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ABSTRACT 
 
 Adaptive Least Squares (ALS), a refinement of the Constant Gain Recursive 
Least Squares (CGRLS) algorithm proposed by Ljung (1992) and Sargent (1993, 1999), 
is a method of estimating time-varying relationships and of proxying agents’ time-
evolving expectations.  This paper provides theoretical foundations for ALS as a special 
case of the generalized Kalman solution of a Time Varying Parameter (TVP) model.  The 
approach is in the spirit of that proposed by Ljung and Sargent, but unlike theirs, nests the 
rigorous Kalman solution of the elementary Local Level Model, and employs a very 
simple, yet rigorous, initialization.  Unlike CGRLS and related approaches, ALS permits 
estimation of the asymptotic gain by maximum likelihood (ML).   
 
 The ALS algorithm is illustrated with a univariate time series model of monthly 
U.S. inflation, using data for 1913 - 2005.  The estimated asymptotic gain is 0.00779, for 
a limiting effective sample size of 128.4 months or 10.7 years.  Volatility clustering is 
pronounced, and is modeled as GARCH (1,1). 
 
 Because the null hypothesis that the coefficients are constant lies on the boundary 
of the permissible parameter space, the regularity conditions for the chi-square limiting 
distribution of likelihood-based test statistics are not met.  Consequently, critical values 
of the Likelihood Ratio (LR) test statistics are established by Monte Carlo means and 
used to test and overwhelmingly reject the constancy of the parameters in the estimated 
model.   
 
 Time-specific hypotheses on coefficients may be tested with a customary chi-
square test, using either the ALS filter or smoother.  Global hypotheses are tested with 
the Variance Ratio (VR) statistic, which extends the customary LR statistic.  Using it, a 
restricted time-varying AR(6) model of inflation is rejected in favor of a restricted 
AR(12) specification, while AR(12) cannot be rejected in favor of AR(24).  Seasonality 
is globally significant, although locally insignificant from 1950 – 1973.   
 
Keywords:  Adaptive Learning, Kalman Filter, Inflation 
 
JEL Codes:  C32 -- Time Series Models 
                     E31 -- Inflation  
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I.  Introduction 
 
 Adaptive Least Squares (ALS), a refinement of the Constant Gain Recursive 
Least Squares (CGRLS) proposed by Ljung (1992) and Sargent (1993, pp. 120-2), 
provides a method of estimating time-varying relationships that is more elegant than 
rolling regression, yet far more parsimonious than an unrestricted Time Varying 
Parameters (TVP) model.  ALS and the more general concept of Adaptive Learning (AL) 
provide a means of proxying agents’ expectations that incorporates learning, in a way that 
is far more realistic than the severe informational requirements of fully Equilibrium, or 
“Rational,” Expectations.1  Bullard and Mitra (2002), Bullard and Duffy (2003), Evans 
and Honkapohja (2001, 2004), Milani (2005), Orphanides and Williams (2003), Preston 
(2004) and Sargent (1999) are just a few of the many recent applications of the AL 
concept.  Giannitsarou (2004) provides an on-line bibliography of this burgeoning 
literature.   
 
 An early, but very restrictive, special case of CGRLS was Cagan’s (1956) 
“Adaptive Expectations” (AE) model, in which mt, the time t expectation of a future 
variable yt+1 (in Cagan’s case inflation), was assumed to obey an equation of the form  

)( 11 −− −+= tttt mymm γ         (1)    
In Cagan’s original formulation, the gain coefficient γ was assumed to be an arbitrary 
subjective constant to be inferred indirectly from agents’ expectationally motivated 
behavior, e.g. their demand for money balances.   
 
 Shortly after Cagan’s original paper, Muth (1960) and Kalman (1960) 
independently demonstrated that (1) in fact gives the long-run behavior of the optimal 
signal-extraction forecast of yt+1, but only provided the process is generated by a Local 
Level Model (LLM), i.e. if yt is the sum of an unobserved Gaussian random walk plus 
independent Gaussian white noise, and provided the long-run gain coefficient γ is 
computed as a certain function of the signal/noise ratio.   
 
 The gain coefficient is therefore not an arbitrary subjective learning parameter 
akin to a demand elasticity, but rather takes on a specific value determined by the 
behavior of the process in question. 
 
 Although Muth (1960) developed only the constant long-run gain coefficient, 
Kalman’s more rigorous treatment (1960; see also Harvey 1989, p. 107 and Appendix I 
below) demonstrated that in finite samples the ideal gain is not constant, and in fact 
declines rapidly at the beginning of the sample.  Kalman’s rigorous analysis also allows 
the signal/noise ratio and therefore the gain coefficients and their limiting value to be 
estimated by Maximum Likelihood (ML).   
 

                                                 
1 “Adaptive Learning” is sometimes construed to incorporate approaches such as Neural Networks and 
Genetic Algorithms, in addition to ALS and the general TVP model.   
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 The Kalman Filter solution of the elementary LLM has since been generalized to 
solve a Time Varying Parameter (TVP) model in which all k coefficients of a linear 
regression relation are allowed to change randomly over time, as exposited, for example, 
by Harvey (1989, Ch. 3).  Ljung (1992) and Sargent (1999, Ch. 8) have proposed a 
restriction on the covariance matrix of the random coefficient changes that leads, by this 
Extended Kalman Filter (EKF), to CGRLS, i.e. ALS with a constant gain.  However, 
because their gain is constant throughout, their model does not nest the rigorous 
declining-gain solution of the LLM when it is restricted to a simple time-varying 
intercept term with no time-varying slope coefficients.  Their model in fact nests an LLM 
with a non-constant signal/noise ratio.   
 
 Sargent (1999, Ch. 8) goes on to recommend initializing CGRLS with the 
unconditional expected values of the coefficient vector and covariance matrix.  However, 
by his maintained assumption, the coefficients are nonstationary, and therefore have no 
unconditional mean, and infinite unconditional variances.  In the absence of any prior 
information, the coefficients are in fact underidentified until t = k, at which time they 
have a precise initialization, developed below. 2
 
 In Sargent’s empirical Chapter 9, he provides estimates of two quarterly 
macroeconomic models with CGRLS.  However, rather than estimate his constant gain 
from his data, he arbitrarily sets it to 0.015, which corresponds to a long-run effective 
sample size (see below) of 66.67 quarters, or 16.67 years.   
 
 The present study introduces a new specification of the covariance matrix in 
question, (12) below, that does nest the rigorous declining- yet bounded-gain LLM.  The 
corresponding ALS recursion may be naturally and validly initialized with (17) and (18) 
below.  Equation (19) below then determines the log-likelihood, and permits the 
signal/noise ratio to be actually estimated by ML rather than simply postulated as by 
Sargent (1999, Ch. 9), or estimated by ad hoc means as in Stock and Watson (1996) and 
Orphanides and Williams (2004).3  This algorithm has been implemented in GAUSS as 
program ALS, and is available on the author’s homepage (McCulloch 2005a).   
 
 Section II below reviews and restates the rigorous Kalman solution of the LLM, 
in terms of the key concept of Effective Sample Size.  This motivates section III, which 
develops a parsimonious TVP model that nests the LLM yet at the same time leads in the 
long run to constant-gain ALS, and discusses related models that have been employed by 
others.  Section IV develops hypothesis tests.  Section V extends the model to incorporate 
GARCH(1,1) errors.  Section VI applies the ALS-GARCH algorithm to US CPI inflation 

 
2 Although full sample OLS coefficients can easily be computed, they are in no sense “prior” information 
or “unconditional” values.  Ljung (1992, p. 100) unhelpfully instructs his reader to initialize the covariance 
matrix with an unspecified P0.  Durbin and Koopman (2001, ch. 5) provide an “exact initialization” for the 
general KF, which may be equivalent to that provided below, although this is not obvious to me at present.    
3 Orphanides and Williams (2004) calibrate their gain coefficient by matching simulated forecasts of 
inflation, unemployment, and the fed funds rate as closely as possible to the mean forecasts of the Survey 
of Professional Forecasters.  The procedure advocated here is instead to match the likelihood of the realized 
values as closely as possible.  This is what the Professional Forecasters themselves should be doing to 
calibrate their own forecasting equations.   
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data, while Section VII briefly mentions potential future applications.  Appendix I 
provides derivations, while Appendix II corrects an error in a critical equation in Ljung 
(1992) and Sargent (1999).  
 
II.  The Local Level Model 
 
 Before examining Adaptive Least Squares, we first review and restate the Kalman 
solution of the elementary Local Level Model (LLM) in terms of the concept of Effective 
Sample Size.     
 
 In the LLM, an observed process yt is the sum of an unobserved Gaussian random 
walk μt plus independent Gaussian white noise:  

           (2) 
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The signal/noise ratio is defined to be  
  ,  22 / εη σσρ =

so that σε
2 and ρ completely describe the system.  Let the vector yt = (y1, ... yt)′ represent 

the observations up to and including yt. 
 
