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Abstract
In this paper we analyze a dynamic, asset pricing model where an arbitrary number

of heterogeneous, procedurally rational investors divide their wealth between two assets.
Both fundamental dividend process and behavior of traders are modeled in a very general
way. In particular, agents’ choices are described by means of the generic smooth functions
defined on a commonly available information set. The choices are consistent with (but
not limited to) the solutions of the expected utility maximization problems.

As a natural rest point of the corresponding dynamics we propose the notion of the
Behavioral Consistent Equilibria (BCE) where the aggregate dynamics are consistent
with the agents’ investment choices. We show that provided that the dividend process
is given, all possible equilibria of the system can be characterized by means of one-
dimensional Equilibrium Market Line (EML). This geometric tool allows to separate the
effects of dividend process and agents’ behaviors on the aggregate dynamics. Namely,
the precise shape of this line depends on the character of the dividend process, but the
realized equilibrium, i.e. a point on the line, is determined by the ecology of agents’
behaviors. We argue that the EML can be useful in investigation of the questions of
existence, multiplicity and stability of the BCE and provide corresponding examples.
The EML also allows to make the comparative static exercises in a framework with
heterogeneous agents and discuss the relative performances of different strategies.

The notion of BCE can be considered as a generalization of the Rational Expectations
Equilibrium on the framework with heterogeneous traders. It can be, therefore, useful
also in other fields of economics where heterogeneity of actors plays an important role
for the aggregate outcome.
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1 Introduction

This paper is devoted to the analytic investigation of an asset pricing model where an arbi-
trary number of heterogeneous generic traders participate in a speculative activity. The main
purpose of the paper is to put forward the notion of the Behavioral Consistent Equilibria
which can be considered as a generalization of the Rational Expectations Equilibria for an
arbitrary dynamic framework with generic heterogeneous agents. We introduce this concept
inside a simple model of speculative market, where such classical economic questions as origin
of the equity premium or the survivance of irrational traders can be addressed.

We consider a pure exchange economy where one asset is a riskless security yielding a
constant return on investment, and another asset is a risky equity paying a stochastic dividend.
Trading takes place in discrete time and in each trading period the relative price of the
risky asset is fixed through a market clearing condition. Agents participation to the market
is described in terms of their individual demand for the risky asset. We impose only one
restriction on the way in which the individual demands of traders are formed. Namely, the
amount of the risky security demanded by any trader is assumed to be proportional to his
current wealth. Corresponding investment shares of the agents’ wealth are chosen at each
period on the basis of the commonly available information.

This behavioral assumption is consistent with a number of strategies based on optimization,
and in particular on the maximization of expected utility function with constant relative risk
aversion (CRRA). However, the framework is not limited to such rational behaviors. Works
of Herbert Simon (see e.g. Simon (1976)) emphasize that agents operating in the markets may
not be optimizers, but still avoid to behave in completely random or irrational manner. That
is even if they are not “rational” in the sense as this word is widely used in economics, the
traders can follow some deliberately chosen or invented procedures. Such agents can be called
procedurally rational to stress the difference with respect to the smaller class of substantively
rational optimizers. We model procedural rationality by means of smooth investment functions
which map the information set to the present investment share.

The presence of procedural rationality in the market naturally leads to the idea of hetero-
geneity of agents. There are no doubts that even rational agents differ in terms of preferences
and implied actions. In the last years, many contributions emphasize an importance of the
heterogeneity in expectations for explanation of observed “anomalies” of financial markets
(i.e. those facts that cannot be explained by classic financial models) like huge trading volume
or excess volatility, see e.g. Brock (1997). In this paper investment functions are agent-specific
and, thus, describe the outcome of an idiosyncratic procedures which can be defined as the
collective description of the preferences, beliefs and implied actions.

Using assumption of CRRA-type of behavior but avoiding the precise specification of in-
vestment functions and dividend process we derive the stochastic dynamical system governing
asset price and agents’ wealths. In the rest of the paper we study the natural rest points
of the deterministic skeleton of this system, i.e. we consider the situation without exogenous
noise (due to dividend) when only agents’ heterogeneity drives the dynamics. Such skeleton,
which gives an “average” dynamics, can be investigated using the analytic tools of the theory
of dynamical systems. We introduce the notion of Behavioral Consistent Equilibrium (BCE)
which incorporates two ideas. First, in the long-run agents should be able to find a behavioral
rule, which would be constant in the absence of shock. In the presence of random dividends,
therefore, the behavior of any agent would look like fluctuations around this constant bench-
mark caused by past dividend realizations. Second, these choices should be consistent with
aggregate dynamics, which both affect and are affected by the agents’ choices. Thus, our BCE
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can be considered as a generalization of the rational expectations hypothesis to the framework
with generic procedurally rational heterogeneous agents.

It turns out that all the BCE can be characterized in an informative way even when both
dividend process and set of behaviors of market participants kept general. In particular, there
exist two types of equilibria. In one of the type the risky asset provides different expected
return with respect to the riskless asset, so-called equity premium, while in the other type the
equity premium is absent. Furthermore, we show that on the one hand, not any combination
of the dividend process and investment functions can bring the equity premium. On the other
hand, if such situation happened, then there exists a simple relation between equilibrium price
return and investment fractions, irrespectively of the number of agents and the shapes of their
investment functions. This equilibrium relation can be described by means of one-dimensional
function, the Equilibrium Market Line (EML), previously introduced in Anufriev et al. (2006).
The usefulness of this tool follows from its ability to separate the influence of the dividend
process from the influence of the agents’ behavior on the equilibrium relations. Indeed, the
precise shape of the EML depends on the dividend process, while the precise location of
equity-premium BCE on the given EML depends on the ecology of traders.

For illustrative purposes, we perform the detailed analysis of two particular specifications
for the dividend process. Such examples allow us to visualize the EML, show how the EML
can be used for the comparative statics exercises and also illustrate that the EML can also be
used for the exploration of stability conditions.

Our model can be confronted with the last contributions in the field of the Heterogeneous
Agent Models (HAMs) extensively reviewed in Hommes (2006). First, the majority of the
HAMs are built assuming independence of the agents’ demands from their wealths. In terms of
expected utility theory, it amounts to consider constant absolute risk averse (CARA) traders.
CARA-type of behavior is assumed for the sake of simplicity, in order to decouple wealth
evolution from the system and concentrate on the analysis of price dynamics. Our choice of
the CRRA framework is motivated, instead, by the empirical and experimental evidence in its
favor (see the discussions in Levy et al. (2000) and Campbell and Viceira (2002)) and also by
a relative rarity of corresponding HAMs (exceptions are Chiarella and He (2001), Chiarella et
al. (2006), Anufriev et al. (2006)). Second, since HAMs are concentrated on the heterogeneity
in expectations, it is typical to work with common demand functions (i.e. preferences, atti-
tude towards risk, etc.). Furthermore, the expectations are modeled in the simplest possible
way sufficient to reflect different stylized behaviors, like “fundamental”, “trend chaser” or
“contrarian” attitude. Keeping investment functions generic, we intend to avoid unrealistic
simplicity of the agents’ expectations and assumption of fixed preferences. Consequently, the
role of such parameters as the length of memory or coefficient of trend extrapolation can be
analyzed without changing the model set-up. Third, HAMs usually deal either few types of
investors (e.g. two types in DeLong et al. (1991) and Chiarella and He (2001), three in Day
and Huang (1990) and up to four types in Brock and Hommes (1998)) or with the limiting
properties of the market when the number of types is large enough (Brock et al., 2005) to
apply some variation of the Central Limit Theorem. Instead, our results are valid for any
finite number of investors.

At the same time, the current model can also be compared with so-called, evolutionary
finance literature (see, e.g. Blume and Easley (1992), Sandroni (2000) and Hens and Schenk-
Hoppé (2005)). These are analytic investigations of the market with many assets populated
by the agents of CRRA-type behavior. One important drawback of these contributions is the
assumption of short life of the assets leading to the ignorance of the capital gain on the agents’
wealths. Our work can be seen, thus, as an extension of the evolutionary finance analysis in
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this direction, even if we consider simpler market setting with only one risky asset.
Finally, one can consider this model as an analytic counterpart of the numerous simulations

of the artificial financial markets with CRRA agents (see, e.g. Levy et al. (1994), Levy et al.
(2000) and Zschischang and Lux (2001) and recent review in LeBaron (2006)). The need of
such analytic investigation seems apparent because of the inherent difficulty to interpret the
results of simulations in a systematic way. Model with generic agents’ behaviors is especially
useful given the tendency to simulate markets with many different types of behavior.

There is one common question which unify all three streams of the literature mentioned
above. Is the Milton Friedman’s hypothesis about impossibility for the non-rational agents
to survive in the market valid? Our general results provide a simple and clear answer to
this question. Indeed, we show that the survivors in the market are determined not only by
their strategies, but instead by the total behavioral ecology coupled with the nature of the
dividend process. Consequently, the Friedman’s hypothesis is not valid in our framework, even
if it can hold for some particular cases. E.g. applying our results to the set of expected utility
maximizing behaviors one can re-obtain findings of Blume and Easley (1992) that the survivor
is rational agent but not any rational agent will survive.

