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Abstract

This paper develops the notion of a Large Type Limit (LTL) describing the average
behavior of adaptive evolutionary systems with many trader types. It is shown
that generic and persistent features of adaptive evolutionary systems with many
trader types are well described by the large type limit. Stability and bifurcation
routes to instability and strange attractors are studied. An increase in the “intensity
of adaption” or in the diversity of beliefs may lead to deviations from the RE
fundamental benchmark and excess volatility. Simple examples of LTL are able to
generate important stylized facts, such as volatility clustering and long memory,
observed in real financial data.
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1 Introduction

Do expectations matter or do asset prices fully reflect economic fundamentals? Do het-
erogeneous beliefs average out due to aggregation, or can optimistic or pessimistic views
cluster together and cause prices to deviate from underlying economic fundamentals?
These questions have been a matter of heavy debate among economists as well as finan-
cial practitioners for many decades already. Keynes, for example, argued that stock prices
are not governed by an objective view of ‘fundamentals’, but by ‘what average opinion
expects average opinion to be’. In Keynes words “ Investment based on genuine long-term
expectation is so difficult as to be scarcely practicable. He who attempts it must surely lead
much more laborious days and run greater risks than he who tries to guess better than
the crowd how the crowd will behave; and, given equal intelligence, he may make more
disastrous mistakes’ (Keynes, 1936, p.157).

In contrast, new classical economists have viewed “market psychology”, “investors senti-
ment” and “trend following speculation” as being irrational and therefore inconsistent
with the rational expectations hypothesis (REH) and the efficient market hypothesis
(EMH). Friedman, for example, argued that irrational speculative traders would be driven
out of the market by rational traders, who would trade against them by taking long oppo-
site positions, thus driving prices back to fundamentals. In Friedman’s words: “People who
argue that speculation is generally destabilizing seldom realize that this is largely equiva-
lent to saying that speculators lose money, since speculation can be destabilizing in general
only if speculators on the average sell when the currency is low in price and buy when it
is high” [emphasis added] (Friedman, 1953, p.175).

In empirical work much attention has been paid to the closely related question whether
asset prices exhibit excess volatility, that is, whether volatility of asset prices is larger
than volatility of underlying economic fundamentals. In particular the work by Shiller
(1987, 2000) has emphasized the possibility of excess volatility and persistent deviations
of asset prices from a fundamental RE benchmark. In behavioral finance, for example,
Thaler (1994) has argued that quasi-rationality may be a key source of deviations from the
RE fundamental benchmark and excess volatility. Quasi rationality means less than fully
rational behavior, for example, due to investors’ sentiment, overconfidence or overreaction.
However work by Boldrin and Levine (2001) argues that patterns of returns behavior that
look like evidence of “irrationality” or “bounded rationality” may be simply rational
reaction of stock markets to earnings profiles generated by technological change. Our
paper is focused more on higher frequency fluctuations than Boldrin and Levine (2001),
but related arguments must always make one wary of concluding that patterns of booms
and crashes in stock market values are evidence of any kind of irrational pricing. See the
discussion of Kleidon’s work below.

Experimental work has also addressed the question of possible deviations from the bench-
mark RE fundamental in speculative asset markets. For example, Smith, Suchanek and
Williams (1988) showed that speculative bubbles and deviations from a benchmark REE



fundamental are frequently observed in experimental asset markets. These temporary
bubbles tend to disappear however towards the end of the experimental asset market
and also tend to become smaller as traders become more experienced. Kleidon (1994)
has written a recent review paper about market “pathologies” such as crashes, blow offs,
excess volatility, anomalies, etc.; see also Plott and Sunder (1988) and Camerer (1989).
In particular he points out how the experimental literature in an asymmetric informa-
tion setting has shown that REE is not achieved immediately but tends to be achieved
by experienced traders. Kleidon states, “The laboratory results proved insight into when
imperfect aggregation is more likely to occur, namely an absence of common information
about preferences or beliefs of other traders and a lack of traders’ experience in the mar-
ket setting.” Kleidon (1994, p. 4, 5) stresses the careful differentiation between modeling
“new ‘external’ information about fundamentals, that is, information about expected fu-
ture cash flows or discount rates that reaches any trader or investor for the first time”
and modeling “rational changes in internal information about fundamentals.”

The debate whether expectations affect asset prices and may lead to excess volatility
should be viewed in the light of two important developments in the recent literature:
bounded rationality and heterogeneous agents systems. Bounded rationality and heteroge-
neous agents may be viewed as building blocks in behavioral finance, where traders are
viewed as boundedly rational agents using simple, habitual rule of thumb rules, see e.g.
Shefrin (2000). Although rational expectations remains an important benchmark, work on
bounded rationality in the past decade may be viewed as an attempt to explore deviations
from this benchmark. General surveys on bounded rationality in expectations and learning
are e.g. Sargent (1993), Grandmont (1998) and Evans and Honkapohja (2001). In par-
ticular, Sargent (1999) argues that many of the bounded rational expectations equilibria
may be viewed as ‘approximate’ rational expectations equilibria.

In the last decade, a rapidly increasing interest in multi-agent systems can be observed.
Markets viewed as evolutionary adaptive systems with boundedly rational interacting
agents have e.g. been studied in Arthur et al. (1997), Brock and Hommes (1997,1998),
Chiarella and He (1999, 2000) Farmer (1998), Gaunersdorfer and Hommes (2000), Kirman
(1991), LeBaron et al. (1999), Lux (1995) and Lux and Marchesi (1999ab). These devel-
opments in multi-agent systems are closely related to recent work in finance on ‘smart
money’ and noise traders e.g. by Frankel and Froot (1988), De Long, Shleifer, Summers
and Waldmann (1989, 1990), and Wang (1994). A common feature of these contributions
is that there are two different classes of investors that can also be observed in finan-
cial practice: fundamentalist and technical analysts. Fundamentalists base their forecasts
of future prices and returns upon economic fundamentals, such as dividends, interest
rates, price-earning ratio’s, etc.. In contrast, technical analysts are looking for patterns in
past prices and base their forecasts upon extrapolation of these patterns. An interesting
outcome of these evolutionary heterogeneous agent systems is that the models mimic a
number of stylized facts frequently observed in financial series, such as unpredictability of
returns, fat tails, volatility clustering and long memory. Price deviations from the RE fun-
damental and excess volatility are triggered by uncertainty about economic fundamentals



but may be amplified by evolutionary interaction of competing, boundedly rational trad-
ing strategies. Most of this work is computationally oriented and based upon computer
simulations of complex adaptive systems.

The present paper provides a theoretical framework for evolutionary markets with many
different trader types. We introduce the notion of a so-called Large Type Limit (LTL),
which is a simple, low dimensional system describing the evolutionary dynamics in a mar-
ket with many trader types. The concept of LTL was sketched in Brock (1997), Brock and
Hommes (1999) and Brock and de Fontnouvelle (2000) but is actually rigorously devel-
oped in this paper!. The LTL is a type of ensemble limit rather like thermodynamic limits
in statistical mechanics. It is motivated by observing that market equilibrium equations
tend to have a form which is a function of expressions that look like sample moments.
The LTL is then simply obtained by replacing sample moments by population moments.
For particular distributions of characteristics, one may obtain closed form solutions for
these population moments and thus obtain closed form expressions for objects that ap-
peared intractable. The LTL can also be viewed as a device that effectively reduces a large
number of parameters inherent in models with a large number of different belief types by
introducing an underlying characteristics distribution which itself can be characterized
by a small number of parameters. Thus empirical work can be assisted by this type of
parameter reduction technique. We think this is a new method of analysis which is of in-
dependent interest. The LTL theory developed here can be used to form a bridge between
analytical results and the literature on evolutionary simulation of asset trading, which has
become very popular in the last few years (see e.g. Arthur et al. (1997), LeBaron (2000)
and Hommes (2001) for reviews). In fact, the main result of the present paper is that the
LTL well approximates the evolutionary dynamics in a market with many trader types in
the sense that all generic and persistent features of an evolutionary adaptive system with
many trader types are preserved in the LTL. Hence, the LTL can be used to study lo-
cal stability of the benchmark RE fundamental steady state as well as possible deviations
from the RE benchmark and bifurcations routes to instability and complicated periodic or
even chaotic dynamics in adaptive evolutionary systems with many trader types. Further-
more, we will present a simple example of an LTL buffeted with dynamic noise, generating
some important stylized facts observed in real financial data. In particular we present a
simple example, where the autocorrelation patterns of noisy LTL generated time series of
returns, absolute returns and squared returns match the corresponding autocorrelation
patterns of 20 years of S&P 500 data.

Let us now discuss some closely related recent work. Brock and Hommes (1997) introduced
a tractable form of evolutionary dynamics in the cobweb demand-supply model with a
costly, sophisticated forecasting rule such as rational expectations competing against a

IThe notion of LTL is related to the well known measure space approach in general equilibrium
theory (See Kirman (1981) and Hildenbrand (1982) for reviews). The main difference lies in locating
intertemporal dynamical equilibrium relationships that resemble sample moment conditions to suggest
the form of the appropriate limit and establishing which dynamical phenomena are “persistent’’ under
“finite” economy limits, so that the limit itself can be directly used to construct bifurcation diagrams
and predict the dynamical bifurcation behavior for large enough “samples.” Details will follow.



cheap habitual rule of thumb forecasting rule such as adaptive expectations. Brock and
Hommes (1998), henceforth BH, called this evolutionary dynamics an Adaptive Belief Sys-
tem (ABS) and applied the framework to asset pricing theory in a model with one risky
asset and one risk free asset. Tractability is achieved by the use of random utility models
to model ‘fitness” and ‘natural selection.” Predictor choice across the set of predictors is
evolutionarily rational in the sense that agents choose the predictors according to highest
fitness, such as past profits. In the ABS studied by BH there were only few trader types,
typically only two, three or four. The present paper generalizes the ABS to an evolutionary
system with many different trader types and proposes to approximate the evolutionary
dynamics with many trader types by a LTL. Gaunersdorfer and Hommes (2000) investi-
gate time series properties of a simple ABS with two trader types, fundamentalists versus
trend followers, buffeted with dynamic noise and match the autocorrelation patterns of
returns, absolute returns and squared returns to 40 years of S&P 500 data. Simple ver-
sions of the ABS thus may explain observed stylized facts such as unpredictability of
asset returns, fat tails, clustered volatility and long memory. Gaunersdorfer, Hommes and
Wagener (2000) investigate bifurcation routes to complicated dynamics of this system,
and show in particular that co-existence of a stable steady state and a stable cycle, may
explain the observed stylized facts of the model buffeted with noise.

