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1 Introduction

One rationale for a social security system is the provision of social insurance for risks
that are not easily insured in private markets. In fact, the Economic Report of the
President (2004, Ch. 6, p.130) claims that the provision of social insurance for labor
income risk over the life cycle is one of the main problems that justi¯es a government
role in old-age entitlement programs. They claim that labor income is risky but di±-
cult to insure. One reason given for why insurance is d±cult is that labor income is
partly under an individual's control by the choice of (unobserved) e®ort or labor hours.
They then claim that social security provides partial insurance through a progressive
retirement bene¯t based on lifetime earnings. Given this argument, we ¯nd it natural
to ask how well or how poorly does the retirement component of the US social security
system serve this insurance role? Thus, the goal of this paper is to quantify how far a
stylized version of the US social security system is from an e±cient system.
Quantifying the ine±ciency of social security systems is di±cult. One reason is that

there are many sources of risk to consider and social security systems have distinct
bene¯ts tailored to these risks. A second reason is that there are other mechanisms,
such as income taxation, that potentially are important in the provision of insurance.
Thus, analyzing the ine±ciency of social security quickly becomes an analysis of the
ine±ciency of the tax-transfer system as a whole.
This paper provides a simple benchmark analysis. This simpli¯cation is gained by

(i) analyzing one component of the US social security system, the retirement compo-
nent, in isolation, (ii) considering social security together with income taxation to be
the entire tax-transfer system and (iii) considering a single but very important source
of risk. The risk that is examined here is idiosyncratic, labor-productivity risk. We
focus on this risk for two reasons. First, individual workers experience substantial
variation in wage rates which are not related to systematic life-cycle variation or to
aggregate °uctuations.1 Second, this risk is a natural way to model labor income as
risky but di±cult to insure.
The degree of ine±ciency of the US social security system together with the income

tax system is determined by comparing an agent's ex-ante, expected utility in the
model of the US economy to the ex-ante, expected utility that a planner could achieve
for the agent. In the model of the US economy it is assumed that there is a risk-free
asset for transfering resources over time and that social security together with income
taxation are the only means for transfering resources across states (i.e across an agent's

1Heathcote, Storresletten and Violante (2004) examine annual wage rate data for US males. They
divide (log) wages into components capturing life-cycle, business-cycle and idiosyncratic wage variation.
They further divide the idiosyncratic component into subcomponents and ¯nd substantial variation in each
subcomponent.
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labor-productivity histories). The planner faces two constraints. Allocations must use
no more resources than are used in the US system and must be incentive compatible.
The incentive problem arises from the fact that the planner only observes an agent's
earnings. Earnings equal the product of labor productivity and labor hours. Thus, the
planner does not know whether earnings of an agent are low because labor productivity
is low or because labor hours are low. Since labor productivity is privately observed
by the agent, the Revelation Principle implies that the allocations between an agent
and a planner that can be acheived are precisely those that are incentive compatible.
It is useful to brie°y describe some features of the retirement component of US

social security system. This will be helpful for understanding sources of potential
ine±ciencies. Consider a one-person household. In the US system the earnings of
this person are taxed at a ¯xed tax rate up to a yearly maximum earnings level. The
marginal tax rate is zero beyond this maximum. Bene¯ts are in the form of a retirement
annuity payment received after a retirement age. The size of the retirement payment
is determined by a bene¯t formula which is an increasing and concave function of a
measure of an individual's average earnings over the lifetime.
We ¯rst focus on ine±ciency in the absence of idiosyncratic, labor-productivity

risk. The ine±ciency of the US tax-transfer system is computed within the model by
proportionally adjusting consumption in the allocation produced by the US system so
that, labor held ¯xed, ex-ante expected utility is equal to the expected utility that a
planner could deliver. Thus, this calculation states in consumption terms the utility
gain of moving to the utility possibility frontier, holding ¯xed the expected resources
paid to the planner (i.e. the planners utility). Absent risk and absent income taxation,
the ine±ciency of the US system in the benchmark model is xx percent of consumption
per year. The ine±ciency increases to yy percent when income taxation and social
security are combined together.
This result ¯ts well with standard intuition (e.g. Feldstein (1996, p. 4)). The

intuition is that ine±ciency is related to the magnitude of distortions. Much of the
emphasis has been focused on the distortion to the consumption-labor margin. When
social security is analyzed \on top of" the income tax system, there is already a sub-
stantial distortion due to positive marginal income tax rates. In the benchmark model
we calculate that the present value of marginal social security bene¯ts incurred for ex-
tra work is below the value of marginal taxes paid at all ages. Thus, the marginal rate
of substitution between consumption and labor for an optimizing agent is depressed
below the agent's marginal rate of transformation (i.e. the agent's labor productivity)
both by income taxation and by social security. In contrast, in an e±cient allocation,
marginal rates of substitution equal marginal rates of transformation.
How do the results change when permanent, labor-productivity risk is added? Here

the abstraction is that wage rates across agents di®er in each period over the life cycle
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as some agents are born with higher productivity than others. When these permanent
di®erences are set to the values estimated in US data, we ¯nd that the ine±ciency of the
model economy is xx percent in the absence of income taxation and is yy percent when
social security and income taxation are combined. These results raise two questions:
(1) Why is ine±ciency so much larger when labor-productivity risk is present? and
(2) Why does ine±ciency now fall when social security and income taxation are jointly
considered compared to when social security is analyzed in the absence of income
taxation?
The paper is organized as follows. Section 2 brie°y discusses related literature. Sec-

tion 3 presents the social security decision problem and the optimal planning problem.
Section 4 sets model parameters. Section 5 presents results.

2 Related literature

This paper builds upon the social security and optimal contract theory literatures. We
highlight the papers in these literatures which are most closely related to our work.
To address the role of social security in the provision of social insurance, one needs

a model with some risk that is not easily insured in private markets. Imrohoroglu
et al (1995), De Nardi et al (1999), Huggett and Ventura (1999) and Storesletten et
al (1999) were among the earliest papers to provide a quantitative analysis of social
security systems in the presence of idiosyncratic earnings risk. This paper shares
much in common with these papers in that it uses computational methods to calculate
allocations and adopts the modeling of the US social security system used in Huggett
and Ventura (1999).2

Our work is also related to the e±ciency gains literature. This literature determines
whether or not speci¯c policy changes produce Pareto improvements and calculates the
magnitude of e±ciency gains. For example, the classic work by Auerbach and Kotliko®
(1987, Ch. 10) computes e±ciency gains from more closely linking marginal social
security bene¯ts to marginal social security taxes in a model which abstracts from
aggregate and idiosyncratic risk. Our work computes e±ciency gains in a model with
idiosyncratic, labor-productivity risk that is privately observed. Infact, we compute
the maximum e±ciency gain, which we label the \ine±ciency" of the social insurance
system. Relatively few papers in the e±ciency gains literature calculate how far social
insurance systems are from e±cient allocations.3

2Imrohoroglu et al (2000) survey the social security literature that emphasizes idiosyncratic earnings risk.
3Lindbeck and Persson (2003) review the literature on e±ciency gains and social security reform. We

mention three papers from this literature which di®er in the risk analyzed. Hubbard and Judd (1987)
determine whether social security improves upon no social security system when there is mortality risk and
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This paper also builds upon the optimal contract theory literature that emphasizes
privately-observed, labor-productivity risk. This literature began with Mirrlees (1971).
Diamond and Mirrlees (1978, 1986) extended this framework to consider the optimal
disability insurance problem. In this problem all agents are identical and able to work
until hit with a privately-observed, disability shock rendering an agent permanently
unable to work. Golosov and Tsyvinski (2004) reconsider the optimal disability prob-
lem. They quantify the e±ciency gains to adopting an optimal disability insurance
system instead of a stylized version of the US system. Our paper di®ers since we focus
on the retirement bene¯t.4

This paper is also related to work in dynamic contract theory, such as Green (1987),
Spear and Srivastava (1987), Thomas and Worrall (1990), Atkeson and Lucas (1992)
and Fernandes and Phelan (2000). In this work recursive methods are used to charac-
terize and to compute solutions to dynamic contracting problems. An important issue
is the nature of tax-transfer systems that implement solutions to dynamic contract-
ing problems with labor-productivity risk. Golosov and Tsyvinski (2004), Albanesi
and Sleet (2003), Kocherlakota (2003) and Battaglini and Coate (2004) present some
results on this problem.