 As reviewed in Appendix I, the classic Kalman Filter solution of the LLM may be 
expressed as follows: 
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where the Effective Sample Size, Tt, is determined by  
  ,         (5) ( ) 11 1
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with initialization 
  .            (6) 00 =T
 
 In the special case ρ = 0, so that μt = μ, a constant, the effective sample size Tt 
equals the true sample size t.  When ρ > 0, the effective sample size still behaves much 
like t initially, but is strictly less than t for t > 1, and is bounded above by  
  ρ/14/12/1lim ++==

∞↑
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,        (7) 

the unique positive root of the quadratic equation  
   012 =−− TT ρρ
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that defines the fixed points of (5).  The constant gain AE formula (1) is therefore strictly 
valid only in this limit, with the limiting gain T/1=γ .4  The gain in fact should be 1/Tt, 
which behaves much like 1/t for small values of t.   
 
 The predictive error decomposition gives the distribution of the one-period-ahead 
forecasts:   
  ( )222

1111 ,~| εε σρσσ ++−−− tttt mNyyy K .          (8) 
The product of these densities for t = 2, ... n gives log joint probability of y2, ... yn 
conditional on y1 as a function of and ρ, and therefore the log likelihood of and ρ 
conditioned on y

2
εσ

2
εσ

1, ..., yn.  The observation variance  may be concentrated out of the 
log likelihood function, so that a numerical maximization search is required only over the 
single parameter ρ.  

2
εσ

 
III.  Adaptive Least Squares 
 
 Cagan’s Adaptive Expectations formula (1) is thus the rigorous long-run solution 
to a well-specified statistical model.  Cagan, however, erroneously treated his gain like a 
subjective learning parameter to be inferred from agents’ expectationally-motivated 
behavior, specifically their demand for money, instead of estimating ρ from the series in 
question using (8) and then computing the limiting gain according to (7).5    
 
 Furthermore, the simplistic LLM that leads asymptotically to Cagan’s formula (1) 
allows the dependent variable yt to depend only on a simple (time-varying) mean.  A 
much more general framework is the Time-Varying Parameter (TVP) linear regression 
model, 

         (9) 
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in which xt is a 1×k row vector6 of ideally exogenous explanatory variables, βt is a k×1 
column vector of time-varying coefficients, and ηt is a k×1 column vector of transition 
errors that are independent of the observation errors εt.  Let yt be the t×1 vector of 
dependent variables observed up to and including time t, and Xt be the t×k matrix of 
explanatory variables up to and including time t.  Ordinarily the first column of Xt is a 
vector of units, so that the first element of βt is the intercept.  Qt is the possibly time-
dependent k×k covariance matrix of the transition errors ηt.   
 
 System (9) may be solved by means of the well-known Extended Kalman Filter, 
which provides a recursive rule giving  

                                                 
4 As noted above, Muth (1960) developed the limiting gain γ, but not the exact finite sample gain γt 
required for ML estimation of ρ.   
5 Milani (2005) likewise makes the mistake of calibrating his CGRLS gain parameter by optimizing the fit 
of an ancillary, fixed coefficient New Keynesian Phillips Curve equation.   
6 We make xt a row vector rather than a column vector, since xt is simply the t-th row of the regressor 
matrix Xn.   
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for some k×k covariance matrix Pt.  (See Appendix I for details.)  The full-blown TVP 
model (9) is much too general for our purposes, however, since if even if Qt is made 
time-invariant, it still introduces k(k+1)/2 incidental time-variation hyperparameters to be 
estimated, in addition to the observation variance σε

2.     
 

Cooley and Prescott (1973) were able to reduce Qt to a single parameter, but only 
by allowing only the intercept to change, so that only the (1, 1) element of Qt = Q is non-
zero.  Their model nests the LLM, but does not yield ALS.   

 
More generally, Sims (1988) and Kim and Nelson (2004) use (9) with a time-

invariant covariance matrix Q, but assume that Q is diagonal in order to keep the problem 
tractable.  This assumption still introduces k hyperparameters, yet is not particularly 
natural, since if a slope coefficient of a regression were to change, we would ordinarily 
expect to see compensating changes in the intercept and the slopes of correlated 
regressors, ceteris paribus.  Furthermore, a change of basis for the regressors should leave 
the story told by a regression unchanged, yet this will not be the case under this 
assumption, since the implications of a zero correlation between the regressors will 
depend upon the arbitrary choice of basis.  Like the Cooley-Prescott model, this 
diagonality assumption does nest the LLM, but not ALS.   

 
 McGough (2003) uses a diagonal covariance matrix that is a (time-varying) 
constant times the identity matrix.  Although this model is adequate for the theoretical 
point he was making, it is empirically unsatisfactory, even aside from the above 
considerations, since it forces all the coefficients to have the same transition variance (at 
each point in time), even though their units depend upon the often arbitrary units in which 
the regressors happen to be measured. 
 
 In order to obtain a rigorous foundation for long-run fixed-gain ALS, however, it 
is sufficient and natural simply to postulate, following Ljung (1992) and Sargent (1999, 
p. 117), that Qt is directly proportional to Pt-1.  Nevertheless, the proportionality that 
Ljung and Sargent propose must be modified in order to reduce to the elementary LLM 
when k = 1.   
 

Let ρ be a scalar index of the uncertainty of the transition errors relative to the 
observation errors, such that Tt as computed from ρ as in (5) measures the Effective 
Sample Size.  Recall that in the LLM, the variance of the “noise”, i.e. the observation 
errors, is related to that of the estimation errors at time t-1 by  
   .   2

11
2

−−≡ ttT σσε

In the LLM, Qt is simply the 1×1 matrix ( ), while P2
ησ t-1 is simply ( ), so that the 

variance of the “signal”, i.e. the scalar transition error η

2
1−tσ

t, is given by  
  ( ) ( ) ( ) 11

2
11

22
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In the same spirit, we assume in our TVP model that Tt-1Pt-1 measures the measurement 
error per effective observation as of time t-1, just as does in the LLM, and thus that the 
transition covariance matrix Qt of ηt in (9) is given by  
  11 −−= ttt T PQ ρ .            (12) 
When the random coefficients model (9) contains only an intercept term and no 
regressors, (12) becomes (11).  Hence, the proposed covariance specification (12) exactly 
nests the LLM.   
 
 Under specification (12), the extended Kalman filter greatly simplifies, and may 
be written in may be written in “Information” form (see Appendix I) as  
  ,           (13) ttt zWb 1−=

12 −= tt WP εσ ,           (14) 
where 
  ,           (15) ttttt yT ')1( 1

1
1 xzz ++= −

−
−ρ
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−

−ρ
and Tt is updated as in (5).   
 
 If there is a diffuse prior about the coefficients at time 0, the initial covariance 
matrix P0 is infinite in all its eigenvalues, or equivalently, the “precision” or 
“information” matrix  is all zeroes, whence 1

0
−P

  kk×= 0W0 .           (17) 
For any choice of b0, (13) then implies  
  .           (18) 10 ×= k0z
With such a diffuse prior, Wt is of rank t for t ≤ k, and hence bt and Pt may only be 
computed for t ≥ k.  Note that in the fixed coefficient case ρ = 0, zt then becomes tt yX′ , 

Wt becomes , and (13) becomes the familiar OLS formula ttXX′ ( ) ttttt yXXXb ′′= −1 . 
 
 Having thus initialized and updated the filter, the predictive error decomposition 
becomes 
  ( )22
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where 
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where the scale-adjusted residuals 
             (21) ttt seu /=
equal the actual predictive errors,  
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adjusted by their time-varying scales st.  Under the maintained assumptions, these 
adjusted residuals are homoskedastic with variance , even though the predictive errors 
themselves are highly heteroskedastic.  As in the LLM, the observation variance  may 
be concentrated out of the log likelihood function in such a way that for any value of ρ, 
the likelihood is maximized with  estimated in closed form by  
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A numerical maximization search is therefore required only over the single parameter ρ. 
 
 If the model is well-specified and ρ equal to its true value, the adjusted residuals 
ut must be iid ( )2,0 εσN .  Since the hyperparameter ρ is consistently estimated by ML, 
routine large-sample specification tests such as Q statistics, the Jarque-Bera test, etc., 
may therefore be applied to these, as noted by Durbin and Koopman (2001, Ch. 5).   
 