The rest of the paper is organized as follows. In Section 2 we describe our economy.
First, we explicitly write the traders’ inter-temporal budget constraints. Second, we derive
the resulting dynamics in terms of returns and wealth shares. Finally, we introduce the
dividend specification and agent-specific investment functions. In Section 3 we define the
Behavioral Consistent Equilibria, discuss this notion and give general characterization of the
corresponding dynamics. We devote Section 4 to the more detailed discussion of that equilibria
in two specific examples of the dividend process. The Equilibrium Market Line is introduced
for each case and compared. In Section 5 we address the question of stability of the Behavioral
Consistent Equilibria. The discussion is concentrated around one special case of the dividend
process, namely when the dividend yield is constant. The general case is rather impossible to
address but the particular example gives some important hints about what can happen in the
general model. Our conclusions, and the directions our work will plausibly take in the future,
are briefly mentioned in Section 6.

2 Definition of the Model

Consider a simple pure exchange economy, where trading activities take place in discrete time.
The economy is composed by a riskless asset (bond) giving in each period a constant interest
rate rf > 0 and a risky asset (equity) paying a random dividend Dt at the beginning of each
period t. The riskless asset is considered the numéraire of the economy and its price is fixed to
1. The ex-dividend price Pt of the risky asset is determined at each period, on the basis of the
aggregate demand, through market-clearing condition. The resulting intertemporal budget
constraint is obtained below. It allows to derive an explicit dynamical system governing the
evolution of the economy. The assumptions on the nature of the dividend process and of the
investment choices are discussed at the end of this Section.
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2.1 Intertemporal budget constraint

The economy is populated by a fixed number N of traders1 who do not consume but reinvest
their total wealths each period. In the beginning of time t each trader n gets dividends Dt+1

and interest rate rf per each share of the corresponding asset. He then determines a new
portfolio deciding to invest a certain fraction xt,n of the current wealth Wt,n into the risky
asset. Thus, after the trading session agent n possesses xt,n Wt,n/Pt shares of the risky asset
and (1− xt,n) Wt,n shares of the riskless asset, and wealth evolution reads

Wt+1,n(Pt+1) = (1− xt,n) Wt,n (1 + rf ) +
xt,n Wt,n

Pt

(Pt+1 + Dt+1) . (2.1)

Therefore, the wealth at any period depends on the current price of the risky asset. Price at
time t is fixed so that aggregate demand equals aggregate supply. Assuming a constant supply
of the risky asset, whose quantity can then be normalized to 1, price Pt satisfies to

N∑
n=1

xt,n Wt,n(Pt) = Pt . (2.2)

Solving the last equation together with N equations (2.1) written for the previous period, one
can find Pt and Wt,n for all n simultaneously. Once the price is fixed and the new portfolios
and wealths are determined, the economy is ready for the next round.

The dynamics defined by (2.1) and (2.2) describes an exogenously growing economy due
to the continuous injections of new riskless assets, whose price remains, under the assumption
of totally elastic supply, unchanged. It is convenient to remove this exogenous economic
expansion from the dynamics of the model. To this purpose we introduce rescaled variables

wt,n =
Wt,n

(1 + rf )t
, pt =

Pt

(1 + rf )t
, et =

Dt

Pt−1 (1 + rf )
, (2.3)

denoted with a lower case letters. The last quantity, et, represents (to within the factor) the
dividend yield. Rewriting (2.1) and (2.2) for the same time period t + 1 in terms of these new
variables one obtains





pt+1 =
N∑

n=1

xt+1,n wt+1,n

wt+1,n = wt,n + wt,n xt,n

(
pt+1

pt

− 1 + et+1

)
∀n ∈ {1, . . . , N} .

(2.4)

These equations represent an evolution of state variables wt,n and pt over time, provided that
stochastic process {et} is given and the set of investment shares {xt,n} is specified. Under
the assumption that the investment shares xt,n do not depend on the contemporaneous price
and wealth2, equations (2.4) imply a simultaneous determination of the equilibrium price pt+1

and of the agents’ wealths wt+1,n, so that the state of the system at time t + 1 is defined only
implicitly. For analytical purposes, one has to derive the explicit equations that govern the
system dynamics.

1All traders with identical investment behavior will have constant relative wealths in our framework, so
that only the total wealth of all such traders matters for the dynamics. Thus, one can think about N different
strategies present in the market, each of which is employed by an arbitrary number of traders. (cf. Hens and
Schenk-Hoppé (2005)).

2In other words, the agents’ behavior is consistent with the CRRA framework. This crucial for our analysis
assumption will be formalized in Section 2.4.
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2.2 Dynamical system for wealth and return

The transformation of the implicit dynamics (2.4) into explicit form with positive prices is
not generally possible and entails some restriction on the possible market positions available
to agents. The following notation is useful to present the dynamics in a more compact form.
Let an be an agent specific variable, dependent or independent from time t. We denote with〈
a
〉

t
the wealth weighted average of this variable at time t on the population of agents,

〈
a
〉

t
=

N∑
n=1

an ϕt,n , where ϕt,n =
wt,n

wt

and wt =
N∑

n=1

wt,n . (2.5)

The next result gives the condition for which the dynamical system implicitly defined in
(2.4) can be made explicit without a violation of the requirement of positiveness of prices

Proposition 2.1. Let us assume that the initial price p0 is positive. From equations (2.4) it
is possible to derive a map RN → RN that describes the evolution of traders’ wealth wt,n with
positive prices pt ∈ R+ ∀t provided that

(〈
xt

〉
t
− 〈

xt xt+1

〉
t

) (〈
xt+1

〉
t
− (1− et+1)

〈
xt xt+1

〉
t

)
> 0 ∀t . (2.6)

If previous condition is met, the growth rate of (rescaled) price rt+1 = pt+1/pt − 1 reads

rt+1 =

〈
xt+1 − xt

〉
t
+ et+1

〈
xt xt+1

〉
t〈

xt (1− xt+1)
〉

t

, (2.7)

while the agents’ (rescaled) wealth shares ϕt,n evolve according to

ϕt+1,n = ϕt,n
1 + (rt+1 + et+1) xt,n

1 + (rt+1 + et+1)
〈
xt

〉
t

∀n ∈ {1, . . . , N} . (2.8)

Moreover, the individual growth rates of (rescaled) wealth ρt+1,n = wt+1,n/wt,n− 1 are given by

ρt+1,n = xt,n

(
rt+1 + et+1

) ∀n ∈ {1, . . . , N} . (2.9)

Proof. See appendix A.

The market evolution is now explicitly described by the system of N +1 equations in (2.7)
and (2.8). The dynamics of rescaled price pt can be derived from (2.7) in a trivial way, but
price will remain positive only if condition (2.6) is satisfied3. Finally, using (2.4), one can
easily obtain the evolution of unscaled price Pt.

Expression (2.7) for the return determination stresses the role of the relative agents’ wealth.
In this set-up, more wealthy agents have a higher influence on the market price. Return rt+1

depends on the investment decisions from two periods, t + 1 and t. High value of the agent’s
investment choice immediately increases total demand for the risky asset and pushes the return
up. Consequently, the return is an increasing function of the contemporaneous investment
shares. On the other hand, the high investment shares from the previous period lead to the
high past price and, therefore, to the low level of the current return. In addition, there is an
opposite affect due to the dividend payment. The dividends paid to the agent at time t + 1

3In general, it may be quite difficult to check the validity of this condition at each time step. However, if
agents are diversifying and do not go short, then inequality (2.6) is satisfied (Anufriev et al., 2006).
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are proportional to his demand for the risky asset in the previous period t. At the same time,
these dividends, through the agents’ wealth, contribute to the increase of the current demand
and price.

Equation (2.8) describes the evolution of the relative wealth shares. We do not impose a
restriction about positiveness of the agent’s wealth, so that agents are allowed to be in debt.
Thus, the wealth shares ϕt,n are not assumed to belong to [0, 1] interval, but their sum must
be equal to 1. One can interpret (2.8) as a replicator dynamics, initially used in mathematical
biology and then in evolutionary economics. Indeed, using (2.9), this equation can be written
as follows

ϕt+1,n = ϕt,n
1 + ρt+1,n

1 +
〈
ρt+1

〉
t

.

Thus, the market influence of any agent changes according to the agent’s relative performance
with respect to the average performance, where one has to take the (rescaled) wealth return
as a measure of performance.

2.3 Dividend process

An exogenous dividend process is described in the following

Assumption 1. The dividend process has a multiplicative structure, so that

Dt+1 = Dt (1 + rf )
(
1 + g(rt) + εt+1

)
, (2.10)

where g(·) is a deterministic function of past price return describing an average growth rate
of the dividend rescaled by the risk-free interest rate, and εt+1 is a random variable with zero
mean.

Thus, we assume that the growth rate of the dividend is a noisy function of the past price
return. Such assumption is reasonable, for instance, for a business firm whose current financial
situation depends on the past history and where the dividend is paid as a part of the revenue.
Notice that g(rt) provides an average growth rate of the dividend with respect to the risk-free
interest. Therefore, this function takes negative values each time when unscaled dividend Dt

grows with the rate lesser than rf , and their value is positive if Dt grows with the rate higher
than rf .