3 Framework

3.1 Preferences

An agent's preferences over consumption and labor allocations over the life cycle are
given by a calculation of ex-ante, expected utility.

E[
JX
j=1

¯j¡1u(cj ; lj)] =
JX
j=1

X
sj2Sj

¯j¡1u(cj(sj); lj(sj))P (sj)

Consumption and labor allocations are denoted (c; l) = (c1; :::; cJ ; l1; :::; lJ). Con-
sumption and labor at age j are functions cj and lj mapping j-period shock histories
sj ´ (s1; :::; sj) into consumption and labor decisions in period j. An agent's labor
productivity in period j, or equivalently at age j, is given by a function !(sj ; j) map-
ping the period shock sj and the agent's age j into labor productivity. Consumption is
non-negative and labor lies in the interval [0; 1]. The set of possible j-period histories

private markets do not provide annuities. Krueger and Kubler (2003) determine whether there are e±ciency
gains to adopting a pay-as-you-go social security system in place of private pensions when there is aggregate
productivity risk. Nishiyama and Smetters (2004) ask whether there are e±ciency gains in moving from the
US system to an individual accounts system when agents face idiosyncratic wage risk.

4Diamond (2003) relates work in optimal contract theory to the design of social security systems.
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is denoted Sj = fsj = (s1; :::; sj) : si 2 S; i = 1; :::; jg, where S is a ¯nite set of shocks.
P (sj) is the probability of history sj .

3.2 Incentive Compatibility

It is assumed that labor productivity is observed only by the agent. The principal
observes the output of the agent which equals the product of labor productivity and
work time. In this context, the Revelation Principle (see Mas-Colell et al (1995, Prop.
23.C.1)) implies that the allocations (c; l) that can be achieved between a principal and
an agent are precisely those that are incentive compatible.
We now de¯ne what it means for an allocation to be incentive compatible. For

this purpose, we de¯ne the report function ¾ ´ (¾1; :::; ¾J), which is composed of
period report functions ¾j that map shock histories s

j 2 Sj into S. The truthful
report function is denoted ¾¤ and has the property that ¾¤j (s

j) = sj in any period
for any j-period history. An allocation (c; l) is incentive compatible (IC) provided
that the truthful report function always gives at least as much expected utility to
the agent as any other feasible report function. The expected utility of an allocation
(c; l) under a report function ¾ is denoted W (c; l;¾; s1). This is de¯ned below, where
ŝj ´ (¾1(s1); :::; ¾j(sj)) denotes the j-period reported history when the true history is
sj . Using this notation, (c; l) is IC provided W (c; l;¾¤; s1) ¸ W (c; l;¾; s1);8s1;8¾. A
report function ¾ is feasible for an allocation (c; l) provided that in any period in any
history an agent's true labor productivity !(sj ; j) is always large enough to produce
the output required by a report (i.e. 0 · lj(ŝj)!(¾j(sj); j) · !(sj ; j);8j;8sj).

W (c; l;¾; s1) ´
X
j

X
sj2Sj

¯j¡1u(cj(ŝj);
lj(ŝ

j)!(¾j(s
j); j)

!(sj ; j)
)P (sj js1)

3.3 Decision Problems

This paper focuses on two decision problems: the social security (SS) problem and the
private information planning problem (PP). These problems have the same objective
but di®erent constraint sets. VSS and VPP denote the maximum ex-ante, expected
utility achieved in these problems.

VPP ´ maxE[
P
j ¯

j¡1u(cj ; lj)] subject to (c; l) 2 ¡PP
¡PP = f(c; l) : E[

P
j
(cj¡!(sj ;j)lj)
(1+r)j¡1 ] · Cost and (c; l) is IC g

VSS ´ maxE[
P
j ¯

j¡1u(cj ; lj)] subject to (c; l) 2 ¡SS
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¡SS = f(c; l) :
P
j

cj
(1+r)j¡1 ·

P
j
(!(sj ;j)lj¡Tj(xj ;!(sj ;j)lj))

(1+r)j¡1 ;8sJ 2 SJ
xj+1 = Fj(xj ; !(sj ; j)lj ; cj); x1 ´ 0g

The constraint set ¡PP for the planning problem has two restrictions. First, the
expected present value of consumption less labor income cannot exceed some speci¯ed
value, denoted Cost. Present values are computed with respect to an exogenous real
interest rate r. Second, allocations (c; l) must be incentive compatible (IC).
The constraint set ¡SS for the social security problem is speci¯ed by a tax function

Tj and a law of motion Fj for a vector of state variables xj . The tax function states
the agent's tax payment at age j as a function of period earnings sjlj and the state
variables xj . A negative tax is a transfer. The social security problem requires that the
present value of consumption is no more than the present value of labor earnings less
net taxes for any labor-productivity history.5 The next section demonstrates that this
abstract formulation is able to capture features of the US social security and income
tax system.
Ex-ante expected utility can be ordered in these problems so that VPP ¸ VSS .

This occurs when Cost in the planning problem is selected to equal the expected
present value of taxes incurred in a solution (c¤; l¤) to the social security problem (i.e.
Cost ´ E[Pj ¡Tj(xj ; !(sj ; j)l¤j )=(1 + r)j¡1]). The argument is based on showing that
if the allocation (c¤; l¤) achieves the maximum in the social security problem, then
(c¤; l¤) is also in ¡PP . Since (c¤; l¤) satis¯es the present value condition in ¡SS, then
it also satis¯es the expected present value condition in ¡PP . Thus, it remains to argue
that (c¤; l¤) is incentive compatible. However, the Revelation Principle implies that
if (c¤; l¤) is the best choice of the agent under social security then it necessarily is
incentive compatible.
To conclude this section, we raise two issues concerning how to interpret solutions

to the planning problem. First, is a solution to the planning problem a Pareto e±cient
allocation? Solutions to the planning problem are Pareto e±cient allocations between
a risk-averse agent and a risk-neutral principal with discount factor 1=(1 + r) when
the utility possibility frontier is downward sloping. It is straightforward to show that
the frontier is downward sloping when the agent's period utility function u(cj ; lj) is
additively separable and is continuous and strictly increasing in consumption. Second,
does a solution to the planning problem also solve the problem of maximizing ex-ante,
expected utility of a large cohort of ex-ante identical agents subject to incentive com-
patibility and to the requirement that the realized present value cost to the planner
not exceed some prespeci¯ed level? The assumption here is that agents experience id-

5The budget set can equivalently be formulated as a sequence of budget restrictions where the agent has
access to a risk-free asset, starts life with zero units of this asset and must end life with non-negative asset
holding.
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iosyncratic but not aggregate risk. The contract theory literature mentioned in section
2 imposes the requirement that a present value condition or a market clearing condi-
tion must hold in equilibrium but not necessarily for any conceivable (non-equilibrium)
reports that agents could make.6 Under this requirement, a solution to the planning
problem is a solution to the planning problem with a large cohort of ex-ante identical
agents.

3.4 US Tax-Transfer System

The tax function and law of motion (Tj ; Fj) are now speci¯ed to capture features of the
US social security system together with the US federal income tax system. Speci¯cally,
the tax function Tj is the sum of social security taxes T

ss
j and income taxes T incj . Note

that the state variable xj = (x
1
j ; x

2
j ) has two components.

