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Operational risk management 

and new computational needs in banks.

Abstract: 

Basel II banking regulation introduces new needs for computational schemes. Indirectly they will involve both optimal 
stochastic control, and large scale simulations of decision processes of preventing low-frequency high loss-impact events. 

Different approaches can be envisaged to derive sound strategies, from budgetary policy to capital allocation policy from a
HJB equation. While this complex, high dimensional problem can be resolved by usual sophisticated methods (taking Galerkin 
approach, imposing Merton form solutions, finding viscosity solutions, or using ad-hoc utility functions that provide closed form 
solutions, etc.), the main interest of this model lies in exploring the scenarios in an  adaptive learning framework (MDP, partially 
observed MDP, Q-learning, neuro-dynamic programming, greedy algorithm, etc.).    

The benefits of such a computational approach is a consistent strategy to managing budgets, as opposed to policies of 
operational risk management made up from disconnected expenditures. 

Keywords: Optimal Control, Modeling techniques, Operational risks, Management modeling, HJB equation, Reinforcement 
Learning.

INTRODUCTION

Losses qualify as operational loss if they result from failed or inadequate systems, process or people, or from 

external sources. 7 loss categories are formally defined ranging from terrorist strikes or internal fraud to virus attacks 

and employment policy lawsuits. The New Basel Accord will require large international banks to evaluate through a 

model their own operational risks, then hold capital against them. This passive provisioning against loss causes great 

opportunity costs in banks and is a strong motivation for developing statistical models. The regulatory approach does

not however provide motivation or obligation on modeling the active side of bank management, notably for 

modeling investments in risk prevention, or advances in risk reduction skills of managers. This other aspect of

modeling optimal use of investment capital for operational risk reduction is an issue ignored by most practitioners in 

banking and regulatory circles. As a consequence, no actual proposed approach provides a framework that can 

discriminates in quantitative terms, consistent choices from arbitrary choices in operational risk budget management. 

First, behaviour of choosing actions in a probabilistic reward space will be described. Then, models of small 

frequent risks and rare catastrophic events are introduced as to describe stochastic wealth accumulation. Budgets for 

improving internal controls on risk, and insurance expenditure are next modelized as stochastic controls. Resolution  

of the ensuing HJB equation in classical ways is next discussed along with new methods involving Adaptive 

Learning.

1. Modeling managerial risk reduction actions through budgets

Risk management is primarily about adopting coherent and optimal policies (hold cash and increase 

resiliency) to face potential disaster. It tries to draw from a global vision of the organisation, the environment, and 

the means at disposal, to derive intelligent behaviour while facing risks. Behaviour will be defined here as a set of 

actions linked together by the same rationale, motivations or preferences, either economic or psychological. 

In managing operational risk, focus are on important questions such as : 

 How does senior management define a sound and coherent policy ? 

 How does middle management make sure its actions are efficient in reducing risk over time, and 

stay on course in the risk mitigation project ? 

 And how does Capital allocate itself rationally and optimally across business lines, and over time ?    

The answer lies in the implementation of a corporate-wide model that will link the search of an optimal line 

of conduct to reality representative variables. 
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1.1. Modeling intelligent operational risk actions as an optimization problem

1.1.1. Linking system centered control variables to external set of probabilities

In modeling optimal behaviour, we have to introduce actions of risk management. At time t, let at be one 

possible action in a set of possible choices while facing a risk situation characterized by the probability state variable 

xt.  We define an admissible policy at as the sequence of actions adapted to xt

    ttt xaaa 

Choosing at will result in a "reward" (or penalty) R, which in a probabilistic context, is the expectation of a 

system's response r as a function of  x and a, r being of course given by its probability distribution.  

