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Abstract

We examine linear-quadratic (LQ) approximation of stochastic dynamic optimiza-

tion problems in macroeconomics (and elsewhere), in particular in policy analysis

using Dynamic Stochastic General Equilibrium (DSGE) models. We first define the

problem that is solved by a social planner, given that the objective of the latter is to

maximize average welfare; this yields the efficient solution. We then comment on the

LQ approximation when a tax or subsidy can be imposed such that the zero-inflation

competitive steady state output level is equal to the efficient level. We then examine

the correct procedure for replacing a stochastic non-linear dynamic optimization prob-

lem with a linear-quadratic approximation. We show that a procedure proposed by

Benigno and Woodford (2003) for large underlying distortions in the economy can be

more easily implemented through a second-order approximation of the Hamiltonian

used to compute the ex ante optimal policy with commitment (the Ramsey problem).

We then define the notion of Target-Implementability, which is also a sufficient condi-

tion for a particular steady-state maximum of the Ramsey problem, and explain the

usefulness of this in the context of stabilization policy.
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1 Introduction

Linear-quadratic (LQ) approximations to non-linear dynamic optimization problems in

macroeconomics are widely used for a number of reasons. First, the characterization of

time consistent and commitment equilibria for a single policy maker, and even more so

for many interacting policymakers, are well-understood. Second, the certainty equivalence

property results in optimal rules that are independent of the variance-covariance matrix

of additive disturbances. Third, policy can be conveniently decomposed into deterministic

and stochastic components. Fourth, the stability of the system is conveniently summarized

in terms of eigenvalues. Finally for sufficiently simple models, linear-quadratic approxi-

mation allows analytical rather than numerical solution.

But what is the correct procedure for replacing a stochastic non-linear optimization

problem with a linear-quadratic approximation? In Section 2 we begin by reviewing the

setup of the benevolent policymaker’s (or social planner’s) problem whose solution yields

what is termed the efficient output level. In addition we explain why the standard linear-

quadratic approximation is appropriate for analysing optimal inflation policy in the de-

centralized economy (i.e., for the Ramsey problem), with the proviso that there is a tax

(or subsidy) that ensures that the zero-inflation output level, or natural rate, exactly or

approximately in some sense matches the efficient output level.

In Section 3 we turn to the general Ramsey problem, when there is no ‘optimal’ tax,

that yields the ‘distorted steady state’ as it is termed by Benigno and Woodford (2004).

We implement the LQ-approximation by quadratifying the Hamiltonian of the optimal

control problem about the steady state. This idea stems from the sufficient conditions

for the solution to an optimal control to be a maximum; Magill (1977) appears to be the

first to have written up this result in the economics literature. We provide two simple

examples of this, one of which relates to the procedure used by Benigno and Woodford

(2003), henceforth BW, using a simple New Keynesian model and ad hoc policymaker’s

utility function as set out in Clarida et al. (1999). We demonstrate that for this simple

example the BW procedure is equivalent to the Hamiltonian approach.

Section 4 then focuses on a third example: a Ramsey problem based on the New Key-

nesian framework of Section 2, with habit in consumption, with the policymaker adopting

the utility function of consumers. We derive the corresponding LQ approximation to the
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policymaker’s problem, and briefly comment on its representation when there is no habit.

Section 5 defines the notion of Target-Implementability; this is essentially about the set-

ting of targets by the Central Bank when it engages in stabilization. We show that this is

equivalent to a requirement that the quadratic approximation be negative semi-definite,

which is a sufficient but not necessary condition for optimality. We then obtain suffi-

cient conditions for both target implementability and for the Ramsey problem to have a

zero-inflation steady state and therefore natural rate of output.

2 The Social Planner’s Problem and the Ramsey Problem

assuming Efficiency

In this section we introduce the general form of the problem to be studied. We assume

a set of consumers, each with given endowments, whose objective is to maximize an in-

tertemporal utility function. Typically this will incorporate consumption and leisure, but

we shall state the objectives in a general fashion, so that they can incorporate habit as

well. Thus the objective is for individual i to maximize an expected utility function of the

form

E0

∞∑

t=0

βtu(Wit; Wt−1) (1)

where the vector Wit represents individual i’s choices e.g. consumption and labour supply.

This utility function may also incorporate habit or catching-up, and may therefore also

be dependent on aggregate or average choices made in the previous period Wt−1. There

are various resource constraints that we shall come to later.

Typically in economic models of this type we would assume monopolistic competition

by firms, which leads to mark-up pricing, and creates a wedge between the level of output

under competition - the natural rate - and the level of output that could be achieved by a

social planner - the efficient level. This wedge may be exacerbated if we assume that there

is labour market power as well. The latter is not incorporated by Benigno and Woodford

(2004), but is common in most other New Keynesian models e.g. Clarida et al. (2002).

We also assume that costs for firms are continuous, which rules out state-dependent S− s

policies; we do this because such policies cannot be easily aggregated. Initially we ignore

the stochastic problem because the deterministic problem is sufficient to set up the LQ
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approximation.

Finally we assume that the resource constraints sum to an aggregate resource con-

straint. One can then define the social planner’s problem in terms of the representative

individual as that of

max
∞∑

t=0

βtU(Xt−1,Wt) s.t. Xt = f(Xt−1,Wt) (2)

where the set of constraints in this problem represent the set of (intertemporal) resource

and other relevant constraints. Although there appear to be significant differences in the

functions u of (1) and U of (2), these are merely cosmetic; Wt would appear in the same

way in U as did Wit in u, and Wt−1 is now a subset of the Xt variables. Thus if we

represent the vector Xt = [XT
1t XT

2t], where X1 represent the resource constraints, then

X2t = Wt, and X2,t−1 appears in the same way in U as did Wt−1 in u.

