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Regulating Nonlinear Environmental Systems under Knightian 

Uncertainty 

William Brock1 and Anastasios Xepapadeas2 

1. Introduction 

Joe Stiglitz has recently been very active in questioning standard 

approaches to policy making such as the "Washington  Consensus" 

and thinking about alternatives to it (Stiglitz, April 1998; 

October 1998). We think it is fair to say that his critiques have 

stimulated valuable controversy and debate. Prestigious economists 

have weighed in on both sides of the debate. The reader will find 

much discussion of this issue in a few minutes of search on the 

Internet. Joe's paper (Stiglitz, April 1998) examines financial 

instabilities and the role played by incomplete and imperfect 

capital markets during financial liberalizations. Economists argue 

vigorously about the relative roles played by market imperfections 

and government imperfections in causing financial instabilities. 

Joe's Prebisch Lecture (Stiglitz, October 1998) goes further and 

not only challenges much of conventional development policy but 

also proposes rather major modifications. One analytical and 

potentially econometrically tractable way of thinking about such 

disputes is to use concepts of scientific model uncertainty.   

     An intelligent policy maker might operate in the face of 

scientific model uncertainty by using concepts from econometrics 

like Bayesian Model Averaging coupled with recent advances in 

decision theory such as modelling "Knightian Uncertainty". This 

approach was taken by Brock and Durlauf (2001) in an attempt to 

constructively critique policy applications of empirical growth 
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analysis and to suggest a modified approach that is still 

empirically disciplined. The idea is to first objectively 

represent the amount of scientific uncertainty in what we can 

learn from empirical exercises when there are levels of 

uncertainty present such as theory uncertainty and model 

uncertainty above and beyond the usual sampling uncertainty in 

parameter estimates for a given model.  This "true" amount of 

uncertainty is typically larger than representations of 

uncertainty in conventional econometric studies.  Second, given 

levels of uncertainty that must be faced by the policy maker, the 

policy maker  should indulge in "robust" policy making that 

appropriately makes some attempt to hedge against worst cases as 

well as maximize the usual estimated net benefit.  

     In this paper we illustrate how the conceptualization of 

Knightian Uncertainty can be applied to the classic problem of 

regulating human impacted ecosystems and how it can lead to a type 

of precautionary principle.  Joe has written extensively in the 

environmental area.  For example, we believe that a version of 

Joe's pair of classical papers on growth and exhaustible resources 

(Stiglitz  (1974a,b)) could be extended to include stochastic 

shocks and model uncertainty about the impact of human activities 

upon the regenerative power of the ecosystem as well as 

uncertainty about the elasticity of substitution between ecosystem 

inputs and human produced inputs into the economic process. In 

such an extension of Joe's work, one could develop a policy 

analysis framework under Knightian Uncertainty which could lead to 

potentially useful conceptions of macrogrowth precautionary 
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principles as well as useful insights into the interaction among 

uncertainties in different parts of the system.   

     An example of what this approach might look like is Pizer 

(1996), except that we would add uncertainty about the elasticity 

of substitution between inputs and, especially, nonlinear 

regeneration dynamics for the ecosystem which allow multiple 

stable states for appropriate parameter values. In this way 

Pizer's Bayesian analysis would allow data to speak to these 

uncertainties as well as the uncertainties that he models.  We 

believe this kind of analysis would help explain which 

uncertainties matter the most and how scientific resources should 

be allocated across attempts to reduce uncertainties. Our current 

paper makes a very modest start on this challenging project by 

considering optimal management of a human impacted ecosystem under 

deterministic nonlinear ecosystem dynamics under Knightian 

Uncertainty. 

The analysis of dynamic environmental systems where the 

accumulation of pollutants cause environmental damages, such as 

phosphorus in a lake, greenhouse gasses in the atmosphere, or acid 

deposit in soils, has received extensive attention in the 

literature of environmental and resource economics.3 In these 

environmental problems many agents (e.g. countries, firms, 

farmers) contribute through their individual actions (e.g. 

emissions) to the accumulation of the pollutant stock, and the 

damages caused by the pollutant have global characteristics; that 

is, they affect all agents involved in the problem. In the 

analysis of environmental systems with the above characteristics, 
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the natural system is described by linear, in most cases, or 

nonlinear transition equations describing pollutant accumulation. 