Tj(xj ; !(sj ; j)lj) = T
ss
j (x

1
j ; !(sj ; j)lj) + T

inc
j (x1j ; x

2
j ; !(sj ; j)lj)

3.4.1 Social Security

The model social security system taxes an agent's labor income before a retirement
age R and pays a social security transfer after the retirement age. Speci¯cally, taxes
are proportional to labor earnings (!(sj ; j)lj) for earnings up to a maximum tax-
able level emax. The social security tax rate is denoted by ¿ . Earnings beyond the
maximum taxable level are not taxed. After the retirement age, a transfer b(x1) is
given that is a ¯xed function of an accounting variable x1. The accounting variable
is an equally-weighted average of earnings before the retirement age R (i.e. x1j+1 =

[min(!(sj ; j)lj ; emax) + (j ¡ 1)x1j ]=j). The earnings that enter into the calculation of
x1j are capped at a maximum level emax. After retirement, the accounting variable
remains constant at its value at retirement.

T ssj (x
1
j ; !(sj ; j)lj) =

½
¿ min(!(sj ; j)lj ; emax) : j < R

¡b(x1j) : j ¸ R

The relationship between average past earnings x1 and social security bene¯ts b(x1)
in the model is shown in Figure 1. Bene¯ts are a piecewise-linear function of average
past earnings. Both average past earnings and bene¯ts are normalized in Figure 1 so
that they are measured as a multiple of average earnings in the economy. The ¯rst
segment of the bene¯t function in Figure 1 has a slope of :90, whereas the second and

6See Mas-Colell and Vives (1991) for a discussion of this issue and for results on implementation in
exchange economies with a continuum of agents.
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third segments have slopes equal to :32 and :15. Thus, the bene¯t function bends
over. The `bend-points` in Figure 1 occur at 0:21 and 1:29 times average earnings
in the economy. The variable emax is set equal to 2:42 times average earnings. The
bend-points and the maximum earnings emax are set at the actual multiples of mean
earnings used in the US social security system. The slopes of the bene¯t function are
also set to those in the US social security system.7

[Insert Figure 1 Here]

The speci¯cation of the model social security system captures many features of the
old-age component of the US social security system. Two di®erences are the following:

(i) The accounting variable in the actual US system is an average of the 35 highest
earnings years, where the yearly earnings measure which is used to calculate the
average is capped at a maximum earnings level.8 In the model, earnings are
capped at a maximum level just as in the US system, but earnings in all pre-
retirement years are used to calculate average earnings.

(ii) In the actual US system the age at which bene¯ts begin can be selected within
some limits with corresponding \actuarial" adjustments to bene¯ts. In the model
the age R at which retirement bene¯ts are received is ¯xed.

3.4.2 Income Taxation

Income taxes in the model economy are determined by applying an income tax function
to a measure of an agent's income. The empirical tax literature has calculated e®ective
average tax rates (i.e. the empirical relationship between taxes actually paid divided by
economic income).9 We use tabulations from the Congressional Budget O±ce (2004,
Table 3A and Table 4A) for the 2001 tax year to specify the relation between average
e®ective individual income tax rates and income. Figure 2 shows average e®ective tax

7Under the US Social Security system, a person's monthly retirement bene¯t (i.e. the primary insurance
amount) is based on a person's averaged indexed monthly earnings (AIME). For a person retiring in 2002
this bene¯t equals 90% of the ¯rst $592 of AIME, plus 32% of AIME between $592 and $3567, plus 15% of
AIME over $3567. Dividing these \bend points" by average earnings in 2002 and multiplying by 12 gives
the bend points in Figure 1. The bend points change each year based on changes in average earnings. The
maximum taxable earnings from 1998- 2002 averaged 2:42 times average earnings. All these facts, as well as
average earnings data, come from the Social Security Handbook (2003). The retirement bene¯t above is for
a single-person household. The US system o®ers a spousal bene¯t that we abstract from.

8The 35 highest years are calculated on an indexed basis in that indexed earnings in a given year equal
actual nominal earnings multiplied by an index. The index equals the ratio of mean earnings in the economy
when the individual turns 60 to mean earnings in the economy in the given year. In e®ect, this adjusts
nominal earnings for in°ation and real earnings growth.

9See, for example, Gouveia and Strauss (1994).
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rates on income in the US for households whose head is 65 or older or is younger than
65. The horizontal axis in Figure 2 expresses income in multiples of average individual
earnings in the US for the year 200x (correct?). Figure 2 shows that average tax rates
increase strongly in income.
In the model economy, we base income taxes T incj (x1j ; x

2
j ; !(sj ; j)lj) before and after

the retirement age R on the average tax rates in Figure 2. Speci¯cally, income is de¯ned
as the sum of labor income !(sj ; j)lj , asset income x

2
jr and social security transfer

income bj(x
1
j ). Asset income is calculated as follows: x

2
j+1 = !(sj ; j)lj + x

2
j (1 + r) +

¡Tj(x1j ; x2j ; !(sj ; j)lj)¡ cj .

[Insert Figure 2 Here]

4 Parameter Values

The benchmark results of the paper are based on the parameter values in Table 1.
There are J = 61 model periods in an agent's lifetime. This corresponds to real-life
ages 20 to 80. The retirement age (i.e. age at which retirement bene¯ts are received)
occurs in model period R = 46 which corresponds to a real-life retirement age of 65.
This is the current age at which full bene¯ts are received in the US system. The
social security tax rate ¿ is set to equal 10:6 percent of earnings. This is the combined
employee-employer tax for the US old-age and survivor's insurance bene¯t. The social
security bene¯t function b(x) and the income tax function T incj are are given by Figure
1 and Figure 2. The previous section discussed how these functions were selected.
An agent's labor productivity is given by a function !(sj ; j) = ¹jsj . The term ¹j

captures the systematic variation in mean labor productivity with age. We set ¹j equal
to the US cross-sectional, mean-wage pro¯le for males from Heathcote et al (2004).
This is displayed in Figure 3, where we normalize ¹1 to equal 1. We have imposed
that the mean productivity pro¯le is zero at a real-life age of 65. Thus, an agent is not
able to work at age 65 or afterwards. The term sj captures idiosyncratic variation in
labor productivity. We consider two possibilities for the stochastic structure of shocks:
perfectly permanent shocks and purely temporary shocks. In the case of permanent
shocks, an agent is \born" at age j = 1 with a realization of the permanent shock which
remains with the agent over the life cycle. The agent receives no subsequent shocks. In
the case of temporary shocks, an agent draws a shock each period independently from a
¯xed distribution. In both cases the distribution of shocks is a discrete approximation
to a lognormal distribution (i.e. log(sj) » N(¡¾2=2; ¾2)).10

10We approximate the lognormal distribution with 5 equally-spaced points in logs in the interval [¡3¾; 3¾].
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[Insert Figure 3 Here]

Table 1: Parameter Values
De¯nition Symbol Value

Model Periods J J = 61

Retirement Period R R = 46

Social Security Tax ¿ ¿ = :106

Bene¯t Function b(x) Figure 1

Income Tax Function T inc Figure 2

Labor Productivity !(sj ; j) !(sj ; j) = ¹jsj
log(sj) » N(¡¾2=2; ¾2)

Mean Productivity Pro¯le ¹j Figure 3

Interest Rate r r = 0:042

Discount Factor ¯ ¯ = 1:0=(1 + r)

Preferences u(c; l) c(1¡½)
(1¡½) + Á

(1¡l)
(1¡°)

(1¡°)

½ = 1; ° = 3:1955
Á see text

Heathcote et al (2004) have decomposed the idiosyncratic component of variation
of log wages of US males into the sum of permanent, persistent and purely temporary
components. They estimate that the variance of the perfectly temporary component
of log wage shocks is ¾2 = 0:074 and that the variance of the permanent component of
log wage shocks is ¾2 = 0:109.11 These estimates will lie in the range of the variances
¾2 for temporary and permanent shocks that we consider in the next section.