2.1 Characterization of the Efficient Level

Defining the Lagrangian

∞∑

t=0

βt[U(Xt−1,Wt)− λT
t (Xt − f(Xt−1,Wt))] (3)

the following first order conditions provide the necessary conditions for the solution:

UW (Xt−1,Wt)+λT
t fW (Xt−1,Wt) = 0 UX(Xt−1,Wt)+λT

t fX(Xt−1,Wt+1)− 1
β

λT
t−1 = 0

(4)

The steady state of the social planner’s problem, the efficient level (denoted by ∗), is then

given by

X∗ = f(X∗,W ∗) UW (X∗,W ∗) + λ∗T fW (X∗,W ∗) = 0

UX(X∗, W ∗) + λ∗T fX(X∗,W ∗)− 1
β λ∗T = 0 (5)

2.2 The Flexible-Price Solution and the Ramsey Problem

The difference between the efficient solution and that of the competitive or flexible-price

solution is due to the externalities of habit and of firm and labour market power. As we

shall see below for a particular example, the externality due to consumption habit works in

the opposite direction to the externalities that produce the mark-ups in prices and wages.
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In principle it is possible to set a proportional tax (or subsidy) in the flexible-price case

that yields a ‘natural’ level of output exactly equal to the efficient level of output of the

social planner.

Thus far we have only discussed the efficient and flexible-price levels of output. A more

general model takes into account the fact that neither wages nor prices are completely

flexible. As a consequence, we must discuss the case where a policymaker is required to

maximize average welfare, in this case by choosing the optimal path for inflation. This is

a particular case of the Ramsey problem.

The standard New Keynesian model ascribes a fixed probability in each period of

changing prices (and wages). This leads to dynamic equations for the overall price index,

and in turn this leads in the Woodford (2003) case to different choices of labour supply

by individuals, and in the Clarida et al. (2002) case to each individual providing the same

quantity of labour. In the former, the policymaker takes the average of the utility function,

which for small variance of shocks is approximately the same as flexible-price level of the

utility function, but with an additional effect from the spread of prices. In the latter,

although labour supply is the same for each worker, it is dependent on the spread of

demand for each good; this in turn leads to the utility function differing from the flexible

price utility function by a term dependent on the spread of prices and wages. From the

point of view of the Ramsey policymaker, the problem can then be written approximately

as maximizing ∞∑

t=0

βt[U(Xt−1,Wt) + A(Xt−1,Wt)DP
t ] (6)

where DP
t represents the spread of prices, and we ignore the spread of wages to ease the

algebraic burden. In the case of standard New Keynesian models, the term A(X, W )

contains the disutility of labour because that is what is affected by price variability. This

Ramsey problem is subject to the resource constraints above, and in addition to further

constraints representing individual consumer and firm behaviour (arising for example from

staggered price and wage-setting). We assume that these can be aggregated, so that the

constraints that must be satisfied by the Ramsey policymaker constitute both the resource

constraints and constraints associated with price-setting:

Xt = f(Xt−1,Wt) Zt = g(Zt−1, Xt−1,Wt; τ) (7)
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Woodford (2003), among others, shows that the spread of prices DP
t is approximately

obtained as a quadratic form in current and past levels of inflation, where inflation is one

of the variables included in the vector Zt.

It is important to appreciate that the the constraints associated with Zt represent

individuals’ and firms’ decisions, and may involve future expectations. We take the ap-

proach that the policymaker here has reputation for precommitment, so that we can take

expectations of the future as always being fulfilled, and therefore regard these equations

as backward looking. Secondly, if all factor prices are fixed so that inflation is 0 i.e. the

appropriate elements of the vector Z are set equal to 0, we obtain a solution to the ‘nat-

ural’ rate by solving for the steady state X̄ = f(X̄, W̄ ), Z̄ = g(Z̄, X̄, W̄ ; τ). This is also

known as the flexible price equilibrium. An important consideration is that the natural

rate will be dependent on the tax/subsidy rate τ .

2.3 LQ Approximation of the Ramsey Problem: Efficient Case

Woodford (2003) now points out a key result for LQ-approximation. If at all possible,

the aim of the Ramsey policymaker is to stabilize the economy about the efficient level of

output. Let us assume therefore that the proportional tax/subsidy is set at exactly the

level at which the flexible price equilibrium achieves the efficient level of output. This

implies that there exists a value τ∗ such that the efficient rate, coupled with zero inflation,

is a solution to Z∗ = g(X∗, Z∗,W ∗; τ∗).

The main result of this section is dependent on the ability (a) to expand the utility

function about the steady steady state efficient solution without the presence of linear

terms and (b) to expand the constraints about the steady state efficient solution without

the presence of constant terms.

Theorem 1: The stabilization problem for the Ramsey policymaker can be approxi-

mately expressed as a quadratic expansion of the welfare function about the efficient level.
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Proof: We first deal with the utility function:

∞∑

t=0

βt[U(Xt−1,Wt) + A(Xt−1,Wt)DP
t ]

=
∞∑

t=0

βt[U(Xt−1,Wt)− λ∗T (Xt − f(Xt−1,Wt)) + A(Xt−1,Wt)DP
t ]

∼=
∞∑

t=0

βt[U(X∗,W ∗) + UXδXt−1 + UW δWt − λ∗T (δXt − fXδXt−1 − fW δWt)

+
1
2
(δXT

t−1HXXδXt−1 + 2δXT
t−1HXW δWt + δW T

t HWW δWt + A(X∗,W ∗)DP
t ]

=
∞∑

t=0

βt[U(X∗,W ∗) + (UX − 1
β

λ∗T + λ∗T fX)δXt−1 + (UW + λ∗T fW )δWt

+
1
2
(δXT

t−1HXXδXt−1 + 2δXT
t−1HXW δWt + δW T

t HWW δWt + A(X∗,W ∗)DP
t ](8)

where H = U(X, W ) + λ∗T f(X,W ), and its second derivatives are evaluated at(X∗,W ∗).