Uncertainty has also been introduced into this framework by 

modeling the natural system through Ito stochastic differential 

equations and application of the expected utility hypothesis.4  

In this paper we consider an environmental system where many 

agents contribute to the accumulation of a pollutant with global 

characteristics. We analyze cooperative and noncooperative 

solutions under uncertainty which is associated with the process 

of pollution accumulation. We allow for the presence of nonlinear 

feedbacks in the natural system which could result in multiple 

steady state equilibria. The novelty in our approach lies in that: 

(i) we seek to explore situations where there is a potential 

heterogeneity in risk aversion between a regulator, acting as a 

Stackelberg leader that seeks to implement a cooperative solution, 

and individual agents that behave in a noncooperative way; and 

(ii) we analyze the implications of this heterogeneity for 

regulation when nonlinear dynamics could steer the dynamic system 

towards alternative basins of attraction. 

Heterogeneity in risk aversion is a possibility that appears 

once we start considering as a possible way to model uncertainty 

the ideas of the ”least favorable prior” decision theory (Gilboa 

and Schmeilder, 1989) which results in the use of maximin expected 

utility theory. Sims (2001), for example, hints at this 

heterogeneity by indicating that the same maximin criterion should 

not be imposed on private agents and optimizing policy makers.  

In this paper heterogeneity in risk aversion is introduced 
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in the following way. In the cooperative solution, the regulator 

faces Knightian uncertainty which is of the e-contamination type. 

That is, the regulator is uncertainty averse (first-order risk 

averse) while at the noncooperative solution the agents are risk 

averse (second-order risk averse). 

This heterogeneity could be defended along different lines. 

A regulator could face a dynamical system with at least two 

different time scales with unobservables at a slow time scale that 

can cause bifurcations. These unobservable slow moving dynamics 

may or may not be influenced by responses of the regulatees to 

controls chosen by the regulator. In any event, these unobservable 

dynamics can cause flips to undesirable steady states,5  which hurt 

the regulator's objective. It would be interesting but complex to 

formalize this interaction between time scales, unobservable slow 

moving bifurcational dynamics, multiple stable states in the fast 

moving dynamics and the regulator's information set being coarser 

than the regulatees' information set which influences the dynamics 

that the regulator is attempting to control. In this paper we 

abstract away this complexity by positing that the regulator, a 

Stackelberg leader, views his/her problem as facing a regulatory 

objective that is e-contaminated Knightian. 

In a problem of global pollution a regulator that seeks to 

implement a cooperative solution under uncertainty could face 

divergent beliefs and not consensus, on the part of the agents 

involved in the global problem, regarding the natural structure 

and the dynamics of the system as well as its behavior under 

alternative policy shocks. This however implies that if the 
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regulator can not impose his/her own beliefs, then he/she faces a 

problem of choice under Knightian uncertainty and can be 

considered as uncertainty averse.6 On the other hand the individual 

agents acting noncooperatively do not need to face divergent 

beliefs; they choose by maximizing subjective expected utility and 

thus can be regarded as risk averse.  

Another line of approach could be to consider the case where 

the regulator's employment contract and its incentive schedule are 

“as if” the regulator gets punished more severely if something 

unusual happens in response to his/her instrument choice than if 

something opposite in sign that is positive happens. To protect 

against this possibility the regulator could operate under the 

“least favorable prior”, implying uncertainty aversion. 

Using an open loop - most rapid approach path (MRAP) concept7 

as the equilibrium concept for the noncooperative solution, we 

show that the deviation between the cooperative optimal steady 

state (OSS) and the noncooperative OSS can be broken down into two 

components: one which is due to the public bad externality of the 

global pollutant, while the other is due to the heterogeneity in 

risk aversion between the regulator and the agents. The second 

effect can be identified as a precautionary effect. Thus the 

regulatory instrument should account both for the public bad 

externality and the uncertainty aversion effect, which implies 

that under heterogeneity in the type of risk aversion regulation 

is more stringent. We also show that in the presence of multiple 

equilibria, market-based instruments such as taxes or tradable 

permits might have some difficulties in attaining the steady state 
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chosen by the regulator because of hysteresis effects.  