 It may easily be shown, setting ttt T/WR = , that the ALS filter (13) – (16) is 
equivalent to the variable-gain Recursive Least Squares (RLS) formula  
  ( )1

1
1 −

−
− −+= tttttttt y bxxRbb γ ,        (23) 

)( 11 −− −′+= tttttt RxxRR γ ,           (24)   
  .           (25) 12 −= ttt RP εσγ
See Appendix I for details.  In the fixed coefficients case that is equivalent to OLS, the 
gain γt in (23) – (25) is 1/t.  The previous AL literature (e.g. Sargent (1993, eq. (10)) or 
Evans and Honkapohja (2001, eq. (2.9)) commonly replaces this gain by a constant γ as 
in Cagan’s original Adaptive Expectations formulation (1).  However, this Constant Gain 
RLS (CGRLS) does not nest the rigorous declining-gain Kalman solution of the LLM 
that justifies (1) as an asymptotic approximation, and that permits ML estimation of the 
parameter determining the long run gain itself.  Furthermore, it is not obvious how to 
initialize RLS, in the absence of prior information, with the required 

.  0// 000 kkT ×== 0WR
 
 Ljung (1992) and Sargent (1999, Ch. 8) assume, in place of (12), that 

  11 −−
= tt PQ

γ
γ ,           (25) 

with the result that (23) holds with a constant γ in place of γt = 1/Tt.7  Under this Ljung-
Sargent assumption, the initial observations are given too little weight.  This 
underweighting makes little difference for the final estimates of the regression 
coefficients or the long-run behavior of the system if ρ is known, but will distort the early 
estimates and will cause the ML estimate of ρ and therefore the computed asymptotic 
gain to be biased in a finite sample.  Note that the Ljung-Sargent specification, unlike the 
                                                 
7 This insight is valid despite the error in Ljung (1992) and Sargent (1999) noted in the Appendix.  The 
approximation invoked by Ljung (1992, p. 100) is in fact unnecessary.   
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present model, does not nest the LLM, since it in fact implies a time-varying signal/noise 
ratio.   
 
 Stock and Watson (1996) and Sargent and Williams (2003) assume, in place of 
either (12) or (25), that  
  .         (26) ( ) 12 −′== ttt E xxQQ ερσ
If the relevant expectation exists, this is equivalent in an expectational sense to (12), since 
then  
  .   tttt ETE xxW ′=
However, it is not necessarily true that the required moments do exist, and even if they 
did, it would impose a great informational burden on agents to require them to know what 
they were.  Equation (12), on the other hand, does not require these moments to be finite, 
and only requires agents to know Xt, yt, and ρ.8  Assumption (26) does nest the LLM, 
since then the required expectation is just a unit scalar.  For k > 1, however, it only 
approximates ALS with gain 1/Tt,.  It also lacks the computational simplicity of ALS, 
since it requires the more general EKF described in Appendix I.   
 
 Stock and Watson (1996) calibrate the gain coefficient ρ in (26) (their λ2) for 
several macroeconomic time series and relationships by minimizing the sum of squared 
forecasting errors.  This will give results similar to ours, but by no means equivalent, 
even apart from the often subtle difference between our (12) and their (26).  For one 
thing, the initial errors have much larger variance than the later errors simply because the 
coefficient vector is still highly uncertain.  Equation (19) correctly takes this into account 
and enables the full permissible sample (n-k observations) to be incorporated into the log 
likelihood.  Stock and Watson, on the other hand, only grossly take this factor into 
account, by discarding the first 60 (monthly) observations a priori.  This is wasteful if the 
signal/noise ratio is large, and inadequate if the signal/noise ratio is small.  Furthermore, 
it is obvious from (19), which is similar to the formula for the conditional distribution 
that would result from (26), that even asymptotically the squared forecasting errors et

2 are 
greater in expectation than  by an amount that depends on ρ, so that minimizing their 
sum of squares will give a biased estimate of ρ  In addition, even after the warm-up 
period they are not homoskedastic, and hence should not be given equal weight.  

2
εσ

 
 Orphanides and Williams (2004) calibrate their gain coefficient both by 
minimizing a sum of squared forecast errors as in Stock and Watson (1996), and by 
matching simulated forecasts of inflation, unemployment, and the fed funds rate as 
closely as possible to the mean forecasts of the Survey of Professional Forecasters.  
However, if one’s objective is to construct one’s own expert forecast of these variables, 
one should use actual experience, not the forecasts of other, perhaps less sophisticated, 
“experts,” to calibrate one’s own procedures.   
 
 Cogley and Sargent (2004) ambitiously estimate an autoregressive TVP model in 
which the coefficients take a random walk with unrestricted covariance matrix, subject to 

 
8 The observation variance σε

2 is required to compute Pt, but not bt.   



  9 
 

 

                                                

reflecting boundaries that prevent nonstationary autoregressive roots.  Their procedure is 
far more computation-intensive than ALS, because of both these complications.  Binding 
inequality restrictions may easily be imposed on ALS estimates after unrestricted 
estimation, if desired, however, simply by using the standard conditional multivariate 
normal formula given, e.g., by Harvey (1989, p. 165).9   
 
 The Kalman Filter for the ALS model, discussed above, provides the posterior 
distribution of the coefficient vector conditional on the past and current history of the 
data.  This is the appropriate question to ask if one is interested in simulating expectations 
as of each point in time.  However, if one instead wanted to estimate the regression 
coefficients given both prior and subsequent experience, the Kalman Smoother (also 
known as the 2-sided filter) becomes the appropriate tool.  This is straightforward, but 
requires some care because of the asymmetrical (backward- rather than forward-looking) 
nature of our assumption about the transition matrix covariance matrix.  The pertinent 
equations for both the general TVP case and the special ALS case are given in Appendix 
I.   
 
 If one is estimating an autoregression by ALS, it is important to remember that, as 
in OLS, the inverse AR roots are biased downwards, particularly as they approach unity.  
In the usual fixed-coefficients OLS environment, this bias disappears in large sample, but 
this consistency is absent in the ALS case, because the effective sample size never rises 
above T.  It therefore may be important to mean- or median-unbias the AR coefficients 
according to the effective sample size before using them to simulate forecasts.  Such a 
correction is proposed by Fuller and Roy (2001) and has been implemented, using US 
inflation data with expanding window regression, by McCulloch and Stec (2000).  See 
also Harvey (1989, ch. 7) concerning endogenous regressors.   
 
IV.  Hypothesis testing 
 
 [Section under Construction] 
 
 Because the null hypothesis of no parameter change, i.e. ρ = 0, is on the boundary 
of the permissible parameter space ρ ≥ 0, the usual regularity conditions for the χ2 
limiting distribution of the Lagrange Multiplier (LM) and Likelihood Ratio (LR) statistics 
are not met (Moran 1971a, 1971b).  Nevertheless, Tanaka (1983) has shown that the LM 
statistic is still useful and informative in the LLM case, provided the critical values are 
appropriately adjusted.   
 

 
9 Two candidates for such an adjustment would be 1973 and 1980 in the inflation equation estimated 
below, when the sum of the AR coefficients briefly slightly exceeds unity, even without a correction for 
AR bias as discussed below.  With fixed coefficients there is a case for overriding such estimates, since 
such an explosive process would have long-since blown up and would never be observed.  With time-
varying coefficients, however, there is no reason one could not drift into such a situation if called for by 
sufficient evidence of acceleration, as is all too often the case with inflation data.  Getting out of such a 
situation would presumably call for an even larger Taylor Rule coefficient on past inflation than is 
normally called for. 
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 The author plans in the near future to determine Monte Carlo critical values for 
the LR statistic under the null of no change.  These Monte Carlo critical values will be 
adjusted for multiple-test Monte Carlo sampling error using the methodology introduced 
by McCulloch (1997, p. 79). 
 
 It is conjectured that these critical values will not depend asymptotically on either 
the sample size or the number of regressors (k) in the model, let alone on the numerical 
values taken by the regressors.10  Preliminary simulations indicate that the 5% critical 
value is approximately 2.3, which is far less than the value of 3.84 from the chi-squared 
distribution with one degree of freedom.   
 
 Local tests on coefficient restrictions for an individual value of t may be 
performed, using either the filter or smoother estimates, by standard z- or Chi-square tests 
with the appropriate degrees of freedom, since the coefficients are normally distributed 
with the estimated covariance matrix, at least if ρ is known.  In practice, ρ is estimated, 
but since its ML estimate is consistent, this should not be a problem in large samples.   
 
 Global linear restrictions on coefficients, i.e. for all t, are a little more difficult.  
With no loss of generality, we may assume that these are zero restrictions on q of the 
coefficients, since the regressors can always be redefined in such a way that this is true.  
It is then easy enough to run unrestricted (UR) ALS with all k potential regressors and 
restricted (R) ALS using only the k-q non-restricted regressors.  Unfortunately, the 
likelihoods of these two regressions are not directly comparable as in the fixed 
coefficients case, since in the predictive error decomposition framework of (20), they 
actually contain different numbers of terms.  
 
 Nevertheless, in the fixed coefficient case ρ = 0, it turns out that the sum of 
squared adjusted residuals  
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in (22) is exactly equal to the traditional sum of squared errors SSE computed from OLS, 
despite the fact that OLS is adding n terms, while ALS is adding only n-k.  (The author 
has found this to be true for numerous examples, but does not have an analytical proof.)  
In the fixed coefficients case, the likelihood ratio LR can be expressed in terms of the 
restricted and unrestricted sum of squared errors SSER and SSEUR as 
  LR = n log(SSER/SSEUR).   
A test based on the statistic  
  VR = n log(SSUR/SSUUR)  
will therefore become the familiar LR test in the fixed coefficient case.  However, since 
this statistic is not based directly on the likelihoods in (22), it could be confusing to call 
this an “LR” statistic.  Since it is nevertheless based on the sums of squared errors that 

 
10 Note that in order to be directly comparable to the likelihood under the alternative, the likelihood under 

the null should be computed as , rather than as ∑  as in OLS.  ∑
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are used to estimate the variances, we instead call this the “Variance Ratio” (VR) 
statistic.   
 
