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Running Head: Correlation Integral and Stochastic Independence

A B S T R A C T

A generalization of the correlation integral of Grassberger and Procaccia is used to develop a statistic
that has the property that it is asymptotically zero if and only if the underlying Gaussian process
is independent. The same implication also holds for certain related processes. It is shown that the
stastistic is asymptotically normal for weakly dependent stationary processes. An example is given of
a zero autocovariance process. It also applies to ARCH (autoregressive conditionally heteroskedastic)
random variables.



1 Introduction

In this paper I present a result that relates a property of a statistic used in the detection of
chaotic dynamics to the property of independence of stochastic processes. The correlation integral
of Grassberger and Procaccia (1983a, 1983b) is a measure of the frequency with which patterns in
the data are repeated. It is based on the fact that chaotic dynamics exhibit regularity at highly
irregular frequencies. This comes from two properties of chaotic dynamics: there are a large number
of unstable periodic points in the phase space, and the chaotic trajectories are dense in the phase
space. Thus, a chaotic trajectory will pass arbitrarily close to a given period orbit infinitely often
and trace out its pattern before wandering off to some other part of the phase space. It should come
as no surprise that when the correlation integral picks up a large number of repeated patterns in a
data set that we would reject the hypothesis that the data were generated by an independent and
identically distributed (IID) stochastic process. This is in part the result derived by Brock, Dechert,
and Scheinkman (1987) and Brock, Dechert, Scheinkman, and LeBaron (1996).

What happens when the correlation integral only picks up repeated patterns to the extent that
they would be expected to appear in independent data? In this paper I show that for certain station-
ary processes (which include the Gaussian) a statistic based on a generalization of the correlation
integral is asymptotically zero if and only if the underlying process is stochastically independent.
Furthermore, the same holds for certain related processes, among them the zero autocovariance
process. It also holds for ARCH (autoregressive conditionally heteroskedastic) random variables as
well.

The correlation integral based on m-histories of a data set, {xt} is given by

Im,n(ε) =
(
n
2

)−1 ∑
1≤s<

∑
t≤n

m−1∏
k=0

χε(|xs+k − xt+k|) (1.1)

where

χε(a) =
{

1 if a < ε
0 if a ≥ ε

The statistic that was studied in Brock, Dechert, and Scheinkman (1987) is

Tm,n = Im,n(ε)− I1,n(ε)m (1.2)

In Brock and Dechert (1988) it was shown that if a stochastic data sequence {xt} is IID then

lim
n→∞

Tm,n = 0 wp 1 (1.3)

and in Brock, Dechert, and Scheinkman (1987) it was shown that under a technical condition
(which is discussed in section 3) on the distribution of the random variables the statistic

√
nTm,n is

asymptotically normal. The technique that was used by them can also be adapted to other functions
of the correlation integral such as an estimate for the dimension of the data set,

d̂m,n(ε) =
ln Im,n(ε)

ln ε
(1.4)
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for small values of ε.

Monte Carlo studies in Brock, Dechert, Scheinkman, and LeBaron (1996) and Brock, Hsieh,
and LeBaron (1991) demonstrate that the statistic Tm,n is useful for testing the null hypothesis of
independently generated data against a wide variety of alternatives, and in particular against many
distributions for which the data are stochastically uncorrelated, but not independent. In Brock,
Dechert, and Scheinkman (1987) it is argued that the limit in equation (1.3) almost implies that the
data are independently distributed.

The results in this paper follow from the fact that limits of the type in equation (1.3) impose
restrictions on the distribution function of the data. (The restriction is actually derived in terms of
the characteristic function of the generating process.) These restrictions can be used to determine
whether or not the underlying process is stochastically independent.

2 Independence and the Correlation Integral

In some of the literature on nonlinear dynamics, the correlation integral of Grassberger and Pro-
caccia (1983a, 1983b) in (1.1) has been used to test data for the presence of chaos, and in particular
it has been used to estimate the dimension of data sets by using equation (1.4). The correlation inte-
gral has also been used in Brock, Dechert, and Scheinkman (1987) and Brock, Dechert, Scheinkman,
and LeBaron (1996) to test time series for the presence of nonlinear stochastic dependence. The
tests which were developed there are particularly effective for testing the null hypothesis of IID data
against a variety of alternative distributions, including distributions for which the data are serially
uncorrelated.