Finally we examine regulation when the regulator faces 

random shocks to the initial values of the regulated system that 

can move the system to an undesired basin of attraction. We derive 

the optimal regulation in a framework where the parameters of the 

e-contamination in Knightian uncertainty are endogenized. Thus, at 

a second level our paper contributes to the literature by having 

the e-contamination parameter and the implied worst case outcome 

derived from the underlying structure of the problem rather than 

imposed in a somewhat ad hoc matter which has been the most common 

way of handling Knightian uncertainty of the e-contamination type. 

2. The Cooperative Solution 

There are ni ,...,1=  players (e.g. countries) that emit 

pollutant ia  per unit time with global effects. Gross benefits 

from ia  are ipa  where p  is some fixed price (small countries, 

small players). The environmental cost of the accumulated 

pollutant for player i is ( ) .0,0, >′′>′ iii ccxc  The pollutant 

accumulates according to  

( ) ( ) +
=

ℜ⊂∈=+−= ∑ Xxxxxfbxax
n

i
i ,0,

1

0&   (1) 

where ( )xf  is a convex-concave function reflecting the 

nonlinearity associated with feedbacks of the natural system. 

The cooperative problem assuming symmetric players is: 

( )[ ] max

0 1
0and)1(s.t.,,max aaaadtxncpae

n

i
i

t

a
≤≤=−∫ ∑

∞

=

−ρ  (2) 

Equation (1) can be written as: ( )xfbxxa −+= & . Substituting 

into (2), the problem can be rewritten in the MRAP formulation as: 

( )( ) ( )[ ] max

0
0s.t.max xxdtpxxncxfbxpe t ≤≤+−−∫

∞
− ρρ     (3) 
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The cooperative OSS is determined by:  

( ) ( )( ) ( )[ ]pxxncxfbxpbxW
xx

ρ+−−= max,max   (4) 

The optimality condition is:  

( )( ) ( )xcnxfbp ′=′−+ ρ       (5) 

Suppose a solution cx to (5) exists. Then the approach to the 

cooperative optimal steady state is according to 

( )
c

ccc

c

xxaa
xxxfbxa
xxa

<=
=−=
>=

if
if
if0

max
      (6)  

Given the nonlinearity in transition equation (1), the first-order 

condition (5) might have more than one solution. Brock and 

Starrett (1999) determine conditions under which there are an odd 

number of solutions for (5). Therefore, 

( ) ( )[ ] minimum local
maximum localthen0

0if c

c
cc

x
x

xcnxfp-
>
<

′′+′′   (7) 

This is shown in figure 1. The OSSs are defined by the 

intersection of the R curve and the C curve. Local maxima are 

( )c
r

c
r xx 31,  and local minimum is c

rx 2. 

[Figure 1] 

If we assume an adjustment mechanism in the neighborhood of 

the OSS of the form ( )( ) ( )[ ] 0, >′−′−+= φρφ xcnxfbpx&  

it is clear that since the slope at any equilibrium point cx  is 

given by (7), local maxima are locally stable equilibria, while 

local minima are locally unstable. The sign of ( )xf ′′  depends on 

the curvature of the feedback function ( )xf  in the neighborhood of 

an equilibrium point, while ( ) Xxxc ∈∀>′′ 0 . It follows then, 

that some n  exists such that for nn >  (7) is negative for all 

x. In this case only one globally stable OSS exists. Therefore 
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cooperation of many players acts as a stabilizer and could 

eliminate multiple equilibria. This is shown in figure 1 where the 

mC  curve drawn for nnm >  intersects R only once at F to define 

a unique OSS. 

 Suppose that the planner managing the cooperative solution 

faces Knightian uncertainty with regard to the parameters of the 

natural system. Assume that the uncertainty for b - that is, 

uncertainty about the self-cleaning process in a shallow lake 

where phosphorus accumulates, or about the CO2 absorption 

capability of oceans - is of the e-contamination type  

( ) ( ) ( )BMmembeeP ∈+−= ,1  

where b represents a point mass of unity at b and M represents the 

entire set of probability measures with support [b-B,b+B]. 

