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Abstract

Using a closed economy model with a flexible-price good and a sticky-price good we study the condi-
tions under which interest rate rules induce real determinacy and, more importantly, the MSV solution
is learnable in the E-stability sense proposed by Evans and Honkapohja (2001). We show that these
conditions depend not only on how aggressively the rule responds to inflation but also on the measure of
inflation included in the rule and on whether the flexible-price good and the sticky-price good are Edge-
worth complements, substitutes or utility separable. We consider three possible measures of inflation:
the flexible-price inflation, the sticky price inflation and the core inflation; and we analyze three different
types of rules: a forward-looking rule, a contemporaneous rule and a backward-looking rule. Our results
suggest that in order to guarantee a unique equilibrium whose MSV representation is learnable, the
government should implement a backward looking rule that responds exclusively to the sticky-price infla-
tion. Forward-looking and contemporaneous rules that respond to either the flexible-price inflation or the
core-inflation are more prone to induce multiple equilibria and E-instability of the MSV solution. More
importantly backward-looking rules that react to either the flexible-price inflation or the core inflation
may guarantee a unique equilibrium but in these cases the fundamental solution (MSV representation)
is not learnable in the E-stability sense.
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1 Introduction

In recent years there has been a revival of theoretical literature aimed at understanding the macroeconomic

consequences of implementing interest rate rules in closed and open economies models.1 This revival is

partly explained by two reasons. First since the work by Taylor (1993) it has become common to think

about monetary policy in terms of these rules whereby the central bank maneuvers the nominal interest rate

in response to inflation and output. Second there is empirical evidence suggesting that some industrialized

and developing economies have followed in the past, and are following in the present, forward-looking (and

contemporaneous) interest rate rules as a manner to conduct their monetary policy.2

Recently, works by Benhabib, Schmitt-Grohé and Uribe (2001), Bernanke and Woodford (1997), Clarida,

Gali and Gertler (2000), Carlstrom and Fuerst (1999), and Woodford (2003), among others, have used New

Keynesian models and pursued determinacy equilibrium analysis for interest rate rules.3 They have found

that these rules may generate aggregate instability in the economy by inducing multiple equilibria (real inde-

terminacy).4 From the economic policy-design perspective, this result implies that the aforementioned rules

may open the possibility of sunspot equilibria and lead the economy to equilibria with undesirable properties

such as a large degree of volatility. This implication in turn suggests that a determinacy of equilibrium

analysis can be used to differentiate among rules favoring those that guarantee a unique equilibrium with

a lower degree of volatility. Although appealing this argument is still far from complete and may suffer

from some drawbacks. The reason is that in the typical determinacy of equilibrium analysis, it is implicitly

assumed that agents can coordinate their actions and learn the equilibria (unique or multiple) induced by

the rule. But relaxing this assumption may have interesting consequences for the design of interest rate rules

rules. On one hand, if agents cannot learn the unique equilibrium targeted by the rule then the economy

may end up diverging from this equilibrium. But if this is the case then it is clear that there are some rules

that although guaranteeing a unique equilibrium, do not ensure that the economy will reach it, as pointed

by Bullard and Mitra (2002). On the other hand, if agents cannot learn sunspot equilibria then one may

doubt the relevance of characterizing rules that lead to multiple equilibria as “bad” ones. After all, if agents

cannot learn sunspot equilibria then they are less likely to occur.

Therefore, it seems clear that a determinacy of equilibrium analysis should in principle be accompanied

by a learnability of equilibrium analysis. Both analyses might help policy makers to distinguish and design

1See Taylor (1999) and Woodford (2003) among others for closed economy models and Ball (1999), Svensson (2000) and

Gali and Monacelli (2004) among others for open economy models..
2 See Clarida et al. (1998, 2000), Corbo (2000), Schorfheide and Lubik (2004) and Orphanides (1997) among others.
3 See also Dupor (1999) and Taylor (1999).
4From now on we will use the terms “multiple equilibria” and “real indeterminacy” (a “unique equilibrium” and “real

determinacy”) interchangeably. By real indeterminacy we mean a situation in which the behavior of one or more (real)

variables of the model is not pinned down by the model. This situation implies that there are multiple equilibria and opens the

possibility of the existence of sunspot equilibria.
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interest rate rules satisfying two criteria or requirements: uniqueness and learnability of the equilibrium.

In this paper we use these two criteria to answer the following question: which measure of inflation

should the central bank respond to in the interest rate rule? In order to provide an answer we consider a

“typical” New Keynesian closed economy general equilibrium model with two goods: a flexible-price good

and a sticky-price good. Hence there are three possible measures of inflation that the central bank can target

in the rule: the flexible-price inflation, the sticky price inflation and a convex combination of them (a core

inflation). We also consider three different timings for the rule: a forward-looking rule, a contemporaneous

rule and a backward-looking rule. In the first one, the central bank responds to the expected future (measure

of) inflation. In the second one the monetary authority responds to the current inflation whereas in the last

one it reacts to the past inflation.

The specific criteria of selection are the following: 1) the rule must guarantee a unique equilibrium and

2) the Minimal State Variable (MSV) representation of this unique equilibrium must be learnable in the

E-Stability sense proposed by Evans and Honkapohja (1999, 2001).5 ,6

We find that the conditions under which these two criteria are satisfied depend not only on the interest

rate response coefficient to inflation but also on the measure of inflation included in the rule and on wether

the flexible-price good and the sticky-price good are Edgeworth complements, substitutes or utility separable.

The main result of the paper is that under the aforementioned criteria the central bank should follow

a backward looking rule that responds exclusively to the sticky-price inflation. Responding to the flexible-

price inflation or to the core inflation is more prone to induce multiple equilibria (real indeterminacy)

especially when the rule is forward-looking or contemporaneous and when the two goods are either Edgeworth

complements or utility separable. Under these cases targeting the flexible-price inflation or the core inflation

makes also the MSV solution E-unstable.

More importantly backward-looking rules with respect to the flexible-price inflation or the core inflation

may guarantee a unique equilibrium but in these cases the MSV solution is not learnable in the E-stability

sense.

Although our selection criteria are different, our findings agree with previous results from the Optimal

Monetary Policy literature that suggest that the central bank should target the sticky-price inflation.7 In

addition, this paper is also related to Zanna (2003) and Carlstrom, Fuerst and Ghironi (2004). The first

work argues that in the context of a small open economy the interest rate rule should respond to the sticky

5Henceforth we will use the terms “learnability”, “E-stability” and “expectational stability” interchangeably in this paper.
6Evans and Honkapoja (1999, 2001) have argued that a unique equilibrium and sunspot equilibria are not “fragile” if they

are learnable in the sense of E-stability. Technically what they propose is to assume that agents in the model initially do

not have rational expectations but are endowed with a mechanism to form forecasts using recursive learning algorithms and

previous data from the economy. Then they develop some E-stability conditions which govern whether or not a given rational

expectations equilibrium is aymptotically stable under least squares learning.
7 See Aoki (2001) and Mankiw and Reis (2002) among others.
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price (non-traded) inflation in order to avoid real indeterminacy problems. In fact rules that respond to the

flexible-price (traded) inflation are more prone to induce self-fulfilling equilibria. The second work focuses

on the a closed economy model where labor is immobile between two sectors that produce two sticky-price

goods. Its main conclusion is that a contemporaneous rule that responds actively to only one of the sticky

price goods inflations is sufficient to guarantee real determinacy in the whole economy. Both works focus

exclusively on the determinacy of equilibrium analysis without pursuing a learnability analysis.

The remainder of this paper is organized as follows. Section 2 presents the set-up with its main assump-

tions of a closed economy model with one composite sticky-price good and one flexible-price good. Section 3

pursues the determinacy of equilibrium and learning (E-stability) analyses for the three timings of the rule

(forward-looking, contemporaneous and backward-looking) that respond exclusively to one of the previously

mentioned measures of inflation. Finally Section 4 concludes.

2 The Model

2.1 The Household-Firm Unit

Consider a closed economy populated by a large number of identical and infinitely lived household-firm units,

each of whom derives utility from consumption of two goods, from liquidity services of money, and from not

working in the production of goods. Its preferences are described by the utility function

E0

∞X
t=0

βt[U(cFt , c
S
t ) + L(mt) + V (hFt , h

S
t )] (1)

where cFt and cSt denote consumptions of a flexible-price good and a sticky-price good respectively, mt

corresponds to real money balances measured with respect to the flexible-price good, PF
t , and hFt and

hSt denote labor efforts required to produce the aforementioned goods. β ∈ (0, 1) represents the subjective
discount factor and E0 is the expectational operator conditional on the set of information available at time

0.

By the specification in (1) it is clear that we assume separability in the single period utility function

among consumption, real money balances and labor. By doing this we remove the distortionary effects of

transactions money demand.8 More formally we assume the following.

Assumption 1: The functions specified in (1) satisfy: a) UF ≡ ∂U
∂cFt

> 0, UFF < 0, US > 0, USS < 0,

UFS = USF , USS−USF US
UF

< 0 and UFFUSS−(UFS)2 > 0; b) Lm > 0 and Lmm < 0; and c) VF ≡ ∂V
∂hFt

< 0,

VFF < 0, VS < 0, VSS < 0 and VSF = VFS = 0.

8This assumption also allows us to write the real money balances that enter the utility of the agent in terms of the price of

the flexible-price good, mt ≡ Mt

PFt
, without consequences for our results.
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In particular it is important to notice that we assume that the instantaneous utility function of consump-

tion, U(., .), is strictly increasing and concave in both arguments and that both goods are normal. However

we are not imposing any sign restrictions in the cross derivatives UFS and USF . We assume that they are

equal but in this paper we will consider three cases: cFt and cSt can be Edgeworth complements ( UFS > 0),

Edgeworth substitutes (UFS < 0) or they may be utility separable (UFS = 0).9

The representative household-firm unit is engaged in the production of the flexible-price good and the

sticky-price good by employing labor from a perfectly competitive market. The technologies are described

by

yFt = zFt f
³
h̆Ft

´
and ySt = zSt g

³
h̃St

´
(2)

where h̆Tt and h̃Nt denote the labor hired by the household-firm unit for the production of the flexible-price

and the sticky-price goods respectively; zFt and zSt are productivity shocks whose logarithms, ẑ
F
t = ln(z

F
t )

and ẑSt = ln(z
S
t ), follow stationary AR(1) stochastic processes:

ẑFt = φF ẑFt−1 + ξFt ẑSt = φS ẑSt−1 + ξSt (3)

with φF , φS ∈ (0, 1) and ξFt ∼ N (0, σF ) and ξSt ∼ N (0, σS). Technology shocks are the only source of
fundamentals uncertainty and that they are not cross-correlated. The structure of the production functions

is completed by the following assumption.

Assumption 2: fh > 0, fhh < 0, gh > 0, and ghh < 0.

In other words the production functions are strictly increasing and strictly concave in their arguments.

The consumption of the stick-price good, cSt , is assumed to be a composite good made of a continuum of

intermediate differentiated goods. The aggregator function is described of the Dixit-Stiglitz type. We assume

that each household-firm unit is the monopolistic producer of one variety of sticky-price intermediate goods.

The demand for the intermediate good is of the form CS
t d
³
P̃S
t

PS
t

´
satisfying d (1) = 1 and d0 (1) = −µ,

where CS
t denotes the level of aggregate demand for the sticky-price good, P̃

S
t is the nominal price of the

intermediate sticky-price good produced by the household-firm and PS
t is the price of the composite sticky-

price good. The household-firm unit that behaves as a monopolist in the production of the sticky-price good,

sets the price of the good it supplies, P̃S
t , taking the level of aggregate demand for the sticky-price good as

given. The monopolist is constrained to satisfy demand at that price. That is
9For instance the commonly used utility function

U(cFt , c
S
t ) =

(αp)
1
a cFt

a−1
a + (1− αp)

1
a cSt

a−1
a

a
a−1 (1−σ)

− 1
1− σ

with αp ∈ (0, 1) and σ, a > 0 satisfies Assumption 1a) and the sign of UFS is determined by the values of the intratemporal

elasticity of substitution, a, and the intertemporal elasticity of substitution, 1
σ
. Specifically UFS T 0 if and only if 1σ T a.
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zSt g
³
h̃St

´
≥ CS

t

Ã
P̃S
t

PS
t

!−µ
(4)

Following Rotemberg (1982) we introduce sluggish price adjustment in the production of the intermediate

sticky-price good. We assume the household firm unit faces a quadratic resource cost (QS
t ) in the inflation

rate of the sticky-price good it produces. Hence

QS
t =

γ

2

Ã
P̃S
t

P̃S
t−1
− π̄

!2
where the parameter γ measures the degree of price stickiness. If γ = 0 then prices are flexible. The higher

γ is the more sluggish is the adjustment of nominal prices.