Hence, using (5), the linear terms in δXt, δWt vanish. We shall see below a representation

of DP
t that allows us to write the contribution from inflation as a simple quadratic term in

the utility function for each period t; this is why we were able to ignore first order changes

in the function A(X, W ).

Now consider the constraints. Firstly the resource constraint is in steady state at the

efficient level, so that an expansion about the latter will contain no constant term. Sec-

ondly, the constraint involving Z, by appropriate choice of τ is also in a zero-inflation

steady state at the efficient level, so that any approximation of its dynamics about the

efficient level will be without a constant term.

The implication of this proof is that the welfare function can always be approximated as a

constant plus quadratic terms, centred on the efficient rate, once the resource constraints

have been incorporated. It is only the equations describing private sector behaviour that

can make invalid this LQ approximation to stabilization.

2.4 The Small Distortion Case

Suppose that the tax/subsidy is insufficient to eliminate the inefficiency, but that the

latter is small. There are then two approaches to obtain an approximation to the LQ

approximation. The first is take deviations about the inefficient steady state. This will, as
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we have seen above, produce an approximation to the welfare that contains a constant term

(the welfare in the efficient case), and a quadratic term. The error in the approximation

is then in the dynamic equation describing individual decisions. This is because we need

a vector of constants to be included in the dynamic equation for deviations in Zt, which

is given by Z̄ − g(X̄, Z̄, W̄ ; τ);if this is small, it may be ignored.

The alternative is to take deviations about the natural rate, as done by Woodford

(2003), Appendix E. The dynamic equations in deviation form then no longer contain a

constant, but the linear terms in the welfare approximation (8) are now of the form:

(UX(X̄, W̄ )− 1
β

λ∗T + λ∗T fX(X̄, W̄ ))δXt−1 + (UW (X̄, W̄ ) + λ∗T fW (X̄, W̄ ))δWt

= (HX + (X̄ −X∗)T HXX + (W̄ −W ∗)T HWX)δXt−1

+(HW + (X̄ −X∗)T HXW + (W̄ −W ∗)T HWW )δWt

= ((X̄ −X∗)T HXX + (W̄ −W ∗)T HWX)δXt−1

+((X̄ −X∗)T HXW + (W̄ −W ∗)T HWW )δWt (9)

Thus the linear terms can be ignored provided that X̄ −X∗ and W̄ −W ∗ are small.

We assess the limitations of the small distortion case in Section 4 by comparing the

weights on the quadratic terms of the LQ welfare approximation for the efficient and the

non-efficient case. This provides an arguably more direct assessment of the error in the

approximation; this is because it is less easy to assess the impact of the errors described

above.

3 The Hamiltonian LQ Approximation for Large Distor-

tions

In general, one cannot expect fiscal authorities to set a tax/subsidy so as to achieve the

efficient level of output. This means that the LQ Approximation to the utility function

of the previous section will be inappropriate. A general statement of a Ramsey problem

in economics involves both backward-looking dynamics such as capital accumulation, and

forward-looking dynamics such as the Euler equation for consumption or, as below, an

equation for aggregate inflation in which the latter depends on expectations of future

inflation. Benigno and Woodford (2003) solve the stabilization aspect of such a problem by
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expanding about the precommitment deterministic solution. They invoke a rather tortuous

method that is not obviously generalised. However there does exist a generalisation due

in part to Magill (1977). As a preliminary, instead of writing down a general economic

model that incorporates both backward and forward looking behaviour, we note that our

intention is to obtain an LQ approximation to the precommitment solution. Since formally

this solution makes no distinction between a variable dated at t + 1 and its expectation

using information at time t, we can for the moment write down the general model as

purely backward-looking.

We now adopt a slight change of notation. Since in this section we are no longer

interested in approximating about the efficient level, the resource constraints do not play

the special role that they did in the section above. We therefore absorb all state variables

X, Z into just one state vector X, so that the general policymaker’s problem no longer

requires a special term representing the spread of prices.

The general dynamic programming problem is therefore:

Max
∞∑

t=0

βtU(Xt−1,Wt) s.t. Xt = f(Xt−1,Wt) (10)

Define the Hamiltonian Ht = U(Xt−1, Wt) + λT
t f(Xt−1,Wt), where λt are the Lagrange

multipliers for the constraints, as in (3). The following is the discrete time version of

Magill (1977):

Theorem 2:

(a) If a steady state solution (X̄, W̄ , λ̄) to (10) exists, then any perturbation (δXt, δWt)

about this steady state can be expressed as the solution to

Max
∞∑

t=0

βt
[

δXt−1 δWt

]

 HXX HXW

HWX HWW





 δXt−1

δWt


 s.t. δXt = fXδXt−1+fW δWt

(11)

where all derivatives are evaluated at (X̄, W̄ ).

(b) A necessary and sufficient condition for the dynamic programming problem (10)

to constitute a maximum with steady state (X̄, W̄ ) is that the steady state Riccati matrix

associated with (11) is negative definite.
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Note that the perturbed system is now in standard linear-quadratic format, which is

the basis for (b). Of course, if the function f(X, W ) is linear and U(X, W ) is concave

then (b) is irrelevant. However it is unlikely that f will be linear, so we have the following,

possibly stringent, condition:

Result 1: A sufficient condition for for the steady state to be a maximum is that the

matrix of second derivatives of H in (11) is negative semi-definite1.