Following Epstein and Wang (1994, p. 288, equations (2.3.1) and 

(2.3.2)) we shall assume the planner wishes to choose total 

emissions a to maximize ( )bxW , . Then the e-contamination MRAP 

problem under Knightian uncertainty is to maximize 

( ) ( ) ( ) ( )[ ]∫ ∫+−= dmbxWexbWeeWdP ,inf,1    (8) 

It can be shown by using the envelope theorem in (4) that 

( )bxW ,  is increasing in b. Since M contains all probability 

measures over b values with support [b-B,b+B], then (8) can be 

written as 

( ) ( ) ( ) ( )∫ −+−= BbxeWbxWeeWdP
xx

,,1maxmax   (9) 

The equivalent to optimality condition (5) under Knightian 

uncertainty is 

( )( ) ( )xcnxfeBbp ′=′−+− ρ      (10) 

By comparing (5) to (10) the following result can be stated. 
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Proposition 1 Under uncertainty aversion the regulator is first-

order risk averse for all the local maxima ( )exc  of the welfare 

maximization problem (8), and it holds that 
( ) 0<

de
edxc

. Under 

risk aversion the regulator is second-order risk averse and 
( ) 0=

de
edxc

. For proof see Appendix.  

In terms of figure 1 the solution for the first-order risk 

averse regulator is given by the intersections of the U curve with 

the C curve. Local maxima are ( )cc xx 31,  and local minimum is cx2 . On 

the other hand, the solution for a second order risk averse 

regulator is given by the intersections of the R curve and the C 

curve. The deviations cc
r xx 11 −  and cc

r xx 33 −  can be characterized 

as the reductions in the socially-optimal steady state for the 

accumulation of the pollutant due to precautionary effect. 

It can also be noted in the same figure that if e or B are 

sufficiently large such that ( )( )xfeBbp ′−+− ρ  shifts further 

down like curve U1 then there is only one globally stable OSS for 

the uncertainty averse regulator, at a. In this case uncertainty 

aversion eliminates multiple equilibria, and directs the system 

towards the smallest concentration of the pollutant. This effect 

is not, however, present when the regulator is second-order risk 

averse. 

3. The Noncooperative Solution 

In the noncooperative case each player (country) i maximizes 

its own payoff given the best response ja  of the rest of the 

ij ≠  players. Thus in the deterministic case each player solves 

the open loop problem  



 11

( )[ ]

( )∑

∫

≠

∞ −

≤≤+−+=

−

n

ij
iiji

i
t

a

aaxfbxaaxts

dtxcpae
i

max

0

0,..

max

&

ρ

 (11) 

Because players are symmetric, ia  is the same for all i. Using the 

MRAP formulation the noncooperative OSS is determined under 

symmetry by  

( ) ( ) ( ) ipxxcxfabxpbxW
n

ij
jx

i

x
∀












+−








−−= ∑

≠

ρmax,max   

and the optimality condition is  

( )( ) ( )xcxfbp ′=′−+ ρ       (12) 

If a solution nx  to (12) exists, then the approach to the 

noncooperative locally stable OSS follows a MRAP. Furthermore, as 

in the cooperative case, local maxima are locally stable and local 

minima are locally unstable.  

By comparing (5) to (12) the public bad-type of externality 

characterizing the global pollutant can be easily identified 

through the ( )xcn ′  term. Then the well known result that the 

pollutant accumulation at the noncooperative solution exceeds the 

pollutant accumulation at the cooperative solution immediately 

follows. As shown in figure 1, where the two solutions are 

compared, the C curve shifts down to the N curve for the 

noncooperative case, and the solution is determined by the 

intersection of the N curve with the R curve.  

 For the noncooperative game, under uncertainty, the solution 

of the e-contaminated problem is characterized by the optimality 

condition ( )( ) ( )xcxfBebp ′=′−+− ρ1 . It is clear that if 

1ee ≠ , that is the e-contamination parameters are different 



 12

between the players and the regulator, then a new discrepancy is 

introduced because the ( )ρ+− eBbp  part of the optimality 

condition will not be the same in the two solutions. Thus the U 

curve is different for the two problems in figure 1, since the e-

contamination parameters are different between the cooperative and 

the noncooperative solutions. 