Based on the idea of the correlation integral, define the following: for ε, ε1, ε2 > 0,

CXt
(ε) =

∫∫ x+ε

x−ε

dFXt
(y)dFXt

(x)

CXs,Xt
(ε1, ε2) =

∫∫∫ x1+ε1

x1−ε1

∫ x2+ε2

x2−ε2

dFXs,Xt
(y1, y2)dFXs,Xt

(x1, x2)
(2.1)

and extend these definitions to make them odd functions:

CXt(ε) = −CXt(−ε) ε < 0
CXs,Xt

(ε1, ε2) = −CXs,Xt
(−ε1, ε2) ε1 < 0, ε2 > 0

CXs,Xt
(ε1, ε2) = −CXs,Xt

(ε1,−ε2) ε1 > 0, ε2 < 0
CXs,Xt

(ε1, ε2) = CXs,Xt
(−ε1,−ε2) ε1 < 0, ε2 < 0

These functions and the characteristic functions of the sequence {Xt} satisfy the following:
Lemma 1 ∀(ε1, ε2) CXs,Xt

(ε1, ε2) = CXs
(ε1)CXt

(ε2) if and only if

|F̂Xs,Xt
(u1, u2)|2 + |F̂Xs,Xt

(u1,−u2)|2 = 2|F̂Xs
(u1)|2|F̂Xs

(u2)|2 (2.2)

where F̂Xs,Xt
(u1, u2) is the characteristic function of FXs,Xt

(x1, x2):

F̂Xs,Xt
(u1, u2) =

∫∫
eiu1x1eiu2x2dFXs,Xt

(x1, x2)
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and similarly for F̂Xt(u):

F̂Xt
(u) =

∫
eiuxdFXt

(x).

Proof: All proofs are in the Appendix.

Notice that if Xs and Xt are independent then the condition in (2.2) is automatically satis-
fied, while the converse need not hold. However, for some distributions—including the Gaussian—
condition (2.2) does imply that the random variables Xs and Xt are independent.

Theorem 2 If Xs and Xt are jointly Gaussian and ∀(ε1, ε2)

CXs,Xt
(ε1, ε2) = CXs

(ε1)CXt
(ε2), (2.3)

then Xs and Xt are independent. (Throughout, it is implicitly assumed that the random variables
{Xt} are not degenerate.)

Corollary 3 If {Xt} is a family of Gaussian random variables and (∀s 6= t)(∀ε1, ε2)

CXs,Xt(ε1, ε2) = CXs(ε1)CXt(ε2)

then {Xt} is a sequence of independent random variables.

Another distribution that is also independent if condition (2.2) holds is the Gaussian conditional
heteroskedastic distribution which is the basis of the ARCH time series model developed by Engle
(1982):

Corollary 4 If the joint distribution of X1, X2 is

exp
{
−x2

1
2 − x2

2
2(α+βx2

1)

}
(2π)(α + βx2

1)
1
2

where α > 0 and α + β = 1 then condition (2.2) holds if and only if β = 0.

In time series analysis, it is often assumed that the data {Xt} forms a stationary sequence. In
this case define

C(ε) = CXt(ε)
Cm(ε1, ε2) = CXt,Xt+m

(ε1, ε2)
(2.4)

which are independent of t by stationarity. Then,

Corollary 5 If {Xt} is a sequence of stationary Gaussian random variables and (∀ε1, ε2)

Cm(ε1, ε2) = C(ε1)C(ε2) (2.5)

then Xt and Xt+m are independent for all t. Furthermore, if (2.5) holds for all m ≥ 1, then the
sequence {Xt} is IID.
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Certain types of time series can derived from a stationary Gaussian process. For example consider
the zero autocovariance process:

xt = εt + αεt−1εt−2

where {εt} is an iid Gaussian process with zero mean and unit variance. Then the {xt} process has
zero mean and variance 1 + α2. It also has the property that E [xsxt] = 0 for s 6= t and yet they are
not independent if |t− s| ≤ 2, unless α = 0. This process also has the property that condition (2.2)
is satisfied if and only if α = 0, i.e., the sequence is IID.

Corollary 6 If the zero autocovariance process satisfies

Cm(ε1, ε2) = C(ε1)C(ε2)

for m = 1, 2 and for all ε1, ε2 then α = 0.

Theorem 2 and its corollaries provide a characterization of independence for Gaussian random
variables in terms of the correlation integral like functions in (2.1). The methods and results of this
paper can be readily applied to a generalized version of the correlation integral:

CXt1 ,...,Xtm
(ε1, . . . , εm) =∫

. . .

∫
χε1(|x1 − y1|) . . . χεm

(|xm − ym|)dFXt1 ,...,Xtm
(x1, . . . , xm)dFXt1 ,...,Xtm

(y1, . . . , ym).

Then
CXt1 ,...,Xtm

(ε1, . . . , εm) = CXt1
(ε1) . . . CXtm

(εm)

for all (ε1, . . . , εm) if and only if

|F̂Xt1 ,Xt2 ,...,Xtm
(u1, u2, . . . , um)|2 + |F̂Xt1 ,Xt2 ,...,Xtm

(−u1, u2, . . . , um)|2 + . . .