In the current paper our main interest lies in studying of the deterministic skeleton of
the dynamics, i.e. the system without random disturbances which describes, in a sense, the
average dynamics. Thus, we substitute the random variable εt+1 by its mean value. Together
with (2.10) it implies the following evolution of the yield process

et+1 = et
1 + g(rt)

1 + rt

. (2.11)

The case with general dividend growth function will be examined in Section 3, and then two
cases with the different specifications of function g will be considered in more details. We
analyze the case of constant dividend yield when g(rt) = rt, and the case of constant dividend
growth in which function g is constant: g(rt) = g.

7



2.4 Procedurally rational agents

The last component of the model, the agents’ behavior, will be defined as general as possible
inside this framework. Substantially, the only imposed restriction will be an independence
of the investment shares of the contemporaneous price and wealth levels4. Recall that only
under such condition Proposition 2.1 properly defines the dynamics of price and wealth.

We assume that agents base their investment decisions at time t exclusively on the public
and commonly available information set formed by past prices (up to and including Pt−1) and
realized dividends (up to and including Dt). Equivalently, the same set can be composed from
the past price returns and dividend yields. We make, therefore, the following

Assumption 2. For each agent n there exists a differentiable investment function fn which
maps the present information set into his investment share:

xt,n = fn

(
rt−1, rt−2, . . . ; et, et−1, . . .

)
. (2.12)

Function fn in the right-hand side of (2.12) gives a complete description of the investment
decision of the n-th agent. The generality of the investment functions implies a big flexibility
in the modeling of the agents’ behaviors. Formulation (2.12) includes as special cases both
technical trading, when agents’ decisions are mostly driven by the observed price fluctuations,
and also more fundamental attitude, when agents make the decision on the basis of the past
dividends or price-dividend ratio. At the same time, Assumption 2 rules out other possible
dependencies of the investment choices, like an explicit relation with past investment choices
or with investment choices of other traders. The assumption is also violated for the wealth
independent demand functions as in the case of the constant absolute risk aversion behavior.

The results of the present paper are stated in terms of general investment functions.
Anufriev (2005) discusses the application of these general results to a number of special classes
of the investment behavior. He shows, in particular, that the current framework can be applied
both to the expected utility maximizers and also to the mean-variance maximizers.

To stress the generality of our analysis even further, we provide a possible interpretation of
our investment function, used in the majority of the models with heterogeneous agents5. The
investment choice described by (2.12) can be obtained as an outcome of two distinct steps. In
the first step agent n, using a set of estimators {gn,1, gn,2, . . . }, forms his expectation at time
t about the behavior of future prices, θn,j = gn,j(It−1), where It−1 denotes the information
set and θ.,j stands for some statistics of the return distribution at time t + 1 (e.g. average
return, variance or the probability that a certain return threshold is crossed). With these
expectations, using a choice function hn, possibly derived from some optimization procedure,
agent computes the fraction of the wealth invested in the risky asset xt+1,n = hn(θn,1, θn,2, . . . ).
The investment function fn defined in Assumption 2 would be the composition of estimators
{gn,·} and choice function hn.

This interpretation is intuitive but is not required by our framework, however. In our
model agents are not forced to use some specific predictors, rather they are allowed to map
the past return history into the future investment choice, with arbitrary smooth function.
Thus, agents may not be optimizers, i.e. “rational” in the sense as this word is widely used
in economics. Nevertheless, they do not behave completely randomly or irrational. Using
the terminology coined by Herbert Simon (see e.g. Simon (1976)), the traders modeled in our

4This is equivalent to the requirement on the demand function to increase linearly with wealth and have a
constant price elasticity.

5See, e.g. Brock and Hommes (1998); Chiarella and He (2001); Anufriev et al. (2006).
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paper are procedurally rational. Investment functions describe the outcome of an idiosyncratic
procedures which can be defined as the collective description of the preferences, beliefs and
implied actions.

Description of the agents’ behaviors concludes the specification of our asset-pricing model.
In the deterministic skeleton the complete system reads





rt+1 =

〈
xt+1 − xt

〉
t
+ et+1

〈
xt xt+1

〉
t〈

xt (1− xt+1)
〉

t

et+1 = et
1 + g(rt)

1 + rt

xt+1,n = fn

(
rt, rt−1, . . . ; et+1, et, . . .

)

ϕt+1,n = ϕt,n
1 + (rt+1 + et+1) xt,n

1 + (rt+1 + et+1)
〈
xt

〉
t

.

(2.13)

It is composed by the aggregate dynamics of price return (2.7) and dividend yield (2.11), and
also of the agent-specific dynamics of the investment shares (2.12) and the wealth shares (2.8).

3 Static Behavioral Consistent Equilibria

According to the tradition well-established in the economic literature, any reasonable notion
of an “economic equilibrium” should imply that no agent makes systematic mistakes. The
introduction of “rational expectations” in works of Muth (1961) and Lucas (1978) made the
notion of economic equilibrium much stronger. The hypothesis of the rational expectations is
developed within the representative agent framework and says that the dynamics generated
by the actions of such an agent are consistent with agents’ a priori perceptions about this
dynamics.

In the framework with heterogeneous and procedurally rational agents, such concept of
equilibrium is inappropriate. The natural generalization of this concept would be a kind of
“dynamic behavioral consistent equilibrium” in which the agents’ actions (based upon beliefs,
preferences and procedures) generate dynamics consistent with the co-evolving agents’ actions.
In formal terms, any trajectory of system (2.13) corresponds to an “equilibrium” in this sense.
In this paper we concentrate on the long-run characteristics of such equilibria and confine an
analysis on the more simple situation, where the emerging dynamics do not enforce agents
to modify their choices of the desirable portfolio at given prices. Thus, in such equilibria the
agents are not changing their behaviors and, at the same time, the aggregate dynamics is
consistent with the procedures used by any agent to compute his action. We call such concept
a Behavioral Consistent Equilibrium. In the setup outlined in Section 2 such equilibria can be
defined as follows

Definition 3.1. Behavioral Consistent Equilibria (BCE) are the trajectories of system (2.13)
with fixed investment shares xt,n = x∗n for all n.

Many heterogeneous agent models, e.g. Day and Huang (1990), Chiarella (1992) or Brock
and Hommes (1998), analyze the dynamics of the markets populated by agents having simple,
stylized behaviors. The emerging complex dynamics are characterized in some cases by the
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cyclic or even chaotic motion of the market positions for individual agents. Apparently, such
dynamic scenarios do not satisfy to the above definition, even if the implied agents’ behaviors
are not necessarily inconsistent. Nevertheless, the situation in which an agent changes his
position each period in a chaotic manner neither seems realistic, nor can play a role of the
generalization of the notion of equilibrium for multi-agent setting. Defined above static concept
of the BCE is, arguably, the largest possible deviation from the standard representative agent
equilibrium, where substantial analysis in terms of the properties of general dividend process
and agents’ behaviors is still feasible. The main goal which we pursue in the rest of the paper
will be to study the local properties of the BCE of system (2.13) which are characterized by
the stationary wealth distribution with ϕt,n = ϕ∗n for all n. In contrast with the works cited
above we are not interested here in the investigation of the global dynamics in the market
with a limited number of the agents with simplest behaviors.

One of the questions of our interest concerns the survival of the agents in the market. We
adopt the deterministic version of the concepts of survival and dominance used in DeLong et
al. (1991) and Blume and Easley (1992) and introduce

Definition 3.2. Agent n is said to “survive” in the BCE if his equilibrium wealth share differs
from zero, ϕ∗n 6= 0. Agent n is said to “dominate” the economy, if he is the only survivor in
the economy, so that ϕ∗n = 1.

General structure of the BCE introduced in Definition 3.1 is summarized in the following

Proposition 3.1. Let us consider Behavioral Consistent Equilibrium of the economy with
arbitrary dividend growth function g, vector of investment shares x∗ = (x∗1, . . . , x

∗
n) and wealth

distribution ϕ∗ = (ϕ∗1, . . . , ϕ
∗
n). Then:

(i) If et = 0 for some t, then in the equilibrium both dividend yield and price return are
zero, agent’s investment shares are x∗n = fn

(
0, 0, . . . ; 0, 0, . . .

)
, while the wealth shares

are arbitrary numbers summed to 1.

(ii) If et 6= 0 for all t, then ratio of the price return to dividend yield, yt = rt/et, takes a
constant value y∗.

If
〈
x∗

〉
= 0 (where the weighted average of investment shares x∗ is taken with respect to

the wealth distribution ϕ∗), then y∗ = −1.

If
〈
x∗

〉 6= 0, then all survivors have the same investment share x∗¦, and

y∗ =
x∗¦

1− x∗¦
. (3.1)

Furthermore, the evolution of the yield process {et} is described as

et+1 = et
1 + g(y∗ et)

1 + y∗ et

, (3.2)

while the equilibrium investment shares satisfy to

x∗n = fn

(
et y

∗, et−1 y∗, . . . ; et+1, et, . . .
)

. (3.3)

Proof. See appendix B.
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This Proposition formally describes the conditions which should be satisfied in any BCE
in the setting with the CRRA agents. Notice that, in general, BCE are not the steady-states
of dynamical system (2.13), since both the price return and dividend yield can evolve in
equilibrium. The ratio of these variables must be constant in this case, however.