 ),(),( axrEaxR 

Reward has to do with Value, as it increments the riches held in the system. A risk policy   is taken as one 

time- and state- dependent set of possible actions. Supposing null terminal value at infinite t , the value function is 

the total of what can be expected in the future, in continuous time setting :
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In a budgetary context, we will adopt discrete time framework and introduce a discount rate  and taking the 

expected value, starting from x0 :









 



0
0))(,()(

t
tt

t xxxxrExV 

A value V for the global period is thus associated to each risk policy 

1.1.2.Solving either for strategies or for value of risk  

The rationality of the risk manager is to seek maximum of value for the net worth of the bank, starting from 

initial risk state x0 at time t, to "learn" policy maximising V over the set A of admissible actions :  
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where V(x) is the the consequence of following policy   from initial risk situation x going into state y
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Value for a given strategy is sum of immediate reward and discounted flow of possible future rewards, 

depending on the probabilistic response r which makes the transition :
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Solving for optimal policy requires dealing with nonlinear equation
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1.2. Solving for risk with learning techniques 

Solving for strategies is non-linear and is generally difficult. One approach to bypass this is to turn to 

solving for value. In the general case, taking G to be terminal value, one solves for : 
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We will consider below terminal value G to be nil.

For more convenience, we can consider alternately, the distribution P on arriving at discrete states y as 

possible outcomes of initial state x, (instead of steps in time t) and introduce the impact of chosen action a :
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We iterate on V since the problem is linear. In practical situation, let t  be the proxy for V at time t ; The 

solution for V is obtained under favorable conditions by iterating :
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 Going into further simplification, we have Q-learning algorithm, which is easy to set up and is 

model-free (we do not need to know the whole range of P(x,y), only the one transition ahead) 

however, we have to re-introduce time steps t

),().,(),(),(1 ayQysPasrasQ tt 

 In Temporal Differences algorithms, the eligibility vector rt serves as a memory of past states and 

corrections.
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We will come back to using this strategy for solving the dynamic program for risk budget after deriving, in Part 2, 

the stochastic wealth accumulation process in a risk environment.

2. Operational risks and risk reduction actions as dynamic processes

2.1. Viewing operational loss as a process, not as a static distribution.

A quick analysis of frequency of occurrence versus size of loss reveals there are 2 major categories of risks. 

On one hand, it is not necessary, in a long term perspective, to consider banks that have frequently large catastrophic 

losses, as they will inevitably disappear. On the other hand, it is unnecessary to reckon very rare, small, losses. 

Indeed, we are left with a category of frequent losses of small amounts of money and a another category of  rare but 

catastrophic losses. Most of the 7 categories1 of risk events in the Basel II Accord contain both of these risks. For 

                                                
1  Internal fraud ; external fraud ; employment practices workplace security ; clients products business practices ; 
damage to physical assets ; business disruption systems failure ; execution delivery process management. 
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example, petty cash theft and rogue trading that runs up to the billion dollar both belong to Internal Fraud events. 

However, their processes differ and must be described differently. 

For the simplicity of notation, the discussion below relates to a business unit (that can alternately designate 

one branch, one business line or the whole banking group).   

2.1.1.Small, frequent operational  risks.

Small losses frequently occur in banking processing, due for instance to inevitable complexity errors, like 

mistyping a check’s amount, causing its cost of rejection or mispayments. They  augment with business volume and

with increases in business activity, and are “regular” enough for their return to vary in a Gaussian way. The return of 

"losses" can be either positive or negative.   

For this category of losses, between time t and t +  t , the increment of loss is proportional to the current 

business volume, and to a degree of variability which is a sort of volatility.    

tt
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t
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where Bt is the Brownian motion.Typically, the bulk of these losses form the “body” of the loss distribution curve. 

They are often modelized as lognormal or Gamma distributions.

2.1.2.Rare, large losses.

Extreme events like earthquakes or bird flu impacts on business can be modeled as independent events, each 

having a constant probability of occurring in time, and causing losses according to a time-invariant probability 

distribution. 

It is reasonable to assume for these risks that  :

 the probability of catastrophes does not vary over time in current affairs and indeed there is no 

reason to suppose that earthquakes , or viral attacks have an inherent time-dependent structure : the 

lapse of time between 2 catastrophes follow the same probability distribution law in the past, in the 

present time and in the future. 

 The losses in dollar value due to these catastrophes follow distributions that are not dependent on 

each other .

These "stationary and independent increments" hypotheses define classes of processes encompassing a large 

proportion of losses. On these grounds, insurers have long been using Poisson laws (in which time need not flow 

uniformly) to represent the number of incoming insurance claims N as a function of time t and compound it with an 

independent loss size distribution {(zk)}. 

