
 
 
 
 
 
 
 

Macroeconomics and Model Uncertainty 

 

 

 
William A. Brock and Steven N. Durlauf 

 

October 12, 2004 

 

 

 

 

 

 

 

 

 

JEL Classification Codes: C52, E6 

Keywords: model uncertainty, robustness, stabilization policy, ambiguity aversion, 

design limits 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6973275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

Macroeconomics and Model Uncertainty 
 

Abstract 

 

This paper provides some reflections on the new macroeconomics of model uncertainty. 

Model uncertainty is argued to have important positive and normative implications for 

macroeconomic analysis. We provide a general discussion of the relationship between 

macroeconomic models that assume a specific model and those that do not and provide 

some examples from the existing literature.  Our discussion also provides some 

suggestions on directions for future research in this area. 
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“The owl of Minerva begins its flight only with the onset of dusk.” 

 

G. W. F. Hegel, Elements of the Philosophy of Right 

 

I. Introduction 

 

 This paper provides some reflections on the new macroeconomics of model 

uncertainty. Research on model uncertainty represents a broad effort to understand how 

the ignorance of individuals and policymakers about the true structure of the economy 

should and does affect their respective behaviors.  As such, this approach challenges 

certain aspects of modern macroeconomics, most notably the rational expectations 

assumptions that are generally made in modeling aggregate outcomes.  Our goal is to 

explore some of the most interesting implications of model uncertainty for positive and 

normative macroeconomic analysis.  Our discussion will suggest directions along which 

work on model uncertainty may be fruitfully developed; as such it is necessarily 

somewhat speculative as we cannot say to what extent these directions are feasible. 

Our interest in model uncertainty is certainly not unique; in fact, within 

macroeconomics, studies of model uncertainty have become one of the most active areas 

of research.  Much of this new work was stimulated by the seminal contributions of 

Hansen and Sargent of which (2001,2003a,2003b) are only a subset of their 

contributions.  Hansen and Sargent’s work explores the question of robustness in 

decisionmaking. In their approach, agents are not assumed to know the true model of the 

economy, in contrast to standard rational expectations formulations. Instead, agents are 

modeled as possessing the more limited information that the true model lies within a 

model space that is defined as all models local to some baseline. This approach in turns 

leads to their adoption of minimax methods for decisionmaking; an agent chooses an 

action that works best under the assumption that the least favorable model (for the agent) 

in the model space is in fact the true one.  This approach has been shown to have 

important implications for the equilibrium trajectory of macroeconomic aggregates.    

 Our discussion will consider both local and nonlocal forms of model uncertainty.  

Thus for much of our analysis, rather than consider spaces of models defined relative to 
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some baseline, we consider the incorporation of model uncertainty into environments 

where the potential models are quite different.  As such, this approach will be 

complementary to robustness analyses.  We do not claim our approach is better than the 

robustness one; assumptions about the type of model uncertainty that is present cannot be 

assessed outside the objectives of the researcher and the particular economic environment 

under study.  

 Model uncertainty has also become a major area of research in statistics and 

econometrics. Draper (1995) is a conceptual analysis that lays out many of the 

implications of model uncertainty for data analysis.  As Draper observed, many of the 

implications of model uncertainty for empirical practice are present in Leamer (1978) and 

had (and still have) yet to be fully integrated into empirical work.  One area where 

statistical methods that account for model uncertainty are now well developed is the 

determination of regressors in linear models.  Raftery, Madigan and Hoeting (1997) and 

Fernandez, Ley, and Steel (2001a) present a range of methods for implementing 

empirical analyses that account for uncertainty in control variable choice in evaluating 

regression coefficients.   

These tools have been used in a range of empirical contexts in economics, 

especially economic growth; contributions include Brock and Durlauf (2001), Brock, 

Durlauf and West (2003), Doppelhofer, Miller, and Sala-i-Martin (2000), Fernandez, Ley 

and Steel (2001b).  This work has shown that many of the claims in the empirical growth 

literature concerning the predictive value of various aggregate variables in cross-country 

growth regressions does not hold up when one accounts for uncertainty in the control 

variables that should be included in the regression. On the other hand, this approach has 

also strengthened certain claims; for example, the negative partial correlation between 

initial income and growth, also known as β − convergence, has proven strongly robust 

with respect to variable choice, see Durlauf, Johnson, and Temple (2004) for a summary 

of this evidence. 

The growing class of theoretical and empirical studies of model uncertainty does  

not lend itself to ready summary. Our intent in this essay is to provide a discussion of the 

broad themes that one finds in this literature. Section 2 of the paper describes the 

relationship between model uncertainty and total uncertainty with respect to predicting an 
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unobserved variable such as a future macroeconomic aggregate.  Section 3 discusses 

some implications of model uncertainty for macroeconomic theory.  Section 4 discusses 

the relationship between model uncertainty and policy evaluation. Section 5 provides an 

extended example of how model uncertainty can be incorporated into an abstract 

modeling framework and how its presence affects the conclusions one draws the model.  