 For ρ = 0, the VR statistic will have the asymptotic  distribution of the 
familiar LR statistic.  For ρ > 0, however, the critical values may be considerably higher, 
since in effect q(n/T) independent restrictions are being imposed.  The author therefore 
plans to tabulate, by Monte Carlo means, critical values for VR for various values of n, k, 
q, and ρ in a future version of this paper.  Some illustrative tests are employed below.   

2
)(qχ

 
V. GARCH-ALS 
 
 It is often the case that the squared ALS adjusted residuals (and therefore the 
squared observation errors and/or transition errors) are positively serially correlated.  
Such volatility clustering can easily be incorporated into the present ALS model as a 
GARCH(1,1) effect.  GARCH effects were first introduced into an econometric model by 
McCulloch (1985), were applied to a non-Gaussian signal extraction problem by 
Bidarkota and McCulloch (1998), and have been incorporated into TVP models by Kim 
and Nelson (2004) and Cogley and Sargent (2004).   
 
 Although in ALS the observation errors εt and transition errors ηt are not directly 
observed or even consistently estimated, the adjusted residuals ut defined by (21) are 
observed and hence may be used to drive the GARCH process governing εt and thence, 
indirectly, ηt+1.  Hence, we modify our basic model (9) by postulating that 
          (27) ),,0(~, 2

tttttt hNIDy εε+= βx
where  
  .1,0,0,0,2

1
2

1
2 ≤+≥≥>++= −− θφθφωθφω ttt uhh 11       (28) 

This specification implies that  
            (29) ***

tttty ε+= βx
is a homoskedastic ALS model with the original coefficients, where  

           (30) 

),,0(~/

,/

,/

2
*

*

*

*

σεε Nh

h

hyy

ttt

ttt

ttt

=

=

=

xx

with  ≡ 1.2
*σ 12  Given ρ, we may therefore estimate βt and hence  

    ttt huu /* =
by running ALS on (28).  The heteroskedastic ut to use in (Error! Bookmark not 
defined.) may then be reconstructed with  
  .   *

ttt uhu =

 
11 The customary restriction θ + φ ≤ 1 is sufficient, though not quite necessary, to guarantee strict 
stationarity of the process.  In McCulloch (1985), the author imposed the “IGARCH” restriction θ + φ = 1, 
and set ω = 0 in the erroneous belief that this was necessary for strict stationarity in the IGARCH case.   
12 It is important to remember that the unitary first element of xt when an intercept is included in the model 
requires that the first element of xt

* be 1/ht.    
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The log likelihood, conditional on the initial value of ht, is then  
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where L* is the maximized log likelihood returned by ALS on the transformed problem 
(28).  Since the ht’s depend on the ut’s, and vice-versa, it is necessary to compute them 
both iteratively for any choice of GARCH parameters, until the likelihood (or the pseudo-
likelihood computed under whatever ad hoc initialization is employed) stabilizes to the 
desired precision. 
 
 In order to estimate such a GARCH model by true ML, one must first compute 
the unconditional density f(h) implied by (28).  This may be found by performing the 
appropriate convolution integral iteratively to convergence.  The unconditional likelihood 
is then the expectation, over f(h1), of the likelihood conditional on h1.  However, this 
would be a lot of computation for very little payoff, since the GARCH effects are of only 
secondary interest, and since the initial value of the variance is even less critical for most 
questions of interest.  It is therefore customary in GARCH estimation to replace true ML 
with conditional ML, using any of a variety of ad hoc initializations for h1.   
 
 Many of the initialization procedures in use have the undesirable property that 
they leave the initial observation(s) with a different variance than the subsequent ones in 
the supposedly homoskedastic case θ  = 0.13  The author’s GAUSS program 
ALSGARCH,14 which implements ALS with GARCH effects, gets around this and other 
problems by backcasting h1 from the ut’s, starting with un, and using the current values of 
the GARCH parameters.  When θ  = 0 this automatically yields h1

2 = ht
2 = ω, as would 

true ML, while when θ  > 0, it is very similar in effect to the much more laborious 
procedure of finding the value of h1

2 that maximizes the conditional log likelihood, and 
thus treating it like an additional hyperparameter to be estimated by ML. 
 
 If the GARCH parameters were estimated by true ML as described above, the 
estimate  

  ( )∑
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1  

of  from ALS on (29) would be identically unity at the GARCH parameters that 
maximize L* with  = 1, so that estimation of both ω and  would be redundant.  
However, when true ML is replaced with any pseudo-ML procedure based on an ad hoc 

2
*σ

2
*σ 2

*σ

                                                 
13 When θ = 0, f(h) collapses to a unit mass point on ω, so that ht = √ω for all t, and φ becomes irrelevant.   
14 A preliminary “beta” version of ALSGARCH is informally available at <http://www.econ.ohio-
state.edu/jhm/programs/ALSGARCH>.   
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initialization, the computed  on which L* is based need not be exactly unity.  
Nevertheless, it should be close.  It is therefore prudent to check that this is in fact the 
case. 

2
*s

 
VI.  Application to US CPI Inflation 
 
 As Klein (1978) pointed out early on, the time series behavior of US inflation has 
not been constant over time.  In the 19th century, the price level itself appeared to be 
stationary.  In the early 20th century, the price level underwent permanent shifts, but the 
inflation rate appeared to be stationary with mean near 0.  But then in the later 20th 
century, the inflation rate became more and more persistent.  Writing in 1971, Sargent 
(1971) was still able to argue that inflation was clearly a stationary process, but by 1974, 
a unit root in CPI inflation could no longer be rejected using an expanding window 
regression with fixed coefficients, as demonstrated by McCulloch and Stec (2000).  A 
univariate time series model of the US inflation is therefore a natural application of the 
ALS method.  Monthly CPI inflation has strong seasonality that itself varies from decade 
to decade.  This is easily accommodated with ALS, since it automatically permits such 
variation.   
 
 Figure 1 shows the U.S. CPI-U (not seasonally adjusted) from 1913.1 to 2005.4.  
In order to reduce rounding error in computing inflation rates, the 1967 base year was 
employed.  For 1967.1 to 1983.8, the BLS published a CPI-X, which retroactively 
computed the housing component using the rental equivalent basis adopted in 1983.  This 
was spliced into the CPI-U to obtain what may be called the CPI-UX.  It may be seen that 
inflation has been persistent, but that the nature of this persistence has changed 
considerably over time.   
 

Figure 1 
CPI-U, CPI-UX 
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))
 Figure 2 shows the annualized percentage logarithmic CPI-UX inflation rate, 
computed as (( 1/ln1200 −= ttt PPπ , for 1913.2-2005.4.  It is obvious from this diagram 
that measured inflation volatility was much higher prior to the computational 
improvements of 1953 than after.   
 

Figure 2 
CPI-UX inflation (annualized, percent) 

Not seasonally adjusted 

 
 

 A restricted AR model was fit to this data by ALS, with up to L = 24 monthly lags 
and 12 seasonal intercepts, or conceptually,   
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The dtj are seasonal dummies, with dt1 = 1 if month t is a January, etc.  In order to reduce 
the number of free AR parameters to at most p = 5, however, the AR coefficients were 
constrained to be piecewise linear and to decay to 0 at lag L+1, by means of the following 
specification:   
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12
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επγαπ , 

where the tjπ  are weighted averages of past inflation with linearly declining weights, as 
follows: 15   

                                                 
15 Such linearly declining weighted averages were in fact first proposed by Irving Fisher (1930: 419-20), 
who dubbed them “Distributed Lags”. 
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The net lag coefficients δtl may then be recovered from the γtj by  
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Significant volatility clustering was modeled as GARCH(1,1), as discussed below.   
 
 It was found that the hypothesis that the parameter γt5 governing the net 
coefficients on lags 13-24 was zero could not be rejected, either locally or globally, as 
discussed at greater length below.  Hence the results discussed here use only L = 12 lags, 
governed by p = 4 parameters, with net lags decaying to 0 at lag L + 1 = 13.  This gives a 
total of k = 12 + p = 16 time-varying parameters, with n = 1083 observations.  
 
 The ALS-GARCH ML estimates of ρ and therefore T and γ with p = 4 are:  

ρ̂  = 0.00006155  
T̂  = 128.4 mo. = 10.7 yrs. 

007788.0ˆ/1ˆ == Tγ  
LR (ρ = 0) = 62.98 

Since the 5% critical value for the LR statistic is approximately 2.3, the hypothesis of 
time-invariant parameters is overwhelmingly rejected.  Because of the considerable 
number of computations required, ML estimation of the model, complete with GARCH 
effects and smoother estimates, takes about 8 minutes on a PC (or 75 seconds if GARCH 
is suppressed). 
 