The total loss up to time t can thus be written : 
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where the (zk)k=1…d are different positive numbers representing d classes of discrete amount of dollar losses

(each equal to zk), and the d related Poisson processes (Nk)k=1…d are independent. In this representation, a 100.000$ 

loss may follow a Poisson law with  = 1.235 , wheras a 25.000$ loss law would have a = 57.67 etc. This is 

essential to the "Loss Distribution Approach" which is becoming increasingly popular in banks seeking to comply 

with the Basel II Accord by building their own Advanced Measurement Approach (AMA) models. 

In continuous form, the jumps in cumulated losses can be written under the form:
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dzdtdzdtNdzdtN   is the compensated Poisson random measure [see Lamberton et 

al.,1997]. The deterministic measure )dz(  is the Lévy measure, and )dz(dt   designates the intensity of the 

jumps between t and t+dt with the technical condition   
R

dze z 1 for integrability. These parameters of 

frequency and of severity of loss can be fiited using collected databases of observed loss history . 

In general there is no particular reason why catastrophic losses should follow a trend, so 0 is assumed. 

The normal inverse Gaussian distribution (NIG) is frequently used because it naturally provides the integral form of 

Lévy jump processes without the Brownian term [in Elghanjaoui et al., 2002].

2.1.3.Synthesizing a loss function : using Levy processes

These 2 kinds of risks can now be used to describe a general process where coexist both the fat tails (the 

Pareto distributions in Extreme Value Theory), and the business generated, roughly Lognormal, “expected losses” 

(described in the Basel terminology). Collecting these components, the total loss is obtained : 
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The losses process, as a combination of pure jumps Poisson process with a Brownian motion with drift, thus 

follows a Levy process whose characteristic triplet is given by   dz ²,,0  for example in [Bertoin (1996)]. Its 

representation can be expressed with the Lévy-Khintchine decomposition [see Framstad et al.1999]: 
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2.2. Modeling management action plans as processes 

These losses can be reduced by better quality management, and by raising risk awareness and improving risk 

reporting through voluntary expenses planned in a series of budgets. By taking risk budgets as a control variables, 

quality of management is naturally introduced into the wealth evolution equation. The stochastic volatility of the 

Gaussian component of risk, as well as the size of jumps in the Poisson component, can be subordinated to 

mitigation effects arising from higher quality management. The industry’s so-called “key risk indicators”, and the 

scorecards approaches to risk reporting, provide early warning systems that can reduce the impact of losses. Their 

impacts are modeled below as coefficients modulating the amplitude of the draw-downs.

2.2.1.Qualitative self-assessment : where they fit in

The New Basle Accord has made room for qualitative assessments, in management and in environment. 

Banks often use scorecards techniques, which runs through a list of questions often based on values of a series of  

key risk indicators or KRI’s) and synthesize the result into a discrete score (“red, amber, green” or a grade from 1 to 

5). These Risk Control Self Assessments (or RCSA) are a mandatory feature in using a bank’s own model. 

Intuitively, quality of risk management should introduce a differentiation effect on the required capital: a 

more proactive mitigation of risk should require less capital than no action is taken to reduce risks. 

This effect is here introduced through control variables tandt that represent two types of budgets

(improvement and insurance) per unit time. 

We suppose that senior management has decided to levy these budgets on the income per unit time . 
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2.2.2.Impact of budget  as measured by Scorecards on Internal Control t

Let us suppose that spending an amount of money t to ensure better process management will reduce the 

standard deviation t of small, frequent risks by a factor of as perceived by risk managers. 

 10)()( 1   kF tt

However, the transformation of this expense into a risk mitigant cannot have linear effects indefinitely:
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where is the perceived loss reduction factor obtained by spending budget amount(more fraud 

detection, personnel, etc.)

Reduced risks on expected losses appear as : 

tt
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Key risk indicators on business environment 

It is commonly observed there are some periods where business activity is more risky than at other times, in 

some places more than others. Examples are economic downturns, atmospheric or geologic hazard (typhoons zone or 

period of airline controller strikes…) . Let stand for the business environment indicator, a sort of "temperature" of 

"hot" or "cool" atmosphere to do business in.  should increase, ceteris paribus, if more business is expanding 

aggressively.  is assessed through scorecards as well ( Business environnement factor).