Section 6 offers some conclusions.  

 

 

2. Model uncertainty and total uncertainty 

 

a. general ideas  

 

 In this section, we consider the ways in which model uncertainty affects the 

formal description of uncertain economic outcomes.  Our goal in this section is to 

integrate model uncertainty into standard characterization of uncertainty.  At an abstract 

level, we work with  

 

θ =vector of outcomes of interest  

d =data representing history of the economy 

η =innovations that affect outcomes; these are independent of  d

m=model of the economy, element of model space M 

 

Conventional macroeconomic modeling may be abstractly understood as 

producing probability descriptions of the vector θ  given a model of the economy, its 

history, and various shocks. Abstractly, one can think about a data generating process 

 

 ( ),m dθ η=  (1) 
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For our purposes, we assume that the probability measure describing η  is known and that 

the model  is associated with a set of parameters m mβ .  Hence, one can think of a given 

model producing probability statements about θ  of the form 

 

 ( ), ,mm dµ θ β  (2) 

 
The uncertainty associated with this probability is fundamental as it is exclusively driven 

by lack of knowledge of η .  

As a description of the uncertainty about θ , (2) fails to properly account for the 

degree of uncertainty that a modeler faces at time 1t − . The first level at which this is so 

is that the parameter vector mβ  is generally not known.  Hence, it is more natural to 

describe uncertainty about outcomes via  

 

 ( ),m dµ θ .  (3) 

 

In contrast to (2), the probabilities about outcomes described by (3) are conditioned only 

on the model and the available data.  In standard (frequentist) practice, the data are used 

to construct estimates of mβ .  The analysis of the differences between (3) and (2) is an 

important question in the forecasting literature:  West (1996) is a well known example of 

an analysis that considers how forecast distributions need to account for parameter 

uncertainty. For questions of using conditional probabilities to compare policies, on the 

other hand, parameter uncertainty is not commonly evaluated, exceptions whose findings 

call into question this standard practice include Giannoni (2001) and Onatski and 

Williams (2003). 

Model uncertainty extends this type of reasoning to eliminate the assumption that 

a modeler knows the form of the true data generating process.  In other words, in 

evaluating model uncertainty, one attempts to construct  

 

 ( )dµ θ  (4) 
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How does one do this? The key insight, initially recognized in Leamer (1978) and 

subsequently developed in Draper (1995), is that model uncertainty may be treated like 

any other unobservable. Specifically, one thinks of the true model as lying in some space 

M  over which probabilities are defined. The probability assigned to an element m of M  

may be thought of as the probability that model m is the true one.1  Under the assumption 

that the space is countable, one uses Bayes’ rule to eliminate the dependence of (3) on a 

specific model, thereby producing (4).  Formally,  

 

 ( ) ( ) ( ),
m M

d d mµ θ µ θ µ
∈

= m d∑  (5) 

 

This conditional probability introduces a new argument into macroeconomic analysis, 

( )m dµ , the probability that a given model is the correct one given the available data.  

By Bayes’ rule, this probability in turn can be decomposed as 

 

 ( ) ( ) ( )m d d m mµ µ µ∝  (6) 

 

where  means “is proportional to.” The probability of a model given the data thus 

depends on two factors: 

" "∝

(d mµ ) , the probability of the data given the model and ( )mµ , 

the prior probability of the model. The first term summarizes the implications of the data 

for the relative likelihoods of each model; the second term embodies the prior 

information that exists on which model is correct. 

 

b. macroeconomics and forecast errors 

 

 These calculations suggest a possible hierarchy for understanding the uncertainty 

that exists for macroeconomic outcomes, an argument made in Brock, Durlauf, and West 

                                                 
1We will later address some issues that arise when none of the models in the space is the 
correct one. 
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(2004).  Let the vector  denote a macroeconomic outcome of interest. Suppose that 

the data generating process for this vector depends on information available at time t, , 

and 

1tY +

td

1tη + , information that is realized between 1t +  and . In parallel to eq. (1), the data 

generating process for  is  

t

1tY +

 

 ( )1 1, ,t t tY m d mη β+ +=  (7) 

 
for some model m.  This data generating process suggests different levels of prediction 

errors.  The intrinsic uncertainty that is associated with future data realizations produces 

prediction errors of the form 

 

 ( )1 1 , ,t t tY E Y d m mβ+ +−  (8) 

 

Parameter uncertainty leads to a definition of prediction errors when predictions are 

conditioned only on the model and data, i.e.  