= 2m|F̂Xt1
(u1)|2|F̂Xt2

(u2)|2 · · · |F̂Xtm
(um)|2 (2.6)

where the left hand side of equation (2.6) is summed over all of the 2m possible sign patterns of
(±u1,±u2, . . . ,±um).

Condition (2.2), or more generally condition (2.6), is the key to the link between the factoring
of the generalized correlation integral and the independence of the underlying process. For those
processes for which this condition implies that the characteristic function factors, we have the result
that the correlation integral factors if and only if the process is independent.

3 Testing Time Series for Independence

Let {Xt} be a stationary time series, and define

Cm,n(ε1, ε2) =
(
n
2

)−1 ∑
1≤s<

∑
t≤n

χε1(|xs − xt|)χε2(|xs+m − xt+m|) (3.1)
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for m ≥ 2, and
Cn(ε) =

(
n
2

)−1 ∑
1≤s<

∑
t≤n

χε(|xs − xt|) (3.2)

The statistic in (3.1) is a generalized U-statistic (see Serfling (1980), chapter 5). When the
random variables, {Xt}, are independent then

E[χε(|Xs −Xt|)] = C(ε) (3.3)

and

E[Cn(ε)] = C(ε) (3.4)

lim
n→∞

E[Cm,n(ε1, ε2)] = C(ε1)C(ε2) wp 1. (3.5)

Thus the statistic
Sm,n(ε1, ε2) = Cm,n(ε1, ε2)− Cn(ε1)Cn(ε2) (3.6)

has limn→∞ Sm,n = 0 almost surely.

By the delta method (see Pollard (1984), Appendix A), the limit distribution of
√

nSm,n(ε1, ε2)
is the same as the limit distribution of

√
n
{

[Cm,n(ε1, ε2)− C(ε1)C(ε2)]− C(ε2) [Cn(ε1)− C(ε1)]− C(ε1) [Cn(ε2)− C(ε2)]
}

. (3.7)

The term in braces in (3.7) is a generalized U-statistic with kernel

h(x,y) = h(x1, x2, y1, y2)

= χε1(|x1 − y1|)χε2(|x2 − y2|)
−C(ε2)χε1(|x1 − y1|)− C(ε1)χε1(|x2 − y2|), (3.8)

and following the notation of Denker and Keller (1983) and Serfling (1980), define

h1(x) = h1(x1, x2) =
∫∫

h(x1, x2, y1, y2)dF (y1)dF (y2)

= [F (x1 + ε1)− F (x1 − ε1)][F (x2 + ε2)− F (x2 − ε2)]

−C(ε2)[F (x1 + ε1)− F (x1 − ε1)]− C(ε1)[F (x2 + ε2)− F (x2 − ε2)]

+C(ε1)C(ε2).

The asymptotic variance of the statistic in (3.7) is given by

σ2 = 4
{

E[h1(X1, X2)2] + 2E[h1(X1, X2)h1(X2, X3)]
}

.

If we define K(ε) = E[(F (X1 + ε)− F (X1 − ε))2] then

σ2 = 4[K(ε1)− C(ε1)2][K(ε2)− C(ε2)2].
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These details are used in the following theorem on the asymptotic behavior of the statistic Sm,n.

Theorem 7 If K(εi) − C(εi)2 > 0 for i = 1, 2 and if the random variables {Xt} are independent,
then

√
n

Sm,n(ε1, ε2)
σ(ε1, ε2)

D−→ N(0, 1). (3.9)

The asymptotic variance can be consistently estimated by:

σ2
n(ε1, ε2) = 4[K̂n(ε1)− Ĉn(ε1)2][K̂n(ε2)− Ĉn(ε2)2]

where

K̂n(ε) =
1
n3

n∑
r=1

n∑
s=1

n∑
t=1

χε(|xr − xs|)χε(|xs − xt|) (3.10)

=
1
n3

n∑
r=1

(
n∑

s=1

χε(|xr − xs|)

)2

(3.11)

and

Ĉn(ε) =
1
n2

n∑
s=1

n∑
t=1

χε(|xs − xt|). (3.12)

The formula in equation (3.11) is useful for speeding up computer calculations.

