
 1

REGIME SHIFTS, ENVIRONMENTAL SIGNALS, UNCERTAINTY, AND POLICY CHOICE 
 
by 
 

William A. Brock1, Stephen R. Carpenter2, and Marten Scheffer3 
 
 
 

Contribution to 
“A Theoretical Framework for Analyzing Social-Ecological Systems” 

Jon Norberg and Graeme Cumming, editors 
 
 
 
 
1Corresponding author:   
Department of Economics 
University of Wisconsin 
Madison, Wisconsin, 53706 USA 
wbrock@ssc.wisc.edu 
 
2Center for Limnology 
University of Wisconsin 
Madison, Wisconsin 53706 USA 
srcarpen@wisc.edu 
 
3Department of Aquatic Ecology and Water Quality Management 
Wageningen University,  PO Box 8080, NL-6700 DD   
Wageningen, The Netherlands 
Marten.Scheffer@wur.nl  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6973246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

1. INTRODUCTION  
 
 Regime shifts, substantial reorganizations of complex systems with 
prolonged consequences, have been described for many natural and social systems 
relevant to environmental science (Steele 1998, Scheffer et al. 2001, National 
Research Council 2002, Carpenter 2003, Brock 2004). In environmental policy, 
regime shifts raise the prospect that incremental stresses may evoke large, 
unexpected changes in ecosystem services and human livelihoods. There is 
considerable interest in understanding regime shifts and developing early 
warning indicators of impending regime shifts. This paper addresses these 
issues using minimal models. We focus particularly on the problem of early 
warning indicators, and the related issue of using data to discipline the range 
of model uncertainties in practical policy making.  
 

A major goal of the paper is to contribute to building a theory of burden 
of proof in contentious debates that involve environmental regime shifts. A 
prominent example is human-induced climate change and what, if anything, should 
be done about it. In this case, inference is difficult because there is only 
one system (the global climate system) undergoing unprecedented changes. There 
is no opportunity to learn from replicates and the relevance of historical 
experience is debatable. By contrast, we consider the case of ecosystem 
management in which a number of similar systems are to be managed. Water 
quality of lakes and reservoirs provide a well-studied example (Scheffer 1998, 
Carpenter et al. 1999, Ludwig et al. 2003, Carpenter 2003). In this case, 
information obtained from changes in similar systems may greatly reduce 
uncertainties in managing a particular system of interest.  
 
   A secondary goal is to relate the primary part of this paper to recent 
work in social science that uses threshold and tipping point models to try to 
understand the causes of rapid shifts in social phenomena ranging from 
relatively trivial things such as fads, fashions, and the like to dynamics of 
public opinion on critical issues such as global climate change.  
 

Section two sketches a minimal modeling framework that will be used 
throughout the paper. The model represents a two-level hierarchy of dynamics 
where the fast dynamics is a stochastic differential equation and the slow 
dynamics of a bifurcation parameter is deterministic. Section three discusses 
basic identification problems in using data to infer what dynamical process is 
generating the system behavior. The section also discusses model uncertainty 
and offers some suggestions on how to deal with it. Section four contains a 
brief discussion of related issues in social science. Section five contains a 
brief application to lake systems and their management. Section six concludes.  
 
2. Models of Regime Shifts  
 
   Consider the following stochastic differential equation (SDE) system 
adapted from Berglund and Gentz (2002), and Kleinen et al. (2003),  
 
(2.1a) dx/dr= f(x,a) + s dW/dr, x(0) given,  
 
(2.1b) da/dr = e, 0 < e << 1, a(0) given, e(0)=0 
 
where x is a 1-dimensional system state variable, a is an 1-dimensional slow 
moving parameter, dW is a Wiener process (i.e. dW is uncorrelated over time and 
dW is normally distributed with mean zero and variance dt), and s measures the 
standard deviation of the disturbances dW. Here f is called the instantaneous 
mean and s2 is called the instantaneous variance, respectively.  Since a=er, for 



 3

precise work it is standard in the mathematical literature to follow Berglund 
and Gentz (2002a,b) and rescale time by putting slow time, t=er.  This results 
in the stochastic differential equation, 
 
(2.1’a)  dx(t)=(1/e)f(x(t),t)dt+(s/e^(1/2))dW(t). 
 
We proceed informally here by working with (2.1a) for each fixed value of 
parameter a and examining what happens as we step through values of parameter 
a, but remind the reader that much of the mathematically precise literature on 
slow time/fast time systems works with (2.1’a).   
 

This framework can be generalized to the case where x is an n-dimensional 
vector and a is an m-dimensional vector, but we shall work with scalar cases 
here. The SDE (2.1) will always be an Ito SDE here, but the Stratonovich case 
can also be treated. See Horsthemke and Lefever (1984) for treatment of both 
cases.  
 
   If there is a function F(x,a) such that  
 
(2.2a) dF(x,a)/dx  =  f(x,a),  
 
then the system (2.1a) is a simple hill climbing system for s=0 and parameter 
vector a fixed. For example, for an evolutionary dynamical system, one can 
think of F(x,a) as a "fitness landscape" and "a" as a slow moving bifurcation 
parameter where (2.1a) is the "fast" dynamics and (2.1b) is the "slow" 
dynamics. In the scalar case considered here, there is always such an F(x,a) 
for each fixed a. One constructs F(x,a) by integrating f(z,a) over z from z=0 
to z=x. 
 
