2

e
E[G(v, d)G(+',d)1=E| X, 1X]_ L (v, )l (y',d) =
g

2

e
~ My, dME| X, X|_ (v d) =
g

2
e

= E{ X1 X| Dy(y,d) = | MTIM(y' d')
g

2
e

— M(y,d)M'E X,_lngl—; MM, d). (19)
ag

Let T denote the distribution (16) under this alternative covariance kernel. There
is no clear relationship between T and 7%, so it is not clear what is the bias if one is
calculated instead of the other.

Hansen (1996) has provided an algorithm which allows the calculation of this
asymptotic distribution. Let 7/ denote the distribution (16) with covariance
kernel (19), where population moments are replaced by sample moments. For
example,

2

e
E| XX Lu(r (5, d') =
g
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is estimated by

n 52
S X Gy dny, d)

e[
=1 G2

S| =

Then an exact draw from T/ can be made by letting u denote a random
N(0,1,) vector, setting n=u©é/é (element-by-element multiplication), 7=
n—X(X'X)"'X'n, and then setting T as in (18). Computationally this is not
more complicated that the calculation of 7). The advantages of this asymptotic
approximation are that it is easy to implement, and is asymptotically robust to
heteroskedasticity of unknown form.

Estimated densities of the distributions of T/ are plotted in short dashes in
Figures 3 and 4 for the two time-series, labeled ‘Asymptotic (Hetero.)’. In both
cases, there is a striking distinction between the two asymptotic distributions, with
that for the null of linear/heteroskedastic being dramatically shifted to the right
relative to that for linear/homoskedasticity. Not surprisingly, the p-values are
quite different as well. For the sunspot series, the p-value is 0.03, and for the
industrial production series it is 0.047. What is evident from this calculation is that
the allowance for heteroskedasticity dramatically moderates the evidence in favor
of the SETAR(2) model.

We found in our analysis of the homoskedastic model that there was a large
distinction between the asymptotic and bootstrap distributions, and there is
good reason to expect this distinction to be even larger in the heteroskedastic
case. It is therefore desirable to calculate a bootstrap distribution of Fj;
allowing for the possibility of general heteroskedasticity. The difficulty is that
there is not a well-accepted bootstrap method which is appropriate in the
present context. Block resampling schemes are inappropriate because they do
not impose the null hypothesis. On the other hand, any model-based bootstrap
will require a parametric model for the conditional variance, and the validity of
the bootstrap method will depend upon the validity of the selected conditional
variance functional. While this calls for careful selection of an empirically-
determined conditional variance function, the presumption must be that the
results will not be overly sensitive to misspecification of the conditional
variance.

For our conditional variance function, we specify that 0? | =E(e?|S,_1) is a
linear function in the squares of the regressors. Hence, let Z, | be the k x 1 vector
of the squared regressors (e.g., Z, 1=X,_10X,_1), so that 0?7 \=Z,_ 0 for
some vector 3. Then 6,2 =Z|_f+& with E(&|S3,-1)=0, so 3 can be estimated
by OLS regression of é2 on Z, 1, where ¢, is the OLS residual from the SETAR(1)
model. We calculate the fitted values 6>, =2/ ,f and the rescaled residuals
é,=e,/d,_1 (with the convention that £, =0 if &f _1<0).

Our heteroskedastic bootstrap method assumes that the rescaled errors &,=
e;/o,— are independent over time, and works similarly to the homoskedastic
bootstrap in Section 5.1 except how the errors e} are generated. We fix the initial
conditions X = (o, y-1,¥-2, ..., V—p+1) and now describe the recursion X7 _ | — 7.
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Let 02 | =max(Z!' ,3,0) where Z* ,=X* ,©X* . Let e’ be an indepen-
dent draw from the empirical distribution of {;}, set e =0 _ &7, and y; =
a1X;_ | +e;. This recursion creates simulated time-series y; with the desired
conditional mean and variance functions. On this sample, we calculate the test
statistic F},, and repeat a large number of times to find the bootstrap distribution.

Estimated densities of the bootstrap distributions are displayed using dotted
lines in Figures 3 and 4, with the label ‘Bootstrap (Hetero.)’. In both cases, the
heteroskedastic bootstrap distributions are considerably different from both the
asymptotic distributions and the homoskedastic bootstrap distribution. In both
cases, the heteroskedastic bootstrap distribution is shifted more to the right than
the homoskedastic bootstrap. It is interesting to observe, however, that for the
sunspot series the heteroskedastic bootstrap is more shifted to the right than the
asymptotic distribution allowing heteroskedasticity, while in the industrial
production application these rankings are reversed.

The heteroskedastic bootstrap p-values are reported in Table 5. In both
applications, the F), test appears to be statistically significant.

In summary, examining the displays in Figures 3 and 4, we can make the
following general recommendations. In the presence of conditional heteroskedas-
ticity, distributions calculated under the assumption of homoskedasticity can be
quite misleading. Since it is unknown whether or not there is meaningful
conditional heteroskedasticity (tests are helpful but not decisive), this suggests
that the preferred distributions are those which allow for conditional hetero-
skedasticity. There can be large discrepancies, however, between asymptotic
and bootstrap approximations, suggesting that inference be made in practice
using carefully selected bootstrap distributions which account for the error
heteroskedasticity.