The technical condition, K−C2 > 0 implies both the
√

n scaling in (3.9) as well as the asymptotic
normality result. When K − C2 = 0, neither of these hold. Hölder’s inequality shows when this
latter case applies:

C(ε) =
∫

[F (x + ε)− F (x− ε)]dF (x)

≤
(∫

[F (x + ε)− F (x− ε)]2dF (x)
) 1

2
(∫

12dF (x)
) 1

2

= K(ε)
1
2

with equality if and only if there is a constant γ such that for all x

F (x + ε)− F (x− ε) = γ. (3.13)

The asymptotic convergence theorem and the calculation of the variance follow from the methods
of either Denker and Keller (1983) for absolutely regular processes, or Sen (1963) for m-dependent
processes. The kernel for Cm,n is a function of m-histories of the data, xm

t = (xt, xt+1, . . . , xt+m−1),
and the random vectors Xm

s and Xm
t are not independent unless |t− s| > m. The sequence {Xm

t }
is m-dependent, which is a special case of an absolutely regular process.

In a Monte Carlo study Theiler (1988) showed that S2,n(ε, ε)/σn(ε, ε) does not scale like 1/
√

n but
rather like 1/n when the data are IID uniform on the interval [0, 1] and a wrap-around metric is used:
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d(x, y) = min{|x−y|, 1−|x−y|}. This distribution is equivalent to a uniform distribution on the unit
circle. This is the only degenerate case. For this case it turns out that F (x+ε)−F (x−ε) = 2ε for all
x ∈ [0, 1], and so it satisfies the Hölder condition (3.13). For a discussion of the statistical properties
of Sm,n when K−C2 = 0 see Serfling (1980, Section 5.3.4.). This case has an impact on the statistic
for small data sets when the data is uniformly distributed on an interval since F (x + ε)− F (x− ε)
is constant over a large part of the interval for small ε. See Brock, Hsieh, and LeBaron (1991) for
Monte Carlo studies.

4 Rates of Convergence and Choice of ε

The correlation dimension of a data set {xt} at embedding dimension m is given by

Im = lim
n→∞

Im,n(ε) (4.1)

dm = lim sup
ε→0

ln Im(ε)
ln ε

. (4.2)

When this is estimated on a finite data set by (1.4), the choice of ε plays an important role.
Typical log–log plots of d̂m,n(ε) against ε exhibit the following pattern: at large values of ε the slope
is nearly horizontal; at medium values of ε there is a range of ε for which the slope is constant; and
for small values of ε the graph gets very ragged with a sharp break downwards. The slope of the
graph in the middle range of ε’s is used as an estimate of dm. This experimental procedure requires
an additional step in the estimation of (4.2), namely the estimation of the slope of the graph of
(1.4). This step introduces a bias in the estimate of the dimension of the data set which is discussed
in Ramsey and Yuan (1987).

In this section, I propose a systematic way of choosing ε which is based on the statistical properties
of U-statistics. It is a method for choosing a sequence {εn} such that εn → 0 and for which the
statistical results of Section 3 still hold. The distribution function for the U-statistic I1,n(ε) in (1.1)
and Cm,n(ε) in (3.1) is:

Fn(t; ε) = P

(
√

n
I1,n(ε)− C(ε)

2
√

K(ε)− C(ε)2
< t

)
and the following result of Callaert and Janssen (1978) provides the rate of convergence of this
distribution to the Normal:

Theorem 8 If K(ε)− C(ε)2 > 0 then ∃α < ∞

||Fn(·; ε)− Φ||∞ = sup
t
|Fn(t; ε)− Φ(t)| ≤ αC(ε)

√
n[K(ε)− C(ε)2]

3
2

where Φ is the standard Normal distribution function.
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A consequence of this theorem is that if εn converges slowly enough to 0 so that n[K(εn) −
C(εn)2]3/C(εn)2 diverges, then limn→∞ ||Fn(·; εn)− Φ||∞ = 0.

Two examples will provide some insight into the rate at which ε can be taken to 0.

(i) The Uniform distribution, F (x) = x, on the interval [0, 1]:

C(ε) =
∫ 1

0

[F (x + ε)− F (x− ε)]dx = 2ε− ε2

K(ε) =
∫ 1

0

[F (x + ε)− F (x− ε)]2dx = 4ε2 − 3ε3

and so K(ε)−C(ε)2 = ε3(1− ε). Thus [K(ε)−C(ε)2]3/C(ε)2 = O(ε7), and the sequence {εn}
has to be chosen so that nε7n →∞.

(ii) The Exponential distribution, F (x) = 1− e−λx, on the interval (0,∞):

C(ε) =
1
2
[eλε − e−λε]

K(ε) =
1
3
[eλε − e−λε]2

and K(ε)−C(ε)2 = (eλε− e−λε)2/12. Therefore [K(ε)−C(ε)2]3/C(ε)2 = (eλε− e−λε)4/432 =
O(ε4) and the sequence {εn} must satisfy nε4n →∞.

The next result shows that I1,n(ε) → C(ε) wp 1 uniformly in ε. This in turn implies that
I1,n(εn)− C(εn) → 0 for any convergent sequence {εn}.