If the players are risk averse, with ωebb +=~
 where ω  is a 

random variable with zero mean and finite variance, then each 

player solves the problem ( )ωebxEW i

x
+,max  with FONC 

( )( ) ( )xcxfbp ′=′−+ ρ . 

The deviation between the cooperative and the noncooperative 

solutions, as shown in figure 1 for the two locally stable OSSs, 

is cncn xxxx 1133 , −− . This deviation can be broken into two parts 

which can be attributed to two different sources: 

1. The public bad externality PB = ( )cr
n xx 11 −  or ( )cr

n xx 33 −  due 

to the shift of the C curve to the N curve. 

2. The uncertainty aversion effect U = ( )cc
r xx 33 −  or ( )cc

r xx 11 −  

due to the shift of the R curve to the U curve. This effect can be 

identified as a precautionary effect stemming from the fact that 

the regulator is uncertainty averse with respect to the values of 

the natural system. 

Under these conditions regulation that seeks to attain the 

socially-optimal outcome, as this outcome is determined under 

uncertainty aversion, should correct not only for the public bad 

externality which is the standard approach in a global pollution 

problem, but also for the uncertainty aversion effect. This effect 

is induced by the fact that while the regulator managing the 
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cooperative solution exhibits first-order risk aversion, the 

individual players determining the noncooperative solution exhibit 

second-order risk aversion. 

4. Regulation 

 Given the discrepancy between the cooperative and the 

noncooperative OSS, the regulator seeks to implement the 

cooperative OSS by introducing a regulatory instrument. Assume 

that the regulator uses a linear tax τ on emissions to implement 
cx . Then ,  using the MRAP formulation, the noncooperative OSS under 

regulation is determined as  

( ) ( ) ( ) ( ) ( )











−+−








−−−= ∑

≠

xtpxcxfabxtpbxW
n

ij
jx

i

x
ρτ max,,max  

The FONC imply that the optimal τ should be chosen so that 

( ) ( )( ) ( ) 3,1,implies0 ===′−′−+− ixxxcxfbp c
iρτ  (13) 

The tax impact is determined in the following proposition.  

Proposition 2 Let n
ix  be an unregulated noncooperative steady 

state (τ = 0). Then 0<
τd

dx n
i  if n

ix  is locally stable (local 

maximum), and 0>
τd

dx n
i  if n

ix  is locally unstable (local 

minimum). For proof see Appendix. 

[Figure 2] 

 Assume that the regulator wants to implement cx1 . It is 

clear from (13) that an increase in the tax rate τ will shift the R 

curve defined by ( ) ( )( )xfbp ′−+− ρτ  downward. The purpose is to 

shift the R curve downward to τR  (Figure 2) so that it intersects 

the N curve at the point E corresponding to cx1 . If the initial 

noncooperative steady state was nx1 , then the regulator's steady 

state is attained in a straightforward way. The reduction ux n
1  is 
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attributed to the correction for the uncertainty aversion effect 

while the reduction cux1  is attributed to the correction for the 

public bad externality. If the initial noncooperative steady state 

was nx3 , then there could be complications. The tax should shift 

the R curve sufficiently to eliminate the basin JK that attracts 

the system to nx3 . When this basin shrinks to zero, the system is 

attracted to cx1 , which is the only stable equilibrium. However, 

if the JK basin is large enough so that when it has been 

eliminated the lower branch of the τR  curve intersects the N curve 

to the left of E as does the curve 1τR  in figure 2, then the 

system is attracted to a steady state which is below the desired 

one. To bring the system back to E , the tax needs to be reduced 

so that the curve 1τR shifts upward to τR . The fact that we need to 

raise the tax beyond the desired point and then reduce it is a 

hysteresis effect resulting from the nonlinearity of the 

transition equation of the natural system.8 This discussion 

suggests that in the presence of hysteresis effects a command-and-

control regulation that sets a nontransferable limit might be more 

effective in implementing the desired steady state. 