Probabilities are set to the area under the normal distribution, where midpoints between the approximating
points de¯ne the limits of integration. This follows Tauchen (1986).
11The estimates cited in the text are the average values of the variances of the respective shock components.

These values come from Heathcote et al (2004, Table 2) after weighting the variance in 1967 by the average
factor loadings from 1967-1996.
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One important restriction on the utility function u(c; l) is the assumption of additive
separability. Most of the theoretical literature on dynamic contract theory with a
labor decision referenced in section 2 is based on this assumption. We make use of
this assumption when we design a procedure to compute solutions to the planning
problem.12 The discount factor ¯ and the real interest rate r are set so that ¯(1+r) = 1.
Under these assumptions on preferences and the discount factor, the consumption
pro¯le over the life cycle is °at in a solution to the planning problem, when there is
no labor-productivity risk. We set the real interest rate equal to 4:2 percent. This is
the average real return over the period 1946- 2001 to an equally-weighted portfolio of
stock and long-term bonds (see Siegel (2002, Tables 1-1 and 1-2)).

In the benchmark model, we set u(c; l) = c(1¡½)=(1¡ ½) + Á (1¡l)(1¡°)
(1¡°)

. This choice
implies a constant elasticity of intertemporal substitution of consumption equal to
² = ¡1=½ and a constant Frisch elasticity of leisure with respect to the wage equal to
²leisure = ¡1=°.
We now discuss how we set the parameters ½ and °. We make use of estimates based

on micro data and the assumption that the period utility function for consumption
and labor is additively separable. The estimates of ² surveyed in Browning et al (1999,
Table 3.1) range from ¡0:25 to ¡1:56. This would suggest a coe±cient of relative risk
aversion ½ ranging from below 1:0 to 4:0. In the benchmark model we set ½ = 1 (i.e.
u(c) = log(c)) and later examine the sensitivity of the results to higher values. On the
labor side, the literature has focused on estimating the Frisch elasticity of labor supply
(see Browning et al (1999, Table 3.3)). For the preferences under consideration, the
Frisch elasticities of labor and leisure are related as follows: ²labor = ¡²leisure(1¡ l)=l.
We set the parameter ° to match an estimate of the Frisch elasticity of male labor
supply. Domeij and Floden (2004, Table 6) estimate that ²labor = 0:49, using annual
data for US males.13 We choose ° = 3:1955 to match this estimate of the labor
elasticity when labor l in the model equals the average fraction of time worked in the
US.14 The remaining parameter Á is set so that, given all other model parameters,

12It is used in Theorem A.3 in the Appendix to establish which incentive constraints bind and to develop
a two-stage approach to solve the recursive-dual problem. The algorithm to solve the social security problem
does not make use of additive separability.
13They show, within a model, that this elasticity is biased downward when agents are at or close to their

borrowing limits and when standard empirical procedures are employed. Using US data, they ¯nd that the
estimated elasticity is larger when the data set excludes households with small amounts of liquid assets. The
estimate in the text is for households with liquid assets equal to at least one months wages. This estimate is
higher than many in the literature but still within the range of estimates surveyed by Browning et al (1999,
Table 3.3).
14The average fraction of time worked in the US is 0:383. This equals average hours worked divided by

available work time. Average hours worked comes from Heathcote et al (2004, Table 1). Available work time
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the average fraction of time worked in the model equals the average value in the US
economy. When the variances for the permanent and temporary shocks are set to the
point estimates discussed above, the value Á equals 0:6085 for the permanent shock
case and 0:5560 for the temporary shock case.

5 Results

This section quanti¯es the ine±ciency of the US system when labor-productivity shocks
are temporary or permanent. The magnitude of ine±ciency is the percentage increase ®
in consumption in the allocation (css; lss) for the social security problem so that ex-ante
expected utility is the same as in the private information planning problem, holding the
expected present value of resources equal in both problems. This calculation is shown
below, where superscripts denote the respective allocations. The results of this section
are based on computing solutions to the social security problem and the planning
problem. Our computational methods are described in detail in the Appendix.

E[
X
j

¯j¡1u(cssj (1 + ®); l
ss
j )] = E[

X
j

¯j¡1u(cppj ; l
pp
j )]

5.1 Assessment of Ine±ciency

Figure 4 highlights the ine±ciency of the US social insurance system in the benchmark
model for a range of values for the variance of log labor-productivity shocks. Figure 4
shows that the measure of ine±ciency is increasing in the variance of the shocks. To
quantify the size of the ine±ciency of the US system, one would need an estimate of the
variance of the shocks to log wages. As described in the previous section, Heathcote
et al (2004) estimate that ¾2 = 0:074 for the variance of temporary shocks and that
¾2 = 0:109 for the variance of permanent shocks. Using these estimates, the ine±ciency
of the US system is about 5:0 percent of consumption in the permanent shock case and
0:25 percent in the temporary shock case. One striking feature of these results is that
the ine±ciency of the US system is more than 40 times greater with idiosyncratic risk
compared to no risk when shocks are permanent.

[Insert Figure 4 (a)-(b) Here]

equals 16 hours per day times 365 days per year.
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5.2 Sources of Ine±ciency

We now attempt to gain some insight into what lies behind the results presented in
Figure 4.

5.2.1 No Idiosyncratic Risk

We ¯rst focus on understanding the source of the ine±ciency in the US system in
the absence of labor-productivity risk. This addresses the location of the intercept in
Figure 4, which equals 0:12 percent for the permanent and temporary shock cases. To
understand the source of the ine±ciency, we compute labor pro¯les for the US system
and for the e±cient allocation with the same resources. As Figure 5 shows, both labor
pro¯les are hump-shaped. In the e±cient allocation marginal rates of substitution and
transformation are equated. Given additive separability (i.e. u(c; l) = u(c)+v(l)), these
conditions can be rewritten as follows: u0(cj) = ¯(1 + r)u0(cj+1) and ¡v0(lj)=u0(cj) =
!(sj ; j). The ¯rst condition and ¯(1 + r) = 1 implies that the consumption pro¯le is
°at. These conditions together imply that the e±cient labor pro¯le is hump-shaped
because the agent's labor productivity pro¯le is hump-shaped over the life cycle.

[Insert Figure 6 Here]

Why is the labor pro¯le under the US system rotated counter-clockwise compared
to the e±cient pro¯le? To answer this question, ¯rst note that in the model an extra
unit of earnings when young or when old increases mean lifetime earnings by the same
amount and thus has the same e®ect on increasing the retirement bene¯t. This follows
directly from the social security bene¯t function described in section 3.4. However, the
present value of these marginal bene¯ts is substantially smaller when an agent is young
compared to when old as the interest rate r is positive. Since the social security tax
rate ¿ is constant, the amount of taxes paid for an extra unit of earnings is constant.
The implicit marginal social security tax rate equals one minus the ratio of marginal
bene¯ts to marginal taxes. Thus, this implicit marginal tax rate decreases as an agent
ages. Figure 7 graphs the marginal social security tax rate.15

[Figure 7: Marginal Social Security Tax Rate]

An optimizing agent who faces this social security system but no income taxes
will equate the marginal rate of substitution between consumption and labor to the
after-tax wage which equals the product of labor productivity !(sj ; j) and one minus
the marginal tax rate. Thus, the counter-clockwise rotation of the labor pro¯le is due
to the fall in the tax rate with age. This e®ect accounts for the ine±ciency of social

15Clearly, introducing other features of the US social security system (e.g. teh spousal bene¯t or the fact
that bene¯ts are based on the 35 highest earnings years) would a®ect the tax rate in Figure 7.
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security without income taxation. Income taxation acts to depress this marginal rate
of substitution even further as well as to distort the intertemporal marginal rate of
substitution of consumption.