An important feature of the BH framework is that the RE benchmark is nested within the
evolutionary model as a special case. The benchmark fundamental represents the traders’
response to common knowledge exogenous news, such as interest rate movements, growth
of the firms profits, earnings or dividends, a repeal of the capital gains tax, etc.. Traders’
beliefs about future prices are formulated in terms of deviations from a benchmark RE
fundamental. These deviations can be viewed as each RE trader’s belief about how the
deviations from RE by the rest of the trading community might show up in equilibrium
prices. In this sense our theory is fully rational in the sense that truly rational traders
must take into account the behavior of other traders in the trading community. The BH
framework is motivated by the kinds of evidence reviewed above and starts the task of
building a theory that “backs off” from RE in the manner of Sargent (1993), but nests RE
in such a way that RE-econometric technology such as methods based upon orthogonality
conditions can be readily adapted to test the “significance” of the extra “free parameters”
that our theory adds to RE theory. Pro-RE economists loosely argue that the situations
in which these extra free parameters are significant may not be frequent. Anti-RE types
argue that such departures may be frequent for anti-RE types. We think a theory is needed
that nests both views in a way such that econometric methods are suggested to test the
null of RE against the alternative. We wish to contribute to the task of building a theory in
which the data can speak to the controversy on RE and excess volatility. It is worthwhile
noting that Baak (1999) and Chavas (2000) have run empirical tests for heterogeneity in
expectations in agricultural data and indeed find evidence for the presence of boundedly
rational traders in the hog and cattle markets. The theory developed in this paper also
yields a decomposition of returns into a Martingale Difference Sequence, hereafter “MDS”,
and an “extra endogenous dynamics” part. The MDS component of returns corresponds



to conventional rational expectations theory (RE) and Efficient Markets Theory (EMH).
The “endogenous dynamics part” is rather like “endogenous uncertainty” in the sense of
Kurz’s book (1997) which develops the theory of rational beliefs (RBE). Recent empirical
work by Sharma (2001) on financial markets which is patterned after that of Chavas (2000)
adduces some preliminary evidence for the presence of some boundedly rational traders in
an econometric setting where REE/EMH is “nested” within a general evolutionary model
rather like the one we are building here.

The plan of the paper is as follows. In section two, we recall the notion of Adaptive Belief
System (ABS) in an asset pricing framework. Section 3 defines the notion of Large Type
Limit (LTL). Section 4 proves a theorem about convergence of an ABS to a LTL, when
the number of trader types goes to infinity. Section 5 discusses the consequences of the
convergence theorem, and shows in particular that all generic and persistent features of an
ABS with many trader types occur with high probability in the LTL. Section 6 presents
a simple example of an LTL obtained when beliefs are randomly drawn from linear fore-
casting rules. Local stability as well as global bifurcation routes to instability and strange
attractors are investigated for this case. Section 7 investigates time series properties of a
LTL buffeted with noise, and shows that an LTL can match the autocorrelation patterns
of returns, squared returns and absolute returns of 20 years of S&P 500 data. Finally,
section 8 concludes.

2 Adaptive Belief Systems

In order to be self contained, this section recalls the notion of an Adaptive Belief System
(ABS), as introduced in Brock and Hommes (1998), applying the evolutionary framework
developed in Brock and Hommes (1997); see also Brock (1997) and Hommes (2001) for
extensive discussions. An ABS is in fact a standard discounted value asset pricing model
derived from mean-variance maximization, extended to the case of heterogeneous beliefs.
Agents can either invest in a risk free asset or in a risky asset. The risk free asset is
perfectly elastically supplied and pays a fixed rate of return r; the risky asset, for example
a large stock or a market index, pays an uncertain dividend. Let p; be the price per share
(ex-dividend) of the risky asset at time ¢, and let y; be the stochastic dividend process of
the risky asset. Wealth dynamics is given by

Wt-‘,—l = RW; + (Pry1 + U1 — Rpr) 21, (1)

where R = 1+ r is the gross rate of risk free return, variables with a tilde such as
Ur+1 denote random variables at date t + 1 and z; denotes the number of shares of the
risky asset purchased at date ¢. Let E; and V; denote the conditional expectation and
conditional variance based on a publically available information set such as past prices
and past dividends. Let Ej; and Vj,; denote the ‘beliefs’ or forecasts of trader type h about



conditional expectation and conditional variance. Agents are assumed to be myopic mean-
variance maximizers so that the demand zj; of type h for the risky asset solves

Mk, { B[ Wia] = 5ViulWosa ]}, 2)

where a is the risk aversion parameter. The demand z;; for risky assets by trader type h

is then _ _ _ _

_ Ent[Pre1 + Gie1 — Rpi] _ Ept[Pri1 + Gev1 — Bpi] (3)
aVie[Pe1 + Jer1 — Bpi ao® ’

Zht

where the conditional variance V},; = o2 is assumed to be equal for all types and constant.?
Let z® denote the supply of outside risky shares per investor, assumed to be constant, and
let np; denote the fraction of type h at date ¢t. Equilibrium of demand and supply yields

H . .

E — R
Z - nt D1 + y;+1 Dt _— (4)
P ao

where H is the number of different trader types. The forecasts Ept[piy1+3:11] of tomorrows
prices and dividends are made before the equilibrium price p; has been revealed by the
market and therefore will depend upon a publically available information set I;_; =
{Pt_1,Pt-2,--;Yt_1,yt_2} of past prices and dividends. Market equilibrium (4) then implies
that the realized market price p; will be the unique price for which demand equals supply.
The market equilibrium equation can be rewritten as

H

Rp, = Z Nt B [Pre1 + Jey1] — ao”2°. (5)
1

The quantity ac?z® may be interpreted as a risk premium for traders to hold all risky
assets.

2.1 The EMH benchmark with rational agents

Let us first discuss the EMH-benchmark with rational expectations. In a world where all
traders are identical and expectations are homogeneous the arbitrage market equilibrium
equation (5) reduces to

Rp; = Eiprs1 + Gr+1] — CLU?ZS, (6)

2Gaunersdorfer (2000) investigates the case with time varying beliefs about variances and shows that
the results are quite similar to those for constant variance. Under assumptions B2 and B3 below, it can
be shown that constant conditional variance beliefs is not contradictory with heterogeneous conditional
mean beliefs of the form in assumption B1. For example if the {y;} process is IID, the fundamental price
is a constant, and the conditional variance of each belief of the form posited in assumption Bl is just
the variance of y;. This argument can be generalized to the case where {y;} is an autoregression of finite
order driven by IID shocks. See Brock (1997) for discussion.



where F; denotes the common conditional expectation of all traders at the beginning
of period ¢, based on a publically available information set I;. This arbitrage market
equilibrium equation (6) states that today’s price of the risky asset must be equal to
the sum of tomorrow’s expected price and expected dividend, discounted by the risk
free interest rate. It is well known that, using the arbitrage equation (6) repeatedly and
assuming that the transversality condition

i Ey[pivi]

fim —— =0 (7)

holds, the price of the risky asset is uniquely determined by

. > Ei[Gi41]) — ao?2®
k=1

The price p; in (8) is called the EMH fundamental rational expectations (RE) price,
or the fundamental price for short. The fundamental price is completely determined by
economic fundamentals and given by the discounted sum of expected future dividends
minus the risk premium. In general, the properties of the fundamental price p; depend
upon the stochastic dividend process y;. We will mainly focus on the case of an IID
dividend process y;, with constant mean E[y] = y. We note however that any other
random dividend process y; may be substituted in what follows?. For an IID dividend
process y; with constant mean, the fundamental price is constant and given by

Z%:_—aaz‘ (9)

k=1

There are two crucial assumptions underlying the derivation of the RE fundamental price.
The first is that expectations are homogeneous, all traders are rational and it is common
knowledge that all traders are rational. Only in such an ideal, perfectly rational world the
fundamental price can be derived from economic fundamentals. In contrast, in a world
with heterogeneous traders having different beliefs or expectations about future prices
and dividends, derivation of a RE fundamental price requires perfect knowledge about
the beliefs of all other traders. In a real market understanding the beliefs and strategies
of all other, competing traders is virtually impossible, and therefore in a heterogeneous
world derivation of the RE-fundamental price becomes impossible. The second crucial
assumption underlying the derivation of the fundamental price is the transversality con-
dition (7), requiring that the long run growth rate of prices (and risk adjusted dividends)
is smaller than the risk free growth rate r. In fact, in addition to the fundamental solution
(8) so-called speculative bubble solutions of the form

pe =p; + R'(po — ) (10)

3Brock and Hommes (1997b) for example discuss a non-stationary example, where the dividend process
is a geometric random walk .




also satisfy the arbitrage equation (6). It is important to note that along the speculative
bubble solution (10), traders have rational expectations. Solutions of the form (10) are
therefore called rational bubbles. These rational bubble solutions are unbounded and do
not satisfy the transversality condition. In a perfectly rational world, traders realize that
speculative bubbles can not last forever and therefore they will never get started and
the finite fundamental price p; is uniquely determined. In a perfectly rational world, all
traders thus believe that the value of a risky asset equals its fundamental price forever.
Changes in asset prices are solely driven by unexpected changes in dividends and random
‘news’ about economic fundamentals. In a heterogeneous evolutionary world however, the
situation will be quite different.