Moreover we assume that the representative household-firm unit can invest in a bond issued by the

government, Bt, that pays a gross nominal interest rate, Rt. The real value of this asset is denoted by

bt = Bt/P
F
t This representative agent receives a wage income from working, WF

t hFt +WS
t h

S
t , and pays

labor costs, WF
t ȟFt and WS

t h̃
S
t , for producing goods. Letting denote nt ≡ mt + bt denote the real financial

wealth, the household-firm unit’s flow budget constraint is then given by

nt ≤ Rt−1
πFt

nt−1 +
(1−Rt−1)

πFt
mt−1 +

WF
t

PF
t

hFt +
WS

t

PF
t

hSt − cFt −
cSt
qt
+ PF

t T g
t (5)

+

·
zFt f

¡
ȟFt
¢− WF

t

PF
t

ȟFt

¸
+
1

qt

CS
t d

Ã
P̃S
t

PS
t

!
− WS

t

PS
t

h̃St −
γ

2

Ã
P̃S
t

P̃S
t−1
− π̄

!2
where qt ≡ PF

t

PS
t
refers to the relative price between the flexible-price good and the sticky-price of the composite

goods, πFt ≡ PF
t

PF
t−1

denotes the gross flexible-price good inflation, T g
t is the lump-sum transfers from the

government and the expressions in square brackets correspond to profits that the representative agent receives

from selling the flexible-price good and the sticky-price composite good.

In addition the household-firm unit is subject to an Non-Ponzi game condition of the form

lim
t→∞

nt
t−1Q
j=0

¡
Rj/πFj+1

¢ ≥ 0 (6)

The representative household-firm unit chooses the set of processes {cFt , cSt , hFt , hSt , ȟFt , h̃St , P̃S
t } and

{mt, nt}∞t=0 in order to maximize (1) subject to (4), (5) and (6), given the initial condition n0 and the

set of processes {Rt, PF
t , P

S
t , W

F
t , WS

t , T
g
t , C

S
t , z

F
t , z

S
t }. Note that since the utility function specified in

(1) implies that the preferences of the agent display non-sasiation then constraints (5) and (6) both hold

with equality.
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The first order conditions correspond to (5) and (6) with equality and

UF (c
F
t , c

S
t ) = λt (7)

UF (c
F
t , c

S
t )

US(cFt , c
S
t )
= qt (8)

−VF (c
F
t , c

S
t )

UF (cFt , c
S
t )
=

WF
t

PF
t

(9)

− VS(c
F
t , c

S
t )

UF (cFt , c
S
t )
=

WS
t

PF
t

(10)

1 =
WF

t /PF
t

zFt fh
¡
ȟFt
¢ (11)

t

λt
=

WS
t /P

S
t

qtzSt gh

³
h̃St

´ (12)

0 =
λtC

S
t

qt
d

Ã
P̃S
t

PS
t

!
+

λtP̃
S
t C

S
t

qtPS
t

d0
Ã
P̃S
t

PS
t

!
− γ

λt
qt

Ã
P̃N
t

P̃N
t−1
− π̄

!
P̃S
t

P̃S
t−1
− tC

S
t d

0
Ã
P̃S
t

PS
t

!
(13)

+βγEt

"
λt+1
qt+1

Ã
P̃S
t+1

P̃S
t

− π̄

!
P̃S
t+1

P̃S
t

#

1

Lm(mt)
=

1

UF (cFt , c
S
t )

µ
Rt

Rt − 1
¶

(14)

λt = βEt

µ
λt+1Rt

πFt+1

¶
(15)

where t and λt correspond to the Lagrange multipliers of (4) and (5) respectively.

The interpretation of the first order conditions is straightforward. Condition (7) is the usual intertem-

poral envelope condition that makes the marginal utility of consumption of flexible-price goods equal to

the marginal utility of wealth (λt). Condition (8) implies that the marginal rate of substitution between

flexible-price and the sticky-price goods must be equal to the relative price between these goods. In addition

conditions (9) makes the marginal rate of substitution between labor supplied for the production of the

flexible-price good and consumption of the flexible-price good equal to the real wage paid for producing the

flexible-price good. Condition (10) does the same for labor supplied for the production of the sticky-price

good but in this case the real wage corresponds to the ratio between the nominal wage paid for producing

the sticky-price good and the flexible price. Conditions (11) (respectively 12) equalizes the marginal cost
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to the ratio between the real wage and the marginal product of labor for producing the flexible-price good

(sticky-price good). Equation (14) represents the demand for real balances of money that, under Assumption

1, is as an increasing function of consumption of the flexible-price good and a decreasing function of the

gross nominal interest rate. And finally condition (15) implies a standard asset pricing equation.

2.2 The Government

The government issues two nominal liabilities: money, Mg
t , and a domestic bond, B

g
t , that pays a gross

nominal interest rate Rt. It also makes transfers , PF
t T g

t , pays interest on its debt, (Rt− 1)Bg
t , and receives

revenues from seigniorage. By letting ngt ≡ (Mg
t +Bg

t ) /P
F
t denote the real government liabilities at the

beginning of period we can write the government budget constraint in real terms as

ngt =
Rt−1
πFt

ngt−1 −
·
(Rt−1 − 1)

πFt
mt−1 − T g

t

¸
(16)

We assume that the government follows a generic Ricardian fiscal policy. Under this policy, it picks

the path of transfers, T g
t , satisfying the intertemporal version of (16) in conjunction with the transversality

condition

lim
t→∞

ngt
t−1Q
j=0

¡
Rj/πFj+1

¢ = 0 (17)

We define monetary policy as an interest rate feedback rule whereby the government sets the gross

nominal interest rate, Rt, as an increasing and continuous function of the deviation of inflation with respect

to a target

Rt = R∗ρ
³
Et

³πt+j
π∗

´´
with j = −1, 0, 1 (18)

where π∗ corresponds to the inflation target and R∗ = π∗/β. We will consider three different timings.

In other words the rule may be forward-looking responding to the expected inflation deviation, Et

¡πt+1
π∗
¢
;

contemporaneous, when the rule reacts to the current inflation deviation,
¡
πt
π∗
¢
, or backward-looking, when it

responds to the past inflation deviation
¡πt−1

π∗
¢
. The measure of inflation that we consider in (18) corresponds

to the core inflation, and it is a convex combination of the flexible-price inflation, πFt ≡ PF
t

PF
t−1

and the sticky-

price inflation, πSt ≡ PS
t

PS
t−1

. In other words,

πt = wπFt + (1− w)πSt (19)

where w ∈ [0, 1] is the weight that the government puts on the flexible-price inflation. Note that when the
government sets w = 1 then the rule responds exclusively to the flexible-price inflation, πt = πFt . On the

other hand if the government sets w = 0 then the rule responds solely to the sticky-price inflation, πt = πSt .
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We will assume that the government responds aggressively to inflation. That is, at the inflation rate

target, in response of a one percent of inflation the government will raise the nominal interest by more that

one percent. In the terminology of Leeper (1991) this rule is called an "active" rule.

2.3 The Equilibrium

We will focus on a symmetric equilibrium in which all the monopolistic producers of sticky-price goods

pick the same price. Hence P̃S
t = PN

t . Since all the monopolists face the same wage rate, WS
t , the same

technology shock , zSt and the same production function, z
S
t g
¡
hSt
¢
, then they will demand the same amount

of labor h̃St = hSt . In equilibrium the money market, the labor markets, the flexible-price good market and

the sticky-price goods market clear. Therefore

mt = mg
t (20)

hFt = ȟFt (21)

hSt = h̃St (22)

cFt = zFt f
¡
hFt
¢

(23)

and

cSt = CS
t = zSt g

¡
hSt
¢− γ

2

¡
πSt − π̄

¢2
(24)

Utilizing the notion of a symmetric equilibrium, conditions (7)-(13), (22), (24) and the definitions πSt =

PS
t /P

S
t−1, d(1) = 1 and d0(1) = −µ we can rewrite the first order condition (13) as

Et

£
US(c

F
t+1, c

S
t+1)(π

S
t+1 − π̄)πSt+1

¤
=

US(c
F
t , c

S
t )(π

S
t − π̄)πSt

β
− (1− µ)cSt US(c

F
t , c

S
t )

βγ
+

µcSt VS(h
F
t , h

S
t )

βγzSt gh
¡
hSt
¢ (25)

that corresponds to the augmented Phillips curve for the sticky-price goods inflation.10 Furthermore using

conditions (7), (8), (15) and the definition of qt we obtain

UF (c
F
t+1, c

S
t+1) = βEt

·
UF (c

F
t+1, c

S
t+1)Rt

πFt+1

¸
(26)

and

US(c
F
t+1, c

S
t+1) = βEt

·
US(c

F
t+1, c

S
t+1)Rt

πSt+1

¸
(27)

that correspond to the Euler equations for consumption of the flexible-price and the sticky-price goods

respectively. In addition from (9), (11) and (21) we can derive the equation

−VF (c
F
t , c

S
t )

UF (cFt , c
S
t )
= zFt fh

¡
hFt
¢

(28)

10We would have derived a similar augmented Phillips curve if we had follow Calvo’s (1983) approach.
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We are ready to provide a definition of an equilibrium in an economy where the government follows a

Ricardian fiscal policy and implements an interest rate rule.

Definition 1 Given the initial condition ng−1, the inflation target, π̄ and the exogenous stochastic processes©
zFt , z

S
t

ª∞
t=0

, a symmetric competitive equilibrium under a Ricardian fiscal policy is defined as a set of

stochastic processes {cFt , cSt , hFt , hSt , ngt , T g
t , π

F
t , π

S
t , Rt}∞t=0 satisfying 1) conditions (25)-(28), 2) the

market clearing conditions (23) and (24), 3) the intertemporal version of (16) together with (17), 4) the

interest rate rule (18) and 5) the definition of core-inflation (19).

Note that once we solve for {cFt , cSt , hFt , hSt , τ t, πFt , πSt , Rt}∞t=0 it is possible to derive the set of processes

{λt, qt, mt}∞t=0 using (7), (8) and (14) whereas nt = ngt .

For our determinacy analysis and learning analysis we can reduce the model further. In particular

note that since the fiscal policy is assumed to be Ricardian, we know that the intertemporal version of

the government’s budget constraint in conjunction with its transversality condition will be always satisfied.

Hence for the aforementioned analyses we will not consider (16) and (17).

2.4 The Log-linearized Economy

In this subsection we derive a log-linearized version of the system of equations that describe the competitive

equilibrium of the economy, as stated in Definition 1. As explained before we exclude (16) and (17) given

that the fiscal policy is Ricardian.