Theorem 9 Let {Xt} be IID. Then

P
(

lim
n→∞

sup
ε
|I1,n(ε)− C(ε)| = 0

)
= 1.

Notice that although Theorem 9 is stated for {Xt} IID, it holds under the same conditions as
the main theorem of Denker and Keller (1983, p. 506). Furthermore, it also holds when the data
{xt} are generated by a mapping f ,

xt+1 = f(xt)

where f has an invariant measure, ρ, on an indecomposable attractor. The only step in the theorem
that uses these facts is that P(Aij) = 1, which follows from I1,n(ε) → C(ε) wp 1. This conclusion
remains valid if the probability measure P is replaced by the ergodic measure ρ.
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5 Deterministic Data

Suppose that the data are generated by a deterministic system,

xt+1 = f(xt) (5.1)

where I will focus on the case that f : R → R. A subset Λ ⊂ R is called an indecomposable attractor
if it is invariant, f(Λ) = Λ, if no proper subsets of Λ are invariant, and if there is an open set U

containing Λ such that for all x0 ∈ U , the orbit {xt} converges to Λ. I will also assume that there
is an ergodic measure, ρ, for f on Λ.

A simple yet illustrative example is the tent map, T (x) = 1 − |1 − 2x|. The interval (0, 1) is
an attractor, and the ergodic measure coincides with Lebesgue measure. Furthermore, for almost
all x0 ∈ (0, 1) the orbit starting from x0 has the appearance of white noise, in that the correlation
coefficients are all zero.

For deterministic data (such as from the tent map above) the statistics of section 3 behave
differently than they do for stochastic data:

Lemma 5.1 Assume that f satisfies a Lipschitz condition: (∃k)(∃α)(∀x, y ∈ Λ) |f(x) − f(y)| ≤
k|x− y|α. If ε2 ≥ k1+α+···+αm−1

εαm

1 then

Cm(ε1, ε2) = C(ε1)

and
Cm,n(ε1, ε2) = Cn(ε1).

Notice that when the conditions of the lemma hold then

Sm,n(ε, k1+α+···+αm−1
εαm

) = Cn(ε)[1− Cn(k1+α+···+αm−1
εαm

)],

and for values of ε, k, α such that Sm,n 6= 0, then

lim
n→∞

Sm,n(ε, k1+α+···+αm−1
εαm

) = C(ε)[1− C(k1+α+···+αm−1
εαm

)] (5.2)

and
lim

n→∞

√
nSm,n(ε, k1+α+···+αm−1

εαm

) = ∞. (5.3)

Recall that for stochastic data, the limit in (5.2) is zero and the limit in (5.3) is a Gaussian random
variable. This yields a procedure that can separate stationary random systems with independent
observations from deterministic systems which are ergodic. For other aspects of this issue, see Brock
(1986) and Brock and Dechert (1988).

When there is measurement noise in the system,

yt+1 = f(yt)
xt = yt + σwt

(5.4)
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(where {wt} are IID with Ewt = 0 and Ew2
t = 1) then for large σ one would expect that the sequence

{xt} would behave like a random sequence and that Sm,n(ε, k1+α+···+αm−1
εαm

) would converge to
zero. For small σ one would expect that the sequence would behave like deterministic data and that
Sm,n(ε, k1+α+···+αm−1

εαm

) would converge to a positive constant. The following theorem provides
the continuity property of Cm(ε1, ε2):

Theorem 5.2 Let the data be generated by model (5.4). Then for almost all initial conditions, y0,
and for ε2 ≥ k1+α+···+αm−1

εαm

1

lim
σ→∞

[Cm(ε1, ε2)− C(ε1)C(ε2)] = 0

and
lim
σ→0

[Cm(ε1, ε2)− C(ε1)] = 0

ρ–almost everywhere.

If we define

σf =
∫

x2dρ(x)−
(∫

xdρ(x)
)2

then the signal to noise ratio is σf/σ, and theorem 5.2 shows that as the signal to noise ratio
increases, the data generated by the system behaves more like deterministic data than random data.