5.2.2 Idiosyncratic Risk

It is natural to conjecture that when there is idiosyncratic risk a key reason for ine±-
ciency is that the US system and e±cient allocations di®er strongly in the provision of
insurance. To investigate this conjecture, we compute lifetime average net-tax rates for
di®erent realizations of lifetime labor-productivity histories. The net-tax rate is com-
puted as the present value of earnings less consumption, expressed as a fraction of the
present value of earnings. This is done for the allocation under the US system and the
e±cient allocation. Figure 5 presents the results, where the horizontal axis measures
the present value of earnings and the vertical axis measures the lifetime net-tax rate.
Results for the permanent and temporary shock cases are based on the point estimates
for the variances previously highlighted in section 4 and in Figure 4.16

[Insert Figure 7 Here]

Figure 5 shows that the net-tax rate is increasing in the present value of earnings for
both allocations. An interpretation is that both systems transfer more net resources
to those with lower lifetime earnings realizations. Recall from the discussion in the
introduction that the Economic Report of the President (2004, Ch. 6) highlighted
exactly this pattern of resource tranfers as the mechanism by which in practice the US
system provides valuable social insurance.
The most striking feature of Figure 7 is that the net-tax rate increases much more

sharply in an e±cient allocation as compared to the allocation under the US social
security system. Consider the agent with the lowest permanent labor-productivity
shock. Under the US social security system, this agent has a positive net-tax rate. In an
e±cient allocation this agent's net-tax rate is about ¡150 percent. Thus, consumption
is about 250 percent of earnings. At the other end of the spectrum, consider an agent
with the highest permanent labor-productivity shock. This agent has a net-tax rate of
about 7 percent under the US system and about 33 percent in an e±cient allocation.
It is interesting to observe in Figure 7 that a positive net-tax rate is much more likely

than a negative net-tax rate. In fact, with permanent shocks the net-tax rate is positive

16When shocks are permanent, there are exactly 5 possible labor-productivity shock histories (see section
4). Thus, Figure 7a graphs the present value of earnings and the net-tax rate corresponding to these
5 histories. In the case of temporary shocks, there are many possible labor-productivity shock histories.
Figure 7b is based on (i) drawing 10,000 shock histories, (ii) simulating consumption and earnings pro¯les
for each of these histories, (iii) creating 8 bins for the present value of earnings and (iv) graphing the average
net-tax rate in each of these bins.
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under social security for all labor-productivity shock histories. The preponderance of
positive net-tax rates re°ects the fact that the model social security system extracts
resources in expected present value terms under the parameter values considered in
Table 1.17

How to Decompose E±ciency Gains?

Two methods come to mind.
Method 1 is to calculate the equivalent variation due to changing from (css; lss) to

(c; lpp), where c raises css proportional to the increased present value of labor earnings.
The remaining gain in e±ciency is due to changing consumption. Merit of this approach
is that it makes the distinction between a larger pie and a smaller pie. The drawback
is that the relevant allocation is not guaranteed to be incentive compatible.
Method 2 is to calculate the equivalent variation due to changing from (css; lss) to

(c; lss), where c is chosen to maximize expected utility subject to incentive compatibility
and the present value budget constraint. This approach highlights the consumption
insurance gain, holding labor ¯xed. Thus, it separates out any gain from increasing
the size of the pie to be distributed, from from the gain due to improved consumption
insurance with a ¯xed pie. This method is given by the calculations below.

E[U(css(1 + ®); lss)] = max
c2¡(lss;Cost)

E[U(c; lss)]

VPP ´ max
l
f max
c2¡(l;Cost)

E[U(c; l)]g

¡(l; Cost) ´ fc : (c; l)isIC;E[
X
j

(cj ¡ !(sj ; j)lj)
(1 + r)j¡1

] · Costg

6 Discussion

Issues:

(1) Sensitivity Analysis: (i) Tighter borrowing constraints and (ii) greater Frisch
elasticity of labor.
(2) Is the public information optimum far away from the private information opti-

mum?
(3) What is the di±culty w/ analyzing a richer labor-productivity process?
(4) How to implement or approx. implement e±cient allocations?

17Although the model is partial equilibrum, this pattern of taxation is consistent with the pattern of
taxation across generations in a steady-state of a general equilibrium model with a pay-as-you-go social
security system, when the interest rate is above the aggregate growth rate of the economy.
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[To Be Completed]

(1) Hubbard and Judd (1987) have argued that borrowing constraints may make a
social security system unattractive even when it is assumed that a social security system
has an advantage over private markets in providing annuities. The simple intuition is
that, in the absence of social security, a hump-shaped earnings or wage pro¯le will
make young agents want to borrowing from the future to smooth consumption. In
the presence of borrowing constraints such consumption smoothing over time may be
di±cult. By taxing young agents to make (illiquid) transfers to these agents in old age,
social security can make this pattern of consumption smoothing more di±cult.
The benchmark model analyzed in the paper up to this point assumed that bor-

rowing limits were fairly generous. Speci¯cally, an agent could borrow up to the level
consistent with paying back loans with certainty by the end of life. Now we analyze
the ine±ciency of the social insurance system when borrowing limits are less gener-
ous. Following Hubbard and Judd (1987), we do not model the source of these tighter
borrowing limits but we do explore the consequences.
(2) Preliminary calculations indicate that they di®er greatly.
In Figure 5, the ine±ciency measure is derived by comparing expected utility in

the US system to expected utility in the public information optimum, holding expected
resources constant. In the public information optimum a planner is only subject to an
expected present value resource constraint and is not subject to choosing allocations
that are incentive compatible. Thus, the assumption is that the planner observes both
labor productivity and earnings of the agent. Figure 5 also shows the ine±ciency of
the private information optimum relative to the public information optimum.

[Insert Figure 5 (a)-(b) Here]

Figure 5 is critical for understanding the degree to which welfare in the US sys-
tem di®ers from a ¯rst-best allocation because of the private information friction or
because of the non-optimality in the design of the US system. Figure 5 shows that the
ine±ciency of the US system is substantially larger when the benchmark for compar-
ison is the public information optimum.18 An important fraction of this ine±ciency
measure is due to the informational friction. For example, when shocks are permanent
and the variance is ¾2 = 0:109 about half of this ine±ciency measure is due to private
information. The results for the temporary shock case when the variance is ¾2 = 0:074
are similar. Thus, taking the informational friction seriously, one message of Figure
5 is that comparisons to the public information optimum can be quantitatively quite
misleading as a guide to possible e±ciency gains to improving the design of the social

18Thus, the allocation achieving the public information optimum is not incentive compatible. In this opti-
mum all agents share the same consumption but high productivity agents work more than low productivity
agents.
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insurance system.
(3) An analysis with a richer shock structure (e.g. permanent plus transitory shocks

or permanent plus persistent shocks) is much more di±cult. This is due entirely to
the computational burden of solving the private information planning problem. This
occurs because the dimension of the state space in the recursive dual problem is large
when shocks are not temporary. For example, in the case of permanent shocks the
recursive dual problem would have as a state variable a function ws0(s) describing the
promised utility to an agent with shock s that reported shock s0.19 This formulation
is brie°y presented in Appendix A.1. For this problem one needs to keep track of jSj
continuous state variables, where jSj is the number of possible permanent shocks. This
is a computationally daunting task even for a small number of shock values. This paper
computes solutions to the primal problem rather than the dual problem when shocks
are permanent.

19Fernandes and Phelan (2000) analyze planning problems when shocks are not independent. They consider
examples where shocks take on two values. The main issues that arise in a recursive approach to such planning
problems are clear from their analysis.
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A Computational Methods

Appendix A contains three sections. Section A.1 provides theory for computing solutions to
the private information planning problem. Section A.2 describes our general approach for
computing solutions to the planning problem and the US social security problem. FORTRAN
programs that compute solutions to these problems are available (eventually!) upon request.
Section A.3 proves all Theorems from section A.1.