   A solution {X(t,x(0),a(0)),A(t,x(0),a(0))}, given initial conditions, 
x(0), a(0) of (2.1) is a stochastic process. When e=0, i.e. a is fixed, we 
shorten the notation to {X(t,x(0);a)}. Keep a fixed for now.  The steady state 
density, P(X=x;a) plays the same role in the stochastic case as does a steady 
state of the deterministic system when s=0.  We write P(X=x;a) for the precise 
expression, P{X in [x,x+dx];a}=P(X=a;a)dx+o(dx), where o(dx)/dx 0 as dx 0. 
P(X=x;a) denotes the density function of X which depends upon the “shift” 
parameter a.  It is well known that under regularity conditions on F 
(Bhattacharya and Majumdar (1980),Horsthemke and Lefever (1984)), we have,  
 
(2.2b) P{X=x;a}=exp((2/s2) F(x,a))/Z, where  
 
Z is a normalization factor so that P{X=x;a} integrates to one. There is a 
vector version of (2.2b) (Bhattacharya and Majumdar (1980)).  See Bhattacharya 
and Majumdar (1980) for a discussion of existence and uniqueness of invariant 
measures for multivariate diffusions as well as a careful discussion of the 
regularity conditions needed.  Their treatment does not require the existence 
of a “potential function” F(x,a) which is highly restrictive because, at the 
minimum, this requires symmetry of the cross partial derivatives of f(x,a) in x 
as well as the more modest requirement of connectedness of the domain of f(x,a) 
in x for each value of a.   

Regularity conditions used by Bhattacharya and Majumdar include 
connectedness of the domain and thrice differentiability of the instantaneous 
mean function, f(x,a) and instantaneous standard deviation function (s in our 
case, s(x,a) in Bhattacharya and Majumdar’s case).  Existence and uniqueness of 
invariant measures do not require the restrictive sufficient conditions for 
existence of a “potential function” F(x,a) such that F’(x,a)=f(x,a).  Hence it 
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should be possible to generalize some of the results discussed in this paper to 
general f(x,a).  More will be said about this below.   

Indeed under modest regularity conditions F(x,a) always exists for the 
case where x is one dimensional.  Just set F(x,a) equal to the integral of 
f(z,a) between x_0 and x for a fixed x_0.  One can apply Bhattacharya and 
Majumdar to locate sufficient conditions for existence and uniqueness of an 
invariant measure for general f(x,a) when x is one dimensional.  Berglund and 
Gentz (2002a,b) provide the sufficient conditions for the stochastic 
bifurcation theory that we discuss below. 
 
 The disturbances of dx/dt cause transient changes in x.  These changes 
are inversely proportional to the slope of f(x,a) near the stable equilibrium 
point (Figure 1). In rough terms, then, the variance of x will be larger the 
smaller the slope of f(x,a) near the stable equilibrium point.  If the system 
is near a stable point and slow changes in a are causing the slope of f(x,a) to 
decrease, then the variance of x should increase. 
 
 Others have noted that changes in variance over time may provide a clue 
to impending bifurcation in environmental systems (Kleinen et al. 2003; See Box 
1). One approach used in economics depends on the fact that if one has a noise 
free time series on x over any interval (t,t+dt), then s can be estimated to 
any degree of accuracy within (t,t+dt) by sampling at higher and higher 
frequencies within (t,t+dt). This is called "continuous record asymptotics" and 
it plays a big role in the estimation of conditional variances in finance 
(Foster and Nelson 1996, Campbell, Lo, and MacKinlay 1997).  
 
   If one has structural information on how s relates to other features of 
the system, e.g, f(x,a), one can exploit this information using continous 
record asymptotics (Brock and Evans (1996)) and get better estimates of f(x,a). 
There are some applications in social science where f(x,a) depends upon s, e.g. 
one component of the vector a is s itself. Although there is a limit on how 
much continuous record asymptotics can improve the estimate of the conditional 
mean (unlike the improvements available for estimation of the conditional 
variance), obviously improvement can be had for cases where f explicitly 
depends upon s.  
 

Environmental systems have some important complications, such as 
observation errors in the time series of x. Also, some environmental data are 
most sensibly collected at discrete time intervals (e.g. daily or annually) and 
this may limit the range of frequencies that can be studied. Nevertheless, the 
method of continuous record asymptotics offers an interesting approach for 
empirical study of environmental systems governed by equations like 2.1.  
 
   Here are some examples of systems that can be put into the framework 
(2.1) besides the ones mentioned by Berglund and Gentz (2002a,b), and Kleinen 
et al. (2003).  
 
EXAMPLE I  
 
   Consider the social system  
 
(2.3) dx/dt = tanh(h+Jx) – x + s dW/dt, a := (h,J),  
 
studied, for the deterministic case s=0, by Brock and Durlauf (2001a,b), 
Scheffer et al. (2000,2003), and Brock (2004). In this case x(t) is the 
difference, at date t, between the fraction of a population that chooses a 
choice -1 (e.g. do not regulate emissions of greenhouse pollutants) and the 
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fraction that chooses a choice +1 (e.g. regulate emissions of greenhouse 
pollutants), where h stands for the utility difference between the two choices, 
J is a measure of the strength of social interactions or peer effects, the 
hyperbolic tangent function, tanh, emerges from a discrete choice model, and 
dW/dt represents outside shocks to the system (e.g. climate events that 
influence the public’s attitudes toward climate change.). System (2.3) will be 
discussed in Section 4 below.  
 
   Brock (2004) reviews work on "punctuated policy changes" in economics, 
political science, and other areas of social sciences using a system like (2.3) 
as a central organizing expository vehicle. We will go beyond Brock (2004) in 
this article by beginning a study of the impact of noise induced transitions 
that adapts work of Berglund and Gentz (2002a,b), Kleinen et al. (2003), and, 
especially, Horsthemke and Lefever (1984).  
 
EXAMPLE II  
 
   For another example consider the dynamical system of the state of a lake 
studied by Scheffer (1997), Carpenter et al. (1999), Ludwig, et al. (2003), and 
Carpenter (2003). A minimal model of this system is  
 
(2.4) dx/dt = c + f(x,a)+ s dW/dt,  
 
where x is phosphorus sequestered in algae, c is loading from outside 
activities such as agriculture, developments, etc., a is a slow moving 
parameter (e.g. sedimented phosphorus) and dW/dt is outside shocks to the 
system. Here the payoff is U(x,c) which decreases in x and increases in c. The 
control design problem is to design a control c=C(x) to optimize the payoff U. 
Carpenter et al. (1999) and Ludwig et al. (2003) study the problem of designing 
a control sequence to optimize the discounted sum of payoffs.  
 