 

 ( )1 1,t t tY E Y d m+ +−  (9) 

 

Finally, model uncertainty means that prediction errors should be defined by  

 

 ( )1 1t tY E Y d= +− t  (10) 

 

c. implications for empirical practice 

  

The probability statements we have described provide predictive statements about 

unknowns when one only conditions on the data. As such, when applied to data analysis, 

they represent a different way of reporting empirical results. One way to think about the 

bulk of standard empirical practice is that it involves reporting results that are model-

specific whereas the analysis we have provided argues that these probability statements 
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should integrate out dependence on a particular model.  What does this mean in practice?  

For a Bayesian, the answer is straightforward, since Bayesian statistics is based on the 

reporting of conditional probability statements that map knowns (the data) to unknowns 

(θ  or ). Accounting for model uncertainty is straightforward for Bayesians since one 

simply averages over the model-specific probabilities using posterior model probabilities. 

For frequentists, the answer is less clear since frequentist statistics reports probabilities of 

knowns (the data or transformations of the data, e.g. a parameter estimate) conditional on 

unknowns (the true parameter, for example.)   

1tY +

That being said, one can certainly construct frequentist estimates that account for 

model uncertainty.  Doppelhofer, Miller and Sala-i-Martin (2000) do this in the context 

of cross-country growth regressions; Brock, Durlauf and West (2003) argue that this is 

possible generally.  Suppose that one has a frequentist model-specific estimate m̂θ . In 

principle, one can always construct 

 

 ˆ ˆ ˆm m
m M

pθ θ
∈

= ∑  (11) 

 

where  is a proxy for a posterior model probability. One candidate for these proxies is 

a BIC-adjusted (normalized) likelihood statistic for each model. This approach may be 

interpreted as treating each model as equally likely. Alternatively, one can modify these 

adjusted likelihoods to allow for greater prior weight for certain models.  Some authors 

have made proposals to do this. Doppelhofer, Miller, and Sala-i-Martin (2000), for 

example, argue that less complex models deserve greater prior weights. Brock, Durlauf, 

and West (2003) in contrast argue that economic theory should be used to account for 

similarities in the model space when assigning probabilities.  This is an inadequately 

researched area. 

ˆmp

 For a Bayesian, these frequentist calculations are incoherent as they mix 

probability statements about observables and unobservables.  However, we do not regard 

this as an important criticism with respect to empirical work.  We believe that what is 

critical in an empirical exercise is that a researcher establishes clear procedures for 
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analyzing data and that the procedures be interpretable relative to the objective of the data 

exercise.  This “pseudo-frequentist” approach does this. 

  Our discussion of empirical practice has been somewhat too facile in that it has 

not addressed the issue of how to interpret model averaging results when the true model 

is not an element of the model space; Bernardo and Smith (1994) call this the M-open 

case.  There is an extensive literature on maximum likelihood estimation of misspecified 

models which suggests that for model weighting schemes such as one based on BIC-

adjusted likelihoods, asymptotically, the averaging procedure will place all weight on the 

model that in a Kullback-Leibler sense best approximates the data, see Brock and Durlauf 

(2001) for more discussion.  

 Further, our analysis has treated the model space as fixed.  Of course, part of the 

evolution of empirical work is defined precisely by the evolution of the models under 

consideration.  The question of how inferences will evolve in response to an evolving 

model space has yet to be researched as far as we know, despite its obvious importance. 

 

 

3. Implications for macroeconomic theory 

 

 In this section we identify some areas where model uncertainty may prove to have 

interesting implications for macroeconomic theory. In particular, we believe that model 

uncertainty raises a number of issues related to modeling individual behavior that can 

enrich standard macroeconomic formulations. 

 

a. expectations 

 

 Model uncertainty calls into question the ways in which expectations are 

formulated in macroeconomic theory.  The dominant rational expectation paradigm in 

macroeconomics assumes that agents possess common knowledge of the model of the 

economy in which they operate. Efforts to generalize allow for learning, well surveyed in  

Evans and Honkpohja (2001), commonly assume that the structure of the economy is 

known even if the values of the parameters of the structural model need to be learned.  
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Model uncertainty introduces issues of expectations formation that are quite different 

from the standard learning paradigm.  One reason, recognized by Hansen and Sargent in 

(2003a,b) and elsewhere, is that model uncertainty raises questions of how one even 

defines rational expectations. My beliefs about the model of the economy will depend on 

what your beliefs are etc., which requires that I have information about your prior about 

models, etc. 

  The incorporation of model uncertainty in macroeconomic modeling can have 

important implications for understanding the historical record.  Cogley and Sargent 

(2004) explore the implications of theory uncertainty for understanding Federal Reserve 

behavior.  They show that uncertainty on the part of the Fed in determining the correct 

model of inflation can explain monetary policy during the 1970’s even when evidential 

and theoretical support for the conventional Phillips curve had begun to disintegrate.  