Magill (1977)’s result extends to the stochastic case as well. Thus if the dynamic equations

are written as Xt = f(Xt−1,Wt, εt), where the εt have mean zero and are independently

normally distributed then any perturbations about the deterministic solution are solutions

to the problem

Max E0

∞∑

t=0

βt
[

δXt−1 δWt εt

]



HXX HXW HXε

HWX HWW HXε

HεX HεW Hεε







δXt−1

δWt

εt




s.t. δXt = fXδXt−1 + fW δWt + fεεt (12)

Before turning to the main model of the paper, we provide two examples of the Hamil-

tonian approach.

Example 1: We obtain a second-order accurate solution to the following problem that

motivates Kim and Kim (2003):

Max lnC1 + lnC2 s.t. C1 + C2 = Y1 + Y2 (13)

where lnYi ∼ N(0, σ2) The solution to this is clearly Ci = (Y1 + Y2)/2, so that the

deterministic solution centred at Y1 = Y2 = 1 is C1 = C2 = 1. If we define the Lagrangian

as L = lnC1 + lnC2 − λ(C1 + C2 − Y1 − Y2), then the value of λ at the optimum is clearly

1. Using perturbations of the logs of Ci, Yi, it is easy to show that the problem transforms

to

Max c1 + c2 +
1
2
(y1 + y2 + y2

1 + y2
2 − c1 − c2 − c2

1 − c2
2) s.t. c1 + c2 = y1 + y2 (14)

1A simple example of a problem for which a maximum exists, but for which the sufficient condition does

not hold is: max x2 − y2 such that y = ax + b. It is easy to see that the stationary point is a maximum

when |a| > 1.
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which has solution ci = (y1 +y2)/2, so that the maximand is equal to y1 +y2 + 1
4(y1−y2)2,

as in Kim and Kim (2003).

Example 2: In this example we briefly outline the Benigno and Woodford (2004) ap-

proach for a monetary policy problem, and outline its equivalence to the Hamiltonian

method.

Consider the following optimization problem for a monetary authority to choose state-

contingent path for its inflation target πt so as to minimize an ad hoc objective function

E0

[ ∞∑

t=0

λt
[
(xt − x∗)2 + π2

t

]
]

(15)

where xt is the output gap in logarithms given by a ‘New Keynesian’ Phillips curve

πt = βEtπt+1 + f(xt) + ut ; f ′ > 0, f ′′ < 0 (16)

where ut is an i.i.d. supply shock. Let xn be the natural rate of output defined by

f(xn) = 0. Then (15) x∗ ≥ xn is the logarithm of the efficient level of output where

inefficiency arises from monopolistic competition in the output market.

A common procedure for reducing this to a LQ problem is to expand about the steady

state x so that f(xt) ' f(x) + f ′(x)(xt − x) + 1
2f ′′(x)(xt − x)2=a(xt − x) − b(xt − x)2.

Much of the literature2 including Clarida et al. (1999) then erroneously adopts a linearized

Phillips curve

πt = βEtπt+1 + a(xt − x) + ut (17)

and proceeds with the LQ problem of minimizing (15) subject to (17). The error arises

from the objective function including a linear term in xtx
∗. From (16), xt = f−1(πt −

βEtπt+1 − ut) so unless x∗ is small, there is a second-order term missing in the objective

function if one proceeds with the linear approximation (17). To get round this problem, the

procedure set out in BW selects a new steady state (π̄, x̄) satisfying (16) and a multiplier

h such that

∞∑

t=0

λt[θ(xt−x̄)2+φ(πt−π̄)2] ≡
∞∑

t=0

λt[(xt−x∗)2+π2
t +h[β(πt+1−π̄)−(πt−π̄)−f(xt)+f(x̄)]]

(18)
2Some previous work of one of the authors joins a distinguished list (see Currie and Levine (1993).
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up to a second order approximation in deviations about the steady state, give or take

constant terms. Then the problem becomes that of minimizing (18) subject to

πt − π̄ = βEtπt+1 − π̄)− f(xt) + f(x̄) + ut
∼= βEtπt+1 − π̄) + a(xt − x̄) + ut (19)

The BW procedure then amounts to finding the values π̄, x̄, θ, φ and h which are

consistent with the equalities in (18) and (19).

Using the Hamiltonian approach it is easy, but less tedious, to show that π̄, x̄ and h

are given by

2(x̄− x∗)− hf ′(x̄) = 0 2π̄ + h

(
1− β

λ

)
= 0 (1− β)π̄ − f(x̄) = 0 (20)

Details are provided in Appendix A.

4 Linear-Quadratic Approximation of Welfare in a DSGE

Model

The model is the cashless economy as in Batini et al. (2006) with habit in consumption.

Agents (or consumers) of type i maximize the intemporal trade-off between consumption

Cit - taking into account a desire to consume at a level similar to that of last period’s

average consumption Ct−1 - and leisure. The latter is accounted for by penalising working

time Nit.

Unlike Clarida et al. (2000) we do not incorporate a proportional tax (or subsidy) into

the model in order to ensure that the steady state, or natural rate, of output is at the

efficient level3. Instead we use the methodology of the previous section to show how to

obtain a quadratic approximation to the welfare when the natural rate differs from the

efficient rate. This is an issue also addressed by Benigno and Woodford (2004) using the

the methods of Section 2.1.