Specifically we log-linearize the rule (18), the definition of core-inflation (19) and the conditions (23),

(24), and (25)-(28) around a non-stochastic steady state. In particular note that at the steady-state we have

that π̄ = π̄F = π̄S . Manipulating the log-linearized equations we obtain the following set of equations

c̄F ĉFt = αc̄S ĉSt + κ1ẑFt (29)

ĉFt = Et

¡
ĉFt+1

¢
+
1

χ

h
R̂t −Et

³
π̂Ft+1

´i
+ κ2ẑFt (30)

ĉSt = Et

¡
ĉSt+1

¢
+
1 h

R̂t −Et

³
π̂St+1

´i
− κ3ẑFt (31)
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π̂St = βEt(π̂
S
t+1) + βδĉSt + βκ4ẑSt + βκ5ẑFt (32)

R̂t = ρπEtπ̂t+j with j = −1, 0, 1 (33)

π̂t = wπ̂Ft + (1− w)π̂St (34)

where

α = − (fh)
2 USF

fhhUF + (fh)
2 UFF + VFF

κ1 =
fVFF − (fh)2 UF + fhhc̄

FUSF

fhhUF + (fh)
2 UFF + VFF

(35)

=
(α1UFS + USS) c̄

S

US
χ =

(α1UFF + USF ) c̄
F

α1UF
(36)

κ2 =
α2(1− ϕF )USF

α1χUF
κ3 =

α2(1− ϕF )UFS
US

δ =
µc̄S

βγπ̄2ghUS

"
VS(USS + α1UFS)c̄

S

US
− VSS c̄

S

gh
+

ghhVS c̄
S

(gh)
2

#
(37)

κ4 =
µc̄S

βγπ̄2ghUS

"
VSS c̄

S

gh
− ghhVS c̄

S

(gh)
2 + VS

#
κ5 =

µc̄S

βγπ̄2ghUS

µ
α2VSUFS

US

¶
(38)

and all the derivatives of the functions U(., .), V (., .), f(.) and g(.) are evaluated at the steady state; c̄F and

c̄S denote the steady state levels of consumption for the flexible-price and the sticky-price goods, respectively,

π̄ = π∗ and x̂t = log(
xt
x̄ ). To complete the system of log-linearized equations that describes the dynamics of

the economy we have to consider the processes (3).

In addition for subsequent analysis it is useful to characterize the sign of some of the coefficients of the

log-linearized system. The following Lemma accomplishes this goal.
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Lemma 1 Under Assumptions 1 and 2 it follows that a) α T 0 if and only if USF T 0; b) < 0; c) χ > 0;

and d) δ > 0

Proof. See Appendix.

We are now ready to pursue the determinacy and learnability of equilibrium analyses.

3 The Determinacy and Learning of Equilibrium Analyses

In this section we will study the determinacy and learnability of equilibrium properties for three different

rules (forward-looking, contemporaneous and backward-looking rules) that may react to different measures

of inflation. The reason of pursuing determinacy of equilibrium and learnability analyses for these rules

lies on two intertwined arguments. The first one points out that interest rate rules may generate aggregate

instability in the economy by inducing multiple equilibria (real indeterminacy).11 The second one emphasizes

that some rules that although guaranteeing a unique equilibrium, do not ensure that the economy will reach

it.12

Both arguments are important from an economic policy-design perspective. The first one implies that

the aforementioned rules may open the possibility of sunspot equilibria and lead the economy to equilibria

with undesirable properties such as a large degree of volatility. This implication in turn suggests that a

determinacy of equilibrium analysis can be used to differentiate among rules favoring those that guarantee a

unique equilibrium. However this suggestion although appealing may suffer from some drawbacks that lead

to the second argument. In the typical determinacy of equilibrium analysis, it is implicitly assumed that

agents can coordinate their actions and learn the equilibria (unique or multiple) induced by the rule. But

if agents cannot learn the unique equilibrium targeted by the rule then the economy may end up diverging

from this equilibrium. If this is the case then it is clear that there are some rules that although inducing

real determinacy do not ensure that the economy will be driven into the targeted equilibrium.13

11See Benhabib, Schmitt-Grohé and Uribe (2001), Bernanke and Woodford (1997), Clarida, Gali and Gertler (2000), Carlstrom

and Fuerst (1999), Taylor (1999) and Woodford (2003), among others.
12 See Bullard and Mitra (2002).
13Moreover if agents cannot learn sunspot equilibria then one may doubt the relevance of characterizing rules that lead to

multiple equilibria as “bad” ones. After all, if agents cannot learn sunspot equilibria then they are less likely to occur.
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Therefore, as pointed by Bullard and Mitra (2002), an interest rate rule should not only guarantee a

unique equilibrium but also a "learnable" equilibrium. This suggests that a determinacy of equilibrium

analysis for interest rate rules should in principle be accompanied by a learnability of equilibrium analysis.

Both analyses may help policy makers to distinguish and design rules satisfying two requirements: uniqueness

and learnability of the equilibrium.

For both the determinacy and learnability analyses we will focus on a log-linearized version of the system

of equations that describe the competitive equilibrium in this economy, as stated in Definition 1. Before

finding this log-linearized version, it is useful to describe the methodology that we will apply to pursue the

aforementioned analyses.

3.1 The Methodology

For the determinacy of equilibrium analysis we will apply the results for Blanchard and Kahn (1980) that

help to characterize whether a rational expectations linear system of equations such as

x̂t = ΛEt(x̂t+1) (39)

has a unique equilibrium, multiple equilibria or no equilibrium, where x̂t is a system of s × 1 vector of

endogenous variables, and Λ is a s×smatrix of constants. As is well known the analysis consists on comparing

the number of non-explosive eigenvalues of the matrix, Λ, with the number of non-predetermined variables.

Then in the determinacy of equilibrium of a specific rule that responds to a particular measure of inflation

we reduce the log-linearized version of the economy described by (29)-(34) and (3) to the representation in

(39) in order to apply Blanchard and Kahn’s results.14

On the other hand as a criterion of “learnability” of an equilibrium we will use the concept of “E-

stability” proposed by Evans and Honkapohja (1999, 2001). That is, an equilibrium is “learnable” if it

is “E-Stable”. Consequently we start by assuming that agents in our model no longer are endowed with

rational expectations. Instead they have adaptive rules whereby agents form expectations using recursive

14See also Benhabib and Farmer (1999) and Farmer (1999).
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least squares updating and data from the system. Then we derive the conditions for expectational stability

(E-stability). We will focus on the E-stability concept for the following reason. In models that display a

unique equilibrium (real determinacy models), Marcet and Sargent (1989) and Evans and Honkapohja (1999,

2001) have shown that under some general conditions, the notional time concept of expectational stability of

a rational expectation equilibrium governs the local convergence of real time adaptive learning algorithms.

Specifically they have shown that under E-stability, recursive least-squares learning is locally convergent to

the rational expectations equilibrium.

Then we need to define the concept of E-stability. To do so it is useful to explain the methodology

proposed by Evans and Honkapohja (1999, 2001). Consider the model

ŷt = η +ΩEtŷt+1 + Γŷt−1 +Ψẑt and ẑt = Φẑt−1 + ξt (40)

where ŷt is a s×1 vector of endogenous variables, η is a s×1 vector of constants vector, Ω, Γ, Ψ, and Φ are

s× s matrices of constants, and ẑt is a s× 1 vector of exogenous variables which follows a stationary VAR

whose s× 1 vector of shocks consists of white noise terms. In addition Et denotes in general (non-rational)

expectations. Next, assume that the agents follow a perceived law of motion (PLM) that in the case of real

determinacy corresponds to the fundamental solution or Minimal State Variable (MSV) representation15

ŷt = k + P ŷt−1 +Qẑt (41)

where k, P, Q are conformable vectors and matrices and are to be derived by the method of undetermined

coefficients. Iterating forward this law of motion and using it to eliminate all the forecasts (Etŷt+1 =

k + Pŷt +QΦẑt) in the model specified in (40) we can derive the implied actual law of motion (ALM)

ŷt = kA + PAŷt−1 +QAẑt (42)

Then we obtain the T-mapping T (k, P,Q) = (kA, PA, QA), whose fixed points correspond to the rational

expectations equilibrium. An equilibrium described by the MSV representation is said to be E-stable if this

mapping is stable at the equilibrium in question. More formally a fixed point of the T-mapping is E-stable

15See McCallum (1983) and Uhlig (1999).
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provided that the differential equation

d(k, P,Q)

dτn
= T (k, P,Q)− (k, P,Q) (43)

is locally asymptotically stable at that particular fixed point, where τn is defined as the “notional” time.

More specifically, the ALM of the system (40) corresponds to

ŷt = (I − ΩP )−1 [η +Ωk + Γŷt−1 + (ΩQΦ+Ψ)ẑt]

where I is the identity matrix. Using this ALM and the PLM in (41) we find the T-Mapping

T (k, P,Q) = (kA, PA,QA) = [(I − ΩP )−1(η +Ωk), (I − ΩP )−1Γ, (I − ΩP )−1(ΩQΦ+Ψ)] (44)

whose fixed point correspond to the rational expectation equilibrium and can be used to determine the

coefficients matrices k̄, P̄ , and Q̄ of the MSV solutions. That is k̄, P̄ , and Q̄ are the solutions to

(I − ΩP − Ω)k = η ΩP 2 − P + Γ = 0 and (I − ΩP )Q− ΩQΦ = Ψ (45)

Using (44) the conditions under which the differential equation (43) is locally asymptotically stable are

derived and stated in Proposition 10.3 in Evans and Honkapohja (2001). They basically say that an MSV

solution of the form (41) to the system (40) is E-stable if all the eigenvalues of the matrices evaluated at

k̄, P̄ , and Q̄,

DTk = (I − ΩP̄ )−1Ω DTP =
£
(I − ΩP̄ )−1Γ¤0 ⊗ [(I − ΩP̄ )−1Ω] and DTQ = Φ

0 ⊗ [(I − ΩP̄ )−1Ω]

(46)

have real parts less than one. Moreover the solution is not E-stable if any of the eigenvalues has real part

larger than one.

It is important to observe that a fundamental part in the learnability analysis consists of making explicit

what agents know when they form their forecasts. In the E-stability analysis literature it is common to
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assume that when agents form their expectations Etŷt, they do not know ŷt. In this paper this assumption

may be inconsistent with the assumptions that we use to derive the equations of the model.16 Henceforth

for the learnability analysis we will assume that when forming expectations agents know ŷt.

To conclude and summarize, in order to determine whether a specific rule that responds to a particular

measure of inflation induces a learnable MSV representation of the equilibrium we proceed as follows. First

we reduce the log-linearized version of the economy described by (29)-(34) and (3) to a similar system as in

(40). Then we calculate the MSV solution of this system and check if all the eigenvalues of the matrices in

(46) have real parts less than one.

3.2 Forward-Looking Rules

In this section we focus on interest rate rules reacting to one-period ahead (expected) inflation, i.e. for-

ward looking rules. Our analysis is motivated by the forward-looking rules estimations of Clarida Gali and

Gertler (1998,2000) for the US, United kingdom, Germany, France, Italy, and Japan; and the estimations

by Corbo(2000) for Chile, Colombia, Peru, Costa Rica and El Salvador. Specifically we focus on rules of the

following type

R̂t = ρπEtπ̂t+1 with ρπ > 1 (47)

whereby the government responds actively to the expected core-inflation rate, π̂.

Using equations (29)-(32), (33) and (47) we obtain the system

ŷt = η +ΩEtŷt+1 +Ψẑt and ẑt = Φẑt−1 + ξt (48)

where ŷt = [π̂
S
t , ĉ

S
t ]
0, ẑt = [ẑFt , ẑ

S
t ]
0, ξt = [ξ

F
t , ξ

S
t ]
0, η = 0,

16 In particular notice that for the derivation of the first order conditions of the representative agent we assume that EtPN
t (j) =

PN
t (j) (or in a symmetric equilibrium EtPN

t = PN
t ). Therefore assuming in the learnability analysis that the agents do not

know PN
t when forming expectations would have some implications for the specification of the model. Specifically it would

require to replace π̂St in (32) with the expectations of π̂
S
t .

16



Ω =

 β − βδ(1−ρπ)
(1−τwρπ) βδ

− (1−ρπ)
(1−τwρπ) 1

 (49)

and Φ =

 φF 0

0 φS

 . The form of Ψ is omitted since it is not required for the following analysis. Moreover,
β corresponds to the subjective discount factor, ρπ is the interest response coefficient to core inflation, w is

the weight that the government puts on the flexible-price inflation to construct the core inflation (see 34),

α, and δ are constants defined in (35), (36) and (37) and characterized by Lemma 1 and

τ = 1− θ
θ = αχ

µ
c̄S

c̄F

¶
(50)

The solution of (48) will pin down the dynamics of ŷt = [π̂
S
t , ĉ

S
t ]
0. Then using these and equations (29),

(30), (34), (47) and processes (3) we can find the set of processes {ĉFt , π̂Ft , π̂t, Rt}.
To complete the specification of the system we study the properties of θ and τ in the following Lemma.