Equilibrium with zero yield from item (i) of the Proposition does not exist in our econ-
omy with positive dividend but can be reached asymptotically. We, therefore, extend the
system for the case of zero dividend values. Any other BCE is represented, given arbitrary
investment functions fn and dividend growth function g, by the triple (y∗, x∗,ϕ∗). For given
y∗, corresponding yield process {et} is defined by (3.2). Description of the agents’ behaviors
then implies that investment shares satisfy to (3.3). If y∗ = −1 then the wealth shares of the
agents should satisfy to

〈
x∗

〉
= 0. Otherwise, consistency condition (3.1) should hold for the

investment shares of all survivors. It is useful at this point to distinguish between two types of
equilibria. Notice that relation y∗ = −1 is equivalent to the zero value of the total return for
the risky asset, rt + et = 0. In terms of the unscaled variables, it means that the risky asset
gives the same total return rf , as the risk-less asset. It motivates the following definition.

Definition 3.3. The BCE is called an equity-premium if ratio y∗ 6= −1. Otherwise, i.e. when
either y∗ = −1 or e∗ = r∗ = 0, the BCE is called a no-equity-premium equilibrium.

Next two corollaries describe the conditions for the existence of these two types of the
BCE, given the general investment functions fn and dividend growth function g. We start
with the equity-premium equilibria, which are more interesting from an economic viewpoint,
since an equity premium is observed in the real markets. According to Proposition 3.1, all
survivors in such equilibrium have a homogeneous investment share x∗¦. Inverting (3.1), we
immediately get the following

Corollary 3.1 (Existence of the Equity-Premium BCE). Starting with an arbitrary
dividend growth function g, let {et(y)} be a sequence recursively defined as follows

et+1 = et
1 + g(y et)

1 + y et

.

If there exist such y∗ that for any surviving agent n, investment function fn evaluated on the
sequence {et(y)} satisfies to

fn

(
et y

∗, et−1 y∗, . . . ; et+1, et, . . .
)

=
y∗

1 + y∗
∀t , (3.4)

then an Equity-Premium BCE exists. Assuming without loss of generality that the first k
agents survive (1 ≤ k ≤ N), corresponding equilibrium is composed of

• y∗ which solves (3.4) for all n ∈ {1, . . . , k},
• vector x∗ = (x∗1, . . . , x

∗
n) defined by (3.3) with yield process {et(y

∗)} and

• vector ϕ∗ whose components satisfy to

ϕ∗n = 0 if n > k and
k∑

n=1

ϕ∗n = 1 . (3.5)

11



This Corollary shows that existence of an equity-premium equilibrium depends on whether
implicit (with respect to the variable y) equation (3.4) possesses some solution. The right-
hand side of this equation is independent both of the dividend specification and the agents’
behaviors. It leads us to

Definition 3.4. The Equilibrium Market Line (EML) is function l(y) defined according to

l(y) =
y

1 + y
. (3.6)

Corollary 3.1 says that all possible equity-premium equilibria can be obtained as intersec-
tions of the EML with the corresponding projection of an investment function of any survivor.
Such projection is given by the left-hand side of (3.4) and, through the yield process {et},
is ultimately defined by means of the dividend growth function g. If for some investment
function intersection y∗ exists, then the equilibrium exists as soon as the investment function
of any agent is constant on the corresponding yield trajectory {et(y

∗)}.
Notice that for the existence of equilibrium with k > 1 survivors, (3.4) should be satisfied

for k agents. Thus, projections of the investment functions of all survivors should intersect
the EML in the same point. Consequently, equilibria with more than one survivor are non-
generic, in a sense that an economy with arbitrary, so to say “randomly defined”, investment
functions has probability zero of displaying equilibrium with multiple survivors. This state-
ment will be illustrated in the examples of the next Section. There is also a second difference
between equity-premium equilibria with one and many survivors. In the former equilibrium
Corollary 3.1 defines a precise value for each component (y∗, x∗ and ϕ∗), so that a single
point is uniquely determined. Instead, in the equilibrium with k > 1 survivors, there is a
residual degree of freedom: while y∗ and investment shares x∗’s are uniquely defined, the only
requirement on the equilibrium wealth shares of the surviving agents is the fulfillment of the
second equality in (3.5). Consequently, a whole hyperplane of the equity-premium PRE with
many survivors exists. The particular fixed point eventually chosen by the system will depend
on the initial conditions.

It follows from Proposition 3.1 that there are no special conditions for the existence of no-
equity-premium equilibria with zero yield and return. For those no-equity-premium equilibria
where the dividend yield is positive we have the following

Corollary 3.2 (Existence of the No-Equity-Premium BCE). Starting with an arbitrary
dividend growth function g, let us define recursively the following yield process

et+1 = et
1 + g(−et)

1− et

.

If there exist a vector x∗ with components x∗n = fn(−et,−et−1, . . . ; et+1, et, . . . ), then any
vector ϕ∗ = (ϕ∗1, . . . , ϕ

∗
n) such that

N∑
n=1

x∗nϕ∗n = 0 and
N∑

n=1

ϕ∗n = 1 (3.7)

define some No-Equity-Premium BCE.

No-equity-premium equilibria with positive dividend yield do not exist if at least one
investment function fn is not constant on the sequence {et}. Furthermore, any no-equity-
premium equilibrium should have at least two survivors, because otherwise condition (2.6) is
violated. In all other cases, (3.7) defines a manifold of the no-equity-premium equilibria.

12



In this Section we put forward a notion of the Behavioral Consistent Equilibrium, which
generalizes an idea of the rational expectations on the framework with many procedurally
rational agents. We provided a general (independent both on the dividend process and on
the agents’ behaviors) characterization of such equilibria. In particular, we established that
so called equity-premium equilibria (with one or many survivors) are possible and introduced
geometric locus, called the Equilibrium Market Line, for characterization of such equilibria.
Notice that a nature of the equity premium in our framework is completely different from the
one described in the limits of the classical financial paradigm, see e.g. Lucas (1978); Mehra
and Prescott (1985). In that studies an equity premium is considered as a monetary incentive
paid in the equilibrium to the optimizing, risk-averse representative agent for possessing an
asset with positive covariance with his consumption. Instead, in our framework an equity
premium is endogenously generated through dynamic behavior of heterogeneous, procedurally
rational agents.

4 Equilibrium Market Line as Locus of BCE

We illustrate below the use of the EML for the two special cases of the dividend process. We
specify the dividend growth function g(·) from Assumption 1 and keep a total generality in
what concerns the agents’ investment functions.

4.1 Economy with constant dividend yield

We start with the case when the dividend growth function reads

g(rt) = rt .

Thus, price and dividend grow at the same rate, so that from (2.11) it follows that dividend
yield et takes some constant value ē. Simple derivation shows that constant dividend yield
characterizes the fundamental price under the assumption of the geometric random walk of
the dividends. Notice, however, that in our model price is determined through the market
clearing condition and is not necessary fixed on the fundamental level. Therefore, assumption
of constant yield is rather restrictive. We make it because of three reasons. First, implied
simplification of the dynamical system allows us to discuss application of the EML tool in an
illustrative way. Second, the annual historical data for the S&P 500 index suggest that yield
can be reasonably described as a bounded positive random variable whose behavior is roughly
stationary. Third, the assumption of the constant dividend yield is common to several works
in literature (Chiarella and He, 2001, 2002; Anufriev et al., 2006).

Deterministic skeleton (2.13) of the dynamics simplifies to




rt+1 =

〈
xt+1 − xt

〉
t
+ ē

〈
xt xt+1

〉
t〈

xt (1− xt+1)
〉

t

xt+1,n = fn

(
rt, rt−1, . . . ; ē

)

ϕt+1,n = ϕt,n
1 + (rt+1 + ē) xt,n

1 + (rt+1 + ē)
〈
xt

〉
t

.

(4.1)

Simulations show that this dynamical system represents a reasonable approximation to the
dynamics in the stochastic case, when et are i.i.d. random variables obtained from a common
distribution with positive mean ē.
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Figure 1: Investment functions (thick curves) based on the last realized return. The equilibria are
found as intersections with the EML (thin curve). Left panel: There are 4 equilibria with one
survivor, S1, U1, S2 and U2. In the former two an agent with nonlinear investment function survives,
while in the other two an agent with linear function survives. Points A1 and A2 represents the
no-equity-premium equilibrium. Right panel: Non-generic equity-premium PRE. In equilibrium S2

agents II and III survives, while in U1 agents I and II survive.

From Proposition 3.1 it follows that price return rt is constant in all BCE with stationary
wealth distribution. Thus, analysis of the BCE is reduced to the analysis of the fixed points
of system (4.1). Two Corollaries from Section 3 immediately lead to

Proposition 4.1. Let (r∗,x∗,ϕ∗) be a BCE of the dynamics with constant yield ē. Then

x∗n = fn

(
r∗, r∗ . . . ; ē, ē, . . .

) ∀n ∈ {1, . . . , N} , (4.2)

and the following three mutually exclusive cases are possible:

(i) “Equity Premium” BCE with a single survivor. In the BCE only one agent
(say, first) survives and, therefore, dominates the economy. Thus, ϕ∗1 = 1, while all
other equilibrium wealth shares are zero. The equilibrium return r∗ satisfies to

f1

(
r∗, r∗, . . . ; ē, ē, . . .