This affects the losses in the following way :  
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2.2.3.Impact of contingency planning  on catastrophic risks  

The impact of risk budget cannot always be readily assessed, because some of the threats being hedged 

against, will occur once in a thousand years. Here, utility function showing aversion to risk can be used to create a 

component of the value function that will be sensitive to another type of budget control variable. 

Reducing impact of catastrophic events through insurance, or recovery plans, at cost t
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with      0'0''01 2  gggk tt  where individual losses xj may be capped or reduced , 

where 2k  represents the waiver, a fixed threshold.

2.3. Revenue and wealth accumulation

Let Wt be the level of all available assets in the branch or business unit under consideration at time t. That 

“wealth” will be put to work to generate revenues and, on the other hand, will be subject to risks.

The Revenue process is deterministic, with rate and proportional to total cash available for the period:      

dtWdR tt 

Cash for the period is made up of losses and gains :

ttt dXdRdW 
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Cash evolution is described by : 
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dWt can be allowed to be (temporarily) negative, provided Wt stays positive. The cumulative level of cash up 

to time t is given by :
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where the dependency of cash on policy t as the given pair ((t) , (t)) is highlighted, both through the 

expense that cuts into business income and the savings from losses. It is of course also dependent on the parameters 

of the two types of risks. 

2.4. Enhancing realistic modeling with Utility functions    

The implicit rationality in the New Basle Accord is that banks will try to minimize their needs for Capital 

requirements, as they represent non-interest producing, "non-productive" capital. It is interesting take a broader view 

here, that Management will not only try to put aside money to pay for the operational losses risks, but will also  

spend budgets to best protect the process of generating Gross income. The accumulated wealth Wt  of a business 

unit, in a banking group, is to be maximized (under the constraints of non-bankruptcy), with its Lévy-driven 

evolution equation taking into account contrary effects of stronger income and higher risks and rising risk-prevention 

spending. In maximizing the objective function, which is a sum across the lines of businesses in a banking group, or 

across the subsidiaries in a geographically diversified group, natural trade-offs will occur and represent the transverse 

capital flow due to optimal allocation and risk diversification. 

However, since the pure Lévy jumps are unbounded, the effect of a reduction in risk may not perceptible, in 

mathematical simulation. Its impact is just as if the random variables drawings for catastrophe simulation have 

yielded smaller results. In once-in-a-century catastrophe categories, having taken preventive/evasive actions should 

bring its “reward” even if the average short term pay-back for the investment is negligible or vastly delayed. The 

simple wealth effect U1  resulting from holding of instantaneous wealth Wt  is insufficient to describe this “risk 

anxiety” effect. It is necessary to add an (psychology, risk averse) utility function U2 that will “score” positively 

whenever risk prevention expense  is done, regardless of immediate returns. Determination of U2 can be done 

through interviews of Top management using classic techniques of mapping risk aversion.  
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The Hamilton Jacobi Bellman equation is then in the following form : 
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In other settings, one can also choose other types of objective functions (average past wealth, terminal 

wealth etc.). 



CEF 2005 George Washington University

Duc PHAM-HI Page 8 of 11 June 2005

Having at our disposal this value function Vt , we will use diverse methods, including the Part 1 techniques 

of  Value iteration strategy in dynamic programming to solve for the risk reduction budgets  ((t) , (t)).

3. Solving the optimization problem

There are many ways to solve this stochastic optimization problem, but not all of them are adequate or useful. 

Indeed, depending on the degree of confidence in the model, and on how the model should be used, it may not 

be necessary or desirable to resolve the complete equation. That is fortunate, as the above HJB equation is generally 

difficult to solve, due both to its non-linearity and its high degree ( a priori integro-differential of the second degree) 

in the case of Levy processes. 

It would it make sense, either, to seek much precision in the management world where so much still depend 

on human uncertainties and in the face of once-in-a-millenium events. According to the use of the model, many 

simplifications can be envisaged. In the case of risk management, unlike solving problems in options pricing or 

credit rating, the goal pursued is an in-depth view of the possible ramifications of actions undertaken in preventive 

measures, - by rough assessment of their impacts - , or the effect of external shocks on the bank, and how the best 

course of actions can be designed in response. Observations of the many interacting human, systems and processes 

show many possible alternative best solutions. Therefore, within the scope of the model, it is reasonable to seek a 

maximum of insight from a high level viewpoint, then decide what granularity and which control sets are to be 

primarily considered. Secondary objectives may be then accommodated from a management point of view, that is, 

solve separately sub-optimal aggregates within the margins left by the global first level solution.