   It is clear that a large class of examples can be subsumed under the 
framework of (2.1). Suppose we have measurements of x and, maybe, but not 
always, a, which may be corrupted with measurement noise. We are concerned here 
with the following questions:  
 
(i) If we have a time series of observations on our measurements, what patterns 
in such a time series would give us an early warning signal of an impending 
bifurcation?.  
 
(ii) If there is a payoff U(x,a) of the state of the system, how should we 
design a control C(x,a) to optimize the payoff?  
 
(iii) If the true system is {F*(x*,a*),s*;U*(x*,a*)} but we specify it as 
{F(x,a),s;U(x,a)} how should we design the control C(x,a) to be robust against 
such misspecification? How can we use our observational time series data on our 
measurements of x and a to discipline the set of specifications we must 
consider in order to make our control more robust?  
 
(iv) Suppose instead of just one system under observation we have a collection 
of systems {F(x(i),a(i),i),s(i), U(x(i),a(i),i), i=1,2,...,I} under 
observation. How may we use information on a subset of such systems that have 
passed through a regime change to forecast impending regime change on other 
systems that have not passed through a regime change?  
 
(v) How might one use data to estimate features of the system (2.1)?   
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   We do not pretend to answer all these questions in this paper. Instead we 
consider two polar cases. The first is the global climate system, where there 
is only one system under scrutiny and our main problem is to glean from 
patterns in the time series of observations, evidence of impending regime 
change (Box 1). This is extremely difficult. The second leading case is one in 
where there exists a collection of systems 2.1 with observations on each, such 
as the problem of managing water quality for a collection of lakes. This second 
problem is more tractable because of the multiplicity of systems available for 
study.  
 
3. A General Identification Problem, and Policy Action  
 
   We extend the mathematical models sketched above to put forth a simple  
framework that we hope sheds light on how one might usefully deal with heated 
debates in policy making. There are two basic issues raised by this problem. 
First there is a basic empirical identification problem in using time series 
data or any data to adduce evidence for or against alternative stable states. 
Second, there is model uncertainty. We discuss the identification problem 
first.  
 
   An important problem of model identification is the separation of 
spurious evidence, caused by dynamics of unobserved state variables, from true 
evidence of alternative stable states. This problem looms especially large in 
empirical work that attempts to use data to separate endogenous dynamics from 
exogenous dynamics. This turns out to be very difficult in social science (e.g. 
Brock and Durlauf (2001)). There is no reason to suspect that this problem 
would be any easier in other sciences.  
 
 Here we will suggest some approaches for addressing this problem. To 
focus discussion, we consider a highly simplified model of the identification 
problem (Box 2). 
 
   First we can attempt to use continuous record asymptotics to build 
estimators of s1(x1,x2) based upon data on x1 even though we can not observe x2, 
if x2 moves slowly enough relative to x1. The intuition is that if x2 is 
constant over an interval (t,t+dt) then the continuous record estimator in 
(3.1) below, call it S12(dt,n), converges to the true value of s1(x1,x2) on 
(t,t+dt). This idea can be made more precise by using the work of Foster and 
Nelson (1996). Construct n equally spaced subintervals from j=1 to j=n of the 
interval (t,t+dt) and construct the estimator  
 
(3.1) S12(dt,n) := (1/dt) Σj{[x1(t-(j-1)dt/n) - x1(t-j dt/n)]2}.  
 
Foster and Nelson (1996) show that, under modest regularity conditions, the 
increments in (3.1) are approximately Independently and Identically Distributed 
Normal with mean zero and variance s1(x1,x2)2. Hence, if we are able to sample 
within (t,t+dt) at any frequency we like, we can essentially assume that s12 is 
observable as well as x1.  
 
  One could also consider empirical methods that have been used in areas 
like finance to estimate diffusion processes of the form,  
 
(3.2) dx = f(x,a)dt + s(x,a) dW,  
 
Estimators of systems like (3.2) can be constructed using time series data on x 
over a finite interval t in [0,T] (e.g. Hansen and Scheinkman 1995, Conley et 
al. 1997 and their references). We explain the basic idea here. Fix a over 
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[0,T]. Assume conditions on f and s so that there is a unique stationary 
density P{X=x;a}. See Bhattacharya and Majumdar (1980), Horsthemke and Lefevre 
(1984), Hansen and Scheinkman (1995), Conley et al. (1997) for precise 
conditions.  
 
   Now let H(x) be any smooth function of x. On the stationary distribution 
EH is constant through time and, hence, its time derivative is zero. Therefore 
we compute by expanding H(X(t+dt))=H(x+X(t+dt)-x) in a Taylor series around x,  
 
(3.3) 0 = E[E{H(X(t+dt))|X(t)=x} - H(x)}/dt] --> E[H'f+(1/2)H''s2], dt --> 0.  
 
Since the expectation E can be replaced with a sample average, and the function 
H was arbitrary, we can construct an infinite number of moment conditions using 
(3.3). Conley et al. (1997) show how to choose a collection of H's to do the 
best job of estimating f under regularity conditions by adapting the 
Generalized Method of Moments (GMM) following the theory of Hansen and 
Scheinkman (1995). This method might be adapted to give us an early warning 
signal of impending bifurcation in f(x,a) by constructing good estimators of f 
over moving intervals [T,T+N].  
 