2.2 Heterogeneous beliefs

In the asset pricing model with heterogeneous beliefs, market equilibrium in (5) states
that the price p; of the risky asset equals the discounted value of tomorrow’s expected
price plus tomorrow’s expected dividend, averaged over all different trader types. In such a
heterogeneous world temporary upward or downward bubbles with prices deviating from
the fundamental may arise, when the fractions of traders believing in those bubbles is
large enough. Once a (temporary) bubble has started, evolutionary forces may reinforce
deviations from the benchmark fundamental. We shall now be more precise about traders’
expectations (forecasts) about future prices and dividends. It will be convenient to work
with

Ty =P — Dy (11)
the deviation from the fundamental price. We make the following assumptions about the
beliefs of trader type h:

Bl Viu[pri1 + Ges1 — Rpe] = Vi[Prsa + Gee1 — Rpe] = o2, for all h, t.
B2 Ep[§i41] = Ei[§i41], for all h,t.
B3 All beliefs Ep;[pty1] are of the form

En|pei1] = Epy1) +Ent| i) = EeDi ]+ fo(@e 1,2 1), for all h,t. (12)

According to assumption B1 beliefs about conditional variance are equal and constant for
all types, as discussed above already. Assumption B2 states that expectations about future
dividends g;,1 are the same for all trader types and equal to the conditional expectation.
According to assumption B3, beliefs about future prices consist of two parts: a common
belief about the fundamental plus a heterogeneous part for each type h. The benchmark
fundamental represents the traders’ response to common knowledge exogenous news, such
as interest rate movements, growth of the firms profits, earnings or dividends, etc.. All
traders are able to use this information to derive the fundamental price p; in (8) that would



prevail in a perfectly rational world. According to assumption B3, traders nevertheless
believe that in a heterogeneous world prices may deviate from their fundamental value
p; by some function fj, depending upon past deviations from the fundamental. Each
forecasting rule f; represents the model of the market according to which type h believes
that prices will deviate from the commonly shared fundamental price. For example, a
forecasting strategy f, may correspond to a technical trading rule, based upon short run
or long run moving averages, of the type used in real markets. We will use the short hand
notation

Junt = fuTe1, s Tor) (13)

for the forecasting strategy employed by trader type h. Brock and Hommes (1998) have
investigated evolutionary competition between the simplest linear trading rules with only
one lag, i.e.

ot = gnTi—1 + bp,. (14)

Simple forecasting rules may be relevant in real markets, because for a complicated fore-
casting rule it seems unlikely that enough traders will coordinate on that particular rule
so that it affects market equilibrium prices. Although the linear forecasting rule (14) is
extremely simple, it does in fact represent a number of important cases. For example,
when both the trend parameter and the bias parameter g, = b, = 0 the rule reduces to
the forecast of fundamentalists, i.e.

Jne =0, (15)

believing that the market price will be equal to the fundamental price p*, or equivalently
that the deviation x from the fundamental will be 0. Other important cases covered by
the linear forecasting rule (14) are the pure trend followers

Jnt = g1, (16)

and the pure biased belief
Jnt = bn. (17)

Notice that the simple pure bias (17) rule represents any positively or negatively biased
price forecast that traders might have. Instead of these extremely simple habitual rule
of thumb forecasting rules, some economists might prefer the rational, perfect foresight
forecasting rule

frt = Tega (18)

We emphasize however, that the perfect foresight forecasting rule (18) assumes perfect
knowledge of the heterogeneous market equilibrium equation (5), and in particular perfect
knowledge about the beliefs of all other traders. Although the case with perfect foresight
certainly has theoretical appeal, its practical relevance in a complex heterogeneous world
should not be overstated since this underlying assumption seems highly unrealistic. How-
ever, in the manner of Brock and Hommes (1997) and de Fontnouvelle (2000), one could
make predictor (18) (or a signal of high precision on ;) available at a cost, and add it
to the set of predictors we consider. We leave this to future research but remark that it
may generate interesting dynamics.



An important and convenient consequence of the assumptions B1-B3 concerning traders’
beliefs is that the heterogeneous agent market equilibrium equation (5) can be reformu-
lated in deviations from the benchmark fundamental. In particular substituting the price
forecast (12) in the market equilibrium equation (5) and using the facts that the funda-
mental price p; satisfies Rp; = Ey[pf  + y41] — ac?z® and the price p; = x; + p} yields
the equilibrium equation in deviations from the fundamental:

i H
Rz, = ZnhtEht[ftH] = Znhtfht’ (19)
h=1 h=1

with fp: = fn(24_1, ..., 2;_1). An important reason for our model formulation in terms of
deviations from a benchmark fundamental is that in this general setup, the benchmark
rational expectations asset pricing model is nested as a special case, with all forecasting
strategies f, = 0. In this way, the adaptive belief systems can be used in empirical
and experimental testing whether asset prices deviate significantly from anyone’s favorite
benchmark fundamental.

2.3 Evolutionary dynamics

The evolutionary part of the model describes how beliefs are updated over time, that is,
how the fractions ny, of trader types in the market equilibrium equation (19) evolve over
time. Fractions are updated according to an evolutionary fitness or performance measure.
The fitness measures of all trading strategies are publically available, but subject to noise.
Fitness is derived from a random utility model and given by

Unt = Unt + €, (20)

where Uy is the deterministic part of the fitness measure and €,; represents 11D noise across
h =1,...H. In order to obtain analytical expressions for the probabilities or fractions, it
will be assumed that the noise €;; is drawn from a double exponential distribution. In
that case, in the limit as the number of agents goes to infinity, the probability that an
agent chooses strategy h is given by the well known discrete choice model or ‘Gibbs’

probabilities?
eBUn,t—1

- Zthl eﬂUh,t—l )
Note that the fractions ny; add up to 1. The crucial feature of (21) is that the higher the
fitness of trading strategy h, the more traders will select strategy h. The parameter § in
(21) is called the intensity of choice, measuring how sensitive the mass of traders is to
selecting the optimal prediction strategy. The intensity of choice (3 is inversely related to

Npt (21)

4See Manski and McFadden (1981) and Anderson, de Palma and Thisse (1993) for extensive discussion
of discrete choice models and their applications in economics.

10



the variance of the noise terms €j;. The extreme case 3 = 0 corresponds to the case of infi-
nite variance noise, so that differences in fitness can not be observed and all fractions (21)
will be fixed over time and equal to 1/H. The other extreme case f = +oo corresponds
to the case without noise, so that the deterministic part of the fitness can be observed
perfectly and in each period, all traders choose the optimal forecast. An increase in the
intensity of choice 3 represents an increase in the degree of rationality w.r.t. evolutionary
selection of trading strategies. The timing of the coupling between the market equilibrium
equation (5) or (19) and the evolutionary selection of strategies (21) is crucial. The market
equilibrium price p; in (5) depends upon the fractions ny;. The notation in (21) stresses
the fact that these fractions nj; depend upon past and most recently observed fitnesses
Uh,t—1, which in turn depend upon past prices p;—; and dividends y;—; in periods t —1 and
further in the past as will be seen below. After the equilibrium price p; has been revealed
by the market, it will be used in evolutionary updating of beliefs and determining the
new fractions ny 1. These new fractions np 1 will then determine a new equilibrium
price pii1, etc.. In the ABS, market equilibrium prices and fractions of different trading
strategies thus co-evolve over time.

A natural candidate for evolutionary fitness is accumulated realized profits, as given by®

Eni1[pt + Jt — Rpi1]
ao?

Unt = (Pt + 7 — Rpi—1) + wUp 1, (22)
where R = 141 is the gross risk free rate of return, and 0 < w < 1 is a memory parameter
measuring how fast past realized fitness is discounted for strategy selection. The first term
in (22) represents last period’s realized profit of type h given by the realized excess return
of the risky asset over the risk free asset times the demand for the risky asset by traders
of type h. In the extreme case with no memory, i.e. w = 0, fitness Uj; equals net realized
profit in the previous period, whereas in the other extreme case with infinite memory, i.e.
w = 1, fitness Uy, equals total wealth as given by accumulated realized profits over the
entire past. In the intermediate case, the weight given to past realized profits decreases
exponentially with time. It will be useful to compute the realized excess return R; in

5Given that investors are risk averse mean-variance maximizers, maximizing their expected utility from
wealth another natural candidate for fitness are the risk adjusted profits. In fact, the fitness measure (22)
based upon realized profits does not take into account the variance term in (2) capturing the investors’ risk
taken before obtaining that profit. On the other hand, in real markets realized net profits or accumulated
wealth may be what investors care about most, and the non-risk adjusted fitness measure (22) may thus be
practically important. See BH 1998 and Hommes (2001) for a discussion of this point. Gaunersdorfer and
Hommes (2000) investigate an evolutionary model with fitness given by risk adjusted profits. In any event
the methodology of LTL developed in this paper can be developed for alternative fitness functions to (22).
The general point that taking the LTL drastically reduces the number of “parameters” in heterogeneous
belief models with large numbers of such beliefs to the small set of parameters that determine “underlying
characteristics” of underlying “belief distributions” remains independently of what choice the modeler
makes for the fitness function.
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deviations from the fundamental to obtain

Ry =pi + 9y — Rpr—1 = 24 + p; +ys — Roy—1 — Rpf_4
=Ty — Rwe_y + pf + G — B [Pf + T + B [Pf + 3] — Rpf_, (23)

=7, — Rry 1 +ao?2® + &,

where we used that E;_[p; + 4] — Rp;_, = ac?z® since the fundamental p} satisfies the

market equilibrium equation (6), and & = pf + §: — Ey_1[p; + 7] is a martingale difference
sequence. The random term §; enters because the dividend process is stochastic, and
thus represents intrinsic uncertainty about economic fundamentals®. According to the
decomposition (23) excess return consists of a conventional EMH term 6; plus a risk
premium ac?z® and an additional speculative term z; — Rx;_; of the ABS theory. Our
ABS theory thus allows for the possibility of excess volatility. The extra term is zero if
either x; = 0, that is prices equal their fundamental value, or if x; = Rx;_ 1, that is when
prices follow a RE bubble solution. The ABS theory predicts excess volatility in periods
when asset prices grow faster or slower than the risk free rate of return, or when prices
switch between a temporary bubble solution and the fundamental.

