

Financial Computational Intelligence

Chiu-Che Tseng, Yu-Chieh Lin
Department of Computer Science and Information Systems

Texas A&M University – Commerce, TX 75429, U.S.A.

Abstract:

 Artificial intelligence decision support system is
always a popular topic in providing the human with
an optimized decision recommendation when
operating under uncertainty in complex environments.
The particular focus of our discussion is to compare
different methods of artificial intelligence decision
support systems in the investment domain – the goal
of investment decision-making is to select an optimal
portfolio that satisfies the investor’s objective, or, in
other words, to maximize the investment returns
under the constraints given by investors. In this study
we apply several artificial intelligence systems like
Influence Diagram (a special type of Bayesian
network), Decision Tree and Neural Network to get
experimental comparison analysis to help users to
intelligently select the best portfolio.

1. Introduction

 The investment domain, like many other domains,
is a dynamically changing, stochastic and
unpredictable environment. Take the stock market as
an example; there are more than two thousand stocks
available for a portfolio manager or individual
investor to select. This poses a problem of filtering all
those available stocks to find the ones that are worth
investment. There are also vast amounts of
information available that will affect the market to
some degree.
 For these problems, artificial intelligence decision
support systems are always the solutions. The
decision support systems provide the investor with
the best decision support under time constraints. For
this purpose, we use the Influence Diagram, Decision
Tree and Neural Network to advice users to build
their own highly successful investment portfolios.
 The structure of the paper is as follow. In section
2, we introduce some related works on the structures
of the investment decisions for portfolio
managements. In section 3 and 4, we describe the
frameworks of the Influence Diagram, decision tree
and neural networks. In section 5, we specify our
experimental settings. In section 6, we show our

experimental results and explanations. And in section
7, we conclude our paper.

2. Related Work

We explore several ways to reduce the
complexity of the investment decision deliberation
that might cause investors to lose money under urgent
situations, and, at the same time, to provide the
highest quality investment recommendations possible.
 For portfolio management, Strong [20], Reilly
and Norton [15] and Jones [10] brought several
traditional portfolio management strategies. And
Sycara, et al. [21] focused on using distributed agents
to manage investment portfolios. Their system
deployed a group of agents with different
functionality and coordinated them under case-based
situations. They modeled the user, task and situation
as different cases, so their system activated the
distributed agents for information gathering, filtering
and processing based on the given case. Their
approach mainly focused on portfolio monitoring
issues and has no mechanism to deal with uncertainty.
Our systems on the other hand react to the real-time
market situation and gather the relevant information
as needed. John, et al. [9] made extensive research on
stock selections by applying induction rules into data
mining applications. Other related research on
portfolio selection problems has received
considerable attention in both financial and statistics
literature; see Cover [3]and Cover, et al, [4].
 In the field of model refinement, there are several
approaches. The value of modeling was first
addressed by Watson and Brown [26] and Nickerson
and Boyd [12]. Chang and Fung [2] considered the
problem of dynamically refining and coarsening of
the state variables in Bayesian networks. However,
the value and cost of performing the operations were
not addressed. Control of reasoning and rational
decision making under resource constraints, using
analyses of the expected value of computation and
consideration of decisions on the use of alternative
strategies and allocations of effort, has been explored
by Horvitz [7] and Russell and Wefald [18] Poh and
Horvitz [13] explored the concept of expected value
of refinement and applied it to structural, conceptual

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6972591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and quantitative refinements. Their work concentrated
on providing a computational method for the criteria
to perform the refinement. However, their work did
not address the need of a guided algorithm to perform
the node refinement throughout the network. In our
previous work Tseng, et al, [25], we used guided
methods to perform the conceptual refinement for our
models. We see significant performance improvement
of the models after applying the refinement algorithm.
And Tseng [23,24] made extensive researches on
applying influence diagram into portfolio selections
and comparing our intelligence decision support
system with other artificial intelligence systems, such
as C5.0, and made conclusions that our system will
handle better than C5.0 in the dynamic environment.
Starzyk, et al, [19] also brought Self-Organizing
Learning Array system into economical and financial
applications by comparing our influence diagrams
decision support system.
 Besides there is few work on the comparison of
different intelligence decision support systems. In our
paper you will see how different systems work
differently.