A.1 Private Information Planning Problem: Theory

Theory for analyzing the private information planning problem is laid out in three steps. Step
1 states a dual problem with the feature that solutions to the dual problem are solutions to the
original planning problem. Step 2 provides an equivalent formulation of incentive compatibility
that is useful for a recursive statement of the dual problem. Step 3 formulates the dual problem
as a dynamic programming problem and indicates how to further simplify this problem for
computational purposes.

A.1.1 Primal and Dual Problems

Primal Problem: maxE[
P

j ¯
j¡1u(cj ; lj)]

subject to (1) (c; l) is IC and (2) E[
P

j(cj ¡ sjlj)=(1 + r)j¡1] · Cost

Dual Problem: minE[
P
j(cj ¡ sjlj)=(1 + r)j¡1]

subject to (1) (c; l) is IC and (2) E[
P

j ¯
j¡1u(cj ; lj)] ¸ u¤

Theorem A1: Assume u(c; l) = u(c) + v(l), u(c) is continuous on R1++ and u(c) is strictly
increasing. If (c; l) solves the dual problem, given u¤ > ¡1, then (c; l) solves the primal
problem, given Cost ´ E[Pj

(cj¡sj lj)
(1+r)j¡1 ].

Proof: See Appendix A.3

Theorem A2 provides conditions which are equivalent to the incentive compatibility conditions.20

Theorem A2:

(i) Consider the case of independent shocks.

(c; l) is IC i® 9fwj(sj¡1)gJ+1j=2 such that restrictions (a)-(b) hold:

(a) u(cj(s
j¡1; sj); lj(sj¡1; sj)) + ¯wj+1(sj¡1; sj) ¸

u(cj(s
j¡1; s0j); lj(s

j¡1; s0j)(s
0
j=sj)) + ¯wj+1(s

j¡1; s0j);8(sj¡1; sj);8s0j
(b) wj(s

j¡1) = E[u(cj(sj); lj(sj)) + ¯wj+1(sj)jsj¡1] and wJ+1(sJ) = 0
where sj denotes the history of (truthful) reports up to period j.

20These results are adaptations of Green (1987, Lemma 1-2).
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(ii) Consider the case of permanent shocks.

(c; l) is IC i® 9fwj(s; s0)gJ+1j=2 such that restrictions (a)-(b) hold:

(a) u(c1(s); l1(s)) + ¯w2(s; s) ¸ u(c1(s0); l1(s0)(s0=s)) + ¯w2(s; s0);8s; s0
(b) wj(s; s

0) = u(cj(s0); lj(s0)(s0=s)) + ¯wj+1(s; s0) and wJ+1(s; s0) = 0

Proof: See Appendix A.3.

A.1.2 Recursive Formulation of the Dual Problem

Temporary Shocks

A recursive formulation for the Dual problem is provided below for the case of temporary
shocks. The function Cj(w) is the minimum expected discounted cost of obtaining utility w.
The notation (ci; li; wi) describes period consumption, labor and future utility delivered when
shock i = 1; :::; I occurs and the agent tells the truth.

Cj(w) = min
P

i[ci ¡ lisi + (1 + r)¡1Cj+1(wi)]¼i
subject to (ci; li; wi)i2I 2 f(ci; li; wi)i2I : IC and PK constraints hold g
(PK) w =

P
i[u(ci; li) + ¯wi]¼i;

(IC) u(ci; li) + ¯wi ¸ u(cj ; lj(sj=si)) + ¯wj ;8i; j
Theorem A3 establishes some basic properties of the incentive constraints.21 The following

compact notation is used: Cij ´ u(ci; li) + ¯wi ¡ [u(cj ; lj(sj=si)) + ¯wj]. Cii¡1 ¸ 0 is called
a local downward incentive constraint, whereas Ci¡1i ¸ 0 is called a local upward incentive
constraint. Theorem A3 says that (a) the local upward and downward constraints convey all
the IC restrictions (Thm. A3(ii)), (b) if all the local downward constraints bind then all local
upward constraints also hold (Thm. A3(iii)) and (c) in a solution to the recursive dual problem
all local downward constraints bind (Thm. A3(iv)). Theorem A3 also delivers the standard
insight that the incentive compatibility restrictions alone imply that \earnings" or \output"
lisi increases as the shock i increases.

Theorem A3: In the recursive dual problem assume u(c; l) = u(c)+v(l), u and v are strictly
concave, u is increasing, v is decreasing and that shocks are independent and ordered so that
s1 < s2 < ::: < sI . Then

(i) Incentive compatibility implies that lisi is increasing in i.

(ii) Cii¡1; Ci¡1i ¸ 0; i = 2; :::; I imply Cij ¸ 0 8i; j.
(iii) Cii¡1 = 0; i = 2; :::; I imply Ci¡1;i ¸ 0; i = 2; :::; I and Ci¡1;i > 0 whenever lisi >

li¡1si¡1.

(iv) In a solution to the recursive dual problem all local downward constraints bind.

21Theorem A3 is parallel to results which hold w/o a labor-leisure decision (e.g. Thomas and Worrall
(1990)) and to results in the literature following Mirrlees (1971).
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Proof: See Appendix A.3.

To compute solutions to the recursive dual problem it is useful to solve two subproblems:
DP 1 and DP 2. These problems reduce the dimensionality of the choice variables by making
use of additive separability of the objective. Dimensionality can be further reduced by solving
DP 1' in place of DP 1. DP 1' solves out for utility zi in terms of promised utility w and
the labor plan (l1; :::; lI) by using the fact, established in Theorem A3, that all local downward
constraints hold with equality and that the local downward constraints imply all the restrictions
of incentive compatibility.

Subproblems:
(DP 1) Cj(w) = min

P
i[¡lisi + Ĉj(zi))]¼i

(1) w =
P
i[v(li) + zi]¼i

(2) v(li) + zi ¸ v(lj(sj=si)) + zj ;8i; j

(DP 2) Ĉj(z) = minf(c;w0):z=u(c)+¯w0g c+ (1 + r)¡1Cj+1(w0)

(DP 1') Cj(w) = min
P

i[¡lisi + Ĉj(fi(l1; :::; lI ;w)))]¼i

The functions zi = fi(l1; :::; lI ;w) in problem DP 1' are constructed in the two equations
below. The ¯rst equation holds for i > 1 by repeated substitutions from the downward IC
constraint. This equation says that promised utility zi to a person with shock i is the utility
to the person with the lowest shock z1 plus the sum of the utility di®erences when one lies
downward one shock. These utility di®erences are positive by Thm. A.3(i). The second
equation holds by substituting the ¯rst equation into the promise keeping constraint. This
then states z1 in terms of the labor choices and promised utility w. These two equations de¯ne
the functions zi = fi(l1; :::; lI ;w).

zi = z1 +
iX

j=2

[v(lj¡1(sj¡1=sj))¡ v(lj)]

z1 = w ¡
IX
i=1

v(li)¼i ¡
IX
i=2

[
iX

j=2

(v(lj¡1(sj¡1=sj)))¡ v(lj)]¼i

Permanent Shocks

A recursive formulation for the Dual problem for the case of permanent shocks is provided
below. Although we will not use this formulation for computation, it is helpful to see what
would be entailed. In this problem, the choice variables are consumption and labor in each
state as well as promised utility w0s(ŝ) next period. w

0
s(ŝ) is the promised utility for an agent

with true state ŝ who reports state s. At a computational level, the dimension of the state
space can be quite large for j ¸ 2 as for any value of s one needs to keep track of a function
w0s(ŝ). With jSj possible permanent shocks, the state variable in period 2 and beyond has jSj
continuous state variables. Fernandes and Phelan (2000) consider recursive formulations of
problems from dynamic contract theory where similar issues arise.
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C1(w) = min
P
s[c(s)¡ l(s)s+ (1 + r)¡1C2(s; w0s(ŝ))]P (s)

subject to (c(s); l(s); w0s(ŝ)) satisfying (1)-(2)
(1) u(c(s); l(s)) + ¯w0s(s) ¸ u(c(¹s); l(¹s)(¹s=s)) + ¯w0¹s(s);8s; ¹s
(2) w =

P
s[u(c(s); l(s)) + ¯w

0
s(s)]P (s)

Cj(s;ws(ŝ)) = min c¡ ls+ (1 + r)¡1Cj+1(s; w0s(ŝ));8j ¸ 2
subject to (c; l; w0s(ŝ)) satisfying (3)
(3) ws(ŝ) = u(c; l(s=ŝ)) + ¯w

0
s(ŝ);8ŝ

A.2 Computation

A.2.1 Social Security Problem

The social security problem is stated below as a dynamic programming problem. This involves
reformulating the present value budget constraint as a sequence of budget constraints where
resources are transfered across periods with a risk-free asset. Risk-free asset holding must
then always lie above period and shock speci¯c borrowing limits: aj(s).