 Figure 3 shows the filter estimates of the piecewise linear net lag coefficients δjl 
implied by the time-varying regression parameters γtj, in 10-year intervals.  The 
illustrative dates are January of the year indicated.  The lag structures are qualitatively 
remarkably stable over time, despite their quantitative variation.  The first lag is almost 
always near 0.4, the second lag usually dips to 0.1 or smaller, and then there is a hump in 
lags 3-6.  In lags 7-13, the coefficients are constrained to decline linearly toward 0 at lag 
13.  In fact, prior to 1985, the coefficients are already nearly 0 or even negative by lag 7.  
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The restricted AR(12) coefficients in Figure 3 may be described as a first-degree spline, 
with knot points, i.e. discontinuities in the first derivative, at lags 1, 2, 4, 7, and 13.   

 
Figure 3 

Piecewise linear net lag coefficients δjl, selected Januaries. 
(filter estimates) 

 
Lag l (months) 

 
 Figure 4 depicts the net lag coefficients δjl at the key lags l = 1, 2, 4, and 7, for all 
t ≥ k.  The implicit coefficient at lag 13 is always zero and hence not shown.  Since the 
lags illustrated are the spline knots, the coefficients for the intervening lags are just linear 
interpolations of the two adjoining knot values, and hence have been omitted to avoid 
unnecessary clutter.  It may be seen that the first lag coefficient consistently lies between 
0.3 and 0.5, except for dropping to near 0.2 during the 1960s and 70s.  However, there 
was a compensating increase in the strength of lag 2 (and therefore 3) during this period.  
The 4th lag (and therefore adjacent lags) is usually positive, except for the 1990s when it 
was near zero.  The 7th lag, which directly governs all lags out to 12 with p = 4, is near 0 
until about 1960, and thereafter becomes positive.  It picks up the temporary weakness in 
the 4th lag during the 1990s.  All coefficient point estimates are highly erratic in the first 
few years of the sample because of the small effective sample size, and accordingly have 
very high standard errors (not plotted to avoid clutter).  This erratic “startup” behavior is 
normal, particularly for t < T, and should be no cause for concern.   
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Figure 4 

Net lag coefficients δjl at knot points l = 1, 2, 4, 7 
(filter estimates) 

 
 

 Figure 5 depicts the filter estimate of γt4, the coefficient on INF12t, with a ± 1 s.e. 
band as computed from the filter covariance matrices.  Except for vertical scale, this point 
estimate is the same line as the 7-month lag coefficient in Figure 4, since with p = 4, this 
coefficient governs all lags from 7 through 12.  It may be seen that this coefficient is 
never locally significant with either sign at the 5% level before 1986, but that it has been 
significantly positive since 1990.  Since the filter is conditioned on only past experience, 
forecasters might not have realized that lags 7-12 were important until after these dates.   

 
Figure 5 

Filter estimate of γt4, the coefficient on INF12t, ± 1 s.e. 
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 Figure 6 shows the corresponding smoother, or “two-sided filter,” estimate of γt4, 
conditioned on the entire data set, with p = 4.  The smoother and filter estimates and their 
standard errors necessarily coincide exactly at the end of the sample.  In the interior of 
the sample, however, the smoother standard errors are about 30% smaller than the filter 
standard errors, since they are based on almost twice as much data, looking both forwards 
and backwards.  The filter estimates are locally significantly positive at the 5% level after 
about 1970, so that with the benefit of hindsight we may say that γt4 and therefore δt7 - 
δt12 have in fact been non-zero and positive since that time.   
 

Figure 6 
Smoother estimate of γt4, the coefficient on INF12t, ± 1 s.e. 

 
 

The Variance Ratio statistic for the hypothesis that γt4 is globally zero, i.e. 0 for 
all t, is 19.71.  The 5% Monte Carlo critical value for q = 1 restriction with k = 16 
parameters in the unrestricted model, n = 1083 observations, and T = 128.4 is 9.08, using 
r = 99 Monte Carlo replications, while the 1% critical value is 13.32.  We may therefore 
reject the hypothesis that lags 7-12 have always been zero with a high degree of 
confidence, when INF24t has already been excluded from the regression. 
 
 When INF24t was initially included, so that p = 5, k = 17, and L = 24, the filter 
and smoother estimates of its coefficient γt5 (not illustrated) was rarely more than even 1 
standard error from 0, so that 0 could never be locally rejected at the 5% level using 
either estimate.  The Variance Ratio for the hypothesis that it was always zero is 2.085, 
which has a Monte Carlo p-value of 85% using r = 99 replications.  We therefore may not 
reject the hypothesis that lags 13-24 are always zero, and hence, under the maintained 
piecewise linear assumption, that lags 7-12 always decay toward zero when extrapolated 
to lag 13.  In the interest of parsimony, INF24t was therefore excluded from the results 
presented here, including the above tests on γt4.  However, since, having excluded INF24t, 
the coefficient on INF12t is globally significant, the shorter and therefore a priori even 
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more plausible average lag variables INF1t – INF6t are included, regardless of their local 
or global significance.  
 
 Figure 7 shows the filter estimates of the average intercept  

  12/
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along with the sum of the L = 12 non-zero net lag coefficients,  
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The latter is a measure of the short-run persistence of inflation.  Except for the initial 
warm-up period, Δt is always 0.7 or more.  It was generally about 0.8 until the 1960s, 
when it fell to around 0.7.  After 1970, it quickly rose to 0.9, where it remained until 
2000, contrary to the popular belief that inflation has been less persistent in recent 
decades than earlier.  During the soaring inflation years 1974 and 1980, Δt briefly even 
touched unity.  As in a fixed-coefficient autoregression, the estimate of Δt will be biased 
downwards, so that the true persistence was generally even greater than suggested by 
Figure 7.  The present paper makes no attempt to correct for this effect, however.16   

 
Figure 7 

Average intercept tα , sum of lag coefficients Δt 

(filter estimates) 

 
 
 It is interesting to note that while Sargent (1971) was able to claim that the sum of 
the lag coefficients in a U.S. inflation autoregression clearly pointed to stationarity, this 

                                                 
16 Any correction of this bias or Dickey-Fuller-type test for Δt = 1 should be based on the effective sample 
size T for the filter, rather than the true sample size n, however, since the filter coefficients are in effect 
estimated anew every T periods.  For the smoother estimates, the sample size for this purposes is effectively 
2T-1. 
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property of the data was quickly being reversed, even as he wrote.  It should be noted, 
however, that in ALS, as in any TVP model of the type (9), all the coefficients, including 
the intercept, are assumed to be taking random walks.  Unless ρ = 0, the inflation process 
therefore exhibits long-run non-stationarity, by assumption.  If Δt also turns out to be 
unity, that would only add short-run non-stationarity on top of the assumed long-run non-
stationarity.  This would make the process in fact I(2) in the long run.   
 
 Figure 8 shows the long-run inflation forecasts 
  ( )tt

LR
t Δ−= 1/ˆ απ  

implied by the data in Figure 7.  It may be seen that the long-run forecast undergoes 
substantial change, dipping to near 2% in the mid-1960s, rising to 6% or higher during 
1973-82, and then slowly falling back to around 3% since 2000.  During 1974 and 1980, 
when the filter estimate of Δt was briefly touching or even exceeding 1 while the average 
intercept was still clearly positive, inflation seemed to be drifting upwards without bound, 
and  is plotted as + infinity.  The terminal value of the long-run forecast, in 2005.4, is 
3.15%.   

LR
tπ̂

 
Figure 8 

Long-run and short-run inflation forecasts 
(filter estimates) 

 
 
 Figure 8 also plots the seasonally-adjusted 1-month-ahead forecasts  
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The short-run inflation forecast likewise shows substantial time-variation, and often 
differs from the long-run forecast.  Although it exceeded the long-run forecast in the late 
1930s and the late 1960s, it falls short of it throughout the 1940s, 40s, and early 60s, the 
mid-1980s, the 1990s, and for the past few years.  On the heels of a 9.36% (n.s.a.) 
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annualized actual inflation rate for 2005.3, however, the final short-run forecast for 
2005.4 was up to 4.21% (s.a.).  The actual rate for 2005.4 was 8.06%, n.s.a. 
 
 In the simplistic Cagan Adaptive Expectations model of (1) and its LLM 
rationalization (2), short-run and long-run inflation forecasts are necessarily one and the 
same thing.  It may be seen from Figure 8 that with the present much richer ALS model, 
there are often substantial differences between the two.  The net AR coefficients δtj can 
straightforwardly be used to construct one-month forecasts to any horizon, and these 
could easily be averaged to long-run forecasts of any desired horizon, to generate an 
entire term structure of inflation forecasts at each point in time. 
 
 Figure 9 shows the filter-estimated seasonal adjustments,  
  ttjtseas αα −= . 
The estimated seasonals are clearly much larger before c. 1960 than before.  While there 
really could have been much larger seasonals in the more agricultural earlier economy, 
this phenomenon may in part just be due to worse data-collection before 1953, or even to 
larger GARCH-induced estimation error in the earlier period.  The seasonals were quite 
small during the 1970s and 80s, but have grown considerably since 1990.  At the end of 
the sample, in 2005.4, the largest seasonal is for January, at +2.55% per annum (s.e. = 
0.70), while the smallest is for December, at -2.60 (0.67), with November a close second 
at -2.15 (0.65).   
 