We can summarize the model in a concise form as:

Household Utility

Ω0 = E0

[ ∞∑

t=0

βt

[
(Cit − hCCt−1)1−σ

1− σ
− κ

N1+φ
it

1 + φ

]]
(21)

3see Section 4.1 below
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Household Behaviour The first-order conditions for households are as follows:

1 = βEt

[
Qt,t+1

(
Cit+1 − hCCt

Cit − hCCt−1

)−σ 1
Πt+1

]
(22)

Wit

Pt
=

κ

(1− 1
η )

Nφ
it(Cit − hCCt−1)σ (23)

where Qt,t+1 is the expected value of the stochastic discount factor on holdings of one-

period bonds, and the gross inflation rate Πt is given by

Πt ≡ Pt

Pt−1
(24)

All consumers can trade in a complete set of state contingent bonds, and therefore engage

in complete risk-sharing, so that (22) represents the Keynes-Ramsey intertemporal first-

order condition for consumption across all consumers, taking habit into account. (23)

equates relative marginal utilities of consumption and leisure to the real wage. Wit, Pt

are measures of the nominal wage of the ith agent and of price respectively. (23) also

incorporates market power of individual consumers, who are all distinct from the point of

view of production skills, so that the elasticity of substitution between them corresponds to

an elasticity of demand for their services denoted by η. Underlying this is an assumption

that output is CES in labour, with its level expressed by aggregating over all labour

inputs.

We make the simplest possible assumption here that there are no lags in wage-setting;

as a consequence there is market-clearing in wages, with all agents setting the same wage

and all working for the same number of hours. Thus (23) holds when i is deleted, so for

this setup there is no need to aggregate Wt, Nt via the elasticity of demand for labour η.

Firms:

Unlike workers, firms only reset prices in any given period with probability 1 − ξ. Thus

the optimal price P 0
t for any firm that sets its price at t must take into account any future

periods during which the price remains unchanged.4

The first-order condition for profit-maximization for the jth firm over the duration of

the optimal price not being reset takes into account the elasticity of substitution ζ between
4It is easy to show that if there is planned indexation to the overall price index as well i.e. the future

price at time t + k is given by P 0
t (Pt+k−1/Pt)

γ then all the results presented here are the same when Πt

is replaced by Πt/Πγ
t−1.

12



goods, which provides firms with monopolistic power. It is given by

P 0
t Et[

∞∑

k=0

ξkQt,t+kYt+k(j)] =
κ

(1− 1/ζ)
Et[

∞∑

k=0

ξkQt,t+kPt+kMCt+kYt+k(j)]

where marginal cost is given by the real product wage MCt = Wt
AtPt

and the stochastic

discount factor Qt,t+k is given by

Qt,t+k = βk(
Ct+k − hCCt+k−1

Ct − hCCt−1
)−σ Pt

Pt+k
(25)

Noting that

Yt+k(j) =
(

P 0
t

Pt+k

)−ζ

Yt+k (26)

and multiplying both sides of (25) by (P 0
t

Pt
)ζ(Ct − hCCt−1)−σ and in addition noting that

Pt+k/Pt = Πt+k...Πt+1, then it is straightforward to express the solution to this problem

as follows:

Define variables Qt, Ht and Λt by

Qt ≡ P 0
t /Pt (27)

Ht − ξβEt[Π
ζ−1
t+1 Ht+1] = Yt(Ct − hCCt−1)−σ (28)

Λt − ξβEt[Π
ζ
t+1Λt+1] =

κ

(1− 1/ζ)(1− 1/η)At
YtN

φ
t (29)

Then the firms’ staggered price setting can be succinctly described by

Qt = Λt/Ht (30)

with price index inflation given by

1 = ξΠζ−1
t + (1− ξ)Q1−ζ

t (31)

Note that we have not yet determined the relationship between total output and the

aggregate measure of labour input. However at the firm level we can define it for firm k

as

Yt(k) = AtNt(k) (32)

where At represents a common technology shock.
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4.1 Effects of Inflation

Here we discuss the effects of inflation on the dispersion of prices due to firms’ behaviour

discussed above, and the implications for total employment. These dispersion effects will

lead to costs of inflation, as we shall see later.

Woodford (2003) has demonstrated the effect on price dispersion of inflation, and

derived the following relationship for the variance of the log of prices:

Dt = ξDt−1 +
ξ

1− ξ
(lnΠt)2 (33)

The impact of price dispersion arises from labour input being the same for each indi-

vidual, but dependent on demand for each good:

Nt =
∑

Nt(j) =
Yt

At

∑ Yt(j)
Yt

=
Yt

At

∑(
Pt(j)
Pt

)−ζ

(34)

Now assume that that lnPt(j) is approximately normally distributed as N(µt, Dt),

which is a relatively innocuous assumption for ξ close to 1; by the law of large numbers,

it follows that the overall price index Pt is given by

P 1−ζ
t =

∑
Pt(j)1−ζ = E[e(1−ζ)lnPt(j)] = e(1−ζ)µt+

1
2
(1−ζ)2Dt (35)

Similarly one can obtain an approximate expression for the last term of (34):

∑(
Pt(j)
Pt

)−ζ

=
∑

P ζ
t E[e(−ζlnPit ] = eζµt+

1
2
ζ(1−ζ)Dte−ζµt+

1
2
ζ2Dt = e

1
2
ζDt (36)

From this it follows that

Nφ
t
∼= Y φ

t

Aφ
t

e
1
2
φζDt ∼= Y φ

t

Aφ
t

(1 +
1
2
φζDt) (37)

4.2 The Ex Ante Optimal (Ramsey) Problem

As a consequence of the price diversion result above, the problem for a policy maker is

characterised by solving the deterministic ex ante (commitment and Ramsey) problem by

choosing a trajectory for inflation to maximize

Ω0 =
∞∑

t=0

βt

[
(Yt − Zt)1−σ

1− σ
− κ

1 + φ

(
Yt

At

)1+φ (
1 +

1
2
ζ(1 + φ)Dt

)]
(38)

subject to the constraints

Zt = hCCt−1 1 = ξΠζ−1
t + (1− ξ)Q1−ζ

t QtHt = Λt (39)
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Ht − ξβEt[Π
ζ−1
t+1 Ht+1] = Yt(Yt − Zt)−σ (40)

Λt − ξβEt[Π
ζ
t+1Λt+1] =

κ

(1− 1/ζ)(1− 1/η)