Fitness can now be rewritten in deviations from the fundamental as

fhi—1— Rry_q + ac?z®
2

Unt = (&t — Rxy—1 + ac?z® + 8e)( )+ wUp 1. (24)

ao

3 Large Type Limits

This section introduces the notion of a Large Type Limit (LTL), which is obtained as a
‘limit approximation’ of an ABS with belief types drawn randomly from a fixed distribu-
tion, as the number of types tends to infinity.

3.1 Evolution for finitely many traders

The starting point is the equilibrium equation for a market with heterogeneous beliefs:

H
Rxy = Z nhtfht , (25)
h=1

where x; is the deviation from the fundamental price and ny; the fraction of type h traders,
as before. The function fj;, expressing the belief of type h on the price of the risky asset
at time £ 4 1, is assumed to have the following general form:

fnt = f(%:fl, ooy Tt—d, )\ﬂ(}h) .

6In the special case of an IID dividend process y; = ¥ + ¢; we simply have &, = €.
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The z;,_;, j = 1,...,d, are the past price deviations up to the maximal time delay d, A is
a multidimensional structural parameter (containing all economic parameters, such as the
interest rate r or the mean dividend g, that may be used in the forecasting functions),
and the belief variable ¥, is a multidimensional stochastic variable which characterizes
the belief h. This belief is sampled from a general distribution of beliefs. To fix ideas,
consider as an example the case where beliefs are linear with the stochastic variable ¥},
drawn from a multivariate normal distribution:

fre = fr(Un) = Oon + V1pzi1 + .. + DanTi—a-

Recall that the fractions ny; are given by the discrete choice model probabilities
eBUn,i—1

S (26)

Nhpt

Since the fitness function Uy, ;1 of type h depends upon z;_1, x;_» and upon the forecasting
function f5 ;o their general form is:

Uni—1 =U(xi-1, -2, .oy Ti—g—2, N\, Un) ,

where the parameter A is the structural parameter as before, including for example the
risk aversion coefficient a appearing in the traders’ demand function for the risky asset.

The equilibrium equation (25) can be rewritten to:

_1 ZhH=1 L
R Zle eBUn,t—1

Tt

(27)

It gives rise to a dynamical system in the following way. The state variables x; =
(21t ..., Tayot) are introduced by z;; = x,—j, 1 < j < d+ 2. The state space X is taken to
be an open subset of R4 2.

The equilibrium equation (27) determines the evolution of the system with H trader types
- this information is coded in the evolution map @ (x, A, 9):

BU (%, A,9p)
13 A0
pnlx ) = p o= JCOA D) (29)

R H ,BU(X, A7/l9h)
dohe1 €

The structural parameter A\ = (3, R, A, ..., \;) takes values in a bounded open subset A
of R, and contains all structural parameters of the evolutionary, heterogeneous agents
economy, such as the intensity of choice [3, the interest rate r (or gross rate of return
R = 1+7r), the risk aversion coefficient a, etc. When the number of trader types H is large,
the evolution map ¢p contains a large number of stochastic variables ¥ = (¥4, ..., ),

13



with the ¥; independently identically distributed (henceforth: IID), with distribution func-
tion F),. The distribution function of the stochastic belief variable ¥, depends on a multi-
dimensional parameter u, called the belief parameter, which takes values in a bounded
open subset M of R". This setup allows to vary the population out of which the indi-

vidual beliefs are sampled. The explicit dependence of a probability on u is denoted by
P=Pp,.

If the state x; at time ¢ is known, the state x;,1 at time t+1 is given by x;11 = Py (x4, A, 9),
where:

(I)H(X, )‘719) = (@H(X7)‘719)7$17-"7$d+1) : (29)

The map ®y defines the dynamical system associated to the evolution map ¢p corre-
sponding to a market with H different belief types.

3.2 The limit evolution

The main contribution of this paper is to show that the time evolution of a market with
a large, but finite, number of beliefs H, randomly drawn from a fixed distribution, is well
described, in the sense to be made precise below, by a much simpler system called the
large type limit (LTL). The LTL represents in a way the ‘average’ dynamical behavior
of all interacting traders. Observe that both the denominator and the nominator of the
evolution map ¢y in (28) may be divided by the number of trader types H and thus may
be seen as sample means. The evolution map v of the large type limit is then simply
obtained by replacing the sample means in the evolution map ¢y by population means, to
obtain:
J By [P0 £, ), )|

¢ X, )‘7 n)== . 30
( ) R E, |:65U(x,)\,190):| (30)

Here 1y is a stochastic variable which is distributed in the same way as the v, with
distribution function F},. The structural parameter vector \ of the evolution map ¢y and
the LTL evolution map v coincide. However, whereas the evolution map ¢g in (28) of
the heterogeneous agent system contains H randomly drawn multi-dimensional stochastic
variables 9, the LTL evolution map ¢ in (30) only contains the belief parameter vector
it describing the joint probability distribution. Taking a large type limit thus leads to
a huge reduction in stochastic belief variables. In section 6 we will consider an example
where the randomly drawn beliefs are linear, with multi-variate normally distributed belief
variables, and the LTL contains as belief parameters the means and the variances of the
corresponding multi-variate distribution.

The dynamical system corresponding to the LTL evolution map 1 is denoted by ¥ (x, A, i)
and given by:
\Ij(xa)\alu) = (¢(X7A>M)axla"'axd+l) . (31)
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Section 4 will state and prove a theorem saying that the LTL is a good approximation of
an ABS with many belief types, and section 5 will show that all ‘generic’ and ‘persistent’
dynamic properties will be preserved with high probability.

4 Convergence to large type limits

This section states and proves the theorem about convergence to the large type limit.
More precisely, it will be shown that the map ®p, describing the evolutionary dynamics
in a market with H randomly drawn beliefs, converges almost surely to the LTL map ¥
as the number of trader types H tends to infinity.

4.1 Notation

In order to formulate the theorem below succinctly, the following notation is introduced. If
the natural numbers are denoted by N = {0,1,2, ...}, then let o € N* be a multi-index:

a= (01, ..., Qgiq) -
Let |a| = |ey|, and let D, denote differentiation with respect to x and A as follows:

o% 0%  J%d+1 O0%d+a

D, = -
Oxt Oz T ONTTT T ONg

It is assumed that x and ) take values in bounded open sets V C R? and A € R4
respectively. For functions that are k times differentiable on V' x A, and that have together
with their derivatives, continuous extenstions to the closure V' x A, the following C* norm

is introduced:
| f]lx = max sup [ Do f(x, M)

lo| <k v x

The norm of vector valued functions is defined analogously, by taking appropriate vector
norms on the right hand side.

4.2 The convergence theorem

Note that the stochastic variables of the previous section are all of the general form:
X =9(0,s),

where O is another (multi-dimensional) stochastic variable, and where s is an ordinary
variable; for instance, s = (x, \) consists of a vector x of state variables and a vector A
of structural parameters. We call X a parameter dependent stochastic variable. Let F),
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be the distribution function of ©, depending on a vector p of belief parameters. If ¢ is
differentiable with respect to s, the parameter dependent stochastic variable X is said to
be differentiable with respect to s as well. If g is differentiable up to order k, the derivative
D, X with |a| < k of X with respect to s is defined as

Do X = (Du.g)(0, s).

In the present context, let

X th e/BU(Svﬁh)
P Xon )\ PUEMf(s,0,) )
where s = (x,\) and where U and f are as in the previous section. If f and U are
differentiable up to order k£ in x and A, then X, is differentiable up to the same order in s.

Theorem (C*-convergence almost surely to the LTL )
Let k > 0 be fized, and assume that for all o with || < k, there ezists a nonnegative
random variable Y, > 0, independent of s, such that

|DoXpn| <Y, and FEY, < occ.

Then for every belief parameter n € M, and for any € > 0 and 6 > 0, there is a Hy > 0
such that:
P,{Forany H > Hy : |V — @yl >} <.

That is, for H > Hy, U and ®y are, with probability 1 — 8, e—close in the C* topology.

This theorem states that the H-belief types system ®p (29) converges almost surely to
its large type limit ¥ in (31) as H tends to infinity. In other words, if H is large enough,
with high probability the dynamical systems ®, ®p.1, - - -, and the Large Type Limit ¥,
are e—close in the C* topology. Note that the theorem holds pointwise for p, that is, for
each p € M, as H becomes large the H-type system ®y(x, A, ) converges almost surely
to its LTL W(x, A, ).

4.3 Applicability

To what kind of stochastic variables is this theorem applicable? Recall that X, = eV,
and that X5, = e®Ur f;,. Moreover, above it has been assumed throughout that the fore-
casting rules f;, and the fitness measures U, are linear in the stochastic variables ;.

Consider a typical ¢, and assume that its probability distribution dF'() is of the form
F'(¥)dv, with () a measurable function. Note that

X1, Xy ~Y =e(a+ b)),
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where a, b and ¢ can take any values. In order that EY exists, we have the condition:
/eCﬁ|19|F'(19) dv < oo

for all c. Hence F'(¥) has to fall off faster than e~ !9l as || — oo for all positive values
of |¢|. On the other hand, if
F'(9) ~ e MO

for some 7,k > 0, then the conditions of the theorem are satisfied. Note that normally
distributed variables, as well as variables whose distribution has compact support, satisfy
these conditions.

The rest of this section is devoted to the proof of this theorem.

4.4 Preliminaries

It clearly suffices to show that:
P,{Forall H> Hy : ||t —oullr >¢) <9,

where the evolution maps ¥ in (30) and ¢y in (28) take the place of the dynamical
systems V¥ in (31) and @5 in (29).