If one treats parameter uncertainty as a form of model uncertainty (albeit of a 

localized nature), one can further this claim.  Weitzman (2004) shows how a range of 

asset price puzzles, notably the equity premium puzzle and excess volatility of stock 

prices may be resolved using parameter uncertainty. Specifically, he shows that if 

economic actors did not know the parameters of the relevant dividends process for stock 

returns and instead, were learning about the parameters following Bayesian updating 

rules, these puzzles no longer exist.  Weitzman’s results are very striking because they so 

strongly reverse various claims about the inadequacy of dynamic representative agent 

general equilibrium modeling for understanding asset markets simply by considering how 

agents will behave in the presence of a narrow type of model uncertainty.  

Further, model uncertainty introduces two additional factors in the mapping of 

individual characteristics into equilibrium aggregate outcomes: the formation of initial 

beliefs and the ways in which these initial beliefs are updated.  As indicated by our 

analysis, aggregate equilibria will depend on the distribution of ( )i mµ  across .  One 

can easily imagine cases where this distribution is nontrivial.  For example, in transitions 

for high inflation to low inflation regimes, it seems natural to expect substantial 

heterogeneity in beliefs as to whether the change has occurred.  This is the sort of event 

that available data cannot adjudicate. And unlike cases in which individuals have 

heterogeneous valuations of a common object, there is no market mechanism to facilitate 

i
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aggregation, nor is it clear how agents would react to information about the beliefs of 

others. In the asset case, the implications of one agent’s beliefs about the value on the 

beliefs of another presupposes a model of how the other agent’s beliefs are determined, 

which itself is subject to model uncertainty. Nor is this question resolved by recourse to 

the interesting work on rational beliefs initiated by Kurz (1997) since the issue here is not 

what types of heterogeneity are consistent with long-term data properties. Rather our 

concern is with the heterogeneity of prior beliefs when the data are not sufficiently 

informative to impose long run restrictions, at least in the sense that the data do not reveal 

the true model of the economy.   

Beyond the issue of priors, model uncertainty suggests the importance of 

determining how agents acquire information about the economy.  If an agent is confident 

that he knows the true model of the economy, he is presumably going to treat the costs 

and benefits of information acquisition differently than when the true model is unknown.  

Put differently, the value to an agent of superior information may depend on the degree of 

model uncertainty.  This seems particularly relevant when the economy moves across 

regimes, which in our context may be interpreted as shifting across models. 

Brock and Hommes (1997) suggest some ways to think about this problem by 

modeling environments in which agents make discrete choices about what sorts of 

information to acquire before forming expectations.  They show how these decisions will 

correlate across individuals and induce interesting aggregate price dynamics. Brock and 

Hommes (1997) introduce an information cost for the acquisition of structural rational 

expectations in contrast to a zero cost for acquisition of backwards-looking expectations.    

Once one introduces costly rational expectations versus costless backwards expectations, 

then it is natural to introduce a notion of past net profit to having used either 

expectational scheme.   Each agent chooses an expectational scheme according to a 

discrete choice mechanism which puts more probability weight on an expectational 

scheme the higher the accrued profits measure for that scheme.   Dynamics emerge 

naturally.   

To see how this mechanism can matter for macroeconomic contexts, consider 

inflation dynamics.  If inflation has been stable for a long enough time, the net gain of 

acquiring rational expectations over simple backwards expectations will become 
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negative.  Hence the economy eventually moves to a state where most people are 

choosing backwards looking expectations.  This state will persist until substantial shocks 

hit the economy (either exogenous or endogenous) which will cause the net benefit 

measure to shift in favor of rational expectations.  If the economy goes through another 

“quiet” period then the net benefit measure will shift in favor of backwards expectations 

and the whole story repeats.  Such a perspective is very much what one would expect 

when agents experience shifting degrees of model uncertainty, in this case with respect to 

the prevailing inflation regime. If the economy goes through a period like that discussed 

in Sargent (1999a) where people got "fooled" by the government in the late 60's and early 

70's most agents will switch to rational expectations under the Brock and Hommes (1997) 

mechanism.  But after a sustained episode of price stability, more and more agents will 

rationally become “inert,” i.e. they will use backwards-looking expectations in order to 

economize on expensive rational expectations.  

We believe that generalizing the usual Taylor rule and related monetary policy 

analysis to settings where the dynamics of the distribution of prediction schemes across 

agents is endogenously determined by model uncertainty and which further takes into 

account the simultaneity between the monetary rule chosen and the predictor dynamics is 

an important direction for future research.  It would be an approach to “endogenizing” at 

least part of the model uncertainty we have been discussing in this paper.  It could also 

lead to an approach to defining which parts of the model space that are more probable or 

less probable conditional upon the economy's history.  For example, the theory above 

suggests that one should expect most of the economy's mass to be on expectational 

schemes close to rational expectations following a history of recent price inflation.     