(
Yt

At

)1+φ

(1 +
1
2
ζφDt) (41)

Dt = ξDt−1 +
ξ

1− ξ
(lnΠt)2 (42)

We can now write the Lagrangian for the policymaker’s optimal control problem as

follows:

L = Ω0 +
∞∑

t=0

βt[λ1t(Zt − hCYt) + λ2t(1− ξΠζ−1
t − (1− ξ)Q1−ζ

t )

+ λ3t(QtHt − Λt) + λ4t(Ht − ξβΠζ−1
t+1 Ht+1 − Yt(Yt − Zt)−σ)

+ λ5t(Λt − ξβΠζ
t+1Λt+1 − κ

α

(
Yt

At

)1+φ (
1 +

1
2
ζφDt

)
)

+ λ6t(Dt − ξDt−1 − ξ

1− ξ
(lnΠt)2)] (43)

where we define α = (1− 1/ζ)(1− 1/η).

First-order conditions are given by:

(Yt − Zt)−σ − κ
Y φ

t

A1+φ
t

(1 + 1
2ζ(1 + φ)Dt)− λ1thC

−λ5t
κ(1+φ)

α
Y φ

t

A1+φ
t

(1 + 1
2ζφDt)− λ4t((Yt − Zt)−σ − σYt(Yt − Zt)−σ−1) = 0 (44)

−(Yt − Zt)−σ +
1
β

λ1t−1 − λ4tσYt(Yt − Zt)−σ−1 = 0 (45)

β(1− ζ)ξλ2,t+1Π
ζ−2
t+1 − λ4tξβ(ζ − 1)Πζ−2

t+1 Ht+1 − λ5tξβζΠζ−1
t+1 Λt+1 − 2ξβ

1− ξ
λ6,t+1

lnΠt+1

Πt+1
= 0

(46)

−λ2t(1− ξ)(1− ζ)Q−ζ
t + λ3tHt = 0 (47)

λ3tQt + λ4t − ξΠζ−1λ4,t−1 = 0 (48)

−λ3t + λ5t − ξΠζ
t λ5,t−1 = 0 (49)

−1
2
κζ

(
Yt

At

)1+φ

+ λ6t − ξβλ6,t+1 − κφζ

2α

(
Yt

At

)1+φ

λ5t = 0 (50)

The zero-inflation equilibrium values are given by

Π = Q = 1 Λ = H =
Y 1−σ(1− hC)−σ

1− βξ
D = 0 (1− hC)−σ =

κ

α

Y φ+σ

A1+φ
(51)
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λ5 =
1− βhC − α
σ(1−hCβ)

1−hC
+ φ

= −λ4 λ3 = (1− ξ)λ5 λ2 =
Hλ5

(1− ζ)
(52)

λ6 =
ζY 1−σ(1− hC)−σ

2(1− βξ)

ασ
1−hC

+ φ

σ(1−hCβ)
1−hC

+ φ
(53)

Now that we have the steady-state values of the Lagrange multipliers, we are in a position

to apply Theorem 2(a). We first linearize the relationships between the variables, and

then obtain the quadratic approximation of the Lagrangian. We shall leave discussion of

Theorem 2(b) till later.

4.3 Linearization of Dynamics

We linearize about a zero-inflation steady state. Define ht, λt, qt, πt as deviations of

Ht,Λt, Qt,Πt from their steady state values. In addition define yt = (Yt − Y )/Y , at =

(At −A)/A and define zt = (Zt − Z)/Y .

Linearization of the constraints yields

Hqt = λt − ht ξπt = (1− ξ)qt (54)

zt+1 = hCyt (55)

ht − βξ(ζ − 1)HEtπt+1 − βξEtht+1 = Y 1−σ(1− hC)−σ(yt − σ

1− hC
(yt − zt)) (56)

λt − βξζΛEtπt+1 − βξEtλt+1 =
κ(1 + φ)

α

Y 1+φ

A1+φ
(yt − at) (57)

Now subtract (56) from (57). Noting that Λ = H, and substituting from (54) yields a

Phillips curve relationship of the form:

πt = βEtπt+1 +
(1− ξ)(1− βξ)

ξ
(φyt +

σ

1− hC
(yt − zt)− (1 + φ)at) (58)

Note that linearization of the dispersion term around zero inflation is irrelevant, since it

reduces to dt − ξdt−1 = 0.

4.4 The Commitment Solution: Quadratification of Lagrangian

At this point we apply the result of Section 2, in order to obtain a quadratic approximation

to the period t value of the Lagrangian. Ignoring the steady state value of the latter, the
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remaining terms are given by:

−1
2
(Y − Z)−σ−1Y 2σ(yt − zt)2 − 1

2
κφ

Y 1+φ

A1+φ
y2

t − λ5
κ

2α
φ(1 + φ)

Y 1+φ

A1+φ
y2

t

+κ(1 + φ)
Y 1+φ

A1+φ
ytat + λ5

κ

α
(1 + φ)2

Y 1+φ

A1+φ
ytat

−λ5σY 2(Y − Z)−σ−1(yt − zt)yt +
1
2
λ5σ(σ + 1)Y 3(Y − Z)−σ−2(yt − zt)2

−ξ

2
π2

t ((ζ − 1)(ζ − 2)λ2Πζ−3 + (ζ − 1)(ζ − 2)Πζ−3Hλ4 + ζλ5(ζ − 1)Πζ−2Λ +
2λ6

(1− ξ)Π2
)

−ξπtλtζλ5Πζ−1 − ξπtht(ζ − 1)λ4Πζ−2

+
1
2
q2
t λ2(1− ξ)(1− ζ)ζQ−1−ζ + qthtλ3 (59)

After eliminating ht, λt, qt using (54), and substituting the steady state values above, we

finally arrive at the correct quadratic approximation to the single-period utility in the

expected intertemporal utility function (38):