In Figure 1 there are plots for a tent map where the observation errors are IID Gaussian random
variables. Signal to noise ratios of 1, 10, and 100 were used. For a signal to noise ratio of 100, the
value of the statistic agrees quite closely with the theoretical value of C(ε)[1 − C(2ε)] = 0.12. The
actual values are in Table 1. Notice in Figure 1 that the slope of the upper graph (σf/σ = 10) is
1/2 for all values of n, showing that for tent map data with a small amount of noise the statistic
converges rapidly to a constant times

√
n. Even for a low signal to noise ratio (σf/σ = 1) the

statistic picks up the presence of non-linear structure for n ≥ 4000.
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n σf/σ = 1 σf/σ = 10 σf/σ = 100
109 1.911× 10−3 9.518× 10−2 1.144× 10−1

148 2.661× 10−3 9.451× 10−2 1.157× 10−1

200 1.648× 10−3 9.348× 10−2 1.166× 10−1

270 1.634× 10−3 9.441× 10−2 1.184× 10−1

365 1.319× 10−3 9.509× 10−2 1.193× 10−1

492 1.345× 10−3 9.494× 10−2 1.202× 10−1

665 2.750× 10−3 9.460× 10−2 1.198× 10−1

897 2.003× 10−3 9.405× 10−2 1.195× 10−1

1211 1.814× 10−3 9.298× 10−2 1.186× 10−1

1635 1.837× 10−3 9.245× 10−2 1.185× 10−1

2208 1.482× 10−3 9.230× 10−2 1.186× 10−1

2980 1.285× 10−3 9.172× 10−2 1.185× 10−1

4023 1.217× 10−3 9.216× 10−2 1.189× 10−1

5431 1.294× 10−3 9.227× 10−2 1.190× 10−1

7331 1.379× 10−3 9.231× 10−2 1.191× 10−1

Table 1: Values of S1,n(ε, 2ε) for the tent map

6 Conclusion

In this paper I have presented a variant of the correlation integral on 2-histories which can be
used to test whether or not a stationary times series is IID. One aspect of interest of this test is that
for those processes for which condition (2.2) — or more generally, condition (2.6) — holds is that
independence is equivalent to the condition that

P
{
|Xs −Xt| < ε1 ∧ |Xs+m −Xt+m| < ε2

}
factors into the product

P
{
|Xs −Xt| < ε1

}
P
{
|Xs+m −Xt+m| < ε2

}
.

Thus, independence for these processes involves the behavior of the random variables along the
diagonal. As it was shown in section 2, the Gaussian distribution (and some related distributions)
are among those that satisfy the conditions of this paper.

In terms of the BDS statistic of Brock, Dechert, and Scheinkman (1987), condition (2.6) can be
used to determine those distributions for which the test of IID has no power. Since the BDS test has
been widely used in recent years,4 this should provide some additional insight as to its applicability.

4For a review of recent results in the application of the BDS test, see Brock, Dechert, Scheinkman, and LeBaron
(1996).
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Appendix

Lemma 1: ∀(ε1, ε2) CXs,Xt
(ε1, ε2) = CXs

(ε1)CXt
(ε2) if and only if

|F̂Xs,Xt(u1, u2)|2 + |F̂Xs,Xt(u1,−u2)|2 = 2|F̂Xs(u1)|2|F̂Xs(u2)|2 (A.1)

where F̂Xs,Xt
(u1, u2) is the characteristic function of FXs,Xt

(x1, x2):

F̂Xs,Xt(u1, u2) =
∫∫

eiu1x1eiu2x2dFXs,Xt(x1, x2)

12



and similarly for F̂Xt(u).

Proof:

CXs,Xt
(ε1, ε2) =

∫∫
[FXs,Xt

(x1 + ε1, x2 + ε2)− FXs,Xt
(x1 + ε1, x2 − ε2)

−FXs,Xt
(x1 − ε1, x2 + ε2) + FXs,Xt

(x1 − ε1, x2 − ε2) ] dFXs,Xt
(x1, x2)

which implies that

ĈXs,Xt
(u1, u2) =

∫∫
eiu1x1eiu2x2dCXs,Xt

(ε1, ε2)

=
∫∫∫∫

eiu1x1eiu2x2dFXs,Xt(x1 + ε1, x2 + ε2)dFXs,Xt(x1, x2)

+
∫∫∫∫

eiu1x1eiu2x2dFXs,Xt
(x1 + ε1, x2 − ε2)dFXs,Xt

(x1, x2)

+
∫∫∫∫

eiu1x1eiu2x2dFXs,Xt(x1 − ε1, x2 + ε2)dFXs,Xt(x1, x2)

+
∫∫∫∫

eiu1x1eiu2x2dFXs,Xt
(x1 − ε1, x2 − ε2)dFXs,Xt

(x1, x2).