One first way consist in solving the Hamilton Jacobi Bellman equation, through linearization of the HJB 

equation or the objective function and arrive at a classic, analytic form that allow application of known solutions. 

One can choose to simplify parts of the model that is not vital to realism, and push further by focusing on interesting 

variables or factors elsewhere. The goal is to make Markov decision processes appear, and one can then call upon an 

important arsenal of new developments to get at least one significant result from the equations. In Finance, the 

additivity of quantities in dollars (one rarely observes units of squared dollars !) will often provide the justification 

for Galerkin linearisation approximation.

Alternatively, one can choose to heuristically split the Gaussian part from the Lévy part. Considering that the 

large jumps are in finite number over the optimization horizon, one makes the common sense assumption (to be 

verified ex post)  that very rare catastrophes, are a separate contingency problem to solve.  

3.1. General resolution approaches

3.1.1.The Linear Quadratic case 

One point of view, in clear inspiration from market theories, is to envisage risk as volatility. Indeed, in the 

working papers from the early debates of the Basle committee, one can see operational risk sometimes described as 

the effect by which non-financial assets undergo large variability in their evaluation. According to this view, 

buildings, corporate organizations or software systems allow the generation of income, but their value can be 

undermined by hazards such as earthquakes, real estate crises, or human fraud. Conceptually, such physical assets 

can be represented just like any other financial asset, as generating a revenue but enduring from time to time losses in 

their values so that the (downside only) variance can stand for risk in the equations. In the objective function, a 

quadratic penalty representing risk appears, consistently with more-than-linear, observed aversion to risk. Global 

accumulated wealth follows the same evolution equation as above. 
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If risk is seen as volatility, characterized by variance, then the objective of growing wealth with minimum risk 

can be approximated by a linear-quadratic (LQM) markov process. The resulting Riccati equation method works and 

a closed form solution can be obtained as usual [see Beard et al,(1995)].

3.1.2. The Merton consumption-investment case.

The problem here can be analyzed as Merton’s consumption-investment problem: losses are due to the risky 

asset part of the investment, and the steady income is provided by the riskless part, generated by the bank’s normal 

operations. Consumption either can be taken as nil, or it can be viewed as the remainder of income revenue after 

deduction of the risk business.

Intrinsically, some well-chosen utility functions will give closed form solutions. If a Hyperbolic Absolute 

Risk Aversion function is used as in [Benth et al,(2001)], a closed form solution can be obtained. If it is a Constant 

Absolute Risk Aversion framework, [Eberlein et al,(1999)] has demonstrated that another closed form solution can 

be derived. 

And finally, even when no closed solution is readily obtained, generalized Hamilton Jacobi Bellman and the 

use of viscosity solution will lead, even if tediously, to an optimum. This approach somewhat justifies the Basel 

framework of breakdown of banking activities into eight independent lines of businesses : mathematically, the HJB 

operator is to be seen as a projector in a Lipschitz contraction space, whose basis is the set of  Galerkin 

approximation vectors. This set of non-colinear vectors form can be interpreted as the 8 Basel lines of business. 

For a case of application of viscosity solution in optimal risk control, see for example [Mnif et al.,2001].

3.1.3.Insurance company's viewpoint: Ruin theory 

Another viewpoint comes from the insurance world. Here, the bank is seen as generating an income that can 

be compared to the premium collecting rate of an insurer, and instead of losing money in paying claims, it incurs 

losses with every « attack » on the values of its physical or immaterial assets : a worker strike consequential to an 

inadequate employment practice does indeed diminish revenue directly due to decreasing sales opportunity or due to 

loss of customer fidelity. 

This is referred to as the Cramer-Lundberg model. Optimization aims at maximizing the time of ruin, when 

“cash” as exposed above becomes null for the first time. Numerical examples are given by Castillo et al,(2002). The 

problem in a more financial form is solved by Hojgaard et al.,(1998).