One reason why economists have found the rational expectations assumption 

appealing is that it imposes powerful discipline on modeling; in contrast, when 

expectations are not anchored by the logic of a model or some other well defined rule, 

then it is difficult to empirically falsify a model.  Hence, the introduction of nontrivial 

model space priors and rules for information acquisition into macroeconomic modeling 

will require disciplining as well, in order to avoid a situation where any set of empirical 

findings may be explained by ad hoc choices of prior beliefs and updating behavior.   
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b. preferences 

 

 The analysis in section 2 treated model uncertainty in a fashion that is equivalent 

to other forms of uncertainty faced by a policymaker.  This assumption may not be 

appropriate. One reason for this is strictly positive: individual preferences do not 

necessarily treat model uncertainty in this fashion.  Evidence of this claim comes from 

experiments such as those that generated the classic Ellsberg Paradox. The Ellsberg 

paradox comes from the following experimental observation. Suppose individuals are 

asked to compare bets in which there is a given payoff based on having correctly chosen 

the color of a ball drawn from an urn.  In case 1, the urn contains an equal number of red 

and black balls. In case two, the proportions in the urn are unknown before the individual 

is allowed to choose the color.  Individuals systematically prefer the bet where they know 

the urn proportions to the bet where they do not, despite the fact that there is no expected 

payoff difference between them.  This sort of finding has helped motivate recent efforts 

to axiomatize Knightian uncertainty in the economic theory literature, cf. Gilboa and 

Schmeidler (1989) and Epstein and Wang (1994).  In this work, Knightian uncertainty is 

represented as a situation in which probabilities cannot be assigned to a set of unknowns.  

The absence of these probabilities leads to minimax types of behavior on the part of an 

agent. One may think of this Knightian uncertainty as representing model uncertainty.    

 These considerations suggest that model uncertainty affects preferences 

differently from other types of uncertainty.  This idea may be formalized by considering 

how an agent makes a choice a from some set A in the presence of model uncertainty.  

Suppose that the agent’s payoff is represented by a loss function ( ),l a θ  which depends 

on the action and an unknown θ .  If the agent is a standard expected loss minimizer, he 

will make a choice in order to minimize 

 

 ( ) ( ),l a d dθ µ θ θ
Θ∫  (12) 

 

where the conditional probability ( )dµ θ accounts for model uncertainty in a way 

symmetric to all other sources of uncertainty, as is done in the derivation of eq. (4) via 
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the argument described by eq. (5). How can these preferences account for ambiguity 

aversion?  One way to do this is to follow the approach taken by Epstein and Wang 

(1994) and model preferences so that additional weight is placed on the least favorable 

model in M beyond the weight that is assigned in the expected loss calculation. Formally, 

preferences may be modeled as 

  

 ( ) ( ) ( ) ( )( )(1 ) , d sup , , dm Me l a d e l a d mθ µ θ θ θ µ θ θ∈Θ Θ
− +∫ ∫  (13) 

 

In this equation, e measures the degree of ambiguity aversion.  If , then eq. (13) 

reduces to the expected loss calculation; if 

0e =

1e = , then the policymaker exhibits minimax 

preferences with respect to model uncertainty.  

The minimax case has been studied in the growing literature on robustness in 

macroeconomic analysis, a literature which we have noted was launched by Hansen and 

Sargent.  This approach assumes that the model space is local in the sense described in 

the Introduction.  Beyond the work of Hansen and Sargent, standard references now 

include Giannoni (2002), Marcellino and Salmon (2002), Onatski and Stock (2002), 

Tetlow and von zur Muehlen, (2001).  This work has yielded a number of valuable 

insights. For example, Giannoni (2002) provides a comprehensive analysis of how 

ambiguity aversion increases the aggressiveness of optimal stabilization policies in the 

sense that the magnitudes of the sensitivity of changes in control variables to lagged 

states may increase for a minimax policymaker when model uncertainty is present. 

Brock, Durlauf, and West (2003) provide some simple examples of this behavior.  That 

paper notes that ambiguity aversion is different from risk aversion in the sense that it is a 

first-order phenomenon rather than a second-order one.  What this means is that if one 

starts with an environment with no model uncertainty and then defines a ( )O ε  term that 

represents model uncertainty, the effects are ( )O ε  whereas for the classic Arrow-Pratt 

analysis of risk, the introduction of risk in a risk free environment produces effects of 

( )2O ε . The reason for this is that minimax preferences imply that the least favorable 

model is always assumed for the model space, hence the element that embodies 
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uncertainty always has non-zero expected value (modulo hairline cases) whereas in risk 

aversion analysis it is assumed that the risk term has an expected value of zero. 