By a change of variables, y1 = x1 − ε1, y2 = x2 − ε2,∫∫∫∫
eiu1x1eiu2x2dFXs,Xt(x1 + ε1, x2 + ε2)dFXs,Xt(x1, x2)

=
∫∫∫∫

eiu1(y1−x1)eiu2(y2−x2)dFXs,Xt
(y1, y2)dFXs,Xt

(x1, x2)

= F̂Xs,Xt
(u1, u2)F̂Xs,Xt

(−u1,−u2)
= |F̂Xs,Xt(u1, u2)|2

since F̂Xs,Xt(u1, u2) = F̂Xs,Xt(−u1,−u2). By similar calculations,

ĈXs,Xt
(u1, u2) = |F̂Xs,Xt

(u1, u2)|2 + |F̂Xs,Xt
(u1,−u2)|2

+|F̂Xs,Xt(−u1, u2)|2 + |F̂Xs,Xt(−u1,−u2)|2
= 2|F̂Xs,Xt

(u1, u2)|2 + 2|F̂Xs,Xt
(u1,−u2)|2

since F̂Xs,Xt
(u1,−u2) = F̂Xs,Xt

(−u1, u2). Similarly,

CXt
(ε) =

∫
[F (x + ε)− F (x− ε)]dFXt

(x)

which implies that

ĈXt
(u) =

∫
eiuεdCXt

(ε)

=
∫∫

eiuεdFXt(x + ε)dFXt(x) +
∫∫

eiuεdFXt(x− ε)dFXt(x)

=
∫∫

eiu(y−x)dFXt
(y)dFXt

(x) +
∫∫

eiu(x−y)dFXt
(y)dFXt

(x)

= F̂Xt
(u)F̂Xt

(−u) + F̂Xt
(−u)F̂Xt

(u)
= 2|F̂Xt

(u)|2.
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Therefore, ĈXs,Xt(u1, u2) = ĈXs(u1)ĈXt(u2) and hence (A.1) holds. By the Fourier inversion for-
mula,

ĈXs,Xt
(u1, u2) = ĈXs

(u1)ĈXt
(u2)

if and only if
CXs,Xt

(ε1, ε2) = CXs
(ε1)ĈXt

(ε2)

and the conclusion of the lemma follows. 2

Theorem 2: If Xs and Xt are jointly Gaussian and ∀(ε1, ε2)

CXs,Xt
(ε1, ε2) = CXs

(ε1)CXt
(ε2), (A.2)

then Xs and Xt are independent. (Throughout, it is implicitly assumed that the random variables
{Xt} are not degenerate.)

Proof: Let EXs = µs, EXt = µt and let the variance-covariance matrix be

Σ =
[

σ2
s ρσsσt

ρσsσt σ2
t

]
Then by Lemma 1,

|eiusµseiutµte
1
2 [us ut]Σ[us ut]

′
|2 + |eiusµse−iutµte

1
2 [us −ut]Σ[us −ut]

′
|2 = |eiusµse

1
2 u2

sµ2
s ||eiutµte

1
2 u2

t µ2
t |

which reduces to
e2usutρσsσt + e−2usutρσsσt = 2

which holds for all (us, ut) if and only if ρ = 0. 2

Corollary 3: If {Xt} is a family of Gaussian random variables and ∀(s 6= t)∀(ε1, ε2)

CXs,Xt
(ε1, ε2) = CXs

(ε1)CXt
(ε2)

then {Xt} is a sequence of independent random variables.

Proof: This follows immediately from the theorem, since if a family of normal random variables
are pairwise independent, they are independent. 2

Corollary 4: If the joint distribution of X1, X2 is

exp
{
−x2

1
2 − x2

2
2(α+βx2

1)

}
(2π)(α + βx2

1)
1
2
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where α > 0 and α + β = 1 then condition (2.2) holds if and only if β = 0.

Proof: ∫∫ exp
{
−x2

1
2 − x2

2
2(α+βx2

1)

}
(2π)(α + βx2

1)
1
2

eiu1x1eiu2x2dx1dx2

=
∫ exp

{
−x2

1
2

}
√

2π
exp

{
−1

2
u2

2(α + βx2
1)
}

eiu1x1dx1

=
exp

{
− 1

2αu2
2

}√
1 + βu2

2

∫ √
(1 + βu2

2) exp
{
− 1

2 (1 + βu2
2)x

2
1

}
√

2π
eiu1x1dx1

=
exp

{
− 1

2αu2
2

}
exp

{
− 1

2
u2

1
1+βu2

2

}
√

1 + βu2
2

and this equals
exp

{
− 1

2αu2
2

}√
1 + βu2

2

exp
{
−1

2
u2

1

}
if and only if β = 0. Thus condition (2.2) implies that the ARCH random variables are independent.
2

Corollary 5: If {Xt} is a sequence of stationary Gaussian random variables and ∀(ε1, ε2)

Cm(ε1, ε2) = C(ε1)C(ε2) (A.3)

then Xt and Xt+m are independent for all t. Furthermore, if (A.3) holds for all m ≥ 1, then the
sequence {Xt} is IID.