)
= l(r∗/ē) , (4.3)

where the EML l(·) was introduced in Definition 3.4.

(ii) “Equity Premium” BCE with many survivors. In the BCE more than one agent
survive. Assuming that the first k agents survive, the equilibrium wealth shares satisfy
(3.5). The equilibrium return r∗ satisfies the following k equations

fn

(
r∗, r∗, . . . ; ē, ē, . . .

)
= l(r∗/ē) ∀n ∈ {1, . . . , k} . (4.4)

(iii) “No Equity Premium” with many survivors. Investment shares and wealth shares
of the agents satisfy (3.7), while equilibrium return r∗ = −ē.

The last Proposition is illustrated in Fig. 1. Let us fix ē and express the EML as a function
of one variable r as follows

le(r) =
r

ē + r
. (4.5)
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For exogenously given ē relations (4.3) and (4.4) provide the equations with respect to the
rescaled price return r. They can be visualized. Assuming for the moment that agents base
their decisions exclusively on the return of the last period, we draw the plots of the investment
functions as thick curves and plot of the EML (4.5) as a thin curve. The intersections of the
investment function with the EML represent all possible equity-premium equilibria of the
system. In the situation in the left panel there are 4 such equilibria denoted as S1, S2, U1

and U2. Since in all these points only one investment function intersects the EML, all such
equilibria have a single survivor and are described by Proposition 4.1(i). In S1 and U1 the
agent with non-linear investment function survives, while in S2 and U2 the survivor has linear
investment function. Equilibrium return r∗ is determined as an abscissa of the corresponding
intersection, while the investment share of the non-surviving agent can be found, in accordance
with (4.2), as an intersection of his investment function with the vertical line passing through
the equilibrium return.

In the right panel of Fig. 1 we illustrate Proposition 4.1(ii) and demonstrate a non-generic
situation of the equity-premium BCE with many survivors. In U1, for instance, two agents
with strategies marked I and II survive. The equilibrium return and investment shares are
defined in the same way as in the previous case. However, point U1 represents now a whole
manifold of equilibria, since equilibrium wealth shares of two survivors can be two arbitrary
numbers which are summed to 1.

Notice that all points of the EML (4.5) with r < −1 are meaningless from economic point
of view, since they lead to negative prices. The vertical asymptote of the EML at r = −ē
can be used to illustrate the no-equity-premium equilibria from Proposition 4.1(iii). Points
A1 and A2 in the left panel of Fig. 1 represent investment shares of two agents. Their wealth
shares can be computed from (3.7).

We assumed that investment functions depend only on the last return but our illustration
does not depend on this assumption. In general case, we have to interpret the plots in Fig. 1
as plots of sections of general investment functions by the hyperplane defined as

{r = rt = rt−1 = . . . , ē = et = et−1 = . . . } .

Fixing exogenous yield ē, we draw in Fig. 2 the two-dimensional surface representing some
investment function which depends on the past return r0 and the return r1 of one period
before the last. Thick curve on the surface is the intersection of the investment function with
the “symmetric” plane r0 = r1. The curve representing the EML le(r) is drawn on the same
plane, so that the picture on that plane is completely analogous to the previous examples from
Fig. 1.

4.2 Economy with constant rate of the dividend growth

We turn now to the case when the dividend grows with exogenously given constant rate g, i.e.

g(rt) = g .

This special case is more suitable for exogenous modeling of the production side of the economy.
The deterministic skeleton approximates in this case a geometric random walk of the dividend,
which is common assumption in the economic literature.

It is important to stress that growth rate g is not restricted to be positive. Recall from
(2.10) that function g(·) represents the growth rate of the dividend after rescaling. Thus,
positive values of g correspond to the case when the (unscaled) dividend grows faster than the
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Figure 2: Investment function illustrated an investment decision based on the last two realized
returns xt = f(rt−1, rt−2) and its intersection (thick curve) with the plane rt−1 = rt−2. Equilibria
are found on this plane as intersections with the EML (thin curve).

risk-free interest rate rf , while negative g implies that growth rate of the (unscaled) dividend
is smaller than rf .

According to Proposition 3.1 any BCE has constant value y∗ of the ratio of the price return
to the dividend yield. In this case, evolution of the yield (3.2) reads

et+1 = et
1 + g

1 + y∗ et

. (4.6)

This dynamics can be easily characterized, as we prove in the following

Lemma 4.1. For a given dividend growth rate g and equilibrium value y∗ there are two fixed
points of dynamics (4.6): e∗1 = g/y∗ and e∗2 = 0.

If g > 0 the dynamics is globally attracted by e∗1 (or globally diverges when y∗ = 0), while
for g < 0 the global attractor is e∗2. In the point g = 0 system (4.6) exhibits a transcritical
bifurcation.

Proof. See appendix C.

Thus, in the case of constant dividend growth rate the yield dynamics have unique at-
tractor. It implies that the BCE with stationary wealth distribution can be characterized by
constant dividend yield e∗ and, therefore, by constant price return r∗. In other words, all the
BCE are the fixed points of system (2.13).

The last Lemma suggests that there exist a difference in economic interpretation between
present case with constant dividend growth rate and the previous example of constant yield.
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In the economy with exogenous dividend yield, the equilibrium price return was determined by
the configuration of the agents’ investment functions (possibly jointly with initial conditions).
In the present case, however, the equilibrium price return is either equal to 0 or to g, i.e. it
is determined independent of the agents’ behavior. Instead, another component of the total
return, the equilibrium dividend yield, depends on the agents’ behaviors. Using the results
from Section 3 we straight-forwardly derive the following

Proposition 4.2. Let (r∗, e∗, x∗,ϕ∗) be a BCE of the dynamics with constant dividend growth
rate g. Then

x∗n = fn

(
r∗, r∗ . . . ; e∗, e∗, . . .

) ∀n ∈ {1, . . . , N} , (4.7)

and the following two cases are possible:

(i) “Equity Premium” BCE with one or more survivors. In the equilibrium k
agents survive (where k ≥ 1). Assuming that the first k agents survive, the equilibrium
wealth shares satisfy to (3.5). The equilibrium return r∗ = g, while the equilibrium
dividend yield satisfies the following k equations

fn

(
g, g, . . . ; e∗, e∗, . . .

)
= l(g/e∗) ∀n ∈ {1, . . . , k} , (4.8)

where the EML l(·) was introduced in Definition 3.4.

(ii) “No Equity Premium” BCE. The equilibrium return and dividend yield are zero:
r∗ = e∗ = 0, while the agents’ wealth shares are arbitrary numbers summed to one.

The formulation of the last Proposition is very similar to Proposition 4.1. From an eco-
nomic point of view their results are quite different, however. As we mentioned above, in the
present case the ecology of investors determines the dividend yield and not the price return.
Relatedly, the presence of an equity premium in equilibrium now entirely depends on the sign
of the exogenous parameter g, because for given g only one type of stable equilibria can present
in the economy.

Indeed, from Lemma 4.1 it follows that when g ≤ 0, the yield dynamics is attracted by
e∗2 = 0 and so r∗ = 0. Hence, in this case the economy can possess only no-equity-premium
equilibria. Furthermore, the dividend yield in such equilibria will approach zero as opposite
to the case from Section 4.1. On the other hand, when g is positive, the only attractor of (4.6)
is e∗1 = g/y∗ so that r∗ = g. Thus, in all stable equilibria

r∗ = max (0, g) . (4.9)

In terms of unscaled variable this relation stands that equilibrium return of price P is equal
to maximum among risk-free interest rate rf and growth rate of the dividend D.

Fig. 3 illustrates the first item of the last Proposition for the case when g > 0. Similarly
to Fig. 1 we draw the cross sections of agents’ investment functions by the hyperplane

{g = rt = rt−1 = . . . , e = et = et−1 = . . . } ,

and the EML (3.6) which, for exogenously given g, becomes a function of the dividend yield:

lg(e) =
g

e + g
. (4.10)
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Figure 3: Investment functions (thick curves) based on the last dividend yield for fixed dividend
growth rate g > 0. The equilibria are found as intersections with the EML (thin curve). Left panel:
There are 3 equilibria with one survivor, S1, U1 and U2. In the former two an agent with nonlinear
investment function survives, while in the last one an agent with linear function survives. Right
panel: Non-generic equity-premium PRE. In equilibrium S1 two agents with non-linear functions
survive, while in U1 agent with non-linear function and agent with linear function survive.

Intersections of the investment functions with the EML provide the BCE and illustrate relation
(4.8). The equilibrium yield and investment shares of the survivors are given, respectively,
as abscissa and ordinate of the corresponding intersection. The non-surviving agents invest
according to their rules for the given equilibrium dividend yield. Notice that the equilibria
with one survivor illustrated in the left panel of Fig. 3 are generic, while the equilibria with
many survivors illustrated in the right panel are not, since in the latter case many investment
functions should intersect the EML in the same point.