As indicated for eq. (13), minimax preferences are a special case of a more 

general ambiguity aversion formulation. We would argue that for nonlocal model spaces 

it is important to model ambiguity aversion where 1e ≠ .  One basic problem for nonlocal 

model spaces is that it is natural to worry that highly implausible (low prior probability) 

models will completely control decisionmaking.  (For local model spaces, one typically 

does not think that the models will differ greatly in terms of prior probability.)  Beyond 

this, there is a widespread belief that mnimax preferences are inappropriately risk averse; 

in fact Hurwicz (1951) proposed loss functions similar to (13) specifically to reduce the 

implicit risk aversion involved in the minimax formulation.  For these reasons, we 

believe a valuable direction is the exploration of behavioral rules for preferences where 

. 1e ≠

A move away from minimax preferences towards less extreme forms of 

ambiguity aversion raises the issue of how e is determined.  It seems unsatisfactory to 

treat the degree of ambiguity aversion as a deep parameter.  We regard this as an 

important next step in research.  Further, it seems important to study alternative ways 

account for model uncertainty in preference specification.  Manski (2004) suggests the 

use of minimax regret for the study of treatment effects, an approach that may prove 

interesting in other contexts as well.  However, minimax regret is not a panacea. Brock 

(2004) shows that minimax regret preferences will also exhibit significant sensitivity to 

implausible models, although not to the extent that is possible with minimax preferences. 

Minimax regret also suffers from the problem that it does not obey independence of 

irrelevant alternatives; specifically, the ordering between two models as to which is less 

may be affected under minimax by the presence of a third, see Chernoff (1954). We 

conjecture that further work on preferences will need to consider ways to avoid highly 

implausible models from dominating behavioral decisions.  

 There are good reasons to believe that the evaluation of macroeconomic policy 

rules will be especially sensitive to the interaction of model uncertainty and policymaker 

preferences. For many macroeconomic models, it is possible for policy rules to induce 

instability, e.g. infinite variances for outcomes that one wants to stabilize.  Hence a policy 
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rule that is optimal under one model may produce instability under other models.  

Instability naturally is naturally associated very high losses for a policymaker.  This leads 

to the question of whether a rule should be rejected because it produces instability for 

models with very low posterior probabilities. The tradeoff of high losses and low model 

probabilities is the precise case where the deviations from expected loss calculations 

matter.  This situation arises in Brock, Durlauf, and West (2004) which we discuss below. 

 

 

4. Model uncertainty and policy evaluation 

 

 How does model uncertainty affect the evaluation of macroeconomic policies? 

Suppose that a policymaker is interested at time  in influencing the level of  using a 

policy

t 1tY +

p , which lies in some set .  Assume that the policymaker’s preferences are 

associated with the loss function 

P

 

 ( )1, ,t tl Y d p+  (14) 

 

Note that we do not work with a loss function that extends over periods beyond t ; this is 

done strictly for convenience. In standard policy evaluation exercises, each policy is 

associated with an expected loss  

 

 ( )( ) ( ) ( )1 1, , , , , , .t t t t t t tY
E l Y d p d m l Y d p Y d mµ+ += ∫ 1+  (15) 

 

The optimal policy choice is therefore defined by  

  

 ( ) ( )1 1min , , , ,p P t t t tY
l Y p d Y p d mµ∈ + +∫  (16) 

  

 15



 

where the conditional probability ( )1 , ,t tY p d mµ +  explicitly reflects the dependence of 

outcomes at t on the policy choice.  Accounting for model uncertainty simply means 

replacing these formulas with  

 

 ( )( ) ( ) ( )1 1, , , , ,t t t t t t tY 1E l Y p d p d l Y p d Y dµ+ += ∫ +  (17) 

 

and  

  

 ( ) ( )1 1min , , ,p P t t t tY
l Y p d Y p dµ∈ + +∫  (18) 

 

 For our purposes, the important observation to make about eqs. (17) and (18) is 

that there is no model selection involved. In response to ignorance of the true model of 

the economy, a policymaker does not first, evaluate potential models and then determine 

which best fits the data (subject to some penalty for model complexity, in order to ensure 

the selection rule does not reward overfitting) and second, evaluate policies conditional 

on that selection.  Rather, policies should be evaluated according to their effects for each 

model, with the model-specific performances averaged. This may be seen explicitly when 

one rewrites (17) as follows: 

 

 
( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1

, , , , ,

, , ,

t t t t t t t tY Y
m M

t t t tY
m M

l Y p d Y d l Y p d Y d m

l Y p d Y d m

µ µ

µ

+ + + +
∈

+ +
∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝

=

∑∫ ∫

∑ ∫
⎠  (19) 

 

In fact, one could go so far as to argue that for a policymaker, model selection has 

no intrinsic value.  This is true even if the payoff function is generalized to be model 

dependent, i.e. the loss function is written as ( )1, ,t tl Y d p− .  From the perspective of (17) 

-(19), it is reasonable to conclude that model selection is generally inappropriate for 

policy analysis.  Conditioning on a model in essence means replacing the correct 

posterior model probabilities with a degenerate posterior (all probability assigned to the 
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selected model.)  Such a substitution thus amounts to using incorrect posterior model 

probabilities.  As argued in great detail by Draper, ignoring this source of uncertainty can 

lead to very inaccurate model assessments. 