Lemma 2 Under Assumptions 1 and 2 a) θ T 0 if and only if USF T 0; b) if USF T 0 then τ T 1 ; c)

τ > 0.

Proof. See Appendix.

The following Proposition studies active forward-looking rules that responds to the core inflation. It

provides necessary and sufficient conditions for these rules to deliver a unique and learnable equilibrium.

Proposition 1 Consider the system defined in (48). Let ρwπ =
[βδ−2(1+β) ]
βδ−2(1+β) τw and assume that the government

follows an active forward-looking rule in terms of the core inflation (π̂) described by R̂t = ρπEtπ̂t+1 with

ρπ > 1.

a) If USF ≤ 0 ( ĉFt and ĉSt are either Edgeworth substitutes or utility separable) then a sufficient and

necessary condition for the existence of a unique equilibrium is that 1 < ρπ < ρwπ for any w ∈ (0, 1).
Moreover this is a sufficient condition for the MSV solution ŷt = k̄ + Q̄ẑt of this equilibrium to be

E-stable, where k̄ = 0 and Q̄ solves Q− ΩQΦ = Ψ.

b) If USF > 0 ( ĉFt and ĉSt are Edgeworth complements) then a sufficient and necessary condition

for the existence of a unique equilibrium is that 1 < ρπ < ρwπ for any w ∈ (0, 1/τ). Moreover this is a
sufficient condition for the MSV solution ŷt = k̄ + Q̄ẑt of this equilibrium to be E-stable, where k̄ = 0

and Q̄ solves Q− ΩQΦ = Ψ.
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Proof. See the Appendix.

The conditions stated by Proposition 1 under which active forward-looking rules deliver a unique and

learnable equilibrium depend not only on the interest rate response coefficient to inflation, but also on

the weight w and on whether are ĉFt and ĉSt are Edgeworth substitutes, Edgeworth complements or utility

separable. The following paragraphs elaborate on this statement.

The importance of w, the weight that the government puts in the flexible-price inflation to construct the

core inflation, can be grasped by realizing that ∂ρwπ
∂w < 0. Which means that as the government puts more

weight on flexible-price inflation then the range 1 < ρπ < ρwπ under which an active forward-looking rule

will deliver a unique learnable and unique equilibrium will be reduced. In fact it is possible to prove that

as long as ρπ > ρwπ then the forward-looking rule will always deliver multiple equilibria. This observation

has dramatic consequences for the performance of forward-looking rules when the goods ĉFt and ĉSt are

either Edgeworth complements (USF > 0) or utility separable (USF = 0). To understand this we can study

thoroughly the properties of the function ρwπ and construct Figures 1,2 and 3 that correspond to the cases

when the goods are Edgeworth substitutes, utility separable or Edgeworth complements, repectively. These

Figures show not only the values for ρπ and w for which forward-looking rules that respond to the core

inflation will deliver unique and learnable equilibria (real determinacy and E-stability) but also the values

for which there exists multiple equilibria (real indeterminacy). Within the value regions for which there exist

multiple equilibria for active rules, we also characterize whether the MSV solution is E-stable or E-unstable.

In the figures "D" and "I" stand for real determinacy (unique equilibrium) and real indeterminacy (multiple

equilibria) respectively. Whereas "ES" stands for E-stable and "EU" for E-unstable.

In all these figures it is clear that ρwπ is a decreasing function of w and that its intercept with the ρπ-axis

when w = 0 is equal to ρ0π. Figure 1 corresponds to the case in which ĉ
F
t and ĉ

S
t are Edgeworth complements

(USF > 0). In this case it is clear that active forward-looking rules will always lead to real indeterminacy

for either w > 1
τ and any ρπ > 1 or for w ∈ (0, 1τ ) whenever that ρπ > ρwπ . Only rules satisfying 1 < ρπ < ρwπ

and w ∈ (0, 1τ ) (characterized by part b of Proposition 1) will deliver unique and learnable equilibria. Figure

2 corresponds to the case in which ĉFt and ĉSt are utility separable (USF = 0). In this case the region of real
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Figure 1:

determinacy and E-stability is increased with respect to the previous case. The reason is that the intercept of

ρwπ with the ρπ-axis is still ρ
0
π. However the sufficient and necessary condition for ρπ of part a) of Proposition

1 will hold for any w ∈ (0, 1). Nevertheless if w is very closed to one then active rules will still induce multiple

equilibria. Figure 3 is associated with the case when ĉFt and ĉSt are Edgeworth substitutes (USF < 0). In

this case the possible problems of real indeterminacy seem to subside although it is still true that the region

of real determinacy and E-stability characterized by part a) of Proposition 1 decreases as w increases.

This analysis suggests that it is important to study active forward-looking rules that react exclusively to

either the flexible-price inflation, π̂F , or the sticky-price inflation, π̂S . After all these two cases correspond

to react to the core inflation and set w = 1 and w = 0 respectively. By studying these two cases we will

also be able to provide an economic intuition of the results from Proposition 1 and depicted in the previous

Figures.
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The following Proposition summarizes the determinacy of equilibrium and learnability results for an

active rule that responds solely to the flexible-price inflation.

Proposition 2 Consider the system defined in (48) with w = 1. Let ρ1π =
[βδ−2(1+β) ]
βδ−2(1+β) τ and assume that the

government follows an active forward-looking rule in terms of the flexible-price inflation (π̂F ) described by

R̂t = ρπEtπ̂
F
t+1 with ρπ > 1.

a) If USF < 0 ( ĉFt and ĉSt are Edgeworth substitutes) then a sufficient and necessary condition for

the existence of a unique equilibrium is that 1 < ρπ < ρ1π. Moreover this is a sufficient condition for the

MSV solution ŷt = k̄+Q̄ẑt of this equilibrium to be E-stable, where k̄ = 0 and Q̄ solves Q−ΩQΦ = Ψ.

b) If USF ≥ 0 ( ĉFt and ĉSt are either Edgeworth complements or utility separable) then there is NOT

a value of ρπ > 1 for which there exists a unique equilibrium and the MSV solution ŷt = k̄ + Q̄ẑt is

E-stable, where k̄ = 0 and Q̄ solves Q− ΩQΦ = Ψ. More specifically for any ρπ such that ρπ > 1 the

rule will always induce multiple equilibria and more importantly the MSV solution is NOT learnable in

the E-stability sense.

Proof. See the Appendix.

The results of Proposition 2 show that conditions under which active forward-looking rules that respond

exclusively to the flexible-price inflation deliver a unique and learnable equilibrium depend strongly on

whether are ĉFt and ĉ
S
t are Edgeworth substitutes, Edgeworth complements or utility separable. In particular

when ĉFt and ĉSt are either Edgeworth complements or utility separable, then the aforementioned rules will

always induce aggregate instability by generating multiple equilibria. More interestingly even if we focus on

the MSV solution, we find that this representation is never E-stable.

To understand this it is useful to derive the following equation from (29)-(31), (33) and (34)

Etπ̂
F
t+1 =

µ
1− τ

1− τρπ

¶
Etπ̂

S
t+1 (51)

where we have ignored the terms associated with ẑFt . With this equation and equations (31) and (32), it

is possible to construct a self-fulfilling equilibrium when ĉFt and ĉSt are either Edgeworth complements or

utility separable. We pursue this goal.

Assume that agents expect a higher sticky-price inflation. When ĉFt and ĉSt are Edgeworth complements

then by Lemma 2 we know that τ > 1. If in addition the rule is active ρπ > 1, then by (51) we see
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that higher expectations of the sticky price-inflation will be associated with with higher expectations of the

flexible price inflation but satisfying Etπ̂
F
t+1 < Etπ̂

S
t+1. If the rule responds actively and exclusively to the

flexible-price inflation R̂t = ρπEtπ̂
F
t+1 then the real interest rate measured with respect to the expected

sticky-price inflation, R̂t − Etπ̂
S
t+1, will decrease stimulating consumption of the sticky-price good (see 31).

As a response to this increase in consumption firms will raise the price of the sticky-price good inducing a

higher sticky-price inflation (see 33). Then the original expectations of a higher sticky-price inflation are

validated.

When ĉFt and ĉSt are utility separable, then by Lemma 2 we know that τ = 1. But this and (51) imply

that Etπ̂
F
t+1 = 0. Now assume that agents expect a higher sticky-price inflation. Since the rule responds

actively and only to the flexible-price inflation R̂t = ρπEtπ̂
F
t+1 then the real interest rate measured with

respect to the expected sticky-price inflation, R̂t −Etπ̂
S
t+1 will decrease and the same mechanism explained

above self-validates the original expectations.

Next consider the case when ĉFt and ĉSt are Edgeworth substitutes. From Lemma 2 we know that

0 < τ < 1. If in addition the rule is active ρπ > 1 and satisfies ρπ < 1
τ , then by (51) we see that higher

expectations of the sticky price-inflation will be associated with higher expectations of the flexible price

inflation but in this case we have that Etπ̂
F
t+1 > Etπ̂

S
t+1. If the rule responds actively and exclusively to the

flexible-price inflation R̂t = ρπEtπ̂
F
t+1 then it is possible that the real interest rate measured with respect

to the expected sticky-price inflation, R̂t − Etπ̂
S
t+1 will increase reducing consumption of the sticky-price

good (see 31). As a response to this decline in consumption firms will decrease the price of the sticky-price

good inducing a lower sticky-price inflation (see 33). Then the original expectations of a higher sticky-price

inflation are not validated.

In a similar way it is possible to grasp the intuition of why the MSV solution is not learnable (E-stable)

when ĉFt and ĉSt are Edgeworth complements or utility separable whereas it is learnable if ĉ
F
t and ĉSt are

Edgeworth substitutes. In order to do so we use (51) and the rule R̂t = ρπEtπ̂
F
t+1 to derive the real interest

rate measured with respect to the expected sticky-price inflation
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R̂t −Etπ̂
S
t+1 = −

µ
1− ρπ
1− τρπ

¶
Etπ̂

S
t+1 (52)

Consider the case in which they are Edgeworth complements or utility separable (τ ≥ 1) and recall

that ρπ > 1. According to (52) a deviation of people’s expected sticky-price inflation from the rational

expectations value will always lead to a decrease in the real interest rate measured with respect to the

expected sticky-price inflation. But this will stimulate consumption of the sticky-price good by (31) which in

turn will increase the sticky-price inflation by (33). Over time this mechanism leads to upward revisions of

both the expected sticky-price inflation and the expected consumption of the sticky-price goods. Therefore

the policy of targeting actively the flexible-price inflation will not off-set the initial deviation from the rational

expectations equilibrium. It will move the economy further away from it.

On the contrary assume that the goods are Edgeworth substitutes. In this case 0 < τ < 1. Using (52) we

can see that a deviation of people’s expected sticky-price inflation from the rational expectations value may

induce an increase in the real interest rate measured with respect to the expected sticky-price inflation, as

long as 1 < ρπ < 1
τ . But this will decrease consumption of the sticky-price good by (31) which in turn will

decrease the sticky-price inflation by ( 33). Over time this mechanism leads to upward revisions of both the

expected sticky-price inflation and the expected consumption of the sticky-price goods. Hence in this case

the policy of targeting actively the flexible-price inflation is able to lead the original people’s expectations

towards the the rational expectations value.

The analysis of rules that respond to either the core-inflation or the flexible-price inflation poses the

question of whether it is possible to design a rule that induces a unique and learnable equilibrium without

depending on the joint characteristics of ĉFt and ĉ
S
t . The answer to this can be found in active forward-looking

rules that respond solely to the sticky-price inflation. The following proposition makes this point.