− κ

2α

Y 1+φ

A1+φ

[
σ

1− hC
(yt − zt)2 + φ(α + λ5(1 + φ))y2

t

−2(1 + φ)(α + λ5(1 + φ))ytat + 2λ5
σ

1− hC
(yt − zt)yt

−λ5
σ(σ + 1)
(1− hC)2

(yt − zt)2 +
ξζ

(1− ξ)(1− βξ)
(α + (1 + φ)λ5)π2

t

]
(60)

4.5 The Social Planner’s Problem

The Social Planner can be regarded as maximizing (21) viewing all agents as identical,

and so can set Cit = Ct, Nit = Nt, subject to the constraint Ct = Yt = AtNt. The social

planner chooses a trajectory for output which satisfies the first-order condition

[Ct − hCCt−1]−σ − hCβ[Ct+1 − hCCt]−σ = κ
Y φ

t

A1+φ
t

(61)

The efficient steady-state level of output Yt+1 = Yt = Yt−1 = Y ∗, say, is therefore given by

(Y ∗)φ+σ =
(1− hCβ)A1+φ

κ(1− hC)σ
(62)

We can now examine the inefficiency of the zero-inflation steady state. From (51) the

zero-inflation steady state output in the Ramsey problem is given by Y = Y R where

(Y R)φ+σ =

(
1− 1

ζ

)(
1− 1

η

)
A1+φ

κ(1− hC)σ(1− hN )φ
(63)
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It is easy to check that this is exactly the same steady-state level as that of the flexi-price

economy where firms set prices optimally at every period. Comparing (62) and (63) we

have the result first obtained by Choudhary and Levine (2005):

Result 2:

The natural level of output, Y R, is below the efficient level, Y ∗, if and only if

α ≡
(

1− 1
ζ

)(
1− 1

η

)
< 1− hCβ (64)

In the case where there is no habit persistence in consumption, hC = 0, then (64)

always holds. In this case market power in the output and labour markets captured by

the elasticities η, ζ respectively drive the natural rate of output below the efficient level.

If habit persistence in consumption is sufficiently high, then (64) does not hold and the

natural rate of output and employment proportional are then too high compared with the

efficient outcome and people are working too much. Is there empirical support that (64)

holds? Terms
(
1− 1

ζ

)
and

(
1− 1

η

)
are the inverses of mark-ups over marginal costs in

the output and labour markets respectively. A plausible upper bound on these mark-ups

is 20% so α =
(
1− 1

ζ

)(
1− 1

η

)
> 1

1.22 . A condition on hC for (64) to hold is therefore

hCβ < 0.306. Most empirical estimates of habit in a quarterly model are in the range

hC = [0.5, 0.9] which would see these condition not holding (see, for example, Smets and

Wouters (2003)).

4.6 The Small Distortion Case

The small distortion case assumes that the inefficiency of the zero-inflation steady state

about which we have linearized is approximately efficient. From result 2 this implies that

1−βhC−α is small. We are now in a position to examine the nature of this ‘approximation

to an approximation’ by examining correctly quadratified single-period utility (60). From

(52) we can see that the approximates means that λ5 is small. An examination of (60)

reveals that the small distortion case, which would omit all terms involving λ5, is valid

only if | λ5(1 + φ) |<< α or, using the definition of λ5, only if

(1 + φ)
| 1− βhC − α |

σ(1−hCβ)
1−hC

+ φ
<< α (65)
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Typical estimated parameter values are σ = 3 (with this value or higher being confirmed

within other contexts as well), φ = 1.3. With hC at the mid-point of the range of estimates

at hC = 0.7 this gives the left-hand-side of (65) as 0.22 and the right-hand side as 0.69.

Neglected terms are therefore of the order of one third of those retained.

5 Target Implementability and the Ramsey Inflation Rate

Although the previous section has solved the policymaker’s Ramsey problem, in practice

there is no guarantee that monetary policy will be implemented in this fashion. Firstly,

the usual instrument of monetary policy is the interest rate, which is under the control of

the Central Bank. Secondly, although an increasing number of central banks have become

more independent, transparent and accountable, none satisfies all the criteria for these

attributes. As a consequence there can be no certainty that central banks will adopt a

fully optimal precommitment policy. What is more likely is that any precommitment is

likely to be to some simple rule, such as feedback on inflation and the output gap. This

is much more easily monitored than the fully optimal rule, and simulations by numerous

authors have shown that the welfare losses from using precommitted simple rules are

considerably less than those from optimal rules under no commitment.

There is one aspect of fully optimal rules that appears not to be in dispute. Since the

steady state setting of the optimal rule is potentially easily monitored, there is no reason

why the central bank cannot commit to it, so the only issue with regard to precommitment

is its stabilization aspect. It is therefore at this point that that use of the quadratic

approximation to utility is appropriate.

Svensson (2005) suggests that central banks engage in ‘forecast targeting’, so that in

effect they set targets for a set of variables of which inflation is but one. In the context of

our quadratic approximations we can interpret these targets as ‘bliss points’, provided that

the period t quadratic approximation achieves a maximum at these. This is also related to

operational transparency of central banks, ‘defined as the extent to which the monetary

control errors are disclosed to the private sector’ Geraats (2002). Faust and Svensson

(2001) show that social welfare is improved with greater operational transparency provided

that the output target is the natural rate, and not an ‘ambitious’ one.

Definition: A period-t welfare function is Target-Implementable if it is a maximum
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at its ‘bliss points’.

This leads to the following, which follows directly from Result 1:

Result 2: The Ramsey solution is Target-Implementable if the quadratic approxima-

tion to the Lagrangian is negative semi-definite5.