3. Influence Diagram

 An influence diagram is a special type of
Bayesian network (Figure 1), one that contains the
decision node and the utility node to provide a
decision recommendation from the model. Influence
diagrams are directed acyclic graphs with three types
of nodes—chance nodes, decision nodes and utility
nodes. Chance nodes, usually shown as ovals,
represent random variables in the environment.
Decision nodes, usually shown as squares, represent
the choices available to the decision-maker. Utility
nodes, usually of diamond or flattened hexagon shape,
represent the usefulness of the consequences of the
decisions measured on a numerical utility scale. The
arcs in the graph have different meanings based on
their destinations. Dependency arcs are the arcs that
point to utility or chance nodes representing
probability or functional dependence. Informational
arcs are the arcs that point to the decision nodes
implying that the pointing nodes will be known to the
decision-maker before the decision is made.

Figure 1. A simple influence diagram

 When using an influence diagram for decision
support problems, there are some fundamental
characteristics of the influence diagram that one must
take into consideration. These characteristics
influence the data requirements and the choice of the

appropriate influence method. The first characteristic
is the granularity of the values for each node. This
characteristic affects the memory requirement for
storing the probabilities and the computational time
required for updating the probabilities. The more
values within each node, the larger the memory
required and the longer it will take to propagate the
probability update. The second characteristic is the
integration of the user’s preference into the utility
node. This characteristic will affect the decision
outcome of the model. Given different preferences
among users, the model might return a different
decision recommendation. Another issue of this
characteristic is how to model the user’s preference
into a set of values for the utility node. Different
fields of research have suggested different approaches
for this problem. Some suggest learning from the
user’s behavior, some suggest obtaining data from a
user survey, and some simply query the expert and
assign subjective values.
 The third characteristic to consider is the
availability of the knowledge about the structure,
probabilistic knowledge for the prior and the
conditional probabilities. There are many variables in
a specific problem domain and several concepts
might exist in the problem domain that are
observationally equivalent, which means they are not
distinguishable even with infinite data. To find out
which of those are relevant to the problem and the
casual relationships among them present a challenge
to the knowledge engineer. There has been much
research and many tools devoted to the learning of the
model structure from the data. [4] For the probability
distribution for the node, there are two methods for
obtaining the probabilities. First, the probability
distributions can be based on frequency by obtaining
the data from gathered statistics. The second method
is to obtain the probability distributions through
knowledge acquisition sessions from the domain
experts, who convey their subjective beliefs. In both
cases, the probabilities can be refined through a
feedback mechanism. Finally, the size, topology and
connectivity of the model should also be considered.
Applying good knowledge engineering techniques [8]
throughout the construction of the model will help
keep the network manageable.

4. Decision Tree Algorithm

We chose to use decision trees because they
provide a comprehensible representation of their
classification decisions. Although techniques such as
boosting [6, 17] or support vector machines might
obtain slightly higher classification accuracy, they
require more computation during classification and
they further obscure the decision making process.

A decision tree is a tree structure where each internal
node denotes a test on a feature, each branch indicates
an outcome of the test, and the leaf nodes represent
class labels. An example decision tree is shown in
Figure 2. To classify

an observation, the root node tests the the value of
feature A. If the outcome is greater than some value x,
the observation is given a label of Class 1. If not, we
descend the right subtree and test the value for feature
B. Tests continue until a leaf node is reached. The
label at the leaf node provides the class label for that
observation.