4.1 Regulation under Large Rare Shocks 

The above results imply that in the presence of multiple 

locally stable steady states, regulation design depends on the 

specific basin of attraction where the system is slaved. Once the 

regulator knows the basin of attraction of the system, then the 

regulation discussed in the previous sections applies. The 

regulator might however be uncertain of the system's basin of 

attraction. This is because the specific basin of attraction 
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depends on initial conditions which in cases of a natural system 

could very well be subjected to large rare random shocks which can 

move them from one basin of attraction to the other. It is clear 

that optimal regulation should take into account such an event. 

Let q denote the probability that a large shock moves the 

initial value ( ) 00 xx =  of our system to the high pollutant 

accumulation basin of attraction. In order to expose the effects 

of large rare shocks in a clearer way, assume that B=0 in (9) so 

that there is no uncertainty regarding the natural parameter b of 

the system. Then the optimal regulation problem for the regulator 

is to determine an optimal tax *τ  such that  

( ) ( )( ) ( )( )[ ]τττ nn xqWxWq 31
* 1maxarg +−=    (14) 

( ) 3,1, =ix n
i τ  is a solution of (13) and W is defined by (4). 

Proposition 3 For an optimal tax that solves (14), 0
*

>
dq
dτ

.  

For proof see Appendix. 

Thus the regulator will react to an increase in the probability 

that a random shock might move the system to a “bad” basin of 

attraction by increasing the optimal tax. 

Problem (14) can be interpreted in a way that is very close 

to the e-contamination formulation of Knightian uncertainty (9) 

with eq = . In the Knightian formulation (9) the second term has 

been transformed to reflect the worst case scenario which is the 

worst possible value that Nature can choose for b. In (14) the 

worst possible choice of Nature would be to shock the initial 

condition in such a way that the system moves to the high 

pollutant accumulation basin of attraction and converges 

eventually to the high pollutant accumulation steady state nx3 . 
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Thus (14) can be regarded as an e-contamination formulation of 

Knightian uncertainty regarding the basin of attraction of the 

system, with the e-contamination parameter being the probability 

that Nature would choose the worst possible case. This way we 

provide a straightforward interpretation of the e-contamination 

parameter. This parameter can even be endogenized if we take into 

account that the probability of the system ending in the high 

pollutant accumulation basin of attraction can be affected by the 

choice of the optimal tax τ . 

Assume that initially the system is in the basin of 

attraction of the low pollutant accumulation steady state. Let the 

timing be such that the regulator chooses τ  and Nature adds a 

random shock. The system will jump to the basin of attraction of 

the high pollutant accumulation steady state if the shock is such 

that the initial value passes to the right of point J in figure 2, 

which is the locally unstable equilibrium that separates the two 

locally stable basins of attraction. However, by setting a tax, 

the regulator affects the position of this basin-separation point, 

since increasing that tax reduces the high pollutant accumulation 

basin of attraction JK. In a situation like this the regulator 

could have two alternative courses of action. One is to choose a 

tax so that the probability of a shock moving the system to a high 

pollutant accumulation basin of attraction is zero. The second is 

to choose the tax by optimally taking into account the effect of 

the tax on the basin separation point. 

To make the probability of the system being shocked to a 

high pollutant accumulation basin of attraction zero, the high 
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pollutant accumulation steady state should be eliminated. This 

means that the tax should be chosen so that curve 1τR  in figure 2 

shifts downward until the point where the intersections at J and K 

are eliminated. The following proposition defines this tax. 

Proposition 4 Let τ  be a tax rate such that 

( ) ( )( )( ) ( )( ) 0=′−′−+− ττρτ xcxfbp  has two solutions:  

( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) 0:

0:
222

111

=′′+′′
>′′+′′

τττ
τττ

xcxfpx
xcxfpx

 

Then for any ττ >  the high pollutant accumulation basin of 

attraction is eliminated and the regulated system has only one 

steady state with low pollution accumulation.  

For Proof see Appendix. 

The tax rate τ  can be obtained iteratively by gradual 

increases until the point of tangency between the N curve and the 

1τR is reached. 