 
Figure 9 

Seasonals 
(%/yr, filter estimates) 

 
 
 Figure 10 shows the χ2 test statistic for the hypothesis that all 12 of the filter 
seasonals of Figure 9 are locally 0.  Since this hypothesis imposes 11 restrictions, the 
distribution has 11 degrees of freedom, and the 5% critical value is 19.68.  Although the 
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test statistic dips to insignificance during the 1970s and 80s, it is on-and-off significant 
before 1970, and clearly significant after 1990.  Although forecasters might legitimately 
have dispensed with seasonal adjustment between 1970 and 1990, it cannot be ignored in 
today’s economy.   
 

Figure 10 
χ2 test statistic for local significance of filter seasonals 

(11 DOF; 5% critical value = 19.68) 

 
 
 Figure 11 shows the χ2 test statistic for the hypothesis that all 12 of the smoother 
seasonals (not shown) are locally 0.  In hindsight, there was therefore unambiguous 
seasonality throughout the 1930s and 40s and again since about 1976.  However, the 
temporary abatement of seasonality during the 1960s and early 70s may in fact have 
begun as early as 1950.   
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Figure 11 

χ2 test statistic for local significance of smoother seasonals 
(11 DOF; 5% critical value = 19.68) 

 
 
 The Variance Ratio statistic for the global hypothesis of no seasonality ever is 
206.11.  The Monte Carlo 1% critical value of this statistic, using r = 99 replications with 
n = 1083, k = 16, q = 11, and T = 128.4, is 65.60, so we may overwhelmingly reject the 
total absence of seasonality.   
 
 Figure 12 shows the restored scale-adjusted forecast errors ut (noisy series), along 
with the GARCH(1,1)-estimated conditional standard deviation ht.  The ML estimates of 
the GARCH model are  
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  LR (no GARCH) = 722.73.   
Although the LR statistic has a non-standard distribution and this paper makes no attempt 
to quantify critical values for it, there is clearly overwhelming evidence against 
homoskedasticity.  Since the coefficients on the lagged variance and lagged squared error 
sum virtually to unity, this is a highly persistent, nearly IGARCH, volatility series.   
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Figure 12 

Variance-equalized forecast errors ut, 
with GARCH(1,1) standard deviations ht

 
 
 If these GARCH effects were ignored, the point estimates of the coefficients, and 
therefore the long-run and short-run inflation forecasts, would not be greatly altered 
except in a few episodes.  However, the estimated standard errors would then be biased in 
inverse proportion to ht, and hence far too small in the early period, and far too large in 
the later period.  Our specification tests for the significance of INF24, INF12, and 
seasonality would then be grossly invalid.  With the GARCH specification, the estimated 
coefficient standard errors, as for example in Figures 5 and 6 above, are more nearly 
constant over time. 
 
 Figure 13 depicts the GARCH-standardized scale-adjusted forecast errors, u*t = 
ut/ht.  If the model is correctly specified (and ρ equal to its true value), these are NID(0, 
1).  The striking evidence of volatility clustering in Figure 12 is essentially gone, so that a 
higher-order GARCH process would have little, if any payoff.  There is also no strong 
visual evidence of unexplained serial correlation.  Their estimated variance, , 
is close to unity, as required.  There is, however, strong evidence of non-normality in 
these residuals, with a raw Kurtosis of 21.63 and a Skewness of 1.79.  Future work 
should therefore explore adapting ALS to non-Gaussian errors.   

020.12
* =s
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Figure 13 

GARCH-standardized, scale-adjusted forecast errors, ut/ht

 
 
 The present univariate model of inflation is merely intended to provide an 
illustration of ALS, rather than a definitive forecasting model for inflation.  It could 
easily be extended to incorporate less conspicuous variables such as unemployment, or 
even the stance of monetary policy, as measured by the money stock relative to money 
demand variables, or interest rates relative to their natural real level.  Before mining the 
proverbial wheelbarrow of additional variables, however, it is valuable to first ascertain 
just how parsimonious a univariate model of inflation can be constructed, as above.   
 
VII.  Potential future Applications. 
 
 Clarida, Galí and Gertler (2000), Orphanides and Williams (2003), Kim and 
Nelson (2004), and others have found time variation in the “Taylor Equation” monetary 
policy response function and/or in policy makers’ simulated forecasts of the variables that 
go into the policy response function.  ALS provides a rigorous method of estimating such 
a time-varying policy equation.  If the response function is “forward-looking” in the 
sense of responding to forecasts of the variables in question, this is a two-stage 
procedure, in which forecasts over the desired horizon are first simulated using a ALS 
filter, and then a time-varying response function is estimated using the simulated 
forecasts, by means of the ALS smoother.   
 
 A long literature, going back to Goldfeld (1976), argues that US money demand 
parameters occasionally undergo permanent shifts.  The current “New-Keynesian” 
conventional wisdom (e.g. Woodford 2003) is that such shifts render money aggregates 
irrelevant for monetary policy.  However, an ALS framework accommodates such shifts, 
and at the same time allows money demand to be forecasted meaningfully (if not 
precisely) into the future.   
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 Among other approaches, I plan to use the “Moderate Quantity Theory” 
expectations-augmented price-adjustment equation  
  ,  t

D
ttttt mmE ελππ +−+= −−− )()( 11

*
1

developed in McCulloch (1980), to estimate log real money demand , where πD
tm t is 

inflation from period t-1 to t, and  indicates the public’s expectations as of time t-1.  
ALS filter estimates will be used to proxy these expectations, while the ALS smoother 
will be used to estimate the adjustment coefficient λ along with the parameters of money 
demand.  My previous attempts to implement this equation empirically were frustrated by 
lack of a rigorous way to proxy the public’s expectations that would differ from the 
econometrician’s.  ALS now allows the former to be constructed from past experience 
using the ALS filter, while the latter is constructed from past and future experience by 
means of the ALS smoother.   
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Appendix I 

 
 
 The Local Level Model (2) implies 
  111 εμ −= y , 
so that the distribution of μ1 given y1 and no other information may be written  
   ),,(~| 2

1111 σμ mNy
where  
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 Assume now, as we know to be the case for t = 2, that the distribution of the state 
variable μt-1 given the observations yt-1 = (y1, ... yt-1)′ up to and including yt-1, is likewise 
normal, with parameters   
   ),,(~| 2

1111 −−−− tttt mN σμ y
It follows that  
        (31) ).,(),(~| 22

11
22

111 εη ρσσσσμ +=+ −−−−− tttttt mNmNy
We also know that 
  .  ),(~| 2

εσμμ ttt Ny
Using Bayes’ Rule as in Eqn. (3.7.24a) of Harvey (1989, p. 163), and completing the 
square with the appropriate constant term, we then have  

  
( ) ( )

( ) .),(/
2
1exp

.)(/
2
1exp

2
1exp

.)(/)|()|(
.)(/)|(),|()|(

2

2

22
1

2
1

2

2

1

11

constm

constmy

constpyp
constpypp

t

tt

t

tttt

tttt

ttttttt

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

=
=

−

−

−

−−

σ
μ

ρσσ
μ

σ
μ

μμ
μμμ

εε

y
yyy

    (32) 

so that (3) is valid with  
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and  
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+
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Defining , (33) becomes (4) and (34) becomes (5), which may be initialized 
either with T

22 / ttT σσ ε=

0 = 0 or T1 = 1. 
 

The general TVP system (9) may similarly be solved recursively by means of the 
well-known Extended Kalman Filter (EKF).  Assume that we have found a rule according 
to which,  
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)           (35) ,(~| 1111 −−−− tttt N Pbyβ

for some k×k covariance matrix Pt-1 that may depend on Xt-1, but not yt-1 or εt-1.  Then by 
Harvey (1989, pp. 105-6), or equivalently, Ljung and Söderström (1983, p. 420), and 
simplifying to the univariate random walk case (9) of interest,  
   ),,(~| tttt N Pbyβ
where  
  ( ) ( )11

1
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−
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1 εσ+′+′= − tttttf xQPx 17           (38) 
 
 The textbook EKF  equations (36) and (37) above may be rearranged to eliminate 
ft and to look more like RLS, as follows:  Post-multiply (37) by tx′  and combine with (38) 
to obtain  
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so that (36) becomes  
  ( ) ( )1

2
1 /1 −− −′+= ttttttt y bxxPbb εσ ,        (39)  

and (37) becomes  
  ( ) ( ) ( )tttttttt QPxxPQPP +′−+= −− 1

2
1 /1 εσ .    