We chose to use the C5.0 decision tree algorithm[14]
a widely used and tested implementation. For details
regarding the specifics of C5.0 the reader is referred
to[14, 16]. Here we provide only the key aspects of
the algorithm related to decision tree estimation,
particularly as it pertains to feature selection. The
most important element of the decision tree
estimation algorithm is the method used to estimate
splits at each internal node of the tree. To do this C5.0
uses a metric called the information gain ratio that
measures the reduction in entropy in the data
produced by a split. In this framework, the test at each
node within a tree is selected based on splits of the
training data that maximize the reduction in entropy
of the descendant nodes. Using these criteria, the
training data is recursively split such that the gain
ratio is maximized at each node of the tree. This
procedure continues until each leaf node contains
only examples of a single class or no gain in
information is given by further testing. The result is
often a very large, complex tree that overfits the
training data. If the training data contains errors, then
overfitting the tree to the data in this manner can lead
to poor performance on unseen data. Therefore, the
tree must be pruned back to reduce classification
errors when data outside of the training set are to be
classified. To address this problem C5.0 uses
confidence-based pruning[14].

When using the decision tree to classify unseen
examples, C5.0 supplies both a class label and a
confidence value for its prediction. The confidence
value is a decimal number ranging from zero to one –
one meaning the highest confidence – and it is given
for each instance.

Figure 2. Decision tree abstraction showing how
the values associated with certain features
determine the class label. In this example,
observations whose value for feature A is greater
than X are assigned a class label of Class1. Other

classifications are based on the values of features B
and C.

d5 > 0.0719:
:...d2 > 0.0347:
: :...d2 <= 0.0415:
: : :...d5 <= 0.0833: -1 (4)
: : : d5 > 0.0833: 1 (4/1)
: : d2 > 0.0415:
: : :...d3 <= 0.0188: -1 (5/2)
: : d3 > 0.0188: 5 (4)
: d2 <= 0.0347:
: :...d1 > 0.0583: 5 (5/1)
: d1 <= 0.0583:
: :...d2 <= -0.031:
: :...d4 <= -0.0197: 0 (4/1)
: : d4 > -0.0197:
: : :...d2 <= -0.0483: -5 (3)
: : d2 > -0.0483:
: : :...d3 <= 0.0104: -3 (3/1)
: : d3 > 0.0104: 0.5 (3)

Figure 3. Portion of a decision tree generated by C
5.0

5. Neural Network

 A neural network is a powerful data modeling
tool that is able to capture and represent complex
input/output relationships. The motivation for the
development of neural network technology stemmed
from the desire to develop an artificial system that
could perform "intelligent" tasks similar to those
performed by the human brain. Neural networks
resemble the human brain in the following two ways:

1. A neural network acquires knowledge through

learning.
2. A neural network's knowledge is stored within

inter-neuron connection strengths known as
synaptic weights.

 The true power and advantage of neural networks
lies in their ability to represent both linear and non-
linear relationships and in their ability to learn these
relationships directly from the data being modeled.
 The most common neural network model is the
multilayer perceptron (MLP). This type of neural
network is known as a supervised network because it
requires a desired output in order to learn. The goal of
this type of network is to create a model that correctly
maps the input to the output using historical data so
that the model can then be used to produce the output
when the desired output is unknown. A graphical
representation of an MLP is shown below in Figure 4.

 The experiments of neural network model are
built on top of the Brainmaker Professional network
package, running on a WINDOWS platform. There
are 2500 total training data sets, which are eight
financial ratio data from the S&P 500 companies
collected from the Compustat database from the
period of 1998 to 2002. There are 500 total testing
data sets, which are the same categories as the
training data except they are from the period of 2003.
We conducted extensive experiments and found that
the one with the best result used the following
parameters:

Figure 4. A MLP neural network model Number of hidden layers: 1

 Input layer 1: Gaussian, 338 neurons
 In neural networks, an activation function is the
function that describes the output behaviour of a
neuron. The most common activation functions are
sigmoid and Gaussian functions.

 Output layer: Sigmoid
 Learning rate: Exponential, 1.0

6.3 Decision Tree Model

 Sigmoid function σµµ
ie

f i −+
=

1
1)(

Before training, the data will be normalized and
change into the format which could be recognized by
C 5.0. The following are the data used in the training
set:

 Gaussian function
22

)(σµµ icef i
−=

Data Variation: the data column/ the max data value
of the same data column

6. Experiment Settings

 6.1 Influence Diagram Model
6.3.1 Specifying the classes
 Our influence diagram model of the investment

domain consists of a number of stocks for the
investors to construct an investment portfolio. The
goal is to maximize the profit from the investment
portfolio. The experiments are written in C++ and
built on top of the Netica Belief network package,
running on a LINUX platform.