To determine the optimal tax rate by taking into account the 

effect of the tax on the basin separation point let 

( ) [ ]zSzFS >= Pr  be the cumulative distribution function of a 

random shock S . If ( )τnxSx 2
0 <+  where ( )τnx2  is the locally 

unstable steady state of the regulated system, corresponding to 

point J in figure 2, then the system converges to the locally 

stable low pollutant accumulation steady state ( )τnx1  corresponding 

to point H in figure 2. If ( )τnxSx 2
0 >+  then the system 

converges to the locally stable high pollutant accumulation steady 

state ( )τnx3  corresponding to point K in figure 2. Then the optimal 

taxation problem is defined as  

( )( ) ( )( ) ( )( )( ) ( )( )[ ]ττττ
τ

nn
S

nn
S xWxFxWxF 3212 1max −+  (15) 

with FONC  
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( )( ) ( ) ( )( ) ( )( )[ ] ( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( ) )16(01 3

3

3
2

1

1

1
231

2
2

=
∂

∂
−+

∂
∂

+−′

τ
τττ

τ
τττττ

τ
ττ

d
dx

x
xW

xF

d
dx

x
xWxFxWxW

d
dxxF

n

n

n
n

S

n

n

n
n

S
nn

n
n

S

  

Comparing (15) to (14) and (9) it is clear that the e-

contamination parameter is now determined by ( )( )τn
S xF 21 −  and it 

has been endogenized since the probability that Nature will choose 

the high accumulation basin of attraction depends on the optimal 

tax choice. In (16) it can be seen that in the FONC the first term 

reflects the marginal effect of a tax change on the probability 

that the shock will take the system to the high pollutant 

accumulation basin of attraction which is ( )( ) ( )
τ
ττ

d
dxxF

n
n

S
2

2′  weighted 

by the difference in welfare between the low and the high 

pollutant accumulation which is ( )( ) ( )( )BbxWbxW nn −− ,, 31 ττ . 

5. Concluding Remarks 

This paper introduces a new framework of analysis of 

environmental regulation issues, using a non-linear representation 

of the natural system, where there is heterogeneity in risk 

aversion between regulator and regulatees, the regulator being 

first-order risk averse (uncertainty averse) facing Knightian 

uncertainty of the e-contamination type, while the regulatees are 

second-order risk averse. 

 We are able to identify a precautionary effect in addition 

to the public bad externality effect contributing to the deviation 

between cooperative and noncooperative solutions. The 

precautionary effect is induced by risk aversion heterogeneity. 

The first-order risk averse regulator should choose policy 

instruments in a way that allows for both the precautionary effect 
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and the public bad effect. 

 Nonlinearities and multiplicity of basins of attraction 

reduce the effectiveness of market-based instruments such as taxes 

or tradable emission permits. Because of an hysteresis effect, the 

achievement of the cooperative solution could require setting 

taxes initially below the optimal level and then changing them to 

move towards their optimal level. 

 Finally we consider regulation under large rare shocks that 

could move the system to an undesirable basin of attraction. In 

this case the regulator can choose taxes optimally by taking into 

account the effects of the tax choice on the probability that the 

system will move to an undesirable basin of attraction. In this 

way we obtain an endogenization of the e-contamination parameter 

of Knightian uncertainty, which is an advance relative to the ad 

hoc way in which this parameter has been chosen up to now. 

 In this paper we examined only one possible combination of 

risk aversion heterogeneity and game form between the regulator 

and the regulatees in a nonlinear system, namely the one in which 

the regulator is first-order risk averse and leads, while the 

regulatees are second-order risk averse and follow. This seems to 

be the most appropriate choice for the specific environmental 

problem. Different types of regulation problems could fit 

different combinations of risk aversion and game forms. This 

implies that our methodological approach, by allowing for 

heterogeneity in risk aversion and nonlinear dynamics, could lead 

to a more realistic analysis of general classes of regulation 

under uncertainty. It should be noticed that the endogenization of 
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the e-contamination parameter of Knightian uncertainty can also be 

used as a general approach for analyzing regulation under rare 

shocks in nonlinear systems.  