Let X denote the ‘average’ over the X, = (X1, Xop):
LA
X==) X,.
P

Finally, note that EX = (EX;,EX,) = E (eﬂUo, eﬁUOfo). With this notation, compare:

1X, 1EX;+ (X,-EX,)

9) =22 = = : d
en(s9) = 2% = REX, © (X —EX;) vis)

_ 1EX,
 REX;'

Noting that EX; > ¢ > 0, the strong law of large numbers shows that as H — oo, the
terms between brackets in the expression of ¢y tend to 0. It follows that ¢py(s,d) —
Y(s) almost surely, pointwise in s. However, this is not enough for our purposes: we
need ¢y (s,1), together with its derivatives up to k’th order, to converge uniformly in s.

In the next subsection, a uniform law of large numbers is quoted, which helps us to
establish precisely what we want.
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4.5 Uniform law of large numbers

The following theorem, with changed notation, is quoted from Jennrich (1969, p.636,
theorem 2).

Theorem

Let g(s,9) be defined on S x €, where £ is a Euclidean space, and where S is a compact
subset of an Fuclidean space. Let g be continuous in s for each v, and measurable in 1
for each s. Assume that |g(s, )| < h(9) for all s and 9, where h is integrable with respect
to a probability distribution F' on £. If 91, ¥s, -+, is a random sample from F, then for
almost every sequence {94},

H

1

T Z g(On, 8) — /g(ﬁ, s)dF () almost surely,
j=1

uniformly in s.

Note that if || < k, the hypothesis of this theorem is satisfied for D,X) since these
stochastic variables are dominated by Y,. This shows already that ¢z — 1 almost surely
in the C° topology.

We have that B
D, X — ED,X a.s., (32)

uniformly in s. Moreover, again because of domination

ED,X = D,EX.

The derivative D,y is computed for |o| = 1:

[DoEX, + (Do Xy — EDo Xo)| [EX1 + (X1 — EX)]
— [EXy + (X2 = EX3)] [DaEX1 + (DoX1 — EDoX1)]
[EX; + (X, —EX;)]”.

Da(,DH -

Because of the uniform convergence of the derivatives (32), it follows that if |a| < 1,
Dopr (¥, 8) — Daip(s) a.s.,

uniformly in s. The case of higher order derivatives is left to the reader. This finishes the
proof of the theorem.
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5 Dynamical consequences

In what sense is the large type limit a ‘good’ approximation of the system with a large
but finite number of beliefs? This question leads to two key concepts in the theory of
dynamical systems, structural stability and persistence. These are discussed in the next
subsection, and applied to our evolutionary system in subsection 5.2. It will be argued
that all generic and persistent properties of the LTL evolution map W, with probability
arbitrarily close to 1 also occur for the evolution map @y if the number of trader types
H is sufficiently large.

5.1 Structural stability and persistence

In this subsection ¥ and ® denote general dynamical systems. A dynamical system V¥ is
called C*-structurally stable, if every system ® sufficiently close to ¥ in the C*-norm ||.||.
is conjugated to ¥; that is, by a suitable change of variables and parameters, ® can be
transformed into W.

Structural stability of a system is usually hard to prove. However, if the concept is re-
stricted to certain properties of the system - like having an attracting fixed point, or
undergoing a saddle-node bifurcation - sometimes it can be shown that all systems &
sufficiently C*-close also have the same property, which is then called a C*-persistent
property. Usually the degree of differentiability k is not explicitly mentioned: ‘persistent’
means C*-persistent with k large enough for the purpose at hand. See e.g. Guckenheimer
and Holmes (1986) for a general discussion of structural stability and persistence.

Examples of persistent properties

The simplest example of a persistent property is a hyperbolic fixed point. That is, if ¥ has
a fixed point zy, and all eigenvalues of D,V (x) are off the unit circle in the complex plane,
then xq is called a hyperbolic fized point. Every ® sufficiently close to ¥ in the ||.|[;-norm
also has a hyperbolic fixed point: they are C!-persistent.

An important class of examples is furnished by so-called generic bifurcations, like the
saddle-node, Hopf, and period-doubling bifurcations of fixed points. Every generic bifur-
cation has a positive integer ¢ associated to it, the co-dimension of the bifurcation; see
e.g. Kuznetsov (1998) for an introduction to bifurcation theory and a detailed mathemat-
ical treatment of bifurcations of co-dimension 1 and 2. If ¥ depends on a g-dimensional
parameter A, the co-dimension ¢ of the bifurcation considered is less than or equal to ¢,
and ¥ has for A = )¢ a generic co-dimension—¢ bifurcation, then any g-parameter sys-
tem ® sufficiently close to ¥ in the C*-norm (the required degree k is determined by the
specific bifurcation) has the same bifurcation, possibly for a different value of the para-
meter A = A;. In short: for a dynamical system depending on g parameters, all generic
bifurcations with co-dimension up to and including g are persistent.
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In particular, generic saddle-node, Hopf, and period doubling bifurcations are persis-
tent for 1-parameter families of dynamical systems. In 2-parameter systems, cusp and
Bogdanov-Takens bifurcations (to name a few) persist.

These are all examples of persistent local properties. An important example of a persistent
global property is a so—called transversal homoclinic point, that is, a transversal intersec-
tion p of stable and unstable manifolds of a (saddle) fixed point. Homoclinic points are
characterized by the fact that its iterates ¢™(p) approach the fixed point for n — oo as
well as for n — —oo. Transversal homoclinic points are persistent under small perturba-
tions. Note that the existence of a transversal homoclinic point implies the occurrence of
horseshoe dynamics in the system.

The genesis of transversal homoclinic intersections by a homoclinic tangency bifurcation in
one—parameter families is another global example of a persistent property. In systems with
two—dimensional phase space, such a bifurcation implies (under some mild conditions) the
existence of strange attractors for a set of parameters of positive measure. See Palis and
Takens (1993) for a recent mathematical treatment of homoclinic bifurcation theory. De
Vilder (1996) contains a stimulating introduction of phenomena associated to homoclinic
bifurcations and application to a two-dimensional version of the overlapping generations
model.

Another example is furnished by the Newhouse—-Ruelle-Takens phenomenon: they showed
that for a family of mappings, having an invariant quasi—periodic circle bifurcating to an
invariant 2-torus (a so—called quasi—periodic Hopf bifurcation), by a C*-small perturba-
tion, a system with a strange attractor instead of a quasi—periodic 2—-torus can be obtained
(Ruelle and Takens (1971) and Newhouse, Ruelle and Takens (1978)). Hence every sys-
tem displaying a quasi-periodic Hopf bifurcation is C?-near to a system with a strange
attractor. Note that quasi—periodic Hopf bifurcations occur generically in two—parameter
families (though only on parameter sets of positive measure, but empty interior, see Broer
et al. (1990)).

Examples of non-persistent properties

A non-persisting example is furnished by the pitchfork bifurcation. It will be useful to
discuss this example here, since it will play some role in the simple LTL studied in section
6. A simple example exhibiting a pitchfork bifurcation is the 1-parameter family dynamical
system W(x, \) for A = 0, where V¥ is given by:

2
3
For A > 0 there are two stable fixed points z = +v/\ and one unstable fixed point z = 0,
which coalesce at A = 0. For A < 0 there is only one stable fixed point x = 0.

1
U(r,\) =z + Iz — 2%, |JI|<§,|)\|< (33)

By adding a small constant € > 0 to W, the picture disintegrates. The system W., with:
U (z,\) =2+ v —2°+¢, (34)
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Figure 1: Bifurcation diagram for the pitchfork bifurcation of ¥ in (33). In this (u,x)-
plot, the phase space is plotted vertically for every parameter p. Drawn lines indicate the
position of fixed points. The dot (PF) indicates the pitchfork bifurcation point.

has a generic saddle node bifurcation of a stable and an unstable fixed point, together with
a stable (hyperbolic) fixed point which exists for all A. Hence the pitchfork bifurcation is
not generic. In fact, the pitchfork bifurcation only occurs in systems with a reflectional
symmetry. For example, the system (33) is symmetric w.r.t. to x = 0, since ¥(—z, \) =
—W(z,\). Adding a perturbation parameter € in (34) means a breaking of the symmetry
in the system and the pitchfork bifurcation disappears. It should be noted however that,
for small e the bifurcation diagram of the perturbed pitchfork in figure 2 is close to the
bifurcation diagram of the pitchfork in figure 1

1

0.5r

SN §

—0.5f

-1 -0.5 o] 0.5 1
lambda

Figure 2: Bifurcation diagram for the perturbed pitchfork bifurcation in (34). Legend as in
figure 1. The pitchfork bifurcation does not persist. Note the occurrence of a saddle-node
bifurcation (SN), which is in contrast to the pitchfork a generic co-dimension-1 bifurcation.

5.2 Application to large type limits

The above considerations can be applied to the case of finite belief systems and their
corresponding large type limits.
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Persistence of bifurcations ‘in probability’

Let ®y(x, N\, ¢) for H = 1,2,... be a H-belief types system as in (29), depending on a
g-dimensional structural parameter \. Let W(xz, A, 1) be the large type limit as in (31),
which depends on A as well as on the belief parameter p. The theorem of section 4 states
that the systems @y, together with their derivatives up to order k, converge in probability
to their large type limit as H tends to infinity.

Let ¢ € (0,1) and u € M be fixed. Since generic co-dimension-¢ bifurcations persist
if ¢ < g, it follows that any generic co-dimension ¢ bifurcation with respect to the structural
parameter A for U (p is fixed) occurs with probability at least 1 — e for @y, for H large.

The role of belief parameters

Note the distinction between structural parameters A and belief parameters p. This is
roughly due to the fact that for &5 and ¥, only bifurcations in A can be compared with
each other, since @y does not depend in a direct way on p. The following example may
illustrate this point further. Suppose ®y(x,1) denotes the following dynamical system:

H
1
‘I)H<l',’l9) = EZQ%L—FZ'—IE,
h=1
with 4, IID, E, 9}, = p and Vard, = o%. The parameters ;1 and o are belief parameters.
The large type limit ¥ of &5 is given by:
U(w,p) =p+z—a°.

For p > 0, this system has two hyperbolic fixed points; for u < 0, there are none. At y = 0,
there is one non-hyperbolic fixed point.