Proposition 3 Consider the system defined in (48) with w = 0. Let ρ0π = 1 − 2(1+β)
βδ and assume that

the government follows an active forward-looking rule in terms of the sticky-price inflation (π̂S) described by

R̂t = ρπEtπ̂
S
t+1 with ρπ > 1. Then regardless of whether USF T 0 (that is whether ĉFt and ĉSt are Edgeworth
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substitutes, complements or utility separable),a sufficient and necessary condition for the existence of a unique

equilibrium is that 1 < ρπ < ρ0π. Moreover this is a sufficient and a necessary condition for the MSV solution

ŷt = k̄ + Q̄ẑt of this equilibrium to be E-stable, where k̄ = 0 and Q̄ solves Q− ΩQΦ = Ψ.

Proof. See the Appendix.

The results of Proposition 3 are equivalent to the ones in Bullard and Mitra (2002) and their intuition is

straightforward.

3.3 Contemporaneous Rules

In this subsection we study thoroughly active contemporaneous rules that may respond to the core inflation,

the flexible price-inflation or the sticky-price inflation. The motivation for studying contemporaneous rules

stems from empirical evidence such as Lubik and Schorfheide (2003). Specifically we focus on rules of the

following type

R̂t = ρππ̂t with ρπ > 1 (53)

whereby the government responds actively to the current core-inflation rate, π̂.

Using equations (29)-(32), (33) and (53) we obtain the system

ŷt = η +ΩEtŷt+1 +Ψẑt and ẑt = Φẑt−1 + ξt (54)

where ŷt = [π̂
F
t , π̂

S
t , ĉ

S
t ]
0, ẑt = [ẑFt , ẑSt ]0, ξt = [ξ

F
t , ξ

S
t ]
0, η = 0,

Ω =


1

τwρπ
− β(1−w)δ

τw − 1−τ
τwρπ

− β
¡
1−w
w

¢ ³
1− δ − (1−τ)δ

τ

´
−β(1−w)δ

w

βδ
τ β

³
1− δ − (1−τ)δ

τ

´
βδ

− 1
τ − 1

τ 1

 (55)

and Φ =

 φF 0

0 φS

 . The form of Ψ is omitted since it is not required for the following analysis. Moreover,
β corresponds to the subjective discount factor, ρπ is the interest response coefficient to core inflation, w is

the weight that the government puts on the flexible-price inflation to construct the core inflation (see 34),
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α, and δ are constants defined in (35), (36) and (37) and characterized by Lemma 1, and τ is a constant

defined in (50) and characterized in Lemma 2.

Surprisingly active contemporaneous rules that react to the current core-inflation always deliver real

indeterminacy regardless of whether ĉFt and ĉSt are Edgeworth substitutes, complements or utility separable.

Moreover although the MSV solution maybe learnable when ĉFt and ĉSt are Edgeworth substitutes, it is not

E-stable when these goods are complements or utility separable, for any ρπ > 1. The following Proposition

formalizes these statements.

Proposition 4 Consider the system defined in (54). Assume that the government follows an active con-

temporaneous rule in terms of the core inflation (π̂) described by R̂t = ρππ̂t with ρπ > 1.

a) If USF ≥ 0 ( ĉFt and ĉSt are either Edgeworth complements or utility separable) then there are no

values of ρπ > 1 and w ∈ (0, 1) for which there exists a unique equilibrium and the MSV solution

ŷt = k̄ + Q̄ẑt is E-stable, where k̄ = 0 and Q̄ solves Q−ΩQΦ = Ψ. More specifically for any ρπ, such

that ρπ > 1, and w ∈ (0, 1) the rule will always induce multiple equilibria and the MSV solution is

NOT learnable in the E-stability sense.

b) If USF < 0 ( ĉFt and ĉSt are Edgeworth substitutes) then there are no values of ρπ and w ∈ (0, 1)
for which there exists a unique equilibrium. However the MSV solution ŷt = k̄+ Q̄ẑt, where k̄ = 0 and

Q̄ solves Q− ΩQΦ = Ψ, may be E-stable for some ρπ > 1 and w ∈ (0, 1).

Proof. See Appendix.

It is surprising that active contemporaneous rules with respect to the core-inflation will always deliver

multiple equilibria. To understand this point it is useful to study rules that respond exclusively to either

the flexible-price inflation or the sticky-price inflation. Note that although we can use the system(54) with

Ω defined in (55) in order to analyze rules that react to the flexible-price inflation, we cannot use the same

system to investigate rules that respond to the sticky-price inflation. For the former rules we can use the

aforementioned system and matrix with w = 1. However for the latter rules some entries of Ω will not be

defined when w = 0.

Proposition 5 Consider the system defined in (54) with w = 1. Assume that the government follows an

active contemporaneous rule in terms of the flexible-price inflation (π̂F ) described by R̂t = ρππ̂
F
t with ρπ > 1.

a) If USF ≥ 0 ( ĉFt and ĉSt are either Edgeworth complements or utility separable) then there is not a

value of ρπ for which there exists a unique equilibrium and the MSV solution ŷt = k̄+ Q̄ẑt is E-stable,

where k̄ = 0 and Q̄ solves Q−ΩQΦ = Ψ. More specifically for any ρπ, such that ρπ > 1, and w ∈ (0, 1)
the rule will always induce multiple equilibria and the MSV solution is not learnable in the E-stability

sense..
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b) If USF < 0 ( ĉFt and ĉSt are Edgeworth substitutes) then there is not a value of ρπ for which

there exists a unique equilibrium. However the MSV solution ŷt = k̄ + Q̄ẑt, where k̄ = 0 and Q̄ solves

Q− ΩQΦ = Ψ, may be E-stable for some ρπ > 1.

Proof. See Appendix.

Proposition 5 suggests that the previous results for active contemporaneous rules that respond to the

core-inflation are mainly explained by the fact that targeting the core inflation indirectly implies targeting the

flexible-price inflation. In particular, it is important to emphasize that when ĉFt and ĉ
S
t are either Edgeworth

complements or utility separable, an active contemporaneous rule that responds to the flexible-price inflation

will induce multiple equilibria. In addition in this case the MSV solution is not learnable.

To verify that the results for rules that respond to the core inflation are mainly explained by the results for

rules that react to the flexible-price inflation we proceed by studying contemporaneous rules that respond

exclusively to the sticky-price inflation. As argued before we need to find the system that describes the

economy. Using equations (29)-(32), (33) and the rule R̂t = ρππ̂
S
t we obtain the system

ŷt = η +ΩEtŷt+1 +Ψẑt and ẑt = Φẑt−1 + ξt (56)

where ŷt = [π̂
S
t , ĉ

S
t ]
0, ẑt = [ẑFt , ẑSt ]0, ξt = [ξ

F
t , ξ

S
t ]
0, η = 0,

Ω =

 ( −δ)β
−βδρπ

βδ
−βδρπ

βρπ−1
−βδρπ −βδρπ

 (57)

and Φ =

 φF 0

0 φS

 . The form of Ψ is omitted since it is not required for the following analysis. Moreover,
β corresponds to the subjective discount factor, ρπ is the interest response coefficient to core inflation, α,

and δ are constants defined in (35), (36) and (37) and characterized by Lemma 1.

Proposition 6 Consider the system defined in (56). Assume that the government follows an active con-

temporaneous rule in terms of the sticky-price inflation (π̂S) described by R̂t = ρππ̂
S
t with ρπ > 1. Then

regardless of whether USF T 0 (that is whether ĉFt and ĉSt are Edgeworth substitutes, complements or utility
separable), a sufficient and necessary condition for the existence of a unique equilibrium is that ρπ > 1.

Moreover this is a sufficient and a necessary condition for the MSV solution ŷt = k̄+ Q̄ẑt of this equilibrium

to be E-stable, where k̄ = 0 and Q̄ solves Q− ΩQΦ = Ψ.
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Proof. See the Appendix.

The results of Proposition 6 confirm our previous assertion about how the results for rules that respond

to the core inflation are practically explained by the effect of the flexible-price inflation on the core inflation.

In particular if the rule reacts solely to the current sticky-price inflation, that is when the weight w on the

flexible-price inflation is zero and consequently the core inflation coincides with the sticky-price inflation

then active rules will deliver a unique and learnable equilibrium.

Our analyses for contemporaneous and forward-looking rules with different measures of inflation have

some important policy implications. First forward-looking and contemporaneous rules that respond to either

the core-inflation or the flexible-price inflation are more prone to deliver real indeterminacy than rules that

respond exclusively to the sticky price inflation. This result is very clear when ĉFt and ĉ
S
t are either Edgeworth

complements or utility separable. More importantly under these assumptions about ĉFt and ĉSt , the MSV

solution is never learnable for active forward-looking and contemporaneous rules that respond to the flexible-

price inflation. These results in tandem with the results of Proposition 6 suggest that the measure of inflation

that should be included in the rules is the sticky-price inflation. The natural question that arises is wether

this policy recommendation is still valid for backward-looking rules. We proceed pursuing the analysis of

these rules.

3.4 Backward-Looking Rules

In this subsection we pursue the determinacy of equilibrium and learning analyses for active backward-

looking rules that may react to the core inflation, the flexible price-inflation or the sticky-price inflation.

The motivation for studying these rules comes not only from an empirical motivation such as Taylor (1993)

but also form a theoretical motivation. In fact works by Benhabib et al. (2001), Bernanke and Woodford

(1997) and Carlstrom and Fuerst (1999) suggest that backward-looking rules are less prone to induce multiple

equilibria.

We start our analysis by studying rules that respond exclusively and actively to the core-inflation. That

is
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R̂t = ρππ̂t−1 with ρπ > 1 (58)

For the determinacy of equilibrium analysis we use equations (29)-(32), (33) and (58) to obtain the system

x̂t = ΛEtx̂t+1 +Σẑt and ẑt = Φẑt−1 + ξt (59)

where x̂t = [R̂t, π̂
F
t , π̂

S
t , ĉ

S
t ]
0, x̂t = [ẑFt , ẑ

S
t ]
0, ξt = [ξFt , ξ

S
t ]
0, EtR̂t+1 = R̂t+1 since R̂t is a predetermined

variable,

Λ =


0 1

τ
τ−1
τ 0

1
wρπ

− (1−w)βδwτ −β ¡1−ww ¢ ¡
1− δ

τ

¢ −β(1−w)δ
w

0 βδ
τ β

¡
1− δ

τ

¢
βδ

0 1
τ − 1

τ 1

 (60)

and Φ =

 φF 0

0 φS

 . The form of Ψ is omitted since it is not required for the following analysis. Moreover,
β corresponds to the subjective discount factor, ρπ is the interest response coefficient to core inflation, w is

the weight that the government puts on the flexible-price inflation to construct the core inflation (see 34),

α, and δ are constants defined in (35), (36) and (37) and characterized by Lemma 1, and τ is a constant

defined in (50) and characterized in Lemma 2.

On the other hand since there is a predetermined variable (an endogenous state variable) then for the

E-stability analysis we utilize (29)-(32), (33) and (58) to derive the system

ŷt = η +ΩEtŷt+1 + Γŷt−1 +Ψẑt and ẑt = Φẑt−1 + ξt (61)

where x̂t = [R̂t, π̂
F
t , π̂

S
t , ĉ

S
t ]
0, x̂t = [ẑFt , ẑSt ]0, ξt = [ξ

F
t , ξ

S
t ]
0, η = 0, EtR̂t+1 = R̂t+1 (since R̂t is a predetermined

variable),
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Ω =


0 1 τ − 1 0

1
wρπ

0 −β ¡1−ww ¢ ¡
1− δ

¢ −β(1−w)δ
w

0 0 β
¡
1− δ

¢
βδ

0 0 −1 1

 (62)

Γ =


0 (1− τ)wρπ (1− τ)(1− w)ρπ 0

0 − (1−w)βδρπ − (1−w)2βδρπw 0

0 βδwρπ (1−w)βδρπ 0

0 wρπ (1−w)ρπ 0

 (63)

Ψ =



κ1c̄SUFF (1−φF )
c̄FUF

(τ−1)κ1UFS(1−φF )
US

− (1−w)βκ5w −β ¡1−ww ¢ h
κ4 − δκ1UFS(1−φF )

US

i
βκ5 β

h
κ4 − δκ1UFS(1−φF )

US

i
0 κ1UFS(1−φF )

US

 (64)

and Φ =

 φF 0

0 φS

 . κ1, κ4, and κ5 are constants defined in (35) and (38).
For the determinacy of equilibrium analysis and for the learning analysis it is not possible to derive

analytical results. Therefore we have to simulate. We will assume some functional forms and assign some

reasonable values for the parameters associated with these forms. Then we will apply the methodology

described in 3.1 taking into account that for the E-stability analysis we have to find the the MSV solution

described by ŷt = k + P ŷt−1 +Qẑt.