For example, in the sunspot example, there is very strong evidence for
conditional heteroskedasticity. Thus the more appropriate p-value is the
heteroskedastic bootstrap, which is 0.031. This is marginally significant, leading
us to lean towards rejecting the SETAR(1) model in favor of the SETAR(2)
model, but reserving some hesitations. In the industrial production example, there
is no strong evidence for heteroskedasticity, so it is less clear whether we should
prefer the homoskedastic bootstrap (p-value of 0.001) or the heteroskedastic
bootstrap (p-value of 0.010). Since both are highly significant, we feel safe in
concluding that the evidence allows us to reject the SETAR(1) model in favor of
the SETAR(2) for this series.

6. Testing SETAR(1) against SETAR(3)

As discussed in Section 2, the natural test for SETAR(1) against SETAR(3) is to
reject for large values of Fi3=n(S; — S3)/S5. As discussed in the previous section,
the statistic has a non-standard asymptotic distribution under the SETAR(1)
hypothesis, so conventional critical values (such as the x*2k)) are not
appropriate. An asymptotic approximation similar to (16) can be developed,
and can be calculated using methods similar to those described in Section 4. As we
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argued in Section 4, however, the asymptotic distributions appear to be quite
different from bootstrap distributions, and we expect the latter to provide better
approximations. In addition, there is no obvious short-cut which enables faster
computation of the asymptotic distribution relative to the bootstrap distribution.®
Since there are no clear computational advantages, it appears advisable to simply
focus on bootstrap distributions.

There are no additional complications in calculating the bootstrap distribution
of Fi; relative to calculating that of Fy,. Both are calculated under the same null
hypothesis (the SETAR(1) model) so the same technique is used. For either the
homoskedastic (or heteroskedastic) bootstrap, simulated time-series are generated
as described in Section 4.1 (or Section 4.2) and the Fj3 statistic is calculated on
this simulated data. Through repeated replication (we use 2000), the bootstrap
distribution is uncovered.

We display the bootstrap distributions (both homoskedastic and hetero-
skedastic) for the sunspot series in Figure 5. The conventional x?(2k) is plotted
also for reference. The distributions, as expected, are noticeably different
from the chi-square, and are also noticeably different from one another, with
the heteroskedastic bootstrap distribution shifted out more to the right. The
bootstrap p-values are presented in Table 6, and are both highly significant. We
are able to easily reject the hypothesis of the SETAR(1) in favor of the
SETAR(3).

In Figure 6 we display the bootstrap distributions for the industrial production
data, and report the bootstrap p-values in Table 6. The evidence suggests the
rejection of the SETAR(1) model, but the rejection is not as strong as the rejection
from the previous section.

Chi-Square (2k)
— — — Bootstrap (Homo.)
"""""""" Bootstrap (Hetero.)

L e oy L L L

100 120

0.00 0.01 0.02 0.03 0.04 0.05 0.06

o

Figure 5. Sunspot series asymptotic and bootstrap distributions of Fy3.
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Figure 6. Industrial production asymptotic and bootstrap distributions of Fis.

Table 6. Bootstrap tests of SETAR(1) against SETAR(3).

Bootstrap p-values

Fi3 Homoskedastic Heteroskedastic
Sunspots 132 0.000 0.004
Industrial production 101 0.013 0.046

7. Testing SETAR(2) against SETAR(3)

The Fi; test does not allow the discrimination between the SETAR(2) and
SETAR(3) models, and therefore is not a sufficient tool for model selection. We
now consider the F»3 test, which directly allows a comparison between these
models. As in the previous section, we use bootstrap methods to evaluate the
sampling distribution. We do this with some caution, because there has not yet
been a demonstration that a bootstrap procedure can properly approximate the
sampling distribution of F>3 under the SETAR(2) null hypothesis. The problem is
that under the null hypothesis, the model is a non-linear SETAR(2) model, and
one of the parameter estimates, ;, has a non-standard asymptotic distribution
(see Chan (1993)).

Despite these concerns, there is no reason to expect the bootstrap to fail to
achieve the correct first-order asymptotic distribution, so we proceed and describe
bootstrap methods of inference. To calculate the bootstrap distribution of F»;
under the SETAR(2) hypothesis, we need to generate simulated data from the
SETAR(2) model. Given such simulated data, we can calculate the F,; statistic,
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and then repeat this procedure a large number of times to generate the bootstrap
distribution.

The key feature is to generate simulated data from the SETAR(2). We use the
SETAR(2) parameter estimates from Section 4.2. We first consider the homo-
skedastic bootstrap, which treats the errors e; as independent draws. We
implement this assumption by drawing the bootstrap errors from the empirical
distribution of the SETAR(2) least-squares residuals. Then the simulated series is
created according to the SETAR(2) model defined in (4).