3.2. Solving with MDP and Learning processes

3.2.1.Advantages of this approach

The approaches cited above may be inoperative in the real business world, for at least 3 reasons : 

 expensive resources are needed both in terms of computers, specialists of HJB and viscosity solution, 

software etc.

 the results may not converge between the Monte Carlo drawing of conditions and paths, due to the 

complexity of the parameters

 most of all, business bosses will not buy in, because they will not get the insight of the process.

The insight into risk management must be the drive to set up a framework that will allow through simulation, 

the exploration of the dynamics of the whole systems, people, processes under internal or external shocks, either 

under mild uncertainties or under exceptional catastrophes. 

This is the viewpoint of automated learning. In this context some aspects of online sampling even appears as a 

means of generating experience to learn from. Reinforcement learning, or adaptive learning, has more chance to 
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appeal to top management than outright closed form solution derivation. The latter will be generally seen as “math 

jargon”, while the former can be understood by the laymen as the exhaustive testing of generated catastrophe 

scenarios.

For these reasons, Q-learning or Temporal Difference or other techniques that are both simplified and more 

intuitive should be favoured over heavy approaches. 

3.2.2.Learning processes 

Application of Adaptive learning theory reformulates the full HJB optimization problem into a simplified 

Bellman program where probability states replace the temporal dimension. Solving is just looking for the best

sequence of actions starting from any state (and, in the case of the Greedy algorithm, looking only for the next step). 

For an overview, see [Moody (2003)]. Though in theory, establishing transition probability matrices is very difficult 

due to scarce data, in practice, expert panels and bayesian rules can help build a practical framework for exploration. 

Adaptive Learning, which uses quick sampling of state space rewards, is ideal in situations where data is 

scarce, and there is no model, to learn in real time from responses obtained from exploration of state space. Even 

when the response from the external world is not immediate, techniques of delayed reinforcement learning allow 

learning. It requires much less feedback than when supervised learning is concerned. 

Using simple greedy control, and reinforcement learning combined with bootstrapping and Monte Carlo 

generation of input sets, one can derive enough state-response pairs that will prove helpful in bank risk management 

policies. Q-learning or TD control, which feature model-free based learning, are powerful tools here. Adaptive 

learning, by updating parameter estimates online, is very fitting in this type of situation.. 

In neuro-dynamic programming, some of the parameters that are difficult to obtain through statistically fitted 

methods will become the subject of “learning” procedures. These features of the model are singled out, and neural 

techniques applied in the inverse formulation of the problem. In risk management, many banks can use numerous 

“from the top of the head” estimates of frequencies and severity of losses from live business experts. These estimated 

values can be candidates as learning sets for supervised learning. The models are put to learn to match their output 

with these values through imprinting and modifying their neurones’ weights accordingly by trial-and-error runs. 

When learning is completed, subcomponents based on neural nets will serve as function approximators for parts of 

the loss model. [Pham-Hi (1997)] reported how a feedforward 3-layer neural network was used as a stand-in for 

volatility surface models in the pricing of 3-months LIBOR forward calls on interest rate.

New computational needs for risk models

The New Basel Accord prescribes extensive back test and stress test of any models specifically derived to 

calculate these operational risk capital requirements. A question that generally arises is how to exhaustively test the 

models, and cover the important contingencies. Without a general framework, like Hamilton Jacobi Bellman 

optimization, it is indeed very difficult to fit into a same “big picture”, disparate issues such as shop floor fire 

prevention and quantification of internal control capacities.   

Keeping in mind that one of the main goals of these computing schemes is to help determine best policies, the 

practitioner in a banking environment will not pursue abstract modeling. His endeavour is to numerically, with the 

help of computing devices, with the help of mathematical language and tools, explore and unearth facts that are 

buried in the fuzzy world of rare events probability. 

Coping with risk reduction optimized policies is a challenge both for banking institutions and for 

computational finance specialists. Approaches that draw on learning, adaptation, online sampling in a model-free 
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methodology should bring about solutions favored by business people because it gives them insight. Such 

optimization processes shed light on the relationship between the variables and parameters, and their relevance to 

risk policy determination. 

It also provides a tentative remedy scarceness of loss data, a big hurdles for banks in the early stages of New 

Basel Accord application, as well as opening systematic and consistent ways to explore risk scenarios, e.g. by 

reinforcement learning or, human expertise supervised learning.
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