The GMM can also be adapted to address the problem of observation error.  
Consider the discrete-time model of Carpenter (2003), which uses Bayesian 
methods to estimate both linear and nonlinear models to detect possible regime 
shifts in the presence of measurement error. We discuss here how GMM might be 
used. Consider the system,  
 
(3.4) x(t+1) = f(x(t),b) + e(t+1), y(t) = x(t) + m(t),  
 
where {e},{m} are mutually independent, identically distributed mean zero 
finite variance processes. Here {y(t)} is observed but {x(t)} is not and the 
task is to estimate the parameter vector b. Consider a test function H(y) and 
examine the quantity  
 
(3.5) H(y(t)) [y(t+1) - m(t+1) - f(y(t) - m(t),b)] = H(y(t)) e(t+1).  
 
Under our assumptions of mutual independence and independence over time of {e}, 
and {m}, we have  
 
(3.6) 0 = E{H(y(t)) e(t+1)} = E{H(y(t) [y(t+1) – ∫(f(y(t)-m,b) gm(m) dm]}.  
 
Hence, if we assume a known density gm for the measurement error, m, e.g. Normal 
with mean zero and finite variance, we have a GMM system. Hence we can apply 
standard GMM, under regularity conditions following Hansen (1982) and choose a 
set of "test functions" {H} that give us good estimates of b. It would be 
interesting to compare the performance of GMM methods with the methods used by 
Carpenter (2003).  
 
 The problem of model uncertainty is fundamental to science-based 
disagreements about environmental policy (Brock, Durlauf and West 2003, 
Carpenter 2003).  Consider climate change as an example (Box 2). Suppose there 
is only one stable state in the observed variable x1, which is the observed 
state of the climate.  Further, suppose the x2 variable (an unobserved dynamic 
variable which impacts the climate) operates on a slow scale of time in such a 
way that the x1 dynamics generates time series data that resembles a system 
with alternative stable states. Suppose there are two plausible types of social 
actions on management of potential climate change. Type one is cautious, with 
low b and low emission of greenhouse gas, type two is the opposite. Hence, the 
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policy maker faces four possible outcomes, depending upon her choice of actions 
and also the resolution of the state of model uncertainty represented by the x2 
variable. The most benign outcome is type one policy combined with the "good" 
value of x2, and the worst outcome is the type two policy combined with the 
"bad" value of x2. The other two pairs are intermediate.  
 
     Similar model uncertainty problems were addressed  by Brock, Durlauf, and  
West (2003) and Carpenter (2003).  The former paper addresses model 
uncertainties related to monetary and economic growth policy, and the latter 
paper addresses model uncertainties in fishery management. Both papers employ 
Bayesian Model Averaging (BMA) methods.  Brock, Durlauf and West(2003) use 
methods from  the  robustness  literature and literature on ambiguity aversion 
to frame a data-based approach to policy action. They conduct two empirical 
exercises, one in monetary policy, the other in economic growth policy, using 
linear models. Carpenter (2003) applies BMA to both linear and nonlinear 
models.  The regime shift problem could be addressed using a nonlinear version 
of Brock, Durlauf and West(2003) using models similar to those of Carpenter 
(2003) and supplemented with methods from robust analysis and methods to deal 
with ambiguity aversion. Our discussion of the model of Box 2 suggests the use 
of an action dispersion plot with two choices of action and two choices (by 
nature) of the state of model uncertainty.  Brock, Durlauf and West (2004) 
argue for the presentation of empirical action dispersion plots in advisement 
of policymakers by scientists, and present such plots for monetary policy.  
Such plots are useful in environmental policy disputes for exactly the same 
reasons.   
 

We believe our review of new literature on estimation techniques and 
dealing with model uncertainty should be useful for both scientists who must 
report to policymakers and to policymakers who must make demands on scientists 
to present their results in an understandable manner to the policymakers 
together with an honest reporting of the true level of uncertainty.  However, 
there is tremendous need for empirical exploration of concrete, data-driven 
examples in environmental science. We turn now to a brief discussion of related 
methods in social science.  
 
5. Social Systems and Coupled Natural and Social Systems.  
 

Wood and Doan (2003) build a regime change theory to argue that "whenever 
there is a preexisting condition that many find privately costly, but with 
widespread public acceptance, the system is ripe for change." They conduct an 
empirical exercise on public attitudes to sexual harassment and found evidence 
consistent with a regime shift around the time of the Clarence Thomas hearings.  
Brock (2004) provides a broad review of similar types of regime change in 
social science, many of which could be addressed by the methods described 
above.  
 

A main interest in social interactions studies (modeled by 2.3 above) is 
the dynamics of polarization due to non negative social interactions effects 
J>0. Since f(x,a) := tanh(h+Jx)-x is scalar, it is trivial to find F(x,a) such 
that dF(x,a)/dx=f(x,a). It is easy to show that system (2.3) has only one 
stable state for J <1 and that if J slowly increases, a pitchfork bifurcation 
appears if J becomes positive and large enough (compare panels A and B of 
Figure 3).  We first discuss the deterministic case s=0, then we discuss what 
happens when s becomes positive.  
 

First consider the deterministic case s=0 with h=0, and note that the 
only stable state is x=0 for small J (Figure 3A). As J increases beyond unity, 
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two new stable states appear close to x=zero and depart further away from x=0 
(which becomes unstable) as J continues to increase (Figure 3B). Another 
bifurcation, called a saddle node bifurcation can be produced at, for example, 
the negative stable state for J>1. Do this by slowly increasing h from its 
initial value of zero. As h is slowly increased a critical value of h will be 
reached where the negative stable state and the steady state at zero come 
together and both vanish as h continuues to increase leaving only the positive 
stable state (Figure 3D).  
 

A good example is to think of the state x=0 as representing an evenly 
divided electorate where 1/2 are for an incumbent candidate and 1/2 are 
against. The quantity J measures the cost of deviating from the average view of 
the whole population. Think of it as a measure of conformity pressure. As J 
increases beyond unity, two new stable states appear, one "anti-incumbent” the 
other "pro-incumbent" while the zero stable state loses its stability (panel  
A to panel B, Figure 3). As J becomes very large the two new stable states are 
pushed close to -1 and +1 (Figure 3B).  
 