We next consider forms of the heteroskedastic bootstrap. We consider two forms.
The first assumes that the conditional heteroskedasticity is limited to a regime
effect, namely, that E(e?|S,_1)=031,+ 03L,. (This is an assumption commonly
made in SETAR applications.) We implement this bootstrap by first dividing the
SETAR(2) residuals &, into two groups: the n; errors é;, for which I;,=1, and the n,
errors éy, for which I,,=1. Then when simulating the distribution of y} given
Sy _ 4, if I7,=1, we draw e} randomly from {é;,}, and if I}, =1, we draw e}
randomly from {é,,}. We call this the Regime Heteroskedastic Bootstrap.

The second form of the heteroskedastic bootstrap we consider uses the
functional form estimated for the conditional variance as reported in Table 3.
This is a model of the conditional variance which has regime indicators, and is
linearly a function of the squares of the regressors. Simulation from this process is
similar to that described in Section 5.2. We call this procedure the General
Heteroskedastic Bootstrap, since it allows for heteroskedasticity of general form.

We display in Figures 7 and 8 estimated densities of the bootstrap distributions
for our two time-series applications. The x?(k) is also plotted for reference. We
find that the bootstrap distributions for the sunspot series are quite sensitive the
the specification of the error process, with an increasingly ‘fat’ distribution as the
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Figure 7. Sunspot series asymptotic and bootstrap distributions of Fs.
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degree of heteroskedasticity is increased. In contrast, for the industrial production
series, the bootstrap distributions are relatively insensitive to the heteroskedastic
specification. This difference is likely due to our finding that the sunspot series
exhibits a strong degree of heteroskedasticity, but not the industrial production
series. The important message is that it is necessary to be careful about the
modeling of the error process when pursuing bootstrap inference.

The bootstrap p-values for the F»;3 statistics are given in Table 7. Considering
the sunspot series, the test would appear to be significant if the errors were
(mistakenly) assumed to be homoskedastic, and marginally significant if the
Regime Heteroskedastic Bootstrap were applied. The p-value rises to 12%,
however, if we allow a general process for the error heteroskedasticity. Since this
type of heteroskedasticity seems quite likely in this data, we conclude that we
cannot reject the hypothesis of the SETAR(2) model against the SETAR(3)
model. This suggests that an appropriate model for the sunspot series is the
SETAR(2) model.

Table 7. Bootstrap tests of SETAR(2) against SETAR(3).

Bootstrap p-values

Regime General
F»;  Homoskedastic heteroskedastic heteroskedastic
Sunspots 50 0.001 0.044 0.126
Industrial production 27 0.828 0.808 0.856
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Figure 8. Industrial production asymptotic and bootstrap distributions of Fis.
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The p-values for the industrial production series are similar across the error
modeling choices, and are all far from significant, leading to the conclusion that
we cannot reject the SETAR(2) model in favor of the SETAR(3) model. As for the
sunspot series, we find that the evidence supports a SETAR(2) model for the
industrial production series.

8. Conclusion

We have presented the theory of least-squares inference for the number of regimes
in SETAR models. Least-squares estimation and test construction is conceptually
and computationally straightforward. Evaluation of test significance is compli-
cated, however, by the fact that the asymptotic distributions are non-standard and
non-similar, precluding tabulation. While it is possible to calculate the asymptotic
distribution in any application, it seems most prudent to report bootstrap p-
values. Such bootstrap p-values can be sensitive to how the bootstrap data is
generated, our suggestion is to pay careful attention to the specification of the
conditional variance. A naive bootstrap which assumes independent errors can
yield inaccurate inferences.

The procedures described in this paper are not very difficult to program, and
the computation requirements appear quite reasonable for applications.

We illustrated these methods with two applications, comparing SETAR(1),
SETAR(2), and SETAR(3) specifications. Our tests led to the conclusion that
annual sunspots and monthly U.S. industrial production are SETAR(2) processes.

While we only explicitly examine tests between SETAR(1), SETAR(2), and
SETAR(3) models, the methods extend to higher-order SETAR models as well.
The main caution to consider, however, is that we expect the accuracy of the
bootstrap approximations to deteriorate when higher-order SETAR models are
tested, due to the more complicated forms of nonlinearity.
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Notes

Tong (1990) calls this a SETAR(m; p, ..., p).

I(a)=1 if a is true, else I(a)=0.

S, equals the Borel sigma-field o(Y, Y, 1, Y;_5...).

This algorithm applies as well to the Andrews—Ploberger (1994) exponentially weighted
and averaged test statistics.

5. The density estimates were calculated using an Epanechnikov kernel with the Silverman
(1986) rule-of-thumb bandwidth. See Hardle and Linton (1994) for a description of
non-parametric density estimation.

Sl
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6. The main computational savings from calculating the asymptotic distribution, rather
than the bootstrap, is that the moments matrices M *(~y,d)! can be stored. While the
list of such matrices is relatively small for estimation of the SETAR(2), it is quite large
for the SETAR(3) model, making programming and memory requirements quite
prohibitive.
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