In this Section we have considered two examples of our general model for special dividend
processes. In both cases the equilibria without an equity premium can exist. In both cases
also equity-premium equilibria are possible and can be easily illustrated by means of the EML
introduced in Section 3. The EML is a function of the variable which can be conveniently
chosen depending on the dividend specification. For the constant yield economy such variable
was price return r, while for the economy with constant growth rate of the dividend the
variable was dividend yield e. In general case, according to Proposition 3.1, the equilibrium
ratio rt/et would be similarly determined from (3.3). Figures 1 and 3 allow us to illustrate
that existence and number of the Behavioral Consistent Equilibria crucially depends both
on the dividend process (which determine the locus of possible equilibria as a corresponding
representation of the general EML) and on the ecology of the agents present in the market
(which determine the precise point on the EML).

5 Stability of the Behavioral Consistent Equilibria

An important question which should be addressed after the new conception of equilibrium
has been introduced concerns the issue of stability of these equilibria. The generality of our
framework does not allow to study the question of stability in total generality. Therefore, for
illustrative purposes, we present here the stability analysis for the simplest possible dividend
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specification. Namely, as in Section 4.1, we assume that the dividend yield is constant. For
other dividend specifications similar analysis should also be possible. For instance, in the case
of constant growth rate of the dividend considered in Section 4.2, the dynamics of the yield is
globally stable, according to Lemma 4.1. Therefore, one would expect the similar results also
for the dynamics of complete system.

Let us assume that the dividend yield is constant in the market and equal to ē. Proposi-
tion 4.1 provide a complete description of location of equilibria for this case. Notice that for
the purpose of stability analysis we can safely ignore the dependence of the investment func-
tions on the yield. Furthermore, we will consider the case when the domain of any investment
function is finite. Thus, we assume in this Section that investment function of agent n has the
following form

xt,n = fn(rt−1, . . . , rt−L) ,

where memory span L can be chosen the same for all the agents.
We start the analysis with the case of a single agent present in the market. Such case

is more simple because the last set of equations in system (4.1) disappears. The stability
conditions in the single agent case will turn out to be important in more general case which
we will discuss in Section 5.2.

5.1 Single Agent Market

First of all, notice that only the equilibria discussed in Proposition 4.1(i) can occur in the
market with single agent. The stability conditions are derived from the analysis of the roots of
the characteristic polynomial associated with the Jacobian of corresponding system computed
at equilibrium. The characteristic polynomial does, in general, depend on the behavior of
individual investment function f in an infinitesimal neighborhood of point (r∗, . . . , r∗). This
dependence can be summarized with the help of the following

Definition 5.1. The stability polynomial P (µ) of the investment function f in the BCE is

Pf (µ) =
∂f

∂rt−1

µL−1 +
∂f

∂rt−2

µL−2 + · · ·+ ∂f

∂rt−L−1

µ +
∂f

∂rt−L

, (5.1)

where all the derivatives are computed in point (r∗, . . . , r∗).

Using this definition, the stability conditions can be formulated in terms of the equilibrium
return r∗, and of the slope of the EML le(r) defined in (4.5) computed in the BCE

l′e(r
∗) =

ē

(ē + r∗)2
.

The following applies

Proposition 5.1. The BCE of system (4.1) with single agent is (locally) asymptotically stable
if all the roots of polynomial

Q(µ) = µL+1 − Pf (µ)

r∗ l′e(r∗)

((
1 + r∗

)
µ− 1

)
, (5.2)

are inside the unit circle.
The equilibrium is unstable if at least one of the roots of Q(µ) lies outside the unit circle.
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Proof. The condition above is a direct consequence of the characteristic polynomial of the
Jacobian matrix at equilibrium. See appendix D for derivation.

Once investment function f is known, polynomial Pf (µ) and, in turn, polynomial Q(µ) are
explicitly derived. The analysis of L+1 roots of Q(µ), which are usually called multipliers, can
be performed in order to reveal the role of the different parameters in stabilization of a given
equilibrium. Such rigorous analysis is often unfeasible even for simple investment functions,
so one should rely on the computational approach, mostly.

Notice, however, that when L = 1, the polynomial (5.2) has second degree. The roots of
such polynomial can be computed and so the stability conditions can be derived explicitly.
Namely, one has

Proposition 5.2. The BCE of system (4.1) with single agent and one lag in the investment
function (L = 1) is (locally) asymptotically stable if

f ′(r∗)
l′e(r∗)

1

r∗
< 1 ,

f ′(r∗)
l′e(r∗)

< 1 and
f ′(r∗)
l′e(r∗)

2 + r∗

r∗
> −1 . (5.3)

Fixed point exhibits Neimark-Sacker, fold or flip bifurcation if the first, second or third in-
equality in (5.3) turns to equality, respectively.

For proof of this proposition and analysis of some other special cases where analytical
results are available, see Anufriev et al. (2006). In the left panel of Fig. 4 we show the
stability region derived in Proposition 5.2 in coordinates r∗ and f ′(r∗)/l′e(r

∗). The second
coordinate is the relative slope of the investment function at equilibrium with respect to the
slope of the EML. If the slope of f at the equilibrium increases, the system tends to lose its
stability. In particular, in the stable equilibrium the slope of investment function is smaller
than the slope of the EML.

Let us consider, for example, the left panel of Fig. 1 and suppose for the moment that these
are the investment functions of the agents with memory span equal to 1. One can immediately
see that equilibria U1 and U2 are unstable, due to the violation of the second inequality in
(5.3). On the contrary, the slope of the nonlinear investment function in S1 is very small, so
that, presumably, this equilibrium is stable.

5.2 Multi Agent Market

Three Propositions below provide the stability conditions for the cases enumerated in Propo-
sition 4.1, i.e. for generic case of a single survivor, for non-generic case of many survivors and
for generic case with many survivors and without the equity premium. The derivation of these
Propositions requires quite cumbersome algebraic manipulations and we refer the reader to
our working paper Anufriev and Bottazzi (2006) for the intermediate lemmas and final proofs.

For the generic case of a single survivor equilibrium one has the following

Proposition 5.3. Let (r∗,x∗,ϕ∗) be a BCE of system (4.1) associated with a single survivor
equilibrium. Without loss of generality we can assume that the survivor is the first agent.
Let Pf1(µ) denote the (L− 1)-dimensional stability polynomial associated with the investment
function of the survivor.

This equilibrium is (locally) asymptotically stable if the two following conditions are met:
1) all the roots of polynomial

Q1(µ) = µL+1 − (1 + r∗) µ− 1

r∗ l′e(r∗)
Pf1(µ) , (5.4)
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Figure 4: Equilibria and their stability for the many agent system. Left panel: Equilibrium
stability region (gray) and the bifurcation types for the single agent case with L = 1 in coordinates r∗

and f ′(r∗)/l′(r∗). Right panel: Stability conditions for multi-agent market in generic BCE. Region
where investment shares of the non-surviving agents satisfy to the stability conditions (5.5) is shown
in gray.

are inside the unit circle.
2) the equilibrium investment shares of the non-surviving agents satisfy to

−2− r∗ < x∗n
(
r∗ + ē

)
< r∗ , 1 < n ≤ N . (5.5)

The equilibrium is unstable if at least one of the roots of polynomial in (5.4) is outside the
unit circle or if at least one of the inequalities in (5.5) holds with the opposite (strict) sign.

In particular, the system exhibits a fold bifurcation if one of the N−1 right-hand inequalities
in (5.5) becomes an equality and a flip bifurcation if one of the N − 1 left-hand inequalities
becomes an equality.

Thus, the stability condition for a generic fixed point in the multi-agent economies is
twofold. First, equilibrium should be “self-consistent”, i.e. remain stable even if any non-
surviving agent would be removed from the economy. This very intuitive result strictly follows
from the comparison between Q1(µ) and polynomial Q(µ) in (5.2). This is however not enough.
A further requirement comes from the inequalities in (5.5). In particular, according to the
left-hand inequality, the wealth growth rate of those agents who do not survive in the stable
equilibrium should be strictly less than the wealth growth rate of the survivors r∗. Thus, in
those equilibria where r∗ > −ē the surviving agent must be the most aggressive and invest a
higher wealth share in the risky asset. On the other hand, in those equilibria where r∗ < −ē
the survivor has to be the least aggressive.

The EML plot can be used to obtain a geometric illustration of the previous Proposition. In
the right panel of Fig. 4 we draw again the two investment functions discussed in Section 4.1.
The region where the additional condition (5.5) is satisfied is reported in gray. We have
found before four possible equilibria: S1, S2, U1 and U2. Proposition 5.3 states that, first,
the dynamics cannot be attracted by an equilibrium which was unstable in the respective
single-agent cases. And, second, it cannot be attracted by an equilibrium in which non-
surviving agent invests in the point belonging to a white region. Points U1 and U2 will be, for
example, unstable if the investment function of survivor has only one lag (cf. Proposition 5.2).
Therefore, they are unstable also in the multi-agents market. From item 2) of Proposition 5.3
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it follows that S1 is the only stable equilibrium of the system with two agents. Notice, indeed,
that in the abscissa of S1, i.e. for the equilibrium return, the linear investment function of
the non-surviving agent II passes below the investment function of the surviving agent and
belongs to the gray area. On the contrary, in the abscissa of S2, the investment function of the
non-surviving agent I has greater value and does not belong to the gray area. Consequently,
this equilibrium is unstable.