The functional forms are the following. For consumption and labor preferences

U(cFt , c
S
t ) =

h
(αp)

1
a

¡
cFt
¢ a−1

a + (1− αp)
1
a

¡
cSt
¢ a−1

a

i( a
a−1)(1−σ) − 1

1− σ
V (hFt , h

S
t ) = −

¡
hFt
¢1+ξp

1 + ξp
−
¡
hSt
¢1+ξp

1 + ξp

where αp ∈ (0, 1), σ, a > 0 and ξp ≥ 0. Note that they satisfy Assumption 1. In particular the sign of UFS is

determined by the values of the intratemporal elasticity of substitution, a, and the intertemporal elasticity

of substitution, 1σ . That is UFS T 0 if and only if
1
σ T a.

The technologies are described by

yFt = (h
F
t )

θF ySt = (h
S
t )

θS
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where θF , θS ∈ (0, 1). They satisfy Assumption 2.

The time unit is a quarter. Then we set β = 0.98. We will assume that the share of sticky-price goods

is bigger than the share of flexible-price goods. Hence we set αp = 0.2. We set σ = 1 and a = 0.8.

However since the relative magnitudes of σ and a determine the sign of UFS , that is whether cFt and cSt

are Edgeworth substitutes, complements or utility separable, we will vary a in some of the simulations. We

also set θF = θS = 0.5. In addition we use the following values π̄ = 1.01, ξp = 0.5, µ = 6, γ = 17.5,

φF = φS = 0.82 and ξp = 0.5 that agree with some of the parameter values used in the monetary rules

literature that use New Keynesian models.17

The results of the simulations are presented in Figure 4. that shows the combinations of the interest rate

response coefficient to inflation, ρπ, and weight on the flexible-price inflation, w ∈ (0, 1), that lead to either

real determinacy (D) or real indeterminacy (I). In addition it shows the combinations for these parameters

under which the MSV solution is either E-stable (ES) or E-unstable (EU). In the figure a circle with an "x"

inside stand for indeterminacy and E-instability of the MSV solution. Whereas a circle with anything inside

represents determinacy and E-instability of the MSV solution. The right panel corresponds to the case of

Edgeworth complements whereas the left panel corresponds to the case of substitutes.

The figure shows that regardless of the type of goods active backward-looking rules are more prone

to induce indeterminacy as the weight, w is reduced. In addition whether the goods are complements or

substitutes matter for the determinacy of equilibrium. In general if they are substitutes active backward-

looking rules with respect to the core inflation are more prone to deliver multiple equilibria than if they are

complements. These results contrast with our previous results for forward-looking rules. More interestingly

the figure also shows that regardless of the type of goods, the interest rate response coefficient to inflation

ρπ and the weight w the MSV solution is not learnable (E-stable).

These results suggests that it is important to analyze active backward-looking rules that respond solely

to the flexible-price inflation. To accomplish this goal we can use the systems in (59) and (61) taking

into account that targeting explicitly the flexible-price inflation implies that w = 1. It is possible to derive

analytical results for the determinacy of equilibrium analysis when the goods are utility separable. We they

17See Schmitt-Grohé and Uribe (2004) and Woodford (2003) among others.
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Figure 4:
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are either Edgeworth complements or substitutes we have to simulate. On the contrary for the learning

analysis, it is feasible to derive analytical results for all the cases. The following proposition summarizes the

analytical results.

Proposition 7

a) Consider the system (59) with w = 1 and assume that the government follows an active backward-

looking rules in terms of the flexible-price inflation ( π̂F ) described by R̂t = ρππ̂
F
t−1 with ρπ > 1. If

USF = 0 ( ĉFt and ĉSt are utility separable) then the rule induces a unique equilibrium.

b) Consider the system (61) with w = 1 and assume that the government follows an active backward-

looking rules in terms of the flexible-price inflation ( π̂F ) described by R̂t = ρππ̂
F
t−1 with ρπ > 1. Then

regardless of whether USF T 0 (that is whether ĉFt and ĉSt are Edgeworth substitutes, complements or

utility separable), the MSV solution ŷt = k+P ŷt−1+Qẑt where k̄, P̄ and Q̄ solve (45)is NOT learnable

in the E-stability sense..

Proof. See Appendix.

Proposition 7 states one of the most important results of the paper: even if the rule is backward-

looking, reacting to the flexible-price inflation will make the MSV solution E-unstable. Therefore it is not

learnable. The proposition also points out that as long as the two goods are utility separable then the rule

will guarantee a unique equilibrium. In order to complete the determinacy analysis for these rules, we use

the aforementioned parametrization to simulate the model when the goods are substitutes and complements.

The results are presented in Figure 6.

This figure shows the combinations of the interest rate response coefficient to inflation (ρπ) and the

intratemporal elasticity of substitution (a) that lead to either real determinacy (D) or real indeterminacy

(I). In addition it shows the combinations for these parameters under which the MSV solution is either

E-stable (ES) or E-unstable (EU). In the figure a circle with an "x" inside stands for indeterminacy and E-

instability of the MSV solution whereas circles with anything inside represent determinacy and E-instability

of the MSV solution. As argued before the relation between a and σ determines the type of goods under

consideration. For our parametrization we have that σ = 1. Hence the case of Edgeworth complements,

substitutes and utility separable correspond to a < 1, a > 1 and a = 1, respectively.

Figure 6 confirms our results from Proposition 7: the type of goods under consideration (complements,
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Figure 5:

substitutes and utility separable) does not affect the E-stability characterization of the MSV solution. This

solution is never learnable. However it also shows that the type of goods under consideration may affect

the determinacy results for active backward-looking rules. Interestingly when the goods are Edgeworth

substitutes, active backward-looking rules may induce multiple equilibria.

To conclude our analysis we focus on active backward-looking rules that respond to the sticky-price

inflation. In this case it is not possible to set w = 0 and use the systems (59) and (61). The reason

is that by doing this some of the coefficients of Λ and Ω in (60) and (62) become indeterminate. Hence

we have to derive new systems to pursue the determinacy and learning analyses. Furthermore we cannot

derive analytical results for the leaning analysis (only for the determinacy) analysis. Hence we prefer to

present some simulations that combine both analyses. Figure 7 presents and summarizes our results for

active backward-looking rules that respond exclusively to the sticky-price inflation. As in Figure 6, this
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Figure 6:

figure shows the combinations of the interest rate response coefficient to inflation (ρπ) and the intratemporal

elasticity of substitution (a) that lead to either real determinacy (D) o real indeterminacy (I). In addition

it shows the combinations for these parameters under which the MSV solution is either E-stable (ES) or

E-unstable (EU). In the figure a circle with an "x" inside stands for indeterminacy and E-instability of the

MSV solution whereas no marker depicted represents determinacy and E-stability of the MSV solution. As

argued before the relation between a and σ determines the type of goods under consideration. For our

parametrization we have that σ = 1. Hence the case of Edgeworth complements, substitutes and utility

separable correspond to a < 1, a > 1 and a = 1, respectively.

It is clear from Figure 7 that active backward-looking rules with respect to the sticky-price inflation

will deliver a unique and learnable equilibrium regardless of the type of goods under consideration. It is
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important to emphasize that this result cannot be derived setting w = 0 and using the systems (59) and

(61) that were used for the analysis of rules that respond to the core inflation. In fact it is clear from Figure

5 that when w = 0, the determinacy and learning results do not coincide with those in Figure 7. The reason

is that there is a discontinuity for the aforementioned systems at results w = 0.

4 Conclusions

In this paper we develop a closed economy model with a flexible-price good and a sticky-price good to

answer the following question: which measure of inflation should the government target in the rule in order

to guarantee a unique equilibrium whose MSV solution is learnable in the E-stability sense proposed by

Evans and Honkapojha (2001)?. We find that the answer corresponds to the sticky-price inflation.

In order to find this answer we study how the conditions under which interest rate rules lead to real

determinacy and to E-stability of the MSV solution may depend not only on the interest rate response

coefficient of the rule but also on other factors. Besides the timing of the rule, we show that the measure

of inflation included in the rules and the type of goods under consideration may affect significantly the

aforementioned conditions.

Specifically responding to either the flexible-price inflation or the core inflation is more prone to induce

multiple equilibria (real indeterminacy). This is particularly valid under forward-looking and contempora-

neous rules and when the two goods are either Edgeworth complements or utility separable. Under these

timings of the rule and characteristics of the goods targeting the flexible-price inflation or the core inflation

makes also the MSV solution E-unstable.

More importantly backward-looking rules with respect to the flexible-price inflation or the core inflation

may guarantee a unique equilibrium but in these cases the MSV solution is not learnable in the E-stability

sense. In order to guarantee a unique and learnable equilibrium only responding actively to the sticky-price

inflation seems to be a robust policy recommendation across timings and types of goods.

Although our selection criteria are different, our findings agree with previous results from the Optimal

Monetary Policy literature that suggest that the central bank should target the sticky-price inflation such
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as Aoki (2001) and Mankiw and Reis (2002).

5 Appendix

5.1 Proof of Lemma 1

Proof. The proof is straightforward. a) follows from Assumptions 1 and 2 and the definition of α in (35).

b) follows from using the definition of in (36) and Assumptions 1 and 2, c̄S > 0 and αUFS + USS =
[fhhUFUSS+(fh)2(UFFUSS−U2

FS)+VFFUSS]c̄
S

fhhUF+(fh)
2UFF+VFF

< 0. Part c) can be proved by using the definition of α and the

definition of χ in (36) in order to rewrite χ = − (fhhUF+UFF )c̄F
(fh)

2UF
. Then the result follows from using this in

tandem with Assumptions 1 and 2, and c̄S > 0. Finally d) follows from using Assumptions 1 and 2, with

µ, c̄S , c̄F , β, γ, π̄ > 0 .

5.2 Proof of Lemma 2

Proof. The proof is straightforward. θ T 0 follows from parts a) and c) of Lemma 1 and USF T 0, c̄S > 0,

and c̄F > 0. To prove parts b) and c) we use part a) of the present Lemma and part b) of Lemma 1 ( < 0).

Clearly if USF = 0 then θ = 0 which together with < 0 and the definition of τ imply τ = 1. On the

other hand if USF < 0, we use the definitions of θ, α and χ provided in (50), (35) and (36) respectively to

write τ = 1− θ = 1− 1/
h
(USSUFF−U2

SF )f
2
hUF

(UF fhh+VFF )USFUS
+ USSUF

USFUS

i
. From Assumptions 1 and 2, and USF < 0 we have

that USSUF
USFUS

> 1 and (USSUFF−U2
SF )f

2
hUF

(UF fhh+VFF )USFUS
> 0. Then 0 < 1/

h
(USSUFF−U2

SF )f
2
hUF

(UF fhh+VFF )USFUS
+ USSUF

USFUS

i
< 1 and therefore

0 < τ < 1 if USF < 0.

5.3 Proof of Proposition 1

Proof. The characteristic polynomial for Ω defined in (49) is given by P(v) = v2 − Trace(Ω)v + Det(Ω)

where Det(Ω) refers to the determinant of Ω and

Trace(Ω) = 1 + β − βδ(1− ρπ)

(1− τwρπ)
and Det(Ω) = β (65)

Using these and the characteristic polynomial P(v) we can derive that

P(1) = βδ(1− ρπ)

(1− τwρπ)
and P(−1) =

·
βδ − 2(1 + β) τw

(1− τwρπ)

¸
(ρπ − ρwπ ) (66)

Recall from Lemma 1 that δ > 0 and < 0.