Now, let again € € (0,1) and p > 0 be fixed. Set 6 = &. Then by the theorem of section 4,
there is a Hy > 0, such that for all H > Hy:

H
Zﬁh — U
h=1

with probability at least 1 — e. (Of course, the same result can be found directly by
Tschebycheff’s inequality). Hence, with this probability:

H
Z Iy >
h=1

and the system ®p(z, ) has two fixed points.

|V — Dpy|lx = <4,

>0,

=
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On the other hand, if u is set to 0, then asymptotically:

1
EzﬁhNN<O7O-2/H)7

where N(0,0%/H) denotes the normal distribution around 0. Hence the probabilities
of £> ¥, > 0 and £ > ¢, < 0 are both approximately . The large type limit fur-
nishes no information about the number of steady states of the finite belief systems in
this case.

We summarize this as follows: bifurcations in the large type limit system may be found
using belief parameters, but they have to be analyzed in terms of structural parameters.

Corollary of large type limit convergence theorem

The discussion in the present section is summarized in the following corollary, listing some
important persistent properties which, if they occur for the LTL, with high probability
also occur for the H belief type system when H is large.

Corollary of LTL convergence theorem

Assume that ®gr in (29) is a system with H belief types and q structural parameters, and U
is its Large Type Limit in (81) as H tends to infinity. Then for every k and every C*
persistent property of U and for every e, there exists a number Hy of belief types, such
that for every H > H,, with probability > 1 — ¢ the system ®y generically has the same
property.

In particular, this means that if ¥ has

1. hyperbolic fized or periodic points,

2. transversal homoclinic intersections of stable and unstable manifolds of a periodic
point,

3. horseshoes,
4. local or global bifurcations up to co-dimension q,

5. open neighborhoods in function space with strange attractors (Newhouse—Ruelle—
Takens phenomenon),

then ® g will have these too with probability > 1 — ¢ if H > H,.
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6 Evolutionary dynamics in a simple LTL

In this section we investigate the dynamical behavior, focusing on generic and persistent
properties, of a simple example of an LTL, where traders’ forecasting rules are linear
functions of past price deviations, i.e.

frnt = fr(On) = Ono + Opaze 1 + -+ + Ppay_a, (35)

with stochastic belief variables ¥, distributed multivariate normal. We calculate LTL’s
for the simple and tractable case where fitness is last period’s realized profits, that is,

foi—1— Rre1 + ac?z®
t = )- (36)

Uht = ($t — thfl + 0/0'228 + 5,5)(
ao
Including more memory in the fitness measure is straightforward, but leads to a high
dimensional LTL". Recall that {6;} is the Martingale Difference Sequence component in
the decomposition of the excess returns process { R;} in (23). We set §; = 0, so that fitness
becomes ; . )
ni—1— Ry +ao”2®
3 ); (37)
to get what we shall call “the deterministic skeleton” of the stochastic dynamical system.
We wish to uncover stabilizing and destabilizing economic forces by studying the skeleton.
The deterministic skeleton corresponds to the case where the fitness measure equals the
conditional expectation of profits.

Unt = (x4 — Rxyq + CLO'QZS)< o

The fractions np; of trader type h, as given by the discrete choice probabilities (21),
can be simplified by noting that they are not affected when subtracting the same term,
independent of h, from all fitnesses Uy, ;1. Therefore, we can ignore the term (—Rz; 1 +
ac?z®)(zy — Rry 1 + ac®z®) in the nominator of the second part of (37) to obtain the
equivalent fitness

Uni—1 = (x4-1 — R0 + aa%ﬂ%. (38)
Using (30), the LTL for linear forecasting rules (35) is then given by
| E en(mt_lmet_QJraUst)ft_Q(ﬂo)ft(190>:|
"R B [en@—1—Raratac’z) fia(@0)] (39)
where n = 3/(ac?) and
(Do) = Voo + Y11 + - - - + VoaZi—a, (40)

"In particular, with fitness as in (22) given by a weighted average of all past profits with exponentially
decreasing weights, the LTL becomes infinite dimensional with infinitely many terms with exponentially
decreasing weights added. When fitness is given by a weighted average of L past profits, the dimension
of the LTL becomes L + d + 1.
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with 99 = (Y00, o1, - - - , Yoq) multivariate normal. Introduce sg = n(x; 1 — Rry o+ ac?z2*),
s; =n(r, 1 — Rry o+ ac?2®)x; o j, 1 < j <d and put

en(xt—l*Rmt—Q‘HIUQZS)ft—Q(ﬂO) — 62 55904 )

In order to calculate a closed form expression for the LTL (39) we use moment generating
function formulae from normal distribution theory. Note that

E[BN] _ eE[N]—&—%Var[N]

for a normal random variable N = > s;4;. Note also that

D0; d 590
E[ezwka] = gE[eZ 7907
k

Assume that the ¥’s are uncorrelated (i.e. independent for this multivariate normal case)
for simplicity. It is straightforward to extend the method to correlated ¢’s. Using these
moment generating function formulae for multivariate normals the following closed form
expression for the LTL (39) is obtained:

Rxy = po+ pimi—1 + ... + [qTi—q (41)

2 _s\( .2 2 2 2
+n(zy 1 — Rxy o+ aoc2°) (05 + 0@ 124 3 + 05T 9% 4+ + 03Tt aTt q 2),

where i, = E[Vor], 02 = Var[do], 0 < k < d and n = 3/(ac?).

The simplest special case of (41) that still possesses dynamics is obtained when all Jg;, = 0,
1 < k < d, that is, when the forecasting function is purely biased, i.e. fi(?y) = Jgo. In
this simplest case, the LTL reduces to the linear system

Rxy = o + 7708 (xt,l — Rxy 5+ aaQ,zS) ) (42)

This simplest case already provides important economic intuition about the (in)stability
of the (fundamental) steady state in an evolutionary system with many trader types.
When there is no intrinsic mean bias, that is when py = 0, and the risk premium is zero,
ie. 2° = 0, the steady state of the LTL (42) coincides exactly with the fundamental,
i.e. ¥ = 0. When the mean bias and risk premium are both positive (negative) the
steady state deviation z* will be positive (negative) so that the steady state will be above
(below) the fundamental. The natural bifurcation parameter tuning the (in)stability of
the system is a = nog = B0 /ac?. We see immediately that instability occurs if and only
if v increases beyond the bifurcation point a. = 1. Hence this simple case already suggests
forces that may destabilize the evolutionary system: an increase in choice intensity ( for
evolutionary selection, a decrease in risk aversion “a”, a decrease in conditional variance
of excess returns o2, or an increase in the diversity of purely biased beliefs 02 can push «
beyond a, and set off instability of the (fundamental) steady state.
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The LTL (42), obtained for the simplest case where all trader types are purely biased, is a
linear system, which is either globally stable or globally unstable. Except for the hairline
case at the border of stability, & = 1, bounded solutions not converging to the steady state
do not exist in this simplest case. When lags are included in the linear forecasting rules,
the LTL (41) becomes a nonlinear system exhibiting much richer dynamical behavior. We
consider a simple but typical example, with linear forecasting rules with three lags, i.e.

(o) = Yoo + Y0121 + Voax1—2 + Jogmi—3. (43)

With three lags in the linear forecasting rule, the corresponding LTL becomes a 5-D
nonlinear system:

Rxy = po+ piTi—1 + po®i—o + p3Ti—3 (44)

+n(2i—1 — Roy_o + ac2®)(0f + 01041743 + 0524 _oTs_s + Toxi_374_5). (45)

We will discuss the most important generic and persistent features of the dynamical
behavior of this 5-D LTL; higher dimensional versions of the LTL exhibit similar dynamical
behavior.

First we investigate steady states and their stability. Figure 3 shows a 2-D bifurcation
diagram in the (7, 1) parameter plane, where p; represents the mean of the first order
stochastic trend variable ¥o; in the forecasting rule (43). When the mean bias pg = 0, with
o the mean of the constant ¥o in the forecasting rule (43), and the risk premium is also
zero, i.e. ao?z® = 0, the LTL is symmetric w.r.t. the fundamental steady state and the
LTL is therefore non-generic. In the symmetric case (figure 3a), between the Hopf, period
doubling (PD) and pitchfork (PF) bifurcation curves the fundamental steady state is
unique and stable. As the parameters cross the PF curve, two additional non-fundamental
steady states are created. Other routes to instability occur when crossing the PD curve,
where the fundamental steady state becomes unstable and a (stable) 2-cycle is created,
or when crossing the Hopf curve, where the fundamental steady state becomes unstable
and a (stable) invariant circle with periodic or quasi-periodic dynamics is created. The
pitchfork bifurcation curve is non-generic and only occurs in the symmetric case. When
the symmetry is broken by a non-zero mean bias pg # 0.1, as illustrated in figure 3b
for puy = 0.1, the PF curve disappears and breaks up into two generic co-dimension one
bifurcation curves, a Hopf and a saddle-node (SN) bifurcation curve. When crossing the SN
curve from below, two additional steady states are created, one stable and one unstable.
Notice that, as illustrated in figure 3¢, when the perturbation is small as for py = 0.1,
the SN and the Hopf curves are close to the PF and the Hopf curves in the symmetric
case. In this sense the bifurcation diagram depends continuously on the parameters, and
it is useful to consider the symmetric LTL as an “organizing” center to study bifurcation
phenomena in the generic, non-symmetric LTL.