Now suppose that h has been negative in the past, i.e. the incumbent has 
been preferred to alternatives (Figure 3C). Also suppose that social pressure 
to conform to the majority opinion is very high so that J is very large. So the 
system is at the negative stable state and it is close to –1. But as news 
appears that is unfavorable to the incumbent, h slowly rises. In the 
deterministic case, s=0, the system remains stuck at the pro-incumbent 
position, but becomes unstuck when h becomes large enough that the negative 
stable state vanishes (panel C to panel D of Figure 3). At this point the 
system moves rapidly towards the positive stable state. This is an example of 
what is sometimes called a "macro-punctuated change" in political science.  
 

Now let us see what happens when s is positive. Let a := (h,J) and let 
F(x,a) denote the integral of tanh(h+Jz)-z up to x. Then the steady state 
density of x is given by  
 
(4.1) Pr{X=x;a} = exp[(2/s2) F(x,a)] / Z,  
 
where Z is a normalization factor so (4.1) integrates to one. Obviously as s 
converges to zero, (4.1) spikes at the global maximum of F and the global 
maximum of F shifts abruptly for the case J>1 from a large in absolute value 
negative x to a positive x as h passes through zero. In other words, slight 
tilt of h against the incumbent, i.e. h>0 can cause a highly polarized 
electorate (a high value of J) to cluster at a new position, i.e. a large and 
positive (almost symmetrically opposite) value of x.  
 

The reader may ask what happened to the hysteretic stickiness that was 
present in the case s=0. It is easiest for many to think in terms of a cup and 
ball metaphor. Think of -F as a potential by writing dx=fdt+sdW as dx=-(-
dF/dx)dt+sdW. Then we now have a "rattling" ball in a cup. If s is small a ball 
lying in a negative well of a two-welled potential will have a hard time 
getting out, although it will get out with probability one. Once the ball drops 
into a deeper well it is relatively harder to get out, but it will with 
probability one escape the deeper well and fall back into the more shallow one. 
As s becomes smaller the relative probabilities shift more towards staying in 
the deeper well and in the limit as s goes to zero, the ball will end up in the 
deeper well. This idea is closely related to the method of simulated annealing 
in numerical optimization (Kirkpatrick, Gelatt, and Vecchi 1983). 
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Berglund and Gentz (2002a) point out that, in the "small noise limit", 
the expected time between transitions can be approximated by Kramer's formula 
which is proportional to exp[(2/s^2)G] where G is the barrier height between 
the two wells. Hence when G is high and s is low we expect it to take a long 
time to move from a pro-incumbent position, i.e. the negative x stable state to 
an anti-incumbent position, i.e. the positive x stable state. An increase in J 
increases G. This is a stochastic analog of hysteresis in the deterministic 
case. Berglund and Gentz (2002a) and Norberg et al. (2001) study stochastic 
systems with periodic forcing. These studies give us some insight in what to 
expect when the system is forced by a slow moving, but non periodic and 
possibly random force. Turn now to an ensemble type of social interactions 
model where the interaction between the increasing size of the system and the 
outside shocking process produces new non-hysteretic behavior as the size of 
the system approaches infinity.  
 

There is an interesting model that builds on Dawson (1983) that helps us 
understand why tipping points occur in Brock (2004) as well as in Wood and Doan 
(2003). It does not appear in those papers. We exposit it here.  
 

Consider the stochastic differential equation,  
 
(4.2) dx = (-x3 + a x)dt + s dW.  
 
As s goes to zero the mass of the stationary density, P{X=x;a} clumps onto a 
Dirac delta distribution spike at  
 
(4.3) x*(a)=argmax{-(1/4)x4 + a x2/2}.  
 
For a=1, x*(1) is -1 and +1 and as a becomes greater than one, the global 
maximum is the larger local maximum. This sets the stage for the coupled 
system, where dWdW'=Idt,  
 
(4.4) dxj=[-xj + a xj]dt  + s dWj - J(xj - xbar), xbar := (1/N)Σi{xi},  
 
where the Sum runs from i=1,2,...,N. Note that dW is an Nx1 vector here. Put 
x=(x1,...,xN). Following Bhattacharya and Majumdar (1980) we find the invariant 
measure P(X=x)=exp(bU(x))/Z, b:=2/s2, by constructing U(x) such that,  
 
(4.5) dx = dU(x)/dx + s dW 
 
for an appropriate "potential function" U(x). It is easy to check that the 
cross partial symmetry conditions needed for existence of U are satisfied. One 
may check that U given by  
 
(4.6) U(x) = Σj[u(xj)-Jxj2/2]+(J/2)[xbar]2, u(x_j) := -(1/4)xj4 + a xj2/2,  
 
is appropriate.  
 