Proof: This follows from Theorem 2, Corollary 3 and the stationarity of the sequence {Xt}. 2

Corollary 6: If the zero autocovariance process satisfies

Cm(ε1, ε2) = C(ε1)C(ε2)

for m = 1, 2 and for all ε1, ε2 then α = 0.

Proof: This follows by repeated use of the following identities for a N(0, 1) random variable z:

E
[
eiuz

]
= e−

1
2 u2

E
[
e−

1
2 u2z2

]
= (1 + u2)−

1
2 .
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For the {xt} process,

E [exp (iuxt + ivxt+1)] = E [exp (iuεt + iuαεt−1εt−2 + ivεt+1 + ivαεtεt−1)]

= exp
(
− 1

2v2
)
E [exp (iuεt + ivαεtεt−1 + iuαεt−1εt−2)]

= exp
(
− 1

2v2
)
E
[
exp

(
− 1

2u2α2ε2t−1 + i(u + vαεt−1)εt

)]
= exp

(
− 1

2v2
)
E
[
exp

(
− 1

2u2α2ε2t−1 − 1
2 (u + vαεt−1)2

)]
= exp

(
− 1

2v2 − 1
2

u4

u2+v2

)

E

[
exp

(
− 1

2

(
uv

(u2+v2)
1
2

+ α(u2 + v2)
1
2 εt−1

)2
)]

= exp
(
− 1

2v2 − 1
2

u4

u2+v2

) exp
(
− u2v2

2(u2+v2)(1+α2(u2+v2))

)
(1 + α2(u2 + v2))

1
2

Denote this last expression by φ(u, v). Then

φ(0, v) =
e−

1
2 v2

(1 + α2v2)
1
2

φ(u, 0) =
e−

1
2 u2

(1 + α2u2)
1
2

and condition (2.2) holds if and only if α = 0, i.e., the process is independent. 2

Theorem 7: If K(εi)− C(εi)2 > 0 for i = 1, 2 and if the random variables {Xt} are independent,
then

√
n

Sm,n(ε1, ε2)
σ(ε1, ε2)

D−→ N(0, 1). (A.4)

The asymptotic variance can be consistently estimated by:

σ2
n(ε1, ε2) = 4[K̂n(ε1)− Ĉn(ε1)2][K̂n(ε2)− Ĉn(ε2)2]

where

K̂n(ε) =
1
n3

n∑
r=1

n∑
s=1

n∑
t=1

χε(|xr − xs|)χε(|xs − xt|) (A.5)

and

Ĉn(ε) =
1
n2

n∑
s=1

n∑
t=1

χε(|xs − xt|). (A.6)

16



Proof: This is a direct consequence of Denker and Keller (1983, Theorem 1, p507) applied to the
kernel in equation (3.8). 2

Theorem 8: If K(ε)− C(ε)2 > 0 then ∃α < ∞

||Fn(·; ε)− Φ||∞ = sup
t
|Fn(t; ε)− Φ(t)| ≤ αC(ε)

8
√

n[K(ε)− C(ε)2]
3
2

where Φ is the standard Normal distribution function.

Proof: The inequality comes from Callaert and Janssen (1978).

Theorem 9: Let {Xt} be IID. Then

P( lim
n→∞

sup
ε
|I1,n(ε)− C(ε)| = 0) = 1.

Proof: The proof follows the same technique as the Glivenko–Cantelli Theorem5 The proof for the
case that F is continuous (in which case C is continuous) is presented here. Define {εij} by:

εij = inf
{

ε | i
j ≤ C(ε)

}
for i = 0, . . . , j and j = 1, 2, . . .. Now let

Aij =
{

I1,n(εij) → C(εij)
}

and A =
∞⋂

j=1

j⋂
i=0

Aij . Since P(Aij) = 1 it follows that P(A) = 1 as well. The event A is:

A = { lim
j→∞

max
0≤i≤j

|I1,n(εij)− C(εij)| = 0}.

For εij ≤ ε < εi+1,j we have

C(εij) ≤ C(ε) ≤ C(εi+1,j) and I1,n(εij) ≤ I1,n(ε) ≤ I1,n(εi+1,j)

and by construction of the sequence {εij},

0 ≤ C(εi+1,j)− C(εij) ≤
1
j
.

Therefore,
I1,n(ε)− C(ε) ≤ I1,n(εi+1,j)− C(εij) ≤ I1,n(εi+1,j)− C(εi+1,j) + 1

j

and
I1,n(ε)− C(ε) ≥ I1,n(εi,j)− C(εi+1,j) ≥ I1,n(εi,j)− C(εi,j)− 1

j .

Hence for all ε and j

|I1,n(ε)− C(ε)| ≤ max
0≤i≤j

|I1,n(εij)− C(εij)|+ 1
j

and the conclusion follows. 2

5See, fro example, Loève (1963, p.20).
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