Let us move now to consider the non-generic case, when k different agents survive in the
equilibrium. The equilibria have been found in Proposition 4.1(ii). The following applies

Proposition 5.4. Let (r∗, x∗,ϕ∗) be a BCE of system (4.1) associated with k survivors defined
by (4.2) and (4.4).

The BCE as a fixed point of the corresponding dynamical system is never hyperbolic and,
consequently, never (locally) asymptotically stable.

Let Pfn(µ) be the stability polynomial of investment function fn. The BCE is (locally)
stable if the two following conditions are met:

1) all the roots of polynomial

Q1¦k(µ) = µL+1 − (1 + r∗) µ− 1

r∗ l′e(r∗)

k∑
n=1

ϕ∗n Pfn(µ) , (5.6)

are inside the unit circle.
2) the equilibrium investment shares of the non-surviving agents satisfy to

−2− r∗ < x∗n (r∗ + ē) < r∗ , k < n ≤ N . (5.7)

The BCE is unstable if at least one of the roots of polynomial in (5.6) is outside the unit
circle or if at least one of the inequalities in (5.7) holds with the opposite (strict) sign.

The non-hyperbolic nature of the equilibria with many survivors turns out to be a direct
consequence of their non-unique specifications. The motion of the system along the k − 1
dimensional subspace consisting of the continuum of equilibria leaves the aggregate properties
of the system invariant so that all these equilibria can be considered equivalent. Proposition 5.4
also provides the stability conditions for perturbations in the hyperplane orthogonal to the non-
hyperbolic manifold formed by equivalent equilibria. The polynomial Q1¦k(µ) is quite similar
to the corresponding polynomial in Proposition 5.3, except that one has to weight the stability
polynomial of the different investment functions Pfk

(µ) with the weights corresponding to the
relative wealth of survivors in the equilibrium. At the same time, the constraint on the
investment shares in (5.7) is identical to the one obtained in (5.5). In particular, similar to
the case with a single survivor, in those equilibria where r∗ > −ē all surviving agents must be
more aggressive than those who do not survive, and vice versa.

Finally, let us analyze the “no equity premium” BCE, where r∗ = −ē. We consider general
situation and allow some agents to have zero wealth shares. Without loss of generality, we
assume that first k ≤ N agents survive in the equilibrium. The following result characterizes
the stability of such equilibria

Proposition 5.5. Let (r∗,x∗,ϕ∗) be a BCE identified in Proposition 4.1(iii).
If N ≥ 3, the BCE as a fixed point of the corresponding dynamical system is non-hyperbolic

and, consequently, is not (locally) asymptotically stable. The BCE is (locally) stable if all the
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roots of the following polynomial are inside the unit circle

µL+1 +
µ− 1〈

x2
〉

k∑
j=1

ϕ∗j Pfj
(µ) , (5.8)

where Pfj
(µ) is the stability polynomial of investment function fj computed in point (−ē, . . . ,−ē),

and
〈
x2

〉
=

∑k
n=1 ϕ∗n x∗n

2 .
The equilibrium is unstable if at least one of the roots of polynomial in (5.8) is outside the

unit circle.

As in the case of Proposition 5.4, the “no-equity-premium” equilibria can be non-hyperbolic,
due to possibility to change wealth between agents without changing the aggregate properties
of the dynamics. For the complete stability analysis, the roots of polynomial (5.8) should be
analyzed for specific investment functions. In particular, when all investment functions are
horizontal in point −ē, the equilibrium (if it exists) is always stable.

5.3 Optimal selection and multiple equilibria

In this Section, using the geometric interpretation based on the EML we discuss some relevant
implications of the previous Section about the asymptotic behavior of the model and its global
properties. We confine the discussion to the generic case of equilibria with a single survivor.

The first implication concerns the aggregate dynamics of the economy. Let us consider a
stable many-agent BCE equilibrium. Let us suppose that r∗ is the equilibrium return and that
the first agent survives. It is easy to see that his wealth return is equal to r∗ and this is also the
asymptotic growth rate of the total wealth. Then, we can interpret the second requirement of
Proposition 5.3 as saying that, in the dynamic competition, those agent survives who allows
the economy to have the highest possible rate of growth. Indeed, if any other agent n 6= 1
survived, the economy would have grown with rate x∗n (r∗+ ē), which is less than r∗ according
to (5.5). This result can be called an optimal selection principle since it clearly states the
market endogenous selection toward the best aggregate outcome.

To be a bit more specific, notice that in equilibria with r∗ > −ē the overall wealth of the
economy grows (in particular for r∗ < 0 the negative wealth grows to 0), while in equilibria
with r∗ < −ē the wealth of the economy falls. Thus, according to the optimal selection
principle the surviving agent must be the most aggressive in equilibria where the economy
grows and must be the least aggressive investor in equilibria where the economy shrinks.

Notice, however, that this selection does not apply to the whole set of equilibria, but only
to the subset formed by equilibria associated with stable fixed points in the single agent case
(c.f. (5.6)). For instance, with the investment functions shown in the right panel of Fig. 4,
the dynamics will never end up in U2, even if this is the equilibrium with the highest possible
return. Furthermore, the variety of possible investment functions implies that the optimal
selection principle has a local character. Indeed, even if we exclude all unstable single-agent
equilibria, the market will not choose the equilibrium with the highest growth rate. Sometimes
it can be the case like in the right panel of Fig. 4. However, it is often not the case and a
simple counter-example is provided by a single investment function possessing multiple stable
equilibria as shown in Fig. 5. For this investment function both SL and SH are stable equilibria.
Now suppose that an agent possessing this function competes on the market with other agents
which are more risk averse than him and always invest smaller shares of wealth in the risky
asset. In this situation, these two equilibria, SH and SL, remain stable and the riskier agent

23



In
ve

st
m

en
t S

ha
re

Return

SL

SH

EML

 0

 0.1

 0.2

 0.3

 0.4

0

U

In
ve

st
m

en
t S

ha
re

Return

SL

SH

SM

EML

 0

 0.1

 0.2

 0.3

 0.4

0

U

Figure 5: Left panel: A non-linear investment function leading to multiple equilibria. SH and SL

are stable while U is unstable. Right panel: The same non-linear investment function together
with a constant investment function. SH and SM are stable while SL and U are unstable.

will ultimately dominate the market. The resulting market equilibrium will only depend on
the initial conditions.

Possible presence of the BCE without equity premium, identified for the multi-agent market
in Proposition 4.1(iii), is another source of multiple equilibria. For example, in the situation
depicted in the right panel of Fig. 4 there is a stable equilibrium where agent with non-linear
strategy survives (point S1) and no-equity-premium stable equilibrium where both agents
survive (points A1 and A2) and agent with non-linear strategy possesses high enough wealth
share ϕ∗1 (cf. polynomial (5.8) in Proposition 5.5).

The existence of multiple equilibria also leads to another interesting implication of Propo-
sition 5.3. Consider again the investment function in the left panel of Fig. 5 and add a second
agent with constant investment function, to obtain the situation shown in the right panel of
Fig. 5. The entry of the new agent changes the possible equilibria, which become the points
S and SH . Notice, however, that in these two equilibria different agents dominate the market.
If the market before the entry of the new agent was in SH , the first agent still remains the
more aggressive, and the entry of the new agent does not affect his dominant position. On the
other hand, if the equilibrium before the entry was SL, this equilibrium becomes unstable and
the system will tend to move away from it. The ensuing dynamics could ultimately choose the
investment function of the new entrant as the dominant one. This simple example suggests
that, at least inside our framework, the definition of a dominance order relation on the space
of trading strategies is impossible.

6 Conclusion

This paper introduces novel concept of the Behavioral Consistent Equilibrium which general-
izes somehow the rational expectations equilibrium for the framework with arbitrary number
of procedurally rational traders. We found the elegant, geometric way to characterize equi-
libria and their stability in a speculative pure exchange economies with heterogeneous CRRA
traders. The framework is relatively general in terms of agents’ behaviors and differs from
most of the models with heterogeneous agents in two important respects.

First, we analyze the aggregate dynamics and asymptotic behavior of the market when
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an arbitrary large number of traders participate to the trading activity. Second, we do not
restrict in any way the procedure used by agents in order to build their forecast about future
prices, nor the way in which agents can use this forecast to obtain their present asset demand.
In our terms, agent with any smooth investment function mapping the information set to the
present investment choice can present in the model.

Even if consideration of an arbitrary number of generic agents’ behaviors leads us to
study dynamical systems of an arbitrarily large dimension, we are able to provide a complete
characterization of market equilibria and, for some particular case of dividend process, a
description of their stability conditions in terms of few parameters characterizing the traders
investment strategies. In particular, we find that, irrespectively of the number of agents
operating in the market and of the structure of their demand functions, only three types of
equilibria are possible:

• generic equilibria, associated with isolated fixed points, where a single agent asymptot-
ically possesses the entire wealth of the economy,

• non-generic equilibria, associated with continuous manifolds of fixed points, where many
agents possess a finite shares of the total wealth,

• generic equilibria associated with many survivors, where the economy does not possess
the equity premium.