C5's job is to find how to predict a case's class from
the values of the other attributes. C5 does this by
constructing a classifier that makes this prediction. As
we will see, C5 can construct classifiers expressed as
decision trees.

Because of that, we define 2 classes. In the experiments we ran, we selected eight

financial ratio data from the S&P 500 companies as
the input factors to the system. The training data is
collected from the Compustat database from the
period of 1998 to 2002. To test the performance, we
used the date from the year 2003 and let the system
make the decision recommendation on which of the
S&P 500 companies should be included in the
investment portfolio.

Class “ 1 ”: The one year total return of the company
is greater than or equal to the average of the one year
return of the S&P 500 companies.
Class “ 0 ”: The one year total return of the company
is smaller than the average of the one year return of
the S&P 500 companies.

6.3.2 Training Process

Decision tree learning follows a kind of top-down,
divide-and-conquer learning process. The basic
algorithm for decision tree learning can be described
as follows:

6.2 Neural Network Model

 Before a neural network can be trained with these
data, they must be normalised, or called in pre-
processing phase. The following rule has been used
for normalisation derived from Angstenberger (1996):

1. Based on an information gain measure, select an
attribute to place at the root of the tree and branch for
each possible value of the tree. Thereby, the
underlying case set is split up into subsets, one for
each value of the considered attribute.

1. Multiplication of the data by the factor:

minmax
8.0
−

;

2. Addition of the offset 0.1 – (factor * min);

2. Recursively repeats this process for each branch,
using only those cases that actually reach that branch.

 In this way the data can be scaled to the range
from 0.1 to 0.9. The trained data can also be
transformed back to the original scale, due to the
linearity of the formula.

3. If at any time all instances at a node have the same
classification, stop developing that part of the tree.

7. Results

 The experiment results are summarized in table 1
shown the 2003 performance of each artificial
intelligence technique that are used to select stocks
from S&P 500. In table 2 shown the 2003
performance of combining two or three artificial
intelligence techniques that are used to select stocks
from S&P 500. The following four subsections
describe the detail result from each architecture and
combine two or three architectures.

7.1 Influence Diagram Model

 On the 2003 test data, the influence diagram
portfolio obtains its maximum average annual return
performance when the portfolio contains 108
companies out of the 500. The 108 companies
produced an average one-year total return of 32.28%,
while the average return of all the 500 companies was
41.35%.

7.2 Neural Network Model

 Unlike our first model, this portfolio obtains its
maximum one year total return performance when the
portfolio contains 447 companies out of the 500
companies on the 2003 test data. This portfolio
produces an average one year total return of 40.86%,
which is lower than 41.35%, the average of the
S&P500’s return. The root mean square error is
0.5032, which is too high to get any reliable results.
 It is true that the quality of the forecast is highly
dependent on the network parameters. But after
carefully analyzed our data, we found that there exist
some cross-sectional problems. The 500 companies
are chosen from different industries fields and each
has its own economic cycles. For example, all the
local “dot com” companies were in their recession
cycles at the beginning of this century, while the
Chinese companies were in their booming cycles, like
SOHU and SINA. Besides, the “size effect” [15] is
also a critical factor affecting results. The sizes of the
companies under S&P500 index are quite different,
which make their returns different between large-size
companies and small-size companies. All these
problems can not be easily distinguished in the
general neural network structures.

7.3 Decision Tree Model

 This portfolio obtains its maximum one year total
return performance when the portfolio contains 165
companies out of the 500 companies on the 2003 test
data. This portfolio produces an average one year
total return of 46.38%. The result is higher than
41.35%, the average of the S&P500’s return.