Appendix 

Proof of Proposition 1: Taking the total derivative of (10) with 

respect to e we obtain 

( )( ) ( )( )[ ] ( ) 0<−=′′+′′ pbB
de

edxexcnexfp
c

cc    

Since ( )( ) ( )( ) 0>′′+′′ excnexfp cc   at a local maximum it follows that  

( ) .0<
de

edx c

 

Consider now a risk averse regulator and a mean preserving 

spread around b, to be ωe  where ω  is a random variable with zero 

mean and finite variance. The OSS for the regulator is determined 

as the solution of the expected welfare maximization problem 

( )ωebxEW
x

+,max  with FONC 

( )( ) ( )[ ] ( )( ) ( ) .0=′−′−+=′−′−++ xcnxfbpxcnxfebpE ρρω  

The FONC does not change due to the linearity of ( )ewbp +  and 0=Ew . 

Thus 
( ) 0=

de
edx c

 trivially. QED 

Proof of Proposition 2: At a steady state ( ) 0>′−+ xfb ρ  

because ( ) 0>′ xc  in (13). Totally differentiating the FONC we 

obtain 
( )

( ) ( ) ( )[ ]xcxfp
xfb

d
dx

′′+′′−
′−+

−=
τ

ρ
τ

. Evaluating this in the 

neighborhood of 0=τ  we obtain that ( )00 ><
τd

dx n
i  if n

ix  is 

locally stable (unstable). QED  

Proof of Proposition 3: The optimal regulation is defined as  

( ) ( ) ( )( ) ( )( )τττ
ττ

nn xqWxWqG 311maxmax +−=  with FONC 
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( ) ( ) ( )( )[ ] ( )( ){ } ( )

( ) ( )( )[ ] ( )( ){ } ( ) 0

1

3
33

1
11

=′−′−+

+′−′−+−

τ
τττρ

τ
τττρ

d
dx

xcnxfbpq

d
dxxcnxfbpq

n
nn

n
nn

  (17) 

Assume that second-order conditions are satisfied so that 

02

2
<=

∂
∂

τττ
GG

. At 0=q  we have, since 
( ) ( ) 0, 31 <








τ
τ

τ
τ

d
dx

d
dx nn

 

from Proposition 2, that 
( )( ) ( ) ( )( )[ ] ( )( ) 0,

11
1

1 =′−′−+=
∂

∂ ττρτ nn
n

n

xcnxfbp
x

bxW
  (18) 

The existence of a solution for this equation requires, from the 

implicit function theorem, that ( )( ) ( )( )[ ] 011 ≠′′+′′− ττ nn xcnxfp  

which is true for a local maximum. In this case ( ) .1
*

1
cn xx =τ  In 

the same way we can prove the existence of a solution for the 

optimal regulation problem for 1=q  with ( ) .3
*

3
cn xx =τ  Using 

(17) we obtain:  

( ) ( )( ) ( ) ( )( ) ( )








∂

∂
+

∂
∂

−−=
τ
ττ

τ
τττ

ττ d
dx

x
bxW

q
d

dx
x

bxWq
Gdq

d n

n

nn

n

n
3

3

31

1

1
* ,,11

  

Evaluating at 0=q  we obtain 0
*

<
dq
dτ

 because: (i) 0<ττG  by 

second-order conditions, (ii)
( )( ) 0,
1

1 =
∂

∂
n

n

x
bxW τ

 from (18), (iii) 

( ) 03 <
τ
τ

d
dx n

 from proposition 2 and (iv) 
( )( ) 0,
1

3 >
∂

∂
n

n

x
bxW τ

 because 

( ) ( ) cnn xxx 1
*

13 => ττ . QED 

Proof of Proposition 4: For ττ =  the system has one hyperbolic 

equilibrium point at ( )τ1x  which is locally stable and a 

nonhyperbolic equilibrium point at ( )τ2x . The nonhyperbolic point 

is a point of tangency of the N curve with the 1τR  curve. For any 

ττ >  the nonhyperbolic point is eliminated, the 1τR  curve shifts 

further to the right and there is only one globally stable point 
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of low pollutant accumulation. QED. 
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