Furthermore, we show in total generality that a simple function, the “Equilibrium Market
Line”, can be used to obtain a geometric characterization of the location of all these types of
equilibria. Furthermore, some results about stability conditions can also be inferred from the
same EML. The precise shape of the EML depends on the dividend process.

Our general results provide, we believe, a simple and clear description of the principles
governing the asymptotic market dynamics resulting from the competition of different trading
strategies. The optimizing agents may dominate non-optimizing agents but may also be dom-
inated by them. In general, the ultimate result of competition between agents depends on the
whole market ecology. The EML is a handy and useful tool for demonstration such phenom-
ena as absence of equilibrium, presence of multiple equilibria, and also for comparative statics
exercises. From this plot (and results of stability analysis) the following two “impossibility
theorems” follow in an obvious way. First, there exist no “best” strategy, independently of
what “best” means exactly, since any possible market equilibrium can be destabilized by some
investment function. Second, it is impossible to build a dominance order relation inside the
space of trading strategies, since two strategies may generate multiple stable equilibria with
different survivors in them, so that the outcome will depend on the initial conditions or noise.

The present analysis can be extended in many directions. First of all, there is still open
question what will be stability conditions for other dividend processes. Our preliminary results
of the analytic investigation in this direction show that some results (like presence of stable
equity premium in equilibria for “flat” investment functions) also hold for constant growth
rate of the dividend case. Second, in the limits of our framework, one can wonder about other
possible dynamics. For instance, we have shown that there is a theoretical possibility do not
have any equilibrium at all. The dynamics in this case remain unknown. Also the dynamics
after bifurcations, which is the key question in many heterogeneous agent models, were not
investigated. Probably numerical methods can be effectively applied to study these questions
and also clarify the role of initial conditions and the determinants of the relative size of the
basins of attraction for multiple equilibria scenarios. Third, our general CRRA-framework
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led us in Proposition 2.1 to the system in terms of returns and wealth shares. There are
numerous behavioral specifications which were not analyzed here and still consistent with
such framework. These specifications range from the evaluation of the “fundamental” value
of the asset, possibly obtained from a private source of information, to a strategic behavior
that try to keep in consideration the reaction of other market participants to the revealed
individual choices. Furthermore, one may ask what are the consequences of the optimal
selection principle for a market in which the set of strategies is not “frozen”, but instead is
evolving in time, plausibly following some adaptive process. For instance, one can assume
that agents imitate the behavior of other traders (see e.g. Kirman (1991)) or that they update
strategies according to recent relative performances (see e.g. Brock and Hommes (1998)). The
analysis of the consequences of the introduction of such strategies on the optimal selection
principle may, ultimately, refute the statement about the impossibility of defining a dominance
relation among strategies.

APPENDIX

A Proof of Proposition 2.1

Plugging the expression for wt+1,n from the second equation in system (2.4) into the right-hand side
of the first equation of the same system, and assuming that pt > 0 and, consistently with (2.6),
pt 6=

∑
xt+1,n xt,n wt,n one gets

pt+1 =

(
1− 1

pt

N∑

n=1

xt+1,n xt,n wt,n

)−1 (
N∑

n=1

xt+1,n wt,n +
(
et+1 − 1

) N∑

n=1

xt+1,n wt,n xt,n

)
=

= pt

∑
n xt+1,n wt,n + (et+1 − 1)

∑
n xt+1,n wt,n xt,n∑

n xt,n wt,n −
∑

n xt+1,n xt,n wt,n
=

= pt

〈
xt+1

〉
t
− 〈

xt xt+1

〉
t
+ et+1

〈
xt xt+1

〉
t〈

xt

〉
t
− 〈

xt xt+1

〉
t

,

where we used the first equation of (2.4) rewritten for time t to get the second equality. Condition
(2.6) is obtained imposing pt+1 > 0, and the dynamics of price return in (2.7) is immediately derived.
From the second equation of (2.4) it follows that

wt+1,n = wt,n

(
1 + xt,n (rt+1 + et+1)

) ∀n ∈ {1, . . . , N} , (A.1)

which leads to (2.9). To obtain the wealth share dynamics, divide both sides of (A.1) by wt+1 to
have

ϕt+1,n =
wt,n∑

m wt+1,m

(
1 + xt,n (rt+1 + et+1)

)
=

=
wt,n∑

m wt,m + (rt+1 + et+1)
∑

m xt,mwt,m

(
1 + xt,n (rt+1 + et+1)

)
=

=
ϕt,n

1 + (rt+1 + et+1)
∑

m xt,mϕt,m

(
1 + xt,n (rt+1 + et+1)

)
,

where (A.1) has been used to get the second line and we divided both numerator and denominator
by the total wealth at time t to get the third.
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B Proof of Proposition 3.1

According to Definition 3.1, in any BCE the first equation of (2.13) can be simplified to

rt+1 = et+1

〈
x∗

2〉/〈
x∗(1− x∗)

〉
. (B.1)

If et+1 = 0, then from the second equation of (2.13) the dividend yield is zero for all subsequent
periods. Therefore, also price return is zero in that periods. The equilibrium investment shares are
computed straight-forwardly, while the stationarity of the wealth distribution follows from the last
equation in (2.13).

If et+1 6= 0, (B.1) shows that the ratio of the return to the dividend is invariant over time. We
denote this ratio as y∗.

If
〈
x∗

〉
= 0 then (2.6) guarantees that

〈
x∗2

〉 6= 0, so that from (B.1) it immediately follows that
rt+1 = −et+1, i.e. y∗ = −1. Notice from the last equation in (2.13) that the stationarity of the wealth
distribution is automatically satisfied in this case.

If
〈
x∗

〉 6= 0 then the wealth distribution will be stationary only if ϕt,n = ϕt+1,n for any agent n.
This condition apparently holds for any agent with zero wealth share. Let us impose this condition
on an arbitrary surviving agent n. Since rt+1+et+1 6= 0 (because otherwise

〈
x∗

〉
= 0), his investment

share x∗n should be equal to
〈
x∗

〉
, which is independent of n. Therefore, all survivors have the same

investment share, which we denote as x∗¦. Plugging x∗¦ to (B.1), we get (3.1).
The remaining part of the Proposition is an obvious consequence of the definition of value y∗.

C Proof of Lemma 4.1

It is straight-forward to see that e∗1 = g/y∗ and e∗2 = 0 are the only fixed points of (4.6). In order to
investigate a global dynamics we introduce variable zt = 1/et and rewrite (4.6) as follows

zt+1 =
zt

1 + g
+

y∗

1 + g
. (C.1)

The last equation is linear and its dynamics are easy to grasp. When g > 0 the slope of the right-hand
side of (C.1) is less than 1, so that the globally stable fixed point is z∗ = y∗/g. Then, the original
system is attracted by e∗1.

If g < 0 the fixed point z∗ = y∗/g becomes unstable, and the dynamics (C.1) diverges. Therefore,
in this case, as well as in the case with g = 0, the point e∗2 is an global attractor for dynamics (4.6).

Thus, when the parameter g crosses zero value, an unstable and stable fixed points collide and
exchange stability. This is typical phenomenon under transcritical bifurcation.

D Proof of Proposition 5.1

The (L + 1)× (L + 1) Jacobian matrix J of system (4.1) with a single agent reads
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 ∂f
∂r0

∂f
∂r1

∂f
∂r2

. . . ∂f
∂rL−2

∂f
∂rL−1

Rx Rf ∂f
∂r0

Rf ∂f
∂r1

Rf ∂f
∂r2

. . . Rf ∂f
∂rL−2

Rf ∂f
∂rL−1

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 0
0 0 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (D.1)
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where for shortness we use rl as a notation for rt−1−l and

Rx =
∂R(x∗, x∗)

∂x
= − 1

x∗ (1− x∗)
, Rf =

∂R(x∗, x∗)
∂x′

=
1 + r∗

x∗ (1− x∗)
. (D.2)

The stability condition of equilibrium are provided by the following

Lemma D.1. The characteristic polynomial PJ(µ) of system (4.1) with a single agent in the BCE
r∗, x∗ is

PJ(µ) = (−1)L−1

(
µL+1 − (1 + r∗)µ− 1

x∗(1− x∗)
Pf (µ)

)
(D.3)

where Pf (µ) denotes the stability polynomial of function f introduced in (5.1).

Proof. Consider (D.1) and introduce (L+1)× (L+1) identity matrix I. Expanding the determinant
of J − µ I by the elements of the first column one has

det
(
J − µ I

)
= (−µ) (−1)L−1

((
Rf ∂f

∂r0
− µ

)
µL−1 + Rf ∂f

∂r1
µL−2 + · · ·+ Rf ∂f

∂rL−1

)
−

−Rx (−1)L−1

(
∂f

∂r0
µL−1 +

∂f

∂r1
µL−2 + · · ·+ ∂f

∂rL−2
µ +

∂f

∂rL−1

)
=

= (−1)L−1

(
µL+1 −

(
µRf + Rx

) L−1∑

k=0

∂f

∂rk
µL−1−k

)
,

which, using relations in (D.2) and definition of stability polynomial in (5.1) reduces to (D.3).

Using the relationship l′e(r∗) = x∗(1 − x∗)/r∗ it is immediate to see that, apart from irrelevant
sign, (D.3) is identical to (5.2).
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