In our decision tree model, we have the most
reliable result of the one year total return among all
the intelligence systems. Nevertheless, the stock
market is extremely sensitive to its environment, and
many objects related to the stock market contribute
their patterns to the stock price. Our goal is to extract

patterns related to each object and build a model of
the object from these patterns.

7.4 Self-Organizing Learning Array (SOLAR)

system

Starzyk, et al [19] compared our work with their
machine learning technique in (SOLAR) system: A
new Self-Organizing Learning Array (SOLAR)
system. SOLAR is capable of handling a wide variety
of classification problems. It has a regular array
structure with sparsely interconnected computing
elements and local learning rules. Computing
elements choose their connections and define their
own functionality, while learning how to best extract
information from their input data.
 SOLAR was constructed without expertise in this
field and has not been refined for this specific
problem. Nine individual SOLAR networks were
used in this case, each of which yielded 17% to 84%
independently, which still shows higher volatility and
stochasticity. However, its high average yield made
itself worth further research on portfolio selections,
though, in the Adult Income Classification case [19],
Bayes algorithms outperformed SOLAR slightly.

Table 1. Result from each architecture
 Average one year total

return

Influence Diagram 32.28%

Neural Network 40.86%

Decision Tree 46.38%

SOLAR 30.10%

7.5 Combining Prediction

 We select those companies that are selected by
two or three artificial intelligence techniques we use
at the same time to get the average one year total
return. By using decision tree and influence diagram,
the portfolio obtains its maximum one year total
return performance when the portfolio contains 22
companies out of the 500 companies on the 2003 test
data. This portfolio produces an average one year
total return of 28.78%. The result is lower than
41.35%, the average of the S&P500’s return. By
using influence diagram and neural network, the
portfolio obtains its maximum one year total return
performance when the portfolio contains 99
companies out of the 500 companies on the 2003 test
data. This portfolio produces an average one year
total return of 33.36%. The result is lower than
41.35%, the average of the S&P500’s return. By
using decision tree and neural network, the portfolio
obtains its maximum one year total return
performance when the portfolio contains 146
companies out of the 500 companies on the 2003 test
data. This portfolio produces an average one year
total return of 47.26%. The result is higher than

41.35%, the average of the S&P500’s return. By
using decision Tree, influence diagram and neural
network, the portfolio obtains its maximum one year
total return performance when the portfolio contains
19 companies out of the 500 companies on the 2003
test data. This portfolio produces an average one year
total return of 29.07%. The result is lower than
41.35%, the average of the S&P500’s return.

[4] Cover, T. M. and D. H. Gluss “Empirical Bayes stock
market portfolios”, Advances in Applied Mathematics, vol.
7, 1986, pp. 170-181.

[5] Friedman, N., “The Bayesian Structural EM Algorithm”,
In the Fifteenth International Conference on Machine
Learning, 1998.

[6] Freund Y. (1995). Boosting a Weak Learning Algorithm
by Majority. Information and Computation, 121(2):256–285,
1995.

 Table 2. Result from combining two or three
architectures

[7] Horvitz, E. J. and M. Barry, “Display of Information
for Time-Critical Decision Making”, In the Eleventh
conference on Uncertainty in Artificial Intelligence, 1995,
pp.296-305.

Average one year total
return

Decision Tree & Influence
Diagram 28.78%
Influence Diagram &
Neural Network 33.36%
Decision Tree & Neural
Network 47.26%
Decision Tree & Influence
Diagram & Neural
Network 29.07%

[8] Howard, R. A., “Influence to Relevance to Knowledge.
Influence Diagrams”, Belief Nets and Decision Analysis,
1990, pp. 3-23.

[9] John, G.H., Miller, P. and Kerber R., “Stock Selection
Using Rule Induction”, IEEE Expert: Intelligent Systems
and Their Application, 1996, pp. 52-58.

 [10] Jones, C.P., Investments: Analysis & Management.
John Wiley & Sons Inc., New York, NY.,2003.

[11] Laskey, K. B. and S. M. Mahoney, “Network
fragments: Representing knowledge for constructing
probabilistic models”, In the Conference on Uncertainty in
Artificial Intelligence, 1997, pp. 334-341.