Then multiply the last equation on the left by  and on the right by 1−
tP ( ) 1

1
−

− + tt QP  and 
rearrange to obtain  
  ( ) ( ) ttttt xxQPP ′++= −

−
− 21

1
1 /1 εσ .        (40) 

 
 The rearranged filter (39), (40) may be placed in the even more convenient 
“Information” form, mentioned but not developed by Harvey (1989, p. 108), in terms of 
the scaled Information Matrix , the scaled transition covariance matrix 

, and what might be called the “cumulative evidence” vector , 
as follows:     

12 −= tt PW εσ

tt QV )/1( 2
εσ= ttt bWz =

   ( ) ,        (41) tttttt yxzVWIz ′++= −
−

− 1
1

1
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−

− 1
1

1

whence bt and Pt may be recovered by (13) and (14).18  Cp. also Bullard (1992).  
 

                                                 
17 There is an error in Sargent’s (1999) equation (94), which does not match Harvey’s (3.2.3) unless Pt-1 in 
(94b) and in the term after the minus sign in (94c) is replaced with Pt-1 + R1t in Sargent’s and Ljung’s 
notation, i.e. Pt-1 + Qt in ours (and Harvey’s).  The same error appears in Sargent’s source, Ljung (1992), 
equations (36)-(39).  However, Ljung’s own source, Ljung and Söderström (1983), is correct.  See 
Appendix II below for details.   
18 The observation error variance  cannot be estimated until after the filter has been run, so it must in 
any event be factored out of P

2
εσ

t and Qt in order to run the filter.   
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 The above Information form filter may easily be initialized with a diffuse prior by 
taking the limit of P0 as all its eigenvalues go to infinity, or equivalently, by letting the 
initial information matrix  go to zero, which in turn simply implies 1

0
−P

  kk×= 0W0 .           (17) 
For any choice of b0,  then implies  000 bWz =
  .           (18) 10 ×= k0z
Nothing could be simpler than nothing itself!  It is not so obvious how to impose a 
diffuse prior on either (36) – (38) or (39) - 40, however.   
 
 With the diffuse prior, Wt is of rank t for t ≤ k, and hence bt and Pt may not be 
computed by (13) and (14) until t ≥ k.  Note that in the fixed coefficient case 

, zkktt ×== 0VQ t becomes , WttyX′ t becomes ttXX′ , and (13) then becomes the familiar 
OLS formula.   
 
 In the LLM special case (2) of the general TVP, ( )ρ=tV , ( )1=′ tt xx , 

, (42) becomes (5) with ( )ttt yy =′x ( )tt T=W , and (39) becomes (4) with γt = 1/Tt. 
 
 Under the ALS specification of Qt in (12), IVW 11 −− = ttt Tρ , and the Information 
filter (41), (42) becomes the ALS filter (15), (16).  It is obvious from (41) and (42) that if 
Qt is specified as any scalar times Pt-1, so that Vt is the same scalar times Wt-1

-1
, the 

matrix inversions will no longer be required and the calculations enormously simplified.  
As originally noted by Ljung (1992), the filter in this case simply becomes RLS, with 
gain determined by the scalar chosen.  However, if the scalar chosen is time-invariant, as 
specified by Ljung, the RLS gain will inappropriately also be time-invariant.   
 
 In order to obtain “smoother,” or “two-sided filter,” estimates of the coefficients, 
conditional on the entire data set, we first run the Information Filter backwards from the 
end of the data set, as if to obtain estimates  of β*

tb t conditional on yt, ... yn and no other 
information, with variances .  In the general TVP case, this backward filter may be 
computed by: 

*
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The backward filter  obtained in this manner estimates β*

1+tb t+1, conditional on yt+1, ... yn , 
with variance , but it also provides an estimate of β*

1+tP t, conditional on the same values, 
with the somewhat larger variance ( )1

*
1
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2
1

*
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−
+++ +=+ ttttt VWIWQP εσ .  Since  as an *

1+tb
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estimate of βt is independent of the filter estimate bt, the two estimates may be averaged 
in inverse proportion to their respective covariance matrices to form the smoother 
estimate  of βS

tb t, conditional on the entire sample, as follows:   
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This smoother estimate has variance 
  .         (50) 12 −

= S
t

S
t WP εσ

Note that it is not necessary to actually compute the backward filter and variance  and 
 themselves, however, since  and  suffice to obtain the smoother and its 

variance using (47) – (50).  The smoother and its variance may therefore be computed 
even for t > n-k, even though the backward filter is not defined there.   

*
tb

*
tP *

tz *
tW

 
 In order to compute the smoother, it is necessary to save zt and Wt for all t on the 
forward filter pass.  However, since the smoother is not needed to compute the 
likelihood, there is no point in computing it except on the final pass.   
 
 To obtain the smoother in the ALS case (12), we simply set  
   1

`1
−

+ = ttt T WV ρ

in (43) – (50).  If desired, the term ( ) 11*
1

−−
++ tttT WWI ρ  may then be replaced by 

 to avoid having to invert W( 1*
1

−

++ tttt T WWW ρ ) t.  In the general TVP case, where the 
transition covariance matrix Qt is well defined for all t, we may compute the smoother 
clear back to t = 1.  In the ALS case, however, , which may be written, using the 

above substitution, as 

S
tW

( )( )*
1

1*
1 +

−

+++ ttttt T WWWIW ρ , is proportional to Wt and 
therefore singular for t < k.  The ALS smoother, like its filter, is therefore defined only 
for t ≥ k.  Unfortunately, the serendipitous cancellation that occurs in the filter equations 
is no longer present, so that the ALS smoother runs a little slower than the ALS filter.   
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Appendix II 

 
 As mentioned in footnote 6 above, there is an error in the Kalman Filter as 
presented in Sargent’s (1999) equation (94).  To correct this error, Pt-1 in Sargent’s (94b) 
and in the term after the minus sign in (94c) should be replaced with Pt-1 + R1t in 
Sargent’s notation, i.e. by Pt-1 + Qt in ours and Harvey’s.    
  
 The same error appears in the source Sargent cites, namely Ljung (1992), 
equations (36) – (39).  Nevertheless, Ljung’s own source, Ljung and Söderström (1983, 
LS) is correct.   
 
 LS consider a more general case of the KF than is used here or in Sargent or 
Ljung, one which permits the coefficient vector to follow a stationary matrix AR(1) 
process with a driving process, rather than a just random walk as in (9) of the present 
paper.  Harvey treats a similarly general case.  In this more general case, it is expedient to 
introduce, as Harvey does, a notation like bt|t-1 to indicate the expectation of βt 
conditional on yt-1, and Pt|t-1 for its covariance matrix, in addition to bt, bt-1, Pt, and Pt-1.   
 
 In terms of the Harvey conditional subscripts, but our symbols otherwise, Ljung 
and Söderström’s (1.C.14) – (1.C.16) on p. 420 become, in the special case of interest,  
  ))(( 1|1||1 −−+ −+= tttttttt yt bxKbb      (A.1) 

       (A.2) ( 12
1|1|)( −

−− +′′= εσtttttttt xPxxPK )
  ( ) 12

1|1|1|]1[1||1
−

−−−+−+ +′′−+= εσttttttttttttttt xPxPxxPQPP .   (A.3) 
Since in the random walk case, bt+1|t becomes our bt and Pt|t-1 becomes our Pt-1 + Qt, (A.1) 
– (A.3) are equivalent to (36) – (38) above, which in turn derive from Harvey’s (3.2.3a) – 
(3.2.3c).  Thus, Harvey and LS are in agreement.    
 
 However, LS do not use Harvey’s conditional subscript notation, but instead refer 
to the expectation of their time t coefficient vector “xt,” conditional on information up to 
and including t-1 (i.e. bt|t-1 above), simply as “ ,” and to its covariance matrix (P)(ˆ tx t|t-1 
above) simply as “P(t),” etc.  The source of the error in Ljung (1992) and thence Sargent 
(1999) is that when Ljung simplified (1.C.14) – (1.C.16) in LS to the random walk case, 
he redefined “ ” to be the expectation of the time t coefficient vector conditional on 
information up to and including time t, i.e. our b

)(ˆ tx
t, and “P(t)” to be its covariance matrix, 

i.e. our Pt.  In making this notational revision, however, he simply replaced “P(t)” in his 
former notation, at all but one point, with “P(t-1)”, instead of with Pt|t-1 = Pt-1 + Qt, i.e. 
“P(t-1) + R1(t)” in terms of his new notation, as he should have.19   
 
 In order to correct equations (36) – (39) in Ljung (1992), therefore, “P(t-1)” in 
(38) and in the expression after the minus sign in (39) should be replaced with “P(t-1) + 

                                                 
19 Note that whereas Ljung (1992) associates subscript t with the change in the coefficient vector between 
times t-1 and t, this subscript is t-1 in LS.  Although LS do not explicitly date the covariance R1 of this 
change, if they had, the “R1(t)” of Ljung (1992) would therefore have been “R1(t-1)” in the LS notation.   
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R1(t).”  Corresponding  replacements should be made in Sargent’s (1999) equation (94), 
as noted above.   
 