We first prove a). By Lemma 2 we know that τ > 0 and if USF ≤ 0 then τ ≤ 1. Using this and δ > 0, < 0,

β ∈ (0, 1) and w ∈ (0, 1) we can infer that ρwπ = [βδ−2(1+β) ]
βδ−2(1+β) τw > 1 and that [βδ−2(1+β) ]

βδ−2(1+β) τw < [βδ−2(1+β) ]
[βδ−2(1+β) ]τw .

Hence 1 < ρwπ < 1
τw . This in tandem with 1 < ρπ < ρwπ , (66), δ > 0, < 0, β ∈ (0, 1) and w ∈ (0, 1)

imply that P(1) > 0 and P(−1) > 0. Moreover since Det(Ω) = β and β ∈ (0, 1) then 0 < Det(Ω) < 1. This
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together with P(1) > 0 and P(−1) > 0 imply that the two eigenvalues of Ω are inside the unique circle.

Hence the steady state is a sink (See Azariadis, 1993). Since π̂St and ĉSt are non-predetermined variables

then by Blanchard and Kahn (1980) we conclude that there exists a unique equilibrium.

To prove that 1 < ρπ < ρwπ for any w ∈ (0, 1) is also a sufficient condition for the MSV solution

ŷt = k̄+ Q̄ẑt to be E-stable we first find the E-stability conditions. For the system in (48), the MSV solution

corresponds to ŷt = k̄ + Q̄ẑt. Then following the description of the methodology that we provided in the

subsection 3.1 we can deduce that E-stability conditions are reduced to verify that all the eigenvalues of

DTk = Ω and DTQ = Φ0 ⊗ Ω have real parts less than one. However by assumption the eigenvalues of

Φ =

 φF 0

0 φS

 are less than one. This implies that the E-stability conditions will be satisfied whenever
that all the eigenvalues of Ω have real parts less than one. To check this it is sufficient to verify that all the

eigenvalues of Ω− I have negative real parts. We do so in the following way. By theorem 1.2.12 from Horn

and Johnson (1985) the eigenvalues υ1 and υ2 of Ω− I satisfy Trace(Ω− I) = υ1 + υ2 and Det(Ω− I) =

υ1υ2. Then sufficient and necessary conditions for all the eigenvalues of Ω− I to have negative real parts are
Trace(Ω− I) < 0 and Det(Ω− I) > 0. We calculate

Trace(Ω− I) = β − βδ(1− ρπ)

(1− τwρπ)
− 1 and Det(Ω− I) =

βδ(1− ρπ)

(1− τwρπ)
(67)

As was proved before ρwπ < 1
τw which together with the assumption 1 < ρπ < ρwπ , the expression for

Det(Ω − I) in (67) and δ > 0, < 0, β ∈ (0, 1) and w ∈ (0, 1) imply that Det(Ω − I) > 0. On the other

hand, using the expression for Trace(Ω− I) in (67) we can observe that Trace(Ω− I) < 0 is equivalent to

−(1− β) < βδ(1−ρπ)
(1−τwρπ) = Det(Ω− I). This last inequality is trivially satisfied provided that Det(Ω− I) > 0

and β ∈ (0, 1). Then E-stability of the MSV follows.
Second we prove b). By Lemma 2 we know that τ > 0 and if USF > 0 then τ > 1. Define the function

ρ̂π = 1
wτ . Using this definition and the definition of ρ

w
π it is trivial to show that ∂ρ̂π

∂w < 0,
∂ρwπ
∂w < 0,

lim
w→0

ρ̂π = +∞, lim
w→0

ρwπ = 1 − 2(1+β)
βδ > 1, lim

w→ 1
τ

ρ̂π = lim
w→ 1

τ

ρwπ = 1 which together imply that ρ
w
π < ρ̂π =

1
wτ

for any w ∈ (0, 1/τ). Then using this together with the assumption 1 < ρπ < ρwπ for any w ∈ (0, 1/τ)
we can proceed as we did to prove the existence of a unique equilibrium and the E-stability of the MSV

representation in a).

5.4 Proof of Proposition 2

Proof. We just need to consider (48) with w = 1. The characteristic polynomial for Ω defined in (49) is

given by P(v) = v2−Trace(Ω)v+Det(Ω) where Det(Ω) refers to the determinant of Ω. By replacing w = 1

into Ω we can obtain

Trace(Ω) = 1 + β − βδ(1− ρπ)

(1− τρπ)
and Det(Ω) = β (68)

Using these and the characteristic polynomial P(v) we can derive that
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P(1) = βδ(1− ρπ)

(1− τρπ)
and P(−1) =

·
βδ − 2(1 + β) τ

(1− τρπ)

¸
(ρπ − ρ1π) (69)

Moreover we recall from Lemma 1 that δ > 0 and < 0.

We first prove a). By Lemma 2 we know that τ > 0 and if USF < 0 then τ < 1. Using this and δ > 0,

< 0, and β ∈ (0, 1) we can infer that ρ1π = [βδ−2(1+β) ]
βδ−2(1+β) τ > 1 and [βδ−2(1+β) ]

βδ−2(1+β) τ < [βδ−2(1+β) ]
[βδ−2(1+β) ]τ . Hence

ρ1π < 1
τ . This in tandem with 1 < ρπ < ρ1π,(69), δ > 0, < 0, and β ∈ (0, 1) imply that P(1) > 0 and

P(−1) > 0. Moreover since Det(Ω) = β and β ∈ (0, 1) then 0 < Det(Ω) < 1. This together with P(1) > 0

and P(−1) > 0 imply that the two eigenvalues of Ω are inside the unique circle. Hence the steady state is a
sink (See Azariadis, 1993). Since π̂St and ĉSt are non-predetermined variables then by Blanchard and Kahn

(1980) we conclude that there exists a unique equilibrium.

To prove that 1 < ρπ < ρ1π is also a sufficient condition for the MSV solution ŷt = k̄+ Q̄ẑt to be E-stable

we first find the E-stability conditions. For the system in (48) with w = 1, the MSV solution corresponds

to ŷt = k̄ + Q̄ẑt. Then following the description of the methodology that we provided in the subsection 3.1

we can deduce that E-stability are reduced to verify that all the eigenvalues of DTk = Ω and DTQ = Φ
0⊗Ω

have real parts less than one. Moreover there the MSV is not E-stable if any of the eigenvalues of DTk and

DTQ are bigger than one. Hence we proceed to characterize the eigenvalues of these matrices.

By assumption the eigenvalues of Φ =

 φF 0

0 φS

 are less than one. This implies that the E-stability
conditions will be satisfied whenever that all the eigenvalues of Ω have real parts less than one. To check

this it is sufficient to verify that all the eigenvalues of Ω − I have negative real parts. We do so in the

following way. By theorem 1.2.12 from Horn and Johnson (1985) the eigenvalues υ1 and υ2 of Ω− I satisfy

Trace(Ω−I) = υ1+υ2 and Det(Ω−I) = υ1υ2. Then a sufficient and necessary conditions for the eigenvalues

of Ω − I to have negative real parts are Trace(Ω − I) < 0 and Det(Ω − I) > 0. We calculate them taking

into account that w = 1. Hence

Trace(Ω− I) = β − βδ(1− ρπ)

(1− τρπ)
− 1 and Det(Ω− I) =

βδ(1− ρπ)

(1− τρπ)
(70)

As was proved before ρ1π < 1
τ which together with the assumption 1 < ρπ < ρ1π, the expression for

Det(Ω − I) in (70) and δ > 0, < 0, and β ∈ (0, 1) imply that Det(Ω − I) > 0. On the other hand,

using the expression for Trace(Ω − I) in (70) we can observe that Trace(Ω − I) < 0 is equivalent to

−(1− β) < βδ(1−ρπ)
(1−τρπ) = Det(Ω− I). This last inequality is trivially satisfied provided that Det(Ω − I) > 0

and β ∈ (0, 1). Then E-stability follows.
Second we prove b). By Lemma 2 we know that τ > 0 and if USF ≥ 0 then τ ≥ 1. Therefore 1

τ ≤ 1.
Suppose that τ = 1 then from (69), δ > 0, < 0, β ∈ (0, 1) we can infer that P(1) < 0. Now consider

the case in which τ > 1. Since the rule is active (ρπ > 1) and 1 > 1
τ then we can see that ρπ > 1

τ . Using

this, ρπ > 1, (69), δ > 0, < 0, and β ∈ (0, 1) we derive that P(1) > 0. Hence regardless of whether

τ = 1 or τ > 1 (equivalently USF = 0 or USF > 0) we have that P(1) < 0. It is easy to prove that
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P(−1) = 2(1 + Det(Ω)) − P(1). Then using this, P(1) < 0 and Det(Ω) = β > 0 we can deduce that

P(−1) > 0. This and P(1) < 0 are sufficient to conclude that Ω has one eigenvalue inside the unit circle

and one eigenvalue outside the unit circle. Hence the steady state is a saddle path (See Azariadis, 1993).

Since π̂St and ĉ
S
t are non-predetermined variables then by Blanchard and Kahn (1980) we conclude that there

exists multiple equilibria.

Furthermore to prove that the MSV solution is not E-stable we start by recalling there exists E-instability

if any of the eigenvalues of DTk and DTQ have real parts bigger than one. Hence we proceed to characterize

the eigenvalues of these matrices. By assumption the eigenvalues of Φ are less than one. Then we can just

focus on the eigenvalues of Ω. We want to prove that Ω has some eigenvalues with real parts bigger than

one, or equivalently that Ω − I has some eigenvalues with positive real parts. When τ = 1 then from (70)

we can deduce that Det(Ω− I) = βδ . And using this and the facts that δ > 0, < 0, β ∈ (0, 1), we deduce
that Det(Ω − I) < 0. On the other hand if τ > 1 we already derived that in this case ρπ > 1

τ . Using this,

with ρπ > 1, δ > 0, < 0, β ∈ (0, 1), and the expression of Det(Ω − I) in (70) allows to conclude that

Det(Ω − I) < 0. Hence regardless of whether τ = 1 or τ > 1 (equivalently USF = 0 or USF > 0) we have

that Det(Ω− I) < 0. By theorem 1.2.12 from Horn and Johnson (1985) the eigenvalues υ1 and υ2 of Ω− I

satisfy Det(Ω− I) = υ1υ2. Therefore Det(Ω− I) < 0 implies that there exists one eigenvalue with a positive

real part and the E-instability of the MSV solution follows.

5.5 Proof of Proposition 3

Proof. We just need to consider (48) with w = 0. The characteristic polynomial for Ω defined in (49) is

given by P(v) = v2−Trace(Ω)v+Det(Ω) where Det(Ω) refers to the determinant of Ω. By replacing w = 0

into Ω we can obtain

Trace(Ω) = 1 + β − βδ(1− ρπ) and Det(Ω) = β (71)

Using these and the characteristic polynomial P(v) we can derive that

P(1) = βδ(1− ρπ) and P(−1) =
µ
βδ
¶
(ρπ − ρ0π) (72)

Moreover we recall from Lemma 1 that δ > 0 and < 0. Using this and β ∈ (0, 1) it is clear that ρ0π > 1.

Using 1 < ρπ < ρ0π in tandem with (72), δ > 0, < 0, and β ∈ (0, 1) we can infer that P(1) > 0 and

P(−1) > 0. Moreover since Det(Ω) = β and β ∈ (0, 1) then 0 < Det(Ω) < 1. This together with P(1) > 0

and P(−1) > 0 imply that the two eigenvalues of Ω are inside the unique circle. Hence the steady state is a
sink (See Azariadis, 1993). Since π̂St and ĉSt are non-predetermined variables then by Blanchard and Kahn

(1980) we conclude that there exists a unique equilibrium.