 Dawson (1983) studies the limiting behavior of a system very close to 
this one. It is basically the same as systems of coupled oscillators in 
statistical physics. The thrust of this type of work is to locate sufficient 
conditions for the average Σ{xj}/N to converge in an appropriate probabilistic 
sense to the global maximum of some deterministic function, call it S. Brock 
and Durlauf (2001a,b) show that there is a close relationship between this 
literature and that on discrete choice modeling in econometrics. The 
deterministic function, S, in the discrete choice case turns out to be a 
measure of limiting expectation of maximal social welfare per capita and the 
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average, Σ{xj}/N converges to the global maximum of that function. It turns out 
that small changes in the individual payoffs coupled with large enough values 
of the conformity index J cause large movements in the limiting value of the 
average behavior as N becomes large. Brock (2004) attempts to explain this type 
of behavior in intuitive language and apply it to predicting apparent phase 
transitions in social systems. The main finding is this. The hysteretic sticky 
movement across different stable states as payoffs slowly change gets replaced 
by a non hysteretic jump to the global maximum of a function S, wherever that 
global maximum may move.  In other words, the social system becomes more 
smoothly adaptive to changing conditions as s increases.  Turn now to a brief 
discussion of dependence of our methods on the assumption that a “potential” 
function F(x,a) exists such that F’(x,a)=f(x,a) for each a.   
 If one sets the shocks to zero, there is a classification theory for 
bifurcations for the differential equation,dx/dt=f(x,a) (Kuznetsov (1995)).  
For example for the case where parameter a is one-dimensional, there are two 
“primary” bifurcation types, one is when the “largest” eigenvalue of the 
Jacobian matrix, f’(x*(a),a) is real and passes from negative to positive as 
parameter a increases and the other is when the “largest” eigenvalue is complex 
and the pair consisting of this eigenvalue and its complex conjugate share a 
real part that passes from negative to positive.  Here x*(a) denotes a solution 
of the steady state deterministic equation, 0=f(x*(a),a) for each value of 
parameter a. 
 

There is also a classification theory for the next “level” of bifurcation 
which concerns the induced Poincare’ map when a limit cycle appears.  There is 
also a theory of “global” bifurcations, for example the homoclinic bifurcation.  
All this is covered by Kuznetsov (1995) and none of it is dependent upon 
existence of a “potential” F(x,a) such that F’(x,a)=f(x,a).  The corresponding 
theory of closed form analytic expressions for invariant measures is not as 
well developed in the case of general f(x,a) as it is for the “integrable” case 
where F’(x,a)=f(x,a) for some “potential” function F(x,a)that maps x-space to 
the real line for each value of a.  The symmetry of cross partials of f(x,a) 
plays a big role in producing analytic closed form expressions for invariant 
measures.   

 
 However, one can still obtain computational results for stochastic 
bifurcations quite easily.  This is a centerpiece of the research program of 
Cars Hommes and his CeNDEF group in Amsterdam.  See Hommes’s review (2005) for 
example.  In Hommes’s research strategy one uses bifurcation classification 
theory to classify the primary (and in some cases the more refined secondary 
bifurcations) for the analytical part of the research strategy.  Then one adds 
the noise, sdW, for small s and turns to the computer.  Using the computer one 
can produce the analogs of bifurcation diagrams for the small noise stochastic 
case and study what happens.  We believe that such a study might give useful 
insight into observable signals of impending bifurcations as one moves 
parameter a slowly towards and through a bifurcation point. 
 

If the noise is very small one can produce a local linear approximation 
to the solution of (2.1a) for general vector cases and use “small noise 
asymptotics” (e.g. Magill (1977)) to produce closed form analytical expressions 
for objects such as the spectral density matrix of the local linear 
approximation.  This possibility suggests that it might be useful to step 
parameter a through a bifurcation point and study what happens to the spectral 
density matrix of the local linear approximation as one steps parameter a 
through a bifurcation point.  This would be a generalization of the Kleinen et 
al. (2003) approach for vector cases where, additional types of bifurcations, 
for example, the Hopf bifurcation, can occur.  Local linearization “small 
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noise” approximation theory does not depend upon the existence of a potential.  
Neither does the use of GMM-based methods to estimate f(x,a) from continuous 
record data.  It is beyond the scope of this paper to pursue these potentially 
promising research avenues and generalizations further.   
 
Section 5. Collections of Many Similar Systems  
 
 The ecosystem regime changes of Scheffer (1997), Carpenter et al. (1999) 
and Carpenter (2003) are situations where a large number of similar systems can 
be studied, some of which have passed across thresholds.  Although the systems 
are not identical replicates, they are similar enough that information from one 
set of systems is transferable to another set of systems.  Analogous situations 
occur in panel data studied by social scientists. 
 
 By studying many shallow lakes, for example, it has become clear that 
lakes with a total phosphorus level of more than 0.1 mg l-1 are at risk of 
collapsing to a turbid state (Jeppesen et al. 1990, Scheffer 1998). 
Importantly, a single threshold level will never apply to all systems. In terms 
of bifurcation theory, the bifurcation point will always be dependent on 
various parameters. In the case of lakes, for instance, differences in size 
will affect their sensitivity to collapse at increasing phosphorus levels. A 
recent study of 240 shallow floodplain lakes which are similar in nutrient 
level due to annual inundation by the river Rhine showed that the probability 
of being in a clear state is considerably higher for smaller lakes (Van Geest 
et al. 2003). Thus, if one has the possibility to study many similar systems, 
empirical indicators for the risk of regime shifts may be obtained. 
 
 Carpenter (2003) shows how measurements from many lakes can be used to 
construct informative priors for Bayesian estimation of systems like 3.4.  Such 
informative priors reduce the uncertainty of threshold estimates.  In addition, 
the informative priors increase the posterior weight of the correct model in 
simulation studies that use Bayesian model averaging to compute policies under 
model uncertainty. 
 
 The tendency of variance to increase near thresholds has not been widely 
exploited by ecosystem scientists.  The intuitive reason for the increase in 
variance can be seen by noticing that as parameter a moves from Figure 3A to 
Figure 3B very slowly, parameter a “flattens” the slope of f(x,a) towards 
unity.  This action magnifies the impact of an outside shock, sdW.  This 
suggests that if one could follow a cross section of lakes, some nearer to 
bifurcation than others that it might be possible to use such data to forecast 
impending bifurcations.  
  

For example, it would be interesting to explore indicator variates that 
can be measured at high frequency with low observation error.  One possibility 
is the volume of anoxic water in a lake subject to eutrophication.  In deep 
thermally-stratified lakes, the volume of anoxic water is directly related to 
the proximity of a threshold for eutrophication (Carpenter et al. 1999, 
Carpenter 2003) and formation of marine hypoxic zones (Stow et al. 2005)  
Technology exists for accurate and rapid monitoring of oxygen in lakes.  It may 
be possible to devise monitoring schemes using continuous record asymptotics, 
as described above, to create leading indicators of breakdowns in water quality 
for lakes and reservoirs (Stow et al. 2005). 
 