 In correspondence, Ljung has kindly indicated that he in fact intended the “P(t-1)” 
of his 1992 book to be Pt|t-1, despite the apparently contrary definition given in his text 
which led Sargent (1999) to interpret it as Pt-1|t-1..  However, he points out that even with 
this interpretation there is an error, since then the R1(t) in the first part of (39) on p. 99 
should not be present.   



  33 
 

 
 

REFERENCES 
 
Bidarkota, Prasad V., and J. Huston McCulloch, “Optimal Univariate Inflation 
Forecasting with Symmetric Stable Shocks,” Journal of Applied Econometrics 13 (1998), 
659-70.   
 
Bullard, James.  “Time-Varying Parameters and Nonconvergence to Rational 
Expectations under Least Squares Learning,” Economics Letters 40 (1992): 159-66.  
 
Bullard, James, and John Duffy.  “Learning and Structural Change in Macroeconomic 
Data,” St. Louis Fed and University of Pittsburgh, 2003. Online at 
<http://research/stlouisfed.org/econ/bullard/ltdmd2002march23.pdf>.    
 
Bullard, James, and Kaushik Mitra.  “Learning about Monetary Policy Rules,” Journal of 
Monetary Economics 49 (2002), 1105-1129. 
 
Cagan, Phillip.  “The Monetary Dynamics of Hyperinflation,” in Friedman, ed., Studies 
in the Quantity Theory of Money, University of Chicago Press, 1956.   
 
Cho, In-Koo, Noah Williams, and Thomas J. Sargent.  “Escaping Nash Inflation,” Review 
of Economic Studies 69 (2002), 1-40. 
 
Clarida, Richard, Jordi Galí and Mark Gertler.  “Monetary Policy Rules and 
Macroeconomic Stability:  Evidence and Some Theory,” Quarterly Journal of Economics 
115 (2000), 147-180.   
 
Cogley, Timothy, and Thomas J. Sargent.  “Drifts and Volatilities:  Monetary Policies 
and Outcomes in the Post WWII U.S.,”  Review of Economic Dynamics 8 (2005): 262-
302. 
 
Cooley, Thomas F., and Edward C. Prescott.  “An Adaptive Regression Model,” 
International Economic Review 14 (1973), 364-71.   
 
Durbin, James, and S.J. Koopman, Time Series Analysis by State Space Methods.  Oxford 
University Press, 2001.   
 
Evans, George W., and Seppo Honkapohja.  Learning and Expectations in 
Macroeconomics.  Princeton University Press, 2001.   
 
Evans, George W., and Seppo Honkapohja.  “Adaptive Learning and Monetary Policy 
Design,” Journal of Money, Credit, and Banking 35 (2003): 1045-72.   
 
Fisher, Irving.  The Theory of Interest.  Augustus M. Kelley, New York, 1965 reprint of 
1930 edition.  
 



  34 
 

 
Fuller, Wayne A., and Anindya Roy, “Estimation in Autoregressive Time Series with a 
Root Near 1,” Journal of Business and Economic Statistics 19 (2001): 482-93.  
 
Giannitsarou, Chryssi.  “Adaptive Learning in Macroeconomics” (2004), online 
bibliography at <http://docentes.fe.unl.pt/~chryssi/Adaptive Learning in 
Macroeconomics.html>   
 
Goldfeld, Stephen.  "The Case of the Missing Money," Brooking Papers on Economic 
Activity 3 (1976): 683-730. 
 
Harvey, Andrew C.  Forecasting, Structural Times Series Models and the Kalman Filter.  
Cambridge University Press, 1989.   
 
Kalman, R.E.  “A New Approach to Linear Filtering and Prediction Problems,” Journal 
of Basic Engineering, Transactions ASME Series D 82 (1960): 35-45.  
 
Kim, Chang-Jin, and Charles Nelson.  “Estimation of a Forward-Looking Monetary 
Policy Rule:  A Time-Varying Parameter Model using Ex-Post Data,” Korea University 
and University of Washington, 2004.  
 
Klein, Benjamin.  “The Measurement of Long- and Short-Term Price Uncertainty:  A 
Moving Regression Time Series Analysis,” Economic Inquiry 16 (1978), 438-52. 
 
Ljung, Lennart.  “Applications to Adaptive Algorithms,” in L. Ljung, Georg Pflug, and 
Harro Walk, Stochastic Approximations and Optimization of Random Systems, 
Birkhäuser, 1992, pp. 95-113.  
 
Ljung, Lennart, and Torsten Söderström.  Theory and Practice of Recursive 
Identification, MIT Press, 1983.   
 
McCulloch, J. Huston.  “The Microfoundations of the Moderate Quantity Theory,” Ohio 
State University, 1980.    Supported by PI’s earlier NSF grant SES 80-05994. 
<http://www.econ.ohio-state.edu/jhm/papers/MQT80.pdf>.  
 
McCulloch, J. Huston.  “Interest-Risk Sensitive Deposit Insurance Premia: Stable ACH 
Estimates,” Journal of Banking and Finance 9 (1985): 137-156.  
 
McCulloch, J. Huston.  “Measuring Tail Thickness to Estimate the Stable Index α:  A 
Critique,” Journal of Business & Economic Statistics 15 (1997), 74-81. 
 
McCulloch, J. Huston.  GAUSS program ALS.  Fits a linear regression by Adaptive 
Least Squares, estimating the signal/noise parameter by Maximum Likelihood, 2005a, 
<http://www.econ.ohio-state.edu/jhm/programs/ALS>  
 
McCulloch, J. Huston.  GAUSS program ALSGARCH.  Fits a linear regression by 
ALS with GARCH(1,1) effects, estimating signal/noise ratio and GARCH paramters 



  35 
 

 
by ML, 2005b.  Developmental version available to reviewers at 
<http://www.econ.ohio-state.edu/jhm/programs/ALSGARCH>.    
 
McCulloch, J. Huston, and Jeffery A. Stec.  “Generating Serially Uncorrelated 
Forecasts of Inflation by Estimating the Order of Integration Directly,” Ohio State 
University Working paper, 2000, <http://www.econ.ohio-state.edu/jhm/inflexp.doc>.   
 
McGough, Bruce.  “Statistical Learning with Time-Varying Parameters,” 
Macroeconomic Dynamics 7 (2003): 119-139.   
 
Milani, Fabio, “Adaptive Learning and Inflation Persistence,” Princeton University, 
2005, <econwpa.wustl.edu/eps/mac/papers/0506/0506013.pdf>.   
 
Moran, P. A. P.  “The Uniform Consistency of Maximum-Likelihood Estimators,”  
Proceedings of the Cambridge Philosophical Society 17 (1971a), 435-39.   
 
Moran, P. A. P.  “Maximum-Likelihood Estimation in Non-Standard Conditions,”  
Proceedings of the Cambridge Philosophical Society 17 (1971b) 441-50.  
 
Muth, John F.  “Optimal Properties of Exponentially Weighted Forecasts,”  J. of the 
American Statistical Assn. (JASA) 1960, 299-306. 
 
Orphanides, Athanasios, and John C. Williams, “The Decline of Activist Stabilization 
Policy: Natural Rate Misperceptions, Learning, and Expectations,” Federal Reserve 
Board WP 2004-804, dated 12/2003, 
<http://www.federalreserve.gov/pubs/ifdp/2004/804/default.htm>.   
 
Perron, Pierre.  “The Great Crash, the Oil Price Shock and the Unit Root Hypothesis,” 
Econometrica 58, 1989, 1361-1401. 
 
Preston, Bruce.  “Adaptive Learning, Forecast-Based Instrument Rules and Monetary 
Policy,” Columbia University, 2004, online at 
<http://www.columbia.edu/~bp2121/targetrules.pdf>. 
 
Sargent, Thomas J.  “A Note on the ‘Accelerationist’ Controversy,” J. of Money, Credit 
and Banking 3 (1971): 721-5.   
 
Sargent, Thomas J.  Bounded Rationality in Macroeconomics.  Clarendon Press, Oxford, 
1993.    
 
Sargent, Thomas J.  The Conquest of American Inflation.  Princeton University Press, 
1999.    
 
Sargent, Thomas J., and Noah Williams.  “Impacts of Priors on Convergence and Escapes 
from Nash Inflation,”  Review of Economic Dynamics 8 (2005): 360-91. 
 



  36 
 

 
Sims, Christopher.  “Projecting Policy Effects with Statistical Models,” Revista de 
Analisis Economico 3 (1988), 3-20.  
 
Stock, James H., and Mark W. Watson.  “Evidence on Structural Instability in 
Macroeconomic Time Series Relations,” Journal of Business & Economic Statistics 14 
(1996): 11-30.   
 
Stock, James H., and Mark W. Watson.  “Median Unbiased Estimation of Coefficient 
Variance in a Time-Varying Parameter Model,” Journal of the American Statistical 
Association 93 (1998): 349-358.  
 
Tanaka, Katsuto.  “Non-Normality of the Lagrange Multiplier Statistic for Testing the 
Constancy of Regression Coefficient,”  Econometrica 51 (1983): 1577-82. 
 
Woodford, Michael.  Interest and Prices, Princeton University Press 2003. 