Next we prove that 1 < ρπ < ρ0π is also a sufficient and necessary condition for the MSV solution

ŷt = k̄ + Q̄ẑt to be E-stable. In the the proofs of Propositions 1 and 2 we derived the E-stability conditions
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that the MSV solution must satisfy. More importantly we showed that these conditions will be satisfied

whenever that all the eigenvalues of Ω− I have negative real parts which in turn is equivalent to check that

Trace(Ω− I) < 0 and Det(Ω− I) > 0 hold. Using w = 0 we obtain

Trace(Ω− I) = β − βδ(1− ρπ) − 1 and Det(Ω− I) =
βδ(1− ρπ) (73)

Since by assumption 1 < ρπ < ρ0π, then the expression for Det(Ω − I) in (73) and δ > 0, < 0, and

β ∈ (0, 1) imply that Det(Ω− I) > 0. On the other hand, using the expression for Trace(Ω− I) in (73) we

can observe that Trace(Ω−I) < 0 is equivalent to −(1−β) < βδ(1−ρπ) = Det(Ω−I). This last inequality is
trivially satisfied provided that Det(Ω− I) > 0 and β ∈ (0, 1). Then E-stability of the MSV solution follows.

5.6 Proof of Proposition 4

Proof. We will first prove that regardless of USF T 0 the rule always deliver real indeterminacy. In this case
to prove determinacy is equivalent to prove that all the eigenvalues of Ω in (55) are inside the unit circle.

The equivalence follows from the fact that π̂Ft , π̂
S
t , and ĉSt are non-predetermined variables and the results

from Blanchard and Kahn (1980).

Then to prove that all the eigenvalues of Ω in (55) are inside the unit circle we proceed as follows. Recall

the Schur Theorem (See Lorenz, 1993) that states that the eigenvalues of a 3×3 matrix Ω are inside the unit
circle if and only if having the characteristic polynomial P(v) = d0v

3 + d1v
2 + d2v + d3 = 0 the following

conditions are satisfied i) d0+ d1+ d2+ d3 > 0; ii) d0− d1+ d2− d3 > 0; iii) d0(d0+ d2)− d3(d1+ d3) > 0;

iv) d0(d0−d2)+d3(d1−d3) > 0; v) d0+d3 > 0, and vi) d0−d3 > 0. Using the definition of Ω in (55) we can
derive its characteristic polynomial obtaining that d0 = −1 and d3 =

β
τwρπ

. Using these it is simple to show

that condition vi) of the Schur Theorem will be violated given that d0 − d3 = −
³
1 + β

τwρπ

´
< 0 provided

that β ∈ (0, 1), w ∈ (0, 1), τ > 0 (see Lemma 2) and ρπ > 1.

Second we focus on the E-stability analysis. We need to find the E-stability conditions. For the system

in (54), the MSV solution corresponds to ŷt = k̄ + Q̄ẑt. Then following the description of the methodology

that we provided in the subsection 3.1 we can deduce that E-stability conditions are reduced to verify that

all the eigenvalues of DTk = Ω and DTQ = Φ
0⊗Ω have real parts less than one. Moreover the MSV solution

is not E-stable if any of the eigenvalues of DTk and DTQ have real parts bigger than one. Hence we proceed

to characterize the eigenvalues of these matrices.

By assumption the eigenvalues of Φ =

 φF 0

0 φS

 are less than one. Then we can just focus on

the eigenvalues of Ω. We want to prove that Ω has some eigenvalues with real parts bigger than one, or

equivalently that Ω − I has some eigenvalues with positive real parts. We do so in the following way. By

theorem 1.2.12 from Horn and Johnson (1985) the eigenvalues υ1, υ2 and of υ3 of Ω− I satisfy Det(Ω− I) =
υ1υ2υ3. Then a necessary condition for all the eigenvalues of Ω − I to have negative real parts is that
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Det(Ω− I) < 0. Using Ω in (55) we obtain

Det(Ω− I) =
βδ(1− ρπ)

τwρπ
− βδ

µ
1− 1

τ2

¶
(74)

Consider the case USF ≥ 0. By Lemma 2 we know that τ ≥ 1. This together with δ > 0, < 0,

β ∈ (0, 1), w ∈ (0, 1), ρπ > 1, and (74) imply that Det(Ω − I) > 0. Which means by theorem 1.2.12 from

Horn and Johnson (1985) that Det(Ω − I) has at least one eigenvalue with a positive real part. Then

E-instability of the MSV solution follows.

Consider USF < 0. By Lemma 2 we know that τ < 1. This together with δ > 0, < 0, β ∈ (0, 1), w ∈ (0, 1),
ρπ > 1 and (74) imply that there might be some values of w ∈ (0, 1) and ρπ > 1 for which Det(Ω− I) < 0.

Which means by theorem 1.2.12 from Horn and Johnson (1985) that Det(Ω − I) may have either one

eigenvalue or three eigenvalues with negative real parts. Then E-stability is possible.

5.7 Proof of Proposition 5

Proof. The proof is very simple. It is the same as the Proof for Proposition 4 taking into account that

w = 1.

5.8 Proof of Proposition 6

Proof. The characteristic polynomial for Ω defined in (57) is given by P(v) = v2 − Trace(Ω)v + Det(Ω)

where Det(Ω) refers to the determinant of Ω and

Trace(Ω) =
( − δ)β +

− βδρπ
and Det(Ω) =

β

− βδρπ
(75)

Using these and the characteristic polynomial P(v) we can derive that

P(1) = βδ(ρπ − 1)
βδρπ −

and P(−1) = βδρπ + βδ − 2 (1 + β)

βδρπ −
(76)

Moreover we recall from Lemma 1 that δ > 0 and < 0. Using this, ρπ > 1 in tandem with (76),

and β ∈ (0, 1) we can infer that P(1) > 0 and P(−1) > 0. Moreover it is straightforward to prove that

0 < Det(Ω) < 1. This together with P(1) > 0 and P(−1) > 0 imply that the two eigenvalues of Ω are

inside the unique circle. Hence the steady state is a sink (See Azariadis, 1993). Since π̂St and ĉSt are

non-predetermined variables then by Blanchard and Kahn (1980) we conclude that there exists a unique

equilibrium.

Next we prove that ρπ > 1 is also a sufficient and necessary condition for the MSV solution ŷt = k̄+ Q̄ẑt

to be E-stable. We first find the E-stability conditions. For the system in (56), the MSV solution corresponds

to ŷt = k̄ + Q̄ẑt. Then following the description of the methodology that we provided in the subsection 3.1

we can deduce that E-stability conditions are reduced to verify that all the eigenvalues of DTk = Ω and
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DTQ = Φ
0⊗Ω have real parts less than one. However by assumption the eigenvalues of Φ =

 φF 0

0 φS

 are
less than one. This implies that the E-stability conditions will be satisfied whenever that all the eigenvalues

of Ω have real parts less than one. To check this it is sufficient to verify that all the eigenvalues of Ω − I

have negative real parts. We do so in the following way. By theorem 1.2.12 from Horn and Johnson (1985)

the eigenvalues υ1 and υ2 of Ω− I satisfy Trace(Ω− I) = υ1 + υ2 and Det(Ω− I) = υ1υ2. Then sufficient

and necessary conditions for all the eigenvalues of Ω − I to have negative real parts are Trace(Ω − I) < 0

and Det(Ω− I) > 0. We calculate

Trace(Ω− I) =
(β − 1) + βδ(2ρπ − 1)

− βδρπ
and Det(Ω− I) =

βδ(1− ρπ)

− βδρπ
(77)

The assumption ρπ > 1, the expressions for Trace(Ω − I) and Det(Ω − I) in (75), and the facts that

δ > 0, < 0, and β ∈ (0, 1) imply that Trace(Ω− I) < 0 and Det(Ω− I) > 0. Hence E-stability of the MSV

solution follows.

5.9 Proof of Proposition 7

Proof. First we prove a) by considering the representation (59). To do we derive the characteristic polyno-

mial of the matrix Λ in (60) taking into account that w = 1 and that the two goods are utility separable.

This means that τ = 1 by Lemma 2. Then we obtain

P(v) =
µ
v2 − 1

ρπ

¶
| {z }

P1(v)

·
v2 −

µ
1 + β − βδ

¶
v + β

¸
| {z }

P2(v)

(78)

that shows that the characteristic polynomial P(v) of Λ (with w = 1 and τ = 1) corresponds to the product

of the polynomial P1(v) and P2(v). Hence the roots of these two polynomials will determine the eigenvalues
of Λ (with w = 1 and τ = 1). Consider the roots of P1(v). It is simple to see that if ρπ > 1 then the two

roots of P1(v) are inside the unit circle. On the other hand the polynomial P2(v) satisfies

P2(1) = βδ P2(−1) = 2(1 + β)− βδ

Using these expressions, β ∈ (0, 1) and the facts that < 0 and δ > 0 (see Lemma 1) we can infer that

P2(1) < 0 and P2(−1) > 0. Which in turn implies that one of the root of P2(v) is inside the unit circle
whereas the other one is outside of it (see Azariadis, 1993). Putting these results together we conclude that

three of the roots of P(v) (or equivalently three of the eigenvalues of Λ with w = 1 and τ = 1) are inside the
unit circle while the fourth one is outside of it. Then since π̂Ft , π̂

S
t and ĉSt are the only non-predetermined

variables we conclude that there exists a unique equilibrium (see Blanchard and Kahn 1980).

Next we prove part b) by considering the system (61). In this case τ T 1. We need to prove that the

MSV solution ŷt = k + Pŷt−1 + Qẑt is E-unstable. To do so we recall the description of the methodology
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that we provided in the subsection 3.1. We know by Evans and Honkapohja (2001) that the MSV solution

is E-unstable if any of the eigenvalues of DTk = (I−ΩP̄ )−1Ω, DTP =
£
(I − ΩP̄ )−1Γ¤0⊗ [(I−ΩP̄ )−1Ω], and

DTQ = Φ
0 ⊗ [(I − ΩP̄ )−1Ω] have real parts bigger than one. Then we start by studying the eigenvalues of

DTk = (I − ΩP̄ )−1Ω. More specifically we will prove that DTk = (I − ΩP̄ )−1Ω has some eigenvalues with
real parts bigger than one, or equivalently that

£
(I − ΩP̄ )−1Ω− I

¤
has some eigenvalues with real positive

parts. To do so it is necessary to find the MSV solution. In particular we need to solve for P̄ using the

method of undetermined coefficients. From (45) we know that this matrix should satisfy ΩP 2 − P + Γ = 0

or equivalently (I − ΩP )−1Γ = P. However since w = 1 then the matrix Γ in the system (61) becomes

Γ =


0 (1− τ)ρπ 0 0

0 0 0 0

0 βδρπ 0 0

0 ρπ 0 0

 (79)

which help us to have an "educated" guess for P . That is

P =


0 p1 0 0

0 p2 0 0

0 p3 0 0

0 p4 0 0


Using this expression, the expression for Ω (with w = 1) in (62), (79) and (I − ΩP )−1Γ = P we can

prove that in this case P̄ = Γ Utilizing this and the expression for Ω (with w = 1) in (62) we can find the

determinant of the matrix
£
(I − ΩP̄ )−1Ω− I

¤
, which corresponds to Det

£
(I − ΩP̄ )−1Ω− I

¤
= βδ(ρπ−1)

ρπ τ .

Note that Det
£
(I − ΩP̄ )−1Ω− I

¤
< 0 since by assumption ρπ > 1, β ∈ (0, 1), < 0, δ > 0 and τ > 0 (see

Lemma 2).

Finally by theorem 1.2.12 from Horn and Johnson (1985) the eigenvalues υ1, υ2, υ3, and υ4 of
£
(I − ΩP̄ )−1Ω− I

¤
satisfyDet

£
(I − ΩP̄ )−1Ω− I

¤
= υ1υ2υ3υ4.Given thatDet

£
(I − ΩP̄ )−1Ω− I

¤
< 0, we know that

£
(I − ΩP̄ )−1Ω− I

¤
has at least one eigenvalue with a positive real part. Hence the E-instability of the MSV solution follows.
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