The most relevant case seems to be the case when the mean p; of the first order coefficient
Vo1 in the forecasting rule (43) satisfies 0 < p; < 1. In that case, as the structural parame-
ter 1 increases, the (fundamental) steady state loses stability through a Hopf bifurcation.
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PF

Sym 1:1

Hopf

Hopf

-2t

-3r Tl

-4

-4 L L
0.8 1
eta

L L L L
12 0.2 0.4 0.6

(c) non-symmetric and symmetric cases

The effect of the perturbation on the bifurcation diagram
2 T T T T

Hopf q

-4 L L L L I I

Figure 3: Bifurcation diagrams in the (n, 1) parameter plane for LTL (44), where py
represents the mean of the first order stochastic trend variable ¥y, in the forecasting rule
(43). For jig = ac® = 0, with pg the mean of the constant 9oy in the forecasting rule (43),
the LTL is symmetric and thus non-generic; when pg # 0 the LTL is non-symmetric and
generic. The diagrams show Hopf (H), period doubling (PD), pitchfork (PF) and saddle-
node (SN) bifurcation curves in (n, 1) parameter plane, with other parameters fized at
R=101,2°=0, po=pu3s =0, og =01 =02 =1 and o3 = 0. Between the Hopf and PD
curves (and the PF curve when pg = 0) there is a unique, stable steady state. This steady
state becomes unstable when crossing the Hopf or the PD curve. Above the PF curve or
the SN curve the system has three steady states. The PF curve is non-generic and only
arises in the symmetric case with mean bias pg = 0. When the symmetry is broken by

perturbing the mean bias to pg = —0.1, the PF curve ‘breaks’ into generic Hopf and SN
curves.
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Figure 4 illustrates the dynamical behavior of the LTL as the parameter n further in-
creases. Immediately after the Hopf bifurcation, for 1.1 < n < 1.5 (figures 4a-c), periodic
or quasi-periodic dynamics on a stable invariant circle occurs. After a quasi-periodic Hopf
bifurcation, for n = 1.51 and n = 1.52, (quasi-)periodic dynamics on a stable invariant
torus occurs. Recall from the Newhouse-Ruelle-Takens phenomenon that C?-close to a
system with a quasi-periodic Hopf bifurcation systems with strange attractors exist. The
numerical observation that a quasi-periodic Hopf bifurcation arises in our LTL together
with the LTL convergence theorem therefore suggests that our evolutionary systems with
many trader types can exhibit strange attractors. Figures 4f-g show the unstable mani-
fold of a periodic saddle point; the curling shape of the unstable manifold suggest near
homoclinic bifurcations and breaking up of the invariant torus into a strange attractor.
Figures 4h-m show that increasing 7 further leads to a bifurcation route to chaos and
strange attractors culminating into a ‘large’ strange attractor for n = 1.6. In particular,
figure 4 presents numerical evidence of the occurrence of what Brock and Hommes (1997)
called a rational route to randomness, that is, a bifurcation route to strange attractors
as the intensity of choice to switch forecasting strategies increases. If such rational routes
to randomness occur for the LTL, the LTL convergence theorem implies that in evolu-
tionary systems with many trader types rational routes to randomness occur with high
probability.
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Figure 4: Attractors in the phase space for the 5-D LTL with parameters R = 1.01,
22 =0, =0,pu =1, uo =pu3 =0, 0p =01 =09 = 1 and o3 = 0: (a-c) immediately
after the Hopf bifurcation periodic or quasi-periodic dynamics on a stable invariant circle
occurs; (d-e) after a quasi-periodic Hopf bifurcation (quasi-)periodic dynamics on a stable
invariant torus occurs; (f-g) the unstable manifold of a periodic saddle point; the curling
shape of the unstable manifold suggest near homoclinic bifurcations and breaking up of
the invariant torus into a strange attractor; (h-m) bifurcation route to chaos and strange
attractors culminating into a ‘large’ strange attractor for n = 1.6.
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7 A LTL with noise

This section investigates some of the time series properties of a LTL buffeted with dy-
namic noise. The purpose of this section is to investigate whether an LTL with noise can
generate some of the stylized facts observed in financial returns data, in particular volatil-
ity clustering and long memory. We emphasize that our 'calibration’ exercise here is just
intended to be suggestive that there is enough promise here to suggest potential payoff
to doing a more serious study in future research. That more serious study must deal with
the issue of the number of “free parameters” relative to the number of moments being
matched. See Kurz and Motolese (2001, pp. 526-532) for a discussion of this problem in
their context. A more serious study must also deal with the issues raised by Hansen and
Heckman (1996). All this is beyond the scope of the current paper.

Adding noise to the LTL (41) derived from linear forecasting rules (40) may sometimes
lead to explosive time paths. Intuitively this is to be expected, since for linear forecasting
rules predictions are always proportional to the deviation from the fundamental price
and there is no ‘stabilizing force’ keeping asset prices bounded. Therefore, we consider
a simple example of an LTL derived from a class of nonlinear forecasting rules with the
property that for large deviations from the fundamental price the nonlinear forecasting
rule will predict that price will return close to the fundamental price, i.e. for |x; | large
the prediction will be close to 0. Including such a stabilizing force in the forecasting rule
will ensure that even in the presence of noise all simulated time paths remain bounded.
The idea of a stabilizing force in heterogeneous agents modeling is not new. For exam-
ple, De Grauwe et al. (1993) use a stabilizing force in their exchange rate models with
chartists and fundamentalists. Arthur et al. (1997) and LeBaron et al. (1999) introduce a
stabilizing force in their artificial SFI stock market by assuming that chartists condition
their technical trading rules upon market fundamentals such as the price/dividend ratio.
Gaunersdorfer and Hommes (2000) have recently investigated a simple adaptive belief
system with a stabilizing force, namely an adaptive belief system with fundamentalists
versus trend followers who condition their rule upon the price deviation from the funda-
mental price. It should be emphasized that in all these examples, the stabilizing force only
becomes important when prices move far away from the fundamental price. As long as
prices are close to the fundamental, dynamics are driven by noise and evolutionary forces.
Hommes (2001) interprets the stabilizing force due to conditioning of technical trading
rules upon market fundamentals as a transversality condition in a heterogeneous world,
allowing for temporary bubbles but not for indefinite and unbounded price bubbles.

Consider the following nonlinear prediction rule:

3 5
Vo12¢—1 + Voox;_q + Voszy_yq

fe(Wo) = f(x-1, Y01, V02, Vo3) = 1+28

(46)
Here ¥y; is normally distributed, with mean p; and standard deviation o;, j = 1,..,3.

Notice that for small deviations from the fundamental, i.e. for z;_; =~ 0, the nonlin-
ear forecasting rule (46) approximates the linear pure trend following forecasting rule
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f(xi 1,901, P02, 903) = o121, whereas for large deviations |z; 1| from the fundamental
f(xt-1, Y01, Vo2, Yo3) ~ 0.

With beliefs randomly drawn from the class of forecasting rules (46), the Large Type
Limit evolution map (with noise) becomes

(11 — Rxo) (012123 + 09133 + 032725)

ey 4 pord + pzry
R (14 28) (1 + 25)

R(1 + 2%)

¢($1;x27$3;)\>ﬂ) = +

(47)
Since the nonlinear forecasting rule (46) has only one lag, the LTL is a 3-D system. Here A
denotes the totality of structural parameters, in this case A = (R, n), while 1 denotes the
belief parameters: p = (1, o, i3, 01, 02, 03). The noise ¢ is normally distributed around 0,
with standard deviation o..

In all time series simulations below, the following parameters have been fixed:®

M1 = 0999,,&2 = 0.1,/13 = —1,0'1 = 1,0’2 = 5,0’3 =10
(48)
n=>5,R =1.00038, z° = 0,0, = 0.008.

Figure 5 compares time series properties of 20 years of daily S&P 500 market index data,
January 1, 1980 — May 10, 2000 (5312 observations)? to noisy LTL generated time series.
Recall from (11) that z; is the deviation from a benchmark fundamental p; = p* = g/r.
A LTL returns series r; is thus given by

_ bt~ Pt T T

— , (49)
Di—1 Ty +p*

Tt

where p* is the fundamental price and the deviation z; from the fundamental was gener-
ated by the noisy LTL (47). In the simulations we have normalized the fundamental price
p*=1.

The simulated time series of returns clearly exhibits volatility clustering, similar to that
observed in the S&P 500 returns. The distributions of the simulated returns are also
comparable to the empirical distribution of S&P 500 returns. Simulated price deviations
x¢_1 show persistent deviations from the benchmark fundamental price p*. Autocorrelation
plots of simulated returns and squared returns (bottom left) as well as autocorrelation
plots of simulated returns and absolute returns closely match the autocorrelation patterns

in the S&P 500 data.

8R=1+4r=1.00038 has been chosen such that, with 250 trading days per year, the yearly compounded
return of the risk free asset will be 10%.

9The October 1987 crash on October 19, 1987, and the day before and the day after, with returns
of -5.2%, -20.4% and +5.3% have been excluded from the data analysis since our aim is not so much to
explain the extremes but rather some typical stylized facts. In particular, the autocorrelation pattern of
the squared returns changes somewhat and is less persistent when the crash is included.
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Figure 5: Time series of simulated returns (top right) matching observed volatility clus-
tering in the daily SEP 500 returns (top left), January 1, 1980 — May 10, 2000 (5312
observations; crash excluded). The distributions (middle left) of the simulated returns to-
gether with the empirical distribution of SESP 500 returns. Simulated price deviations x;_,
(middle right) show persistent deviations from the benchmark fundamental price p* (corre-
sponding to price deviation x = 0). Autocorrelation plots of simulated returns and squared
returns (bottom left) as well as autocorrelation plots of simulated returns and absolute
returns (bottom right) closely match the autocorrelation patterns in the SEP 500 data.
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In order to understand the time series properties of the noisy LTL it is useful to study
the properties of the nonlinear forecasting function (46), with coefficients 9,; equal to
their sample means ;, j = 1,2,3 as in (48). Figure 6 shows the graph of the nonlinear
forecasting function f(z:—1) in (46) as well as the graph of f(z:—1) — x;—1. The latter
graph shows that the nonlinear forecasting function has multiple steady states, namely
three stable steady states at x = 0, x & —0.29 and x ~ 0.29 and two unstable steady
states at © &~ —0.11 and = = 0.11. Recall that in the time series simulations in figure 5,
the fundamental price was normalized to p* = 1. Hence, the nonlinear forecasting function
with coefficients at the sample means predicts that there are three stable price levels, one
at the fundamental price level, one about 30% overvalued and one about 30% undervalued.
These three stable price levels can still be recognized from the simulated price deviation
series of the LTL with noise in figure 5 (middle right). Notice that the noise level in these
simulations is small (g, = 0.008). The changes in price levels are triggered by noise, but
reinforced by trend following trading rules. The occurrence of volatility clustering may
now be understood as coming from two sources: (i) large price changes when prices move
from one locally stable price level to another; and (ii) large (small) relative price changes
when the price level is low (high). Multiple stable steady states of the nonlinear LTL thus
lead to persistent price deviations from the fundamental and clustered volatility and long
memory in asset returns.