 In using indicators, one must be cautious about the identification 
problems described in Box 2 and related material from Section 3.  For example, 
variance of fish populations and their prey might be expected to increase near 
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a depensation point, a type of threshold that occurs in population dynamics 
(Carpenter 2003).  However, there is also evidence that MSY-type management 
schemes cause increases in the variance of fish populations and entire pelagic 
food webs through trophic cascades (Carpenter and Kitchell 1993).  The 
ecological conditions near a MSY target can be quite different from those near 
a depensation point.  Thus increases in the variance of fish populations may 
have ambiguous implications for ecosystem dynamics. 
 
 On the other hand, there may be specific subtle changes in a particular 
system that signal deterioration of the resilience of its current state. Such 
changes are not generic (such as colouring of noise) but rather unique to the 
type of system under study. For instance, in shallow lakes, a shift to a turbid 
state is typically preceded by an increase of the periphyton-layer covering the 
macrophytes and a reduction in the proportion of piscivorous fish (Meijer et 
al. 1994, Scheffer 1998).  Knowing such clues of proximate regime shifts 
requires a mechanistic insight into the functioning of the system, which is 
more likely if one has the possibility to study many systems. 
 
 The multiplicity of lakes on the landscape offers the possibility of 
mosaic management (Carpenter and Brock 2004).  In mosaic management, different 
ecosystems are managed for different objectives, including deliberate 
experimentation to reduce uncertainty. Mosaic management is also an approach 
for addressing strongly divergent social goals for ecosystems (for example, 
lakes for water supply or recreation versus lakes for dilution of pollutants).  
On the other hand, mosaic management leads to the possibility of complex 
spatial dynamics of ecosystem users, which may create new types of thresholds 
on complex landscapes (Carpenter and Brock 2004). 

 
6. CONCLUSIONS 
 
 Can early warnings of regime shifts can come soon enough for people to 
act to avert an unwanted regime shift?  In rare cases, in which numerous 
similar systems have been intensively studied, such as in the case of shallow 
lakes, empirical rough rules of the thumb of where the threshold lies may 
sometimes be found. However, this situation seems the exception rather than the 
rule. Simulation studies using phosphorus recycling as an indicator of 
impending lake eutrophication suggest that decision makers will receive 1 to 3 
years advance warning of breakdowns in lake water quality (Carpenter 2003).  
This lead time is not sufficient for effective action by any existing lake 
management system.  Kleinen et al. (2003) suggest that the time scales for 
detecting climate regime shifts are about the same as the time scales for 
effective action to prevent the regime shifts (100 to 1000 years).  Thus it 
seems unlikely that an impending regime shift could be detected in time to 
evoke effective action, unless the management system allowed for rapid and 
massive response.  In practice there are many difficulties with implementing 
early warning and rapid response systems (Sarewitz et al. 2000).  More 
conclusive evidence for the possibility and social costs of crossing thresholds 
would contribute to the general problem of designing adaptive strategies for 
environmental regime shifts. 
 
 This chapter has centered on an identification problem and a policy 
design problem.  The identification problem is to determine whether threshold 
dynamics can occur, and whether a threshold is near.  The identification 
problem is complicated by hidden variables with return times near those of key 
state variables, observation error, and the multiplicity of plausible models 
for many social-ecological systems.  We suggest some approaches for addressing 
these challenges.  Our review of the literature shows how dynamics of the 
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variance of state variables near a threshold could provide some advance warning 
of impending regime shifts.   
 
 The policy design problem is to identify patterns of evidence that should 
prompt us to choose actions to avert unwanted and impending regime shifts.  
Growing evidence for environmental thresholds and regime shifts suggests that 
this policy design problem will become more prominent in coming decades. 
 
 This policy design problem is complicated by the presence of more than 
one model that gains substantial support from data and basic scientific 
understanding.  Brock, Durlauf, and West (2003) discuss this problem in detail 
in the contexts of monetary policy and growth policy.  Their discussion is 
pertinent to the regime shifts discussed here.   
 
 Bayesian model averaging is one way to report the fundamental uncertainty 
about which model is appropriate.  A closely related approach is to report the 
entire posterior distribution of payoffs to the policy maker over the set of 
models, weighted by the posterior probability of each of these models when 
fitted to the data available.  The policymaker, when presented with this 
posterior distribution, can then choose an action by whatever preferences she 
has.  Evidence that dates back to Ellsberg suggests that decision makers 
include some aspects of avoidance of worst case scenarios in their preferences.  
In other words, they do not act like a Bayesian using Bayesian model averaging 
of the payoffs when they choose their optimal action.  To put it another way, 
they might act like they put some weight on the worst case scenario and some 
weight on the Bayesian model average.  This observation suggests the 
possibility of developing a theory of how much of the burden of proof each side 
should bear in scientific disputes. 
 
 In our context, it is especially important to discount past observations 
as we collect more and more current information as the system moves forward 
through time.  Contrasting views may converge as more evidence comes in.  
Discounting past observations is important to avoid Bayesian posteriors being 
frozen by history when the system may be approaching a bifurcation point.  
Discounting is important because the distant past contains less information 
about an impending bifurcation than the recent past.   
 
 The use of techniques like continuous record asymptotics to estimate 
conditional variance has the potential to sharpen development of early warning 
indicators.  The approach may also sharpen the development of theories of the 
burden of proof in scientific disputes in situations where impending regime 
change is possible and has significant implications for human welfare. 
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Box 1. Global Climate: Changing Variance as a Clue to Bifurcation?  
 