Levin and Williams (2003) provide a very valuable analysis of the robustness of 

different monetary policy rules in the presence of model uncertainty. They evaluate 

simple policy rules using standard forward-looking, backwards-looking and hybrid (both 

forward- and backwards-looking) models.  The exercise uses parameters that appear to be 

reasonable given previous studies and further weight all models equally, so in this sense 

their exercise is more theoretical rather than empirical.  Interestingly, they find that no 

rule in the class they study2 performs well across all models when a policymaker is only 

concerned about stabilizing inflation; on the other hand, when a policymaker places 

substantial weight on both inflation and output stabilization, robust rules do exist. 

 The implications of model uncertainty for monetary policy rule evaluation is 

explored in an empirical context in Brock, Durlauf, and West (2004).  In one exercise, 

they compare the stabilization properties of the classic Taylor rule with an interest rate 

rule in which current interest rates are determined by a linear combination of lagged 

interest rates, lagged inflation, and lagged output (measured as a deviation from trend).  

The optimized three-variable interest rate rule substantially outperforms the Taylor rule 

for most models (and indeed almost all models if their posterior probabilities are 

summed) in a model space characterized by uncertainty in lag structure for the IS and 

Phillips curves. However, the space also contains models for which the optimized rule 

induces instability where the Taylor rule does not.  This suggests a rationale for the 

Taylor rule, robustness to instability, which would never have been apparent had model 

selection been done prior to policy evaluation.  It turns out that the models for which 

instability occurs for optimized models versus the Taylor rule have posterior probabilities 

of less than 1%, which is why the specification of the policymaker’s preferences with 

respect to model uncertainty is so important. 

 

                                                 
2Levin and Williams (2003) study rules in which the nominal interest at time 1t +  
depends on t levels of the interest rate, inflation, and output relative to trend; different 
rules correspond to different parameters for the time t variables. 
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5. An example 

 

To illustrate the power of the model uncertainty perspective, we summarize an 

analysis in Brock and Durlauf (2004b) that explores the role of local model uncertainty in 

the choice of optimal controls.  Consider a general state equation for some outcome of 

interest  where a policymaker has available some control variable :1tY + tu 3  

 

 ( )1t t tY A L Y Bu 1tξ+ += + +  (20) 

 

 1tξ +  is an unobservable component of the equation and is assumed to have an invertible 

moving average representation 

 

 ( )1t w L 1tξ ν+ +=  (21) 

 

A policymaker chooses a feedback rule of the form 

 

 ( )tu F L= − tY  (22) 

 

We assume that the policymaker is interested in minimizing 2
1tEY + , the unconditional 

variance of . When this feedback rule is substituted into the state equation, one has 

the following representation of the state: 

1tY +

 

 ( ) ( )( ) ( )1t tY A L F L B Y w L 1tν+ = − + +

                                                

 (23) 

 

We assume that the policymaker is interested in minimizing , the 

unconditional variance of .  In order to understand how different feedback rules affect 

2
1tEY +

1tY +

 
3See Kwaakernak and Sivan (1972) for a detailed description of linear feedback systems 
of this type. 
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2
1tEY + , it is useful to contrast the system we have described to one where there is no 

control, i.e. 

 

 ( )1
NC NC

t tY A L Y 1tξ+ += +  (24) 

 

The variable  is known as the free dynamics of the system. Stabilization policy may 

be thought of as transforming the free dynamics in such a way as to minimize the 

unconditional variance of .  In order to understand the properties of this 

transformation, we work in the frequency domain.  One advantage of the frequency 

domain is that it allows on to think about the variance components of fluctuations that 

occur for different cycles.  In terms of notation, for any lag polynomial  let 

1
NC

tY +

1tY +

( )C L

( )iC e ω− = ij
j

j
C e ω

∞
−

=−∞
∑  denote its Fourier transform.  One can show (cf. Brock and Durlauf 

(2004b) for a complete argument) that  

 

 ( ) ( )
2

2
1 NCt Y

EY S f d
π

π
ω ω ω+ −

= ∫  (25) 

 

where 
 

 ( )
( )( ) ( )1

1

1 i i
S

e A e BF eω ω
ω −

− −
=

+ − iω
 (26) 

 

The function ( )S ω  is known as the sensitivity function and illustrates an 

important idea: a feedback rule transforms the spectral density of the free dynamics by 

altering the variance contributions of the individual frequencies. The effect of the 

feedback rule is produced by its effect on the sensitivity function.  One can therefore 

think of the design problem for controls as asking how a policymaker will want to 

transform the spectral density of the free dynamics. 
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From the perspective of designing optimal stabilization policies, it is therefore 

essential to know what constraints exist on the possible sensitivity functions that a 

policymaker may implicitly shape by the choice of a feedback rule.  An important result 

in the control theory literature, known as the Bode integral constraint characterizes these 

restrictions.  Under the assumption that the system has no explosive roots, the constraint 

may be written (using a discrete time version due to Wu and Jonckheere (1992)) as 