Our LTL with noise is an extremely simple 3-D nonlinear system matching the auto-
correlation patterns of returns, squared returns and absolute returns of S&P 500 daily
data fairly well. In particular, this simple LTL has little or no linear predictability, since
autocorrelations of returns are close to 0 at all lags. But if our simple LTL would be an
accurate description of a real financial market, wouldn’t there be nonlinear structure left
that could be exploited by smart arbitrage traders? Stated differently, is a financial mar-
ket described by our LTL informationally efficient or do prices and asset returns exhibit
forecastable and exploitable nonlinear structure?

In order to shed some light on this question, figure 7 illustrates the application of one of
the standard nonlinear predictions methods, nearest neighbor forecasting, to the returns of
both the S&P 500 series and our simulated LTL with noise!?. Nearest neighbor forecasting
looks for past patterns in the data that are close to the most recent pattern, and then
yields as the prediction the average of the next value following all nearby past patterns.
It follows essentially from Takens’ embedding theorem (Takens (1981)) that this method
yields good forecasts for deterministic chaotic systems. Here we employ a forecasting
algorithm that has strong power to distinguishing between low dimensional deterministic
structure and high dimensional stochastic models, as proposed in Casdagli (1991). This
algorithm is used to investigate whether our simple LTL buffeted with small noise still
exhibits low dimensional structure that could be exploited for out of sample forecasting.
We refer to Kantz and Schreiber (1997) for an excellent recent introduction and extensive
discussion of nonlinear time series analysis and nonlinear forecasting methods. The plots
in figure 7 show the average one step ahead forecasting error as a function of the number

10We would like to thank Sebastiano Manzan for providing these figures.
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Figure 6: Top: graph of the nonlinear forecasting function f(x; 1) in (46); Bottom: graph
of f(z¢_1) —xr_1. The bottom graph shows that the nonlinear forecasting function has five
steady states, namely three stable steady states at x = 0, x = —0.29 and x ~ 0.29 and two
unstable steady states at x ~ —0.11 and x ~ 0.11.
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Figure 7: Nearest neighbors forecasting method applied to SEP 500 returns (left panel) and
simulated LTL returns (right panel). Both plots show the one step ahead forecasting errors
as a function of the number of neighbors used for forecasting, averaged over 3000 out of
sample forecasts, with embedding dimension 3. A horizontal line at height 1 corresponds
to the forecasting error from the mean predictor. The plots show that there is hardly any
nonlinear forecastability compared to the mean predictor. The simulated returns series
from our low dimensional LTL buffeted with dynamic noise thus contains little or no
nonlinear structure that could easily be exploited for forecasting.

of neighbors used. The embedding dimension, i.e. the number of time lags, was 3 for both
series. The time series were divided into a fitting set of 2300 observations and a testing
set of the remaining 3000 observations, so that the one step ahead forecasting errors were
averaged over 3000 out of sample forecasts. The horizontal line at height 1 represents the
forecasting error from the mean predictor, which would be the optimal forecast for an
IID stochastic time series. For a deterministic chaotic system, much smaller forecasting
errors typically occur when the number of neighbors is small. As the number of neighbors
becomes large, the forecasting method converges to the mean predictor and the forecasting
error approaches 1. A low dimensional chaotic time series is therefore characterized by
an increasing plot with small forecasting errors when the number of neighbors is low and
larger forecasting errors, possibly approaching 1, when the number of neighbors increases;
see for example Casdagli (1991, p.309 figure 1). In contrast, both plots in figure 7 are
essentially horizontal and close to 1, thus showing little forecastability compared to the
mean predictor. We therefore conclude that the S&P 500 returns as well as the simulated
returns of our simple 3-D LTL system with noise show little or no evidence of nonlinear
predictability. Our simple LTL system thus captures the inherent unpredictability typically
observed in real financial returns series. In a LTL world nonlinear structure would be
difficult to exploit and the market is close to being efficient.
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8 Concluding Remarks

We have presented a theoretical framework for an evolutionary system with many different
trader types. Our notion of Large Type Limit (LTL) describes the average dynamical be-
havior in an evolutionary system with many competing different trader types. All generic
and persistent dynamical features occurring in an LTL also occur, with probability ar-
bitrarily close to 1, in the corresponding evolutionary model with many trader types.
The LTL framework can be applied to any class of forecasting rules indexed by a finite
dimensional vector designating the type.

Within this theoretical framework, conditions can be obtained for which asset prices will
reflect economic fundamentals as well as conditions leading to deviations from a RE
benchmark fundamental and excess volatility. In particular, an increase in the “intensity
of adaptation” to switch prediction strategies and an increase in the dispersion of potential
belief types can lead to emergence of complicated dynamics for the trajectory of deviation
from RE for asset returns. These dynamics are suggestive of complicated dynamics for
volatility, and volume. Our many trader type evolutionary system buffeted with noise,
are consistent with important observed stylized facts such as unpredictability of returns,
fat tails, clustered volatility and long memory. In particular, a simple version of our LTL
buffeted with noise is able to match the temporal correlation structure of returns, absolute
returns and squared returns of 20 years of daily S&P 500 data.

Our theoretical framework may be useful to address these questions also empirically. The
RE fundamental benchmark is nested as a special case within the general model, and
our framework may thus be used to test whether the extra parameters are empirically
relevant. See Baak (1999) and Chavas (2000) for empirical evidence of heterogeneity and
the presence of non-rational traders in the hog and beef markets. Our theoretical frame-
work is also useful for experimental laboratory testing of the expectations hypothesis. By
controlling the RE benchmark fundamental in the laboratory, it can be tested whether
experimental markets will or will not deviate from the RE benchmark fundamental; see
Hommes (2001) for some first experimental results in this direction. Experimental as well
as empirical testing of our LTL theory will be left for future work.

At the risk of repeating ourselves, we explain why we have chosen to work in the space
of deviations about the fundamental rather than some other space. The recent article by
Sobel (2000) reviews the large literature in economics that attempts to model how people
learn. He states that “Models necessarily must specify what agents initially know and how
they build on this knowledge” (Sobel (2000, p. 256)). He points out in a footnote that
much modeling in economics of the “inductive” type that builds upon patterns extractible
from accumulating data that the system co-creates is way too slow relative to what real
humans glean from living in their system. Our work attempts to capture some of this
power of real humans by positing that our humans understand their system well enough
to compute the fundamental equilibrium, but they are wary about dynamical deviations
from that fundamental, caused, perhaps, by deviations of other agents in the economy,
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and, hence, the dynamics of our systems are in units of deviations about the fundamental.
In particular, when in our evolutionary setting the intensity of choice to switch strategies
is high, quick changes of beliefs and large changes of asset prices co-evolve. Although we
believe that our choice of state space for the dynamics of learning helps remove some of the
charges of “ad hoccery” and “too mechanical” against theories of learning in economics,
there are still major problems.

For example, a powerful route to learning in real financial markets which is ignored in
this article is the learning that occurs while trading what Kurz and Wu (cf. Kurz (1997),
Chapter 7) call Price Contingent Claims (PCC’s). If enough of these instruments are
present, trading them can place bounds on the amount of belief diversity that can exist
and, perhaps, even eliminate it in some cases. Of course a tension may arise if too much
diversity is eliminated (or to put it more accurately if too much of any type of reasons for
trading is eliminated) because it costs real resources to set up and operate an organized
trading market for a PCC. One can think of a PCC as a generalized derivative security.
Put options and call options are examples of derivative securities. Hence if there are “too
many” PCC’s in the sense that trading volume in some of the PCC’s dries up, then some
PCC trading markets may be forced to go out of business. So there may well be a type of
“meta equilibrium” that structures the number of trading markets that could moderate
belief diversity and the amount of belief diversity and other sources of demand for trading
that is needed to support the operating costs of such markets.

Hence, at this stage, we stress that the asset markets used in this paper should be viewed
as primarily a way of illustrating the technique of LTL analysis. Much more attention to
institutional modeling such as modeling the incentives to form PCC trading markets, the
cost structure of such markets, the instruments to raise revenue for operating expenses of
each such market, and so on, before we can lay any claim to realism of the asset markets
treated in this paper. Indeed, a promising research program that we are undertaking is
the investigation of the impact on dynamics studied in this paper when PCC’s are added.

The concept of LTL developed in this paper is a general tool that can be used to enhance
the tractability of models with large numbers of heterogeneous learning agents in many
different contexts. While we have developed LTL theory in this paper in an illustrative
financial model where beliefs differ only across conditional means of returns, the same
idea can be applied to other modeling contexts. For example, consider models with het-
erogeneity in other dimensions besides beliefs on conditional means. An example of such
work is Chiarella and He (1999). Their Assumptions Al and A2 place a structure of be-
liefs on both conditional mean and conditional variance heterogeneity which is expressed
in deviations form from the fundamental baseline. Hence their model appears especially
amenable to LTL type analysis.

Another source of examples, is models with a hierarchy of dynamics from fast to slow where
the heterogeneity of beliefs and learning is placed upon the slow dynamics. For an example
of fast /slow dynamics, consider the paper of de Fontnouvelle (2000). Here the context is a
standard noisy rational expectations asset pricing framework at the fast dynamical level.
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But agents in the model have a choice of purchasing an expensive more accurate signal
(predictor) on the future earnings of the asset or using publically available information that
costs nothing. Belief heterogeneity is placed upon the “slow hyperdynamics.” Here agents
must predict what fraction of their rivals purchase the expensive signal . LTL modeling as
in this paper could be adapted to do that and help produce a model that is analytically
tractable as we have shown here. We leave all such extensions and experimental and
empirical testing of the evolutionary LTL framework for future work.
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