22 The state variable
is (a; s; z) where a is asset holdings, s is the period productivity shock and z is average past
earnings. The functions Tj and Fj describe the tax system and the law of motion for average
past earnings. Labor productivity is a Markov process with transition probability ¼(s0js).

Vj(a; s; z) = max(c;l;a0) u(c; l) + ¯
P
s0 Vj+1(a

0; s0; z0)¼(s0js)
(1) c+ a0 · a(1 + r) + !(s; j)l ¡ Tj(a; z; !(s; j)l)
(2)c ¸ 0; a0 ¸ aj(s); l 2 [0; 1]
(3) z0 = Fj(z; !(s; j)l)

This problem is solved computationally by backwards induction. The value function Vj(a; s; z)
is computed at selected grid points (a; s; x) by solving the right-hand-side of Bellman's equation
using the simplex method. Speci¯cally, we use amoeba from Press et al (1994). This involves a
bi-linear interpolation of the function Vj+1(a

0; s0; z0) over the two continuous variables (a0; z0).
We set the borrowing limit to a ¯xed value a in each period. We then relax this value so that
it is not binding. This is a device for imposing period and state speci¯c limits aj(s). To use

this device, penalties are imposed for states and decisions implying negative consumption.23

We compute ex-ante, expected utility VSS and the expected cost of running the social
security system, denoted Cost, by simulation, under the assumption that an agent starts out
with no assets. Speci¯cally, we draw a large number of lifetime labor-productivity pro¯les,
compute realized utility and realized cost for each pro¯le and then compute averages.

22These limits are the maximum present value of labor earnings plus social security bene¯ts in the worst
labor-porductivity history. This assumes that one can borrow against future social security bene¯ts.
23We mention two points. First, the backward induction mentioned above takes as given a value for

average earnings in the economy. This variable is used to determine the retirement bene¯t function. Thus,
an additional loop is needed so that guessed and implied values of average earnings coincide. Second, we use
1000 evenly spaced grid points on assets a, 25 grid points on average earnings z over the interval [0; emax].
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A.2.2 Planning Problem

We describe how we compute the optimized value VPrivate, given the value of Cost. The
algorithm for the temporary shock case is presented ¯rst.

(DP 1') Cj(w) = min
P

i[¡lisi + Ĉj(fi(l1; :::; lN ;w)))]¼i
(DP 2) Ĉj(z) = minf(c;w0):z=u(c)+¯w0g c+ (1 + r)¡1Cj+1(w0)
Algorithm:

1. Set terminal value function on grid points w 2 fw1; :::; wMg: ĈJ(w) ´ u¡1(w)
2. For each w 2 fw1; :::; wMg, we use amoeba from Press et al (1994) to solve the right-
hand-side of DP 1' to compute Cj . This involves a linear interpolation of Ĉj .

3. Given Cj , compute Ĉj¡1 at gridpoints by solving DP 2. This is done by grid search.

4. Repeat steps 2-3 for all ages j back to age 1.

5. Solve the equation C1(VPrivate) = Cost for VPrivate. This is done by simulation using
the optimal decision rules.

We now indicate how to compute VPrivate for the case of permanent shocks. The original
formulation of the permanent shock problem is stated below.

VPrivate ´ max(lj(s);cj(s))
P
s[
P

j ¯
j¡1(u(cj(s)) + v(lj(s)))]P (s) s.t.

(i)
P
s[
P

j(cj(s)¡ lj(s)s)=(1 + r)j¡1]P (s) · Cost
(ii)

P
j ¯

j¡1(u(cj(s)) + v(lj(s)) ¸
P
j ¯

j¡1(u(cj(s0)) + v(lj(s0)s0=s));8s;8s0

We analyze a \relaxed" problem which is the same as the problem above except that we
require that only the local downward incentive constraints hold rather than all the incentive
compatibility constraints. It is straightforward to show two results. First, in a solution to the
relaxed problem all the local downward incentive constraints bind. Second, if an allocation
(c; l) has the property that all the downward incentive constraints bind and lj(s)s is increasing
in s for all j, then all the incentive constraints hold. [The proof of this assertion is similar to
the argument in the proof of Thm. A3 (ii)-(iii).] Our computational strategy is therefore to
compute solutions to the relaxed problem AND to verify ex-post that lj(s)s is increasing in s
(i.e in a solution to the relaxed problem required output of an agent in any period of life is
increasing in the agent's productivity shock).

max
(l)

X
s

[
X
j

¯j¡1v(lj(s)) + g(l; s; cost)]P (s)

We compute solutions to the relaxed problem by solving the equivalent problem above.
This equivalent problem is useful for computational purposes as it reduces the dimension of
the control variables by substituting out all binding constraints. This equivalence follows
from two observations. First, additive separability of u(c; l) implies that the intertemporal
MRS of consumption is chosen in the relaxed problem without distortion. Using this fact,
maximization could then be done over labor and the lifetime utility of consumption u(s).
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This eliminates the choice of consumption from the problem. The relevant cost constraint is
written below, where COST (u(s)) is a known function, derived from the ¯rst order conditions
to the relaxed problem, describing the minimum resource cost of obtaining lifetime utility
of consumption u(s).24 Second, we can also eliminate maximizing over u(s) by expressing
u(s) = g(l; s; Cost) as a function of the labor plan and other data. To do this, we solve out
u(s) from all relevant binding constraints. The last two equations below are intermediate steps
towards computing u(s) = g(l; s; Cost). The last equation uses the fact that shocks are ordered
so that s1 · s2 · ::: · sI .X

s

[COST (u(s))¡
X
j

slj(s)=(1 + r)
j¡1]P (s) = Cost

X
j

¯j¡1v(lj(s)) + u(s) =
X
j

¯j¡1v(lj(s0)s0=s)) + u(s0)

u(sn) = u(s1) +
nX
i=2

[
X
j

¯j¡1v(lj(si¡1)si¡1=si))¡
X
j

¯j¡1v(lj(si))]

We use amoeba from Press et al (1994) to solve the relaxed problem. This involves max-
imizing over labor choices (l1(s); :::; lR¡1(s)). These choices lie in an R ¡ 1 £ jSj dimensional
space as there are R ¡ 1 labor periods and jSj possible permanent shocks. Each evaluation
of the objective requires the computation of the function g(l; s; Cost). This involves ¯nding a
value u(s1) solving the three equations above, given (l1(s); :::; lR¡1(s)) and Cost.

A.3 Proofs of Theorems A1-3

Theorem A1: Assume u(c; l) = u(c) + v(l), u(c) is continuous on R1++ and u(c) is strictly
increasing. If (c; l) solves the dual problem, given u¤ > ¡1, then (c; l) solves the primal
problem, given Cost ´ E[Pj

(cj¡sj lj)
(1+r)j¡1 ].