 

 ( )( )2
ln 0S d

π

π
ω ω

−
=∫  (27) 

 

This form implies that a policymaker cannot set ( ) 2
1S ω <  for all frequencies; hence all 

stabilization policies necessarily tradeoff higher volatility at some frequencies for lower 

volatility at others.  This is a fundamental tradeoff that all policymakers face as any 

sensitivity function that a policymaker wishes to produce via the choice of feedback rule 

must fulfill (27).  This constraint has powerful implications; for example, it indicates how 

a policy designed to minimize low (high) frequency fluctuations will necessarily 

exacerbate some high (low) frequency fluctuations.  See Brock and Durlauf (2004a) for a 

discussion of its implications in a range of macroeconomic contexts. 

 The Bode integral constraint allows one to prove an extremely interesting result 

concerning model uncertainty and robustness. Suppose that the spectral density of the 

innovations is not known, but rather that it lies in some set defined around a baseline 

spectral density ( )fξ ω  

 

 ( ) ( )( )2 2f f d
π

ξ ξπ
ω ω ω ε

−
− ≤∫  (28) 

 

Eq. (27) implies that a policymaker does not know the true time series structure of the 

state equation.  This form of model uncertainty is also studied in Sargent (1999b) and is 

one way of capturing Friedman’s (1948) concern about long and variable lags in the 

relationship between monetary policy and aggregate activity.  One can show that for a 
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policymaker who wishes to miminize 2
1tEY + , the least favorable spectral density among 

those in the set defined by (28) is  

 

 ( ) ( ) ( )
( )

( )
1

*
1

f
f f o

f
ξ

ξ ξ

ξ

ω
ω ω ε ε

ω

−

−
= + +  (29) 

 

where for any function ( )g ω , ( ) ( ) ( )( )1/ 2

g g g d
π

π
ω ω ω

−
= ∫ ω .    Equation (29) defines 

the spectral density that a policymaker will assume is true one when choosing a feedback 

rule. As such, the policymaker behaves in a way that follows Wald’s (1950) idea that 

minimax preferences may be interpreted as the Nash equilibrium of a noncooperative 

game, an idea that is critical in the development of the modern macroeconomic 

robustness research program. 

 
 To understand the least favorable spectral density for the policymaker, notice that 

relative to the baseline, the term  
( )
( )

1

1

f

f
ξ

ξ

ω

ω

−

−
 is large (small) when ( )fξ ω  is small (large). 

This means that when there is model uncertainty the least favorable model is the one that 

“flattens” the spectral density, i.e. shifts the spectral density closer to white noise.  This 

makes intuitive sense as a policymaker can never minimize the effects of white noise 

shocks when he is constrained to follow policy rules that set the policy variable before 

the white noise shocks are realized, as occurs with rules of the form (22); put differently, 

1tν +  is the component of  that cannot be affected by the choice of feedback rule. 1tY +

 We conjecture that this general result may help to explain the presence of various 

deviations of aggregate time series from the behavior implied by the absence of model 

uncertainty.  Intuitively, if an agent guards against the least favorable model by choosing 

the one that is closest to white noise, this suggests that the state variable will have more 

persistence in it than would be expected to occur if the true model were known.  This 

type of finding may be relevant for empirical rejections of models because of violations 

of Euler equation or other first order conditions that imply some combination of time 
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series should be white noise; if agents react to model uncertainty by optimizing relative to 

the least favorable model in the way we have described, then it seems clear that violations 

of white noise conditions will be generated. 

 

 

6. Conclusions 

 

 The new macroeconomics of model uncertainty has shown itself to be a fruitful 

direction for theoretical and empirical research.  In one sense, this direction would seem 

to be an inevitable one given the absence of resolution of so many macroeconomic 

debates, debates that include the role of incomplete markets in aggregate outcomes, the 

degree of price rigidity in the economy, the importance of increasing returns to scale in 

the aggregate production function in producing cycles and growth, etc.4  An appealing 

aspect of this new program is the interconnected development of theory and empirics, a 

path of development that contrasts, for example, with the modern economic growth 

literature where theory and empirics have to a large extent evolved in parallel (see 

Durlauf, Johnson, and Temple (2004) for a defense of this claim).  We therefore expect 

substantial progress in this area over time.  

                                                 
4Of course, much of what we have discussed about model uncertainty applies to any 
branch of economics, not just macroeconomics. That being said, macroeconomics seems 
particularly likely to benefit from this perspective. 
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