   There is considerable interest in the possibility that gradual increases 
in the emission of greenhouse gases could lead to large changes in the climate 
system (National Research Council 2002). This general problem was considered in 
an abstract way by Kleinen, Held, and Petschel-Held (2003). Consider their 
model  
 
(B1.1) dx = (x2 – x + a)dt + s dW := f(x,a)dt +  sdW,  
 
  F(x,a) = (1/3)x3 - (1/2) x2 + ax.  
 
It is easy to see that steady states for the deterministic system are given by  
 
(B1.2) x1 = ½ - [(¼) – a]½, x2 = ½ + [(¼) – a]½, 
 
where, for a< ac := ¼, x1 is locally stable, x2 is locally unstable, and a 
saddle node bifurcation takes place at a = ¼. The goal of environmental 
monitoring is to provide a warning when the system approaches the bifurcation.  
 
   Kleinen et al. (2003) propose to estimate the distance da from 
bifurcation by looking at the spectrum of x and study how it shifts as da 
slowly changes. If we linearize the Kleinen et al. (2003) system at the locally 
asymptotically stable steady state x1, we find that for  
 
(B1.3) B = 0, A = 2x1 - 1= - [(¼) – a]½, 
 
we have  
 
(B1.4) Ez* = 0, V(z*) = s2 / [(¼) – a]½,  
 
for a < ¼.  
 
   Kleinen et al. (2003) suggest estimating the spectrum generated by (B.1) 
over segments of time [T,T+N] where N is large enough so that the steady state 
distribution is a good approximation, and monitoring the change in shape of the 
spectrum. A more direct method is to use continuous record asymptotics. As 
Kleinen et al. point out, (¼) – a is the distance from bifurcation for a < ¼ 
and we wish to use time series records to estimate this quantity. One way to do 
it is to use a rolling window estimate of variance that uses data from t to 
t+N. Omitting data before t prevents the estimator from being overwhelmed by 
history and thereby becoming insensitive to more recent data which contains 
information on more recent values of a. Once we have an estimator of V = = s2 / 
[(¼) – a]½, we can estimate the trend in the distance from bifurcation (¼) – a 
because s is assumed constant.  
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Box 2. Minimal Model of the Identification Problem for Regime Shift 
 
 A highly simplified heuristic model of the identification problem for 
regime shift of a pollutant-driven regime shift such as climate change is 
presented here. 
 
(B2.1) dx1/dt = b c + f1(x1,a1;x2) + s1 dW1, s1 = s1(x1,x2)  
 
(B2.2) da1/dt = e1 A1(x1,x2)  
 
(B2.3) dx2/dt = e2 f2(x1,x2,a2) + s2 dW2, s2=s2(x1,x2,e2)  
 
(B2.4) da2/dt = e3 A2(x1,x2)  
 
(B2.5) U(c,x1) = c-(½)Px12,  
 
where x1 is the state of the climate with higher x1 corresponding to worse 
climate and U is the payoff to humans of human consumptive activities and the 
state of the climate x1. The slope b represents pollutant emissions per unit of 
consumptive activity. The scalar x2 and the dynamics (B2.3) represent other 
factors that shift the climate system and make it difficult for an analyst to 
sort out whether the climate is shifting because b>0 or whether it is shifting 
because of these other factors. 
  
   There are four scales of time with (B2.1) having the reference scale of 
one. (B2.2) has scale e1, (B2.3) the scale e2, and (B2.4) the scale e3. In the 
Kleinen et al. (2003) example the "confounding" variable x2 was not present and 
e1 was a slow scale, i.e. 0 < e1 << 1. This is the situation analyzed by 
Berglund and Gentz (2002). The most difficult identification case is where e3 = 
e1 := e, e2=1.  
 
   The dynamics of x2 impacting the dynamics of x1 make it difficult to 
adduce evidence for or against the presence of alternative stable states in the 
dynamics of x1. In order to bring out these empirical issues clearly we assume 
that x1 is observable but x2 is not. We allow the standard deviation functions 
to depend upon x1 and x2.  
 
   We assume for each fixed value of a that there is a landscape function 
H(x1,x2,a), sometimes called a "potential function", such that  
 
(B2.6) f1 = ∂H/∂x1, f2 = ∂H/∂x2,  
 
Of course there is no reason why the symmetry conditions for cross partials 
needed for existence of a landscape function should hold. But we focus on this 
case so we can use the useful expository devices of a landscape diagram (for 
the metaphor of climbing up) and cup and ball diagram (for the metaphor of 
seeking the lowest point in a valley). Under the assumption of existence of a 
landscape, if one is more comfortable with cup and ball diagrams, the 
deterministic system with c=0 moves to local minima of the function V(x1,x2,a) 
:= -H(x1,x2,a).  
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Figure 1.  Plot of f(x,a) versus x, illustrating the effect of the slope of 
f(x,a) near steady state (x*) on the value of x after a small perturbation 
∆.  In Case 1, the slope of f(x,a) near x* is relatively large, and the 
change in x immediately following the perturbation is relatively small.  
In Case 2, the slope of f(x,a) near x* is smaller, and the change in x 
following the perturbation is relatively large. 
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Figure 2.  Plot of dx/dt versus x for a system with multiple stable 
points, illustrating how the slope of f(x,a) near a stable point changes 
as the system approaches a bifurcation.   Case 1:  system relatively fa
from bifurcation.  Case 2:  system closer to bifurcation. 
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Figure 3.  Illustrations of Example 1.  (A) Split population (h = 1) with low social 
interactions (low J).  There is a single equilibrium.  (B) Split population with high social 
interactions (high J).  There are three equilibria, two of which are stable.  (C) Biased 
population (h < 0) with high social interactions.  The unstable threshold has moved to the 
right.  (D) News spreads among a population with high social interaction, causing h to rise 
above zero.  Two of the equilibria vanish, leaving only one stable equilibrium.   
 