8. Conclusion

 We conducted some performance analysis with
our systems and compared ours with other
intelligence system. Our decision support system uses
the decision tree as the decision model; the structural
information of the decision tree plays an important
role on the performance of our system. We obtained
the structural information from the domain expert and
the information represents what the expert’s opinion
on the causal relationships among the nodes. From
the experiment results, we can see that the decision
tree system works better than many other artificial
intelligence systems in a more general situation. This
is due to the background information given by the
domain expert when constructing the network.

[12] Nickerson, R. C. and D. W. Boyd, “The use and value
of models in decision analysis”, Operation Research, vol.
28, 1980.

[13] Poh, K. L. and E. Horvitz, “Reasoning about the Value
of Decision Model Refinement: Methods and Application”,
In the Ninth Conference on Uncertainty in Artificial
Intelligence, 1993, pp. 174-182.

[14] Quinlan. J. R. C4.5: Programs for Machine
Learning.Morgan Kaufmann, San Mateo, CA, 1993.

[15] Reilly, F.K. and Norton, E.A., Investments, Chapter 10.
South-Western, Mason, OH., 2003. Given the above analysis, we could conclude that

by using an artificial intelligence system for portfolio
selection has performance edge over the human
portfolio manager and the market. The systems we
selected for this study are only one among numerous
artificial intelligence systems available. We would
like to conduct further study to better qualify and
quantify various artificial intelligence systems for use
in the portfolio selection domain.

[16] Ross Quinlan. Data Mining Tools See5 and C5.0.
 URL http://www.rulequest.com/see5-info.html.

[17] Robert E. Schapire. A Brief Introduction to Boosting.
In IJCAI, pages 1401–1406, 1999. URL citeseer.
nj.nec.com/schapire99brief.html.

[18] Russell, S. J. and E. H. Wefald, “Principles of
metareasoning”, Artificial Intelligence, 49: 1991, pp. 361-
395.

9. References

 [19] Starzyk, J. A., Zhen Zhu, H. He, and Zhineng Zhu,
“Self-Organizing Learning Array and Its Application to
Economic and Financial Problems”, In The 3rd
International Workshop on Computational Intelligence in
Economics and Finance, in Conjunction with the 7th Joint
Conference on Information Science, 2003.

[1] Angstenberger, J. Prediction of the S&P 500 Index with
Neural Networks. Neural Networks and Their Applications.
John Wiley & Sons Ltd. New York, NY., 1996.

[2] Chang, K. C. and R. Fung, “Refinement and coarsening
of bayesian networks” In the Sixth Conference on
Uncertainty in Artificial Intelligence, 1990, pp.475-482.

[20] Strong, R.A., Portfolio Construction, Management and
Protection. Thomson Learning, Chapter 15, 24, 25.
Cincinnati, OH., 2000.

[3] Cover, T. M. “Universal portfolios” Mathematical
Finance, vol. 1, 1991, pp. 1-29.

[21] Sycara, K. P. and K. Decker, Intelligent Agents in
Portfolio Management. Agent Technology, Springer-Verlag,
1997.

[22] Trippi, R.R., Turban, E., Investment Management:
Decision Support and Expert Systems. South-Western,
Boston, MA., 1990.

[23] Tseng C.C., “Comparing Artificial Intelligence
Systems for Stock Portfolio Selection”, In The 9th
International Conference of Computing in Economics and
Finance, University of Washington, Seattle, Washington,
2003.

[24] Tseng C.C., “Influence Diagram for Investment
Portfolio Selection”, In The 3rd International Workshop on
Computational Intelligence in Economics and Finance,
2003.

[25] Tseng, C.C., P. J. Gmytrasiewicz and C. Ching,
“Refining Influence Diagram For Stock Portfolio Selection”,
In the Seventh International Conference of the Society for
Computational Economics, 2001.

[26] Watson, S. R. and R. V. Brown, “The valuation of
decision analysis”, Journal of the Royal Statistical Society,
vol. 141, Part I, 1978, pp. 69-78.