Proof: Suppose not. Thus, there exists (¹c; ¹l) that is IC and costs no more than (c; l) but that
delivers strictly more expected utility than (c; l). Construct (c¤; l¤) that satis¯es constraints
(1)-(2) in the Dual Problem but that delivers strictly lower cost than (c; l).

Set l¤j ´ ¹lj ;8j and c¤j ´ ¹cj ;8j ¸ 2. Set c¤1(s) to solve u(c
¤
1(s)) = u(¹c1(s)) ¡ ². Thus,

c¤1(s) produces a uniform decrease in utility in period 1 of ² > 0. If ¹c1(s) > 0;8s [Need an
extra assumption! u(0) = ¡1 is su±cient.], then by continuity there exists ² > 0 such that
c¤1(s) ¸ 0;8s and E[

P
j ¯

j¡1u(c¤j ; l
¤
j )] ¸ u¤. Since (¹c; ¹l) is IC and the utility decrease is uniform

regardless of reports, (c¤; l¤) is also IC. This is a contradiction since (c¤; l¤) costs strictly less
than (c; l). 2

Theorem A2:

24When ¯(1+ r) = 1, COST (u(s)) has a simple form as consumption is constant. When ¯ < 1 and r > 0
then COST (u(s)) = u¡1[(1¡ ¯)u(s)=(1¡ ¯J)][1¡ (1=(1 + r))J ](1 + r)=r.
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² (i) (Independent Shocks )
(c; l) is IC i® 9fwj(sj¡1)gJ+1j=2 such that restrictions (a)-(b) hold:

(a) u(cj(s
j¡1; sj); lj(sj¡1; sj)) + ¯wj+1(sj¡1; sj) ¸

u(cj(s
j¡1; s0j); lj(s

j¡1; s0j)(s
0
j=sj)) + ¯wj+1(s

j¡1; s0j);8(sj¡1; sj);8s0j
(b) wj(s

j¡1) = E[u(cj(sj); lj(sj)) + ¯wj+1(sj)jsj¡1] and wJ+1(sJ) = 0
where sj denotes the history of (truthful) reports up to period j.

² (ii) (Permanent Shocks)
(c; l) is IC i® 9fwj(s; s0)gJ+1j=2 such that restrictions (a)-(b) hold:

(a) u(c1(s); l1(s)) + ¯w2(s; s) ¸ u(c1(s0); l1(s0)(s0=s)) + ¯w2(s; s0);8s; s0
(b) wj(s; s

0) = u(cj(s0); lj(s0)(s0=s)) + ¯wj+1(s; s0) and wJ+1(s; s0) = 0
Proof:
(i) ()) Backward induction on restriction (b) de¯nes the function wj+1 uniquely. Substitute

wj+1 into restriction (a). The resulting inequality is then a direct implication of (c; l) being
IC. Speci¯cally, it is implied by truth telling being superior to a feasible report ¾ where one
reports truthfully at all ages and histories except age-history (sj¡1; sj) where the report is s0j
rather than sj . [Independence used here.]

(() Suppose not. Then restriction (a)-(b) hold but there is a report ¾ that strictly improves
over truth telling, given (c; l). Let ¾ have the smallest number of false reports at distinct age-
histories sj among those report functions ¾ that strictly improve over truth telling. This is
clearly possible since the number of age-histories is ¯nite. Choose j as large as possible so that ¾
involves a false report (i.e. ¾j(s

j)6= sj) at some age-history sj . Then restriction (a)-(b) implies
that given that ¾ has been used in the past, telling the truth in period j and subsequently leads
to at least as much conditional expected utility at age-history sj as using ¾. Thus, there is
another feasible report function that strictly improves over truth telling and that has a smaller
number of false reports. Contradiction.

(ii) ()) Set wj(s; s0) =
PJ

k=j ¯
k¡ju(ck(s0); lk(s0)(s0=s)). This satis¯es restriction (b). Re-

striction (a) holds since (c; l) is IC.
(() Backward induction on restriction (b) de¯nes wj(s; s0) uniquely:

wj(s; s
0) =

JX
k=j

¯k¡ju(ck(s0); lk(s0)(s0=s))

Insert this into restriction (a) to produce the condition that (c; l) is IC. 2

Theorem A3: In the recursive dual problem assume u(c; l) = u(c)+v(l), u and v are strictly
concave, u is increasing, v is decreasing and that shocks are independent and ordered so that
s1 < s2 < ::: < sI . Then

(i) Incentive compatibility implies that lisi is increasing in i.

(ii) Cii¡1; Ci¡1i ¸ 0; i = 2; :::; I imply Cij ¸ 0 8i; j.
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(iii) Cii¡1 = 0; i = 2; :::; I imply Ci¡1;i ¸ 0; i = 2; :::; I and Ci¡1;i > 0 whenever lisi >
li¡1si¡1.

(iv) In a solution to the recursive dual problem all local downward constraints bind.

Proof:
(i) Assume that it is feasible to claim to have received shock i when one has shock i ¡ 1.

If not, then lisi ¸ li¡1si¡1 holds trivially. Thus, we have that Cii¡1; Ci¡1i ¸ 0. Adding these
inequalities and using the fact that u(c; l) = u(c) + v(l) implies the ¯rst equation below. The
second equation rearranges the ¯rst. The second equation and v concave then implies that
lisi ¸ li¡1si¡1 must hold.

v(li)¡ v(li¡1si¡1=si) ¸ v(lisi=si¡1)¡ v(li¡1)

v(lisi=si)¡ v(li¡1si¡1=si) ¸ v(lisi=si¡1)¡ v(li¡1si¡1=si¡1)

(ii) Show ¯rst that Cij ¸ 0;8j < i. As a ¯rst step show that Cii¡2 ¸ 0. This follows from
the three lines below. The ¯rst line is Ci¡1i¡2 ¸ 0. The second line follows from line one and
the fact that v(li¡1si¡1=s) ¡ v(li¡2si¡2=s) increases as s increases for s ¸ si¡1. The last fact
holds since lisi increases as i increases (Thm. A3(i)) and since v is concave. Line three follows
from line two and Cii¡1 ¸ 0.

u(ci¡1; li¡1) + wi¡1 ¸ u(ci¡2; li¡2si¡2=si¡1) + wi¡2

u(ci¡1; li¡1si¡1=si) + wi¡1 ¸ u(ci¡2; li¡2si¡2=si) + wi¡2

u(ci; li) + wi ¸ u(ci¡1; li¡1si¡1=si) + wi¡1 ¸ u(ci¡2; li¡2si¡2=si) + wi¡2

To show that Cij ¸ 0 holds for all j < i, proceed by induction repeating the three steps
above, where the ¯rst step is the induction step.

It remains to show that Cij ¸ 0;8j > i if any of these upward lies are feasible. As a ¯rst
step show that Cii+2 ¸ 0. This follows from the three lines below for essentially the same
reasons as in the argument above. The remainder of the proof follows by an induction which
is parallel to that given above.

u(ci+1; li+1) + wi+1 ¸ u(ci+2; li+2si+2=si+1) + wi+2

u(ci+1; li+1si+1=si) + wi+1 ¸ u(ci+2; li+2si+2=si) + wi+2
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u(ci; li) + wi ¸ u(ci+1; li+1si+1=si) + wi+1 ¸ u(ci+2; li+2si+2=si) + wi+2

(iii) Obvious from v strictly concave.
(iv) (Rough argument) Suppose not. Let (ci; li; wi) be a solution in which a downward

constraint is not binding. Construct (c¤i ; l
¤
i ; w

¤
i ) so that labor and future utility are the same

as before but consumption is di®erent. Squeeze the consumption distribution so that (a) mean
consumption is lower, (b) all downward constraints still hold and (c) mean u(c) unchanged.
This lowers the objective and satis¯es all constraints. Contradiction.

[Note: Argument involves lowering consumption in some state. Thus, one needs strictly
positive consumption. A su±cient condition for this to hold for states w> ¡1 is u(0) = ¡1.]

2
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