We now turn to the issue of whether the zero-inflation steady-state of the system does

indeed constitute a maximum to the Ramsey problem. In the absence of habit, hC = 0,

it turns out that the sufficient condition of Result 1 is indeed satisfied; after some further

effort (and subtracting an appropriate term in a2
t ), (60) further reduces to

−κY φ+1

2αA1+φ
(φ + σα + 1− α)

[
(y2

t −
1 + φ

σ + φ
at)2 +

ζξ

(1− ξ)(1− βξ)(σ + φ)
π2

t

]
(66)

This is clearly negative definite, so that the zero-inflation equilibrium is indeed an optimum

in the absence of habit.

From (66) we note that the stochastic output target implied by this expression is 1+φ
σ+φat,

as one would expect from first principles. We also note that this is a very similar expression

to that derived by Benigno and Woodford (2004), although their setup is slightly different;

it is easiest to think of their model as each firm only employing one type of labour, so

that each agent supplies a different quantity of labour. Price dispersion then plays a

role as a consequence of the policymaker maximizing over the average utility function.

A comparison of their efforts to obtain a quadratic approximation shows that it is much

more laborious than the Lagrangian method adopted here.

Now suppose that hC > 0 and that (64) is not satisfied (as would seem plausible).

So far we have not yet demonstrated whether the natural rate as calculated, with zero

inflation, is actually the steady state for the Ramsey problem. To check this, we need

either to solve the corresponding Riccati equation or to check the sufficient conditions of

Target-Implementability. If the sufficient conditions of the latter are not satisfied, then

checking the steady state Riccati matrix will not yield analytic results. This is because

the equation governing it is highly nonlinear, and in addition the matrix is of dimension

2, so analytic solutions will not in general be found.

We therefore focus on Target-Implementability, and determine what conditions on the

underlying parameters are required for (60) to be negative semi-definite. In order to reduce
5This means that the period-t utility in the LQ-approximation can be written as a weighted sum of

squares of linear terms, with all weights negative.
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the algebraic burden, we make the relatively innocuous approximation β = 1, since most

quarterly models would assume a value of the order of 0.99. Before stating the result, we

recall that the solution for the steady state level of output provided in Section 3 satisfies

the first-order conditions when inflation is zero.

Proposition

A sufficient condition for the Ramsey problem with habit in consumption to have a non-

inflationary steady state with a natural rate of output (63) and to be Target-Implementable

is that (i) σ > 1 (ii) φσ2 > φ + σ.

Proof: See Appendix.

Using typical estimated parameter values discussed above both of these sufficient con-

ditions are easily satisfied.

6 Conclusions

We introduced LQ approximations by expanding the welfare function for the Ramsey

problem about the steady state zero-inflation efficient level. We remarked that lineariza-

tion of the dynamics is only valid about this steady state if there is a tax/subsidy that

ensures that the steady state of the Ramsey problem is itself efficient.

We have shown that a procedure proposed by Benigno and Woodford (2003) for large

underlying distortions in the economy can be more easily implemented through a second-

order approximation of the Lagrangian used to compute the ex ante optimal policy with

commitment (the Ramsey problem). We have also examined in detail the LQ approxima-

tion of a particular Dynamic Stochastic General Equilibrium (DSGE) model, pointing out

the necessary and sufficient conditions for a maximum. We show the limitations of the

‘small distortions’ approximation to an approximation both generally and in the context

of this particular model.

We then defined the notion of Target-Implementability, which we argue is desirable for

the transparency of stabilization policy in that the objectives in the loss function can be

formulated in terms of bliss points. We assessed Target-Implementability for the particular

case of habit inducing excessive labour input compared with the efficient level. We showed

that the condition for both Target-Implementability and a zero inflation steady state to
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the Ramsey problem is that the quadratic approximation of the single-period utility about

such a steady state is negative semi-definite. We obtain a sufficient condition for negative

semi-definiteness and we find it indeed is satisfied for all plausible parameter values.

A Example 2: Equivalence of the Benigno-Woodford and

Hamiltonian Procedures

A.1 The Benigno-Woodford Procedure

To find (π̄, x̄) and h first write

(xt − x∗)2 + π2
t ≡ (xt − x̄ + x̄− x∗)2 + (πt − π̄ + π̄)2

= (xt − x̄)2 + 2(xt − x̄)(x̄− x∗) + (πt − π̄)2 + 2π̄(πt − π̄)

+ constant terms (A.1)

Then (15) holds iff at each time t

θ(xt − x̄)2 + φ(πt − π̄)2] ≡ (xt − x̄)2 + 2(xt − x̄)(x̄− x∗) + (πt − π̄)2 + 2π̄(πt − π̄)

+ h

(
β

λ
(πt − π̄)− (πt − π̄)− a(xt − x̄) + b(xt − x̄)2

)
(A.2)

Equating quadratic and linear terms we arrive at

θ = 1 + hb (A.3)

φ = 1 (A.4)

2(x̄− x∗)− ha = 0 (A.5)

2π̄ + h

(
β

λ
− 1

)
= 0 (A.6)

Then together with the condition for (π̄, x̄) to be a steady state:

(β − 1)π̄ − f(x̄) = 0 (A.7)

we have 5 equations to solve to θ, φ, h, π̄ and x̄. The solution is

h = −2(x∗ − x̄)
a

< 0 if x∗ > x̄ (A.8)

π̄ =
(

1− β

λ

)
h

2
> 0 iff β > λ and x∗ > x̄ (A.9)

θ = 1 + hb < 1 if x∗ > x̄ (A.10)
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where x̄ is the solution to

(β − 1)
(

1− β

λ

)
(x∗ − x̄)

a
+ f(x̄) = 0 (A.11)

If the policymaker adopts the same discount factor as the private sector, then λ = β

and π̄ = 0; that is the steady state is the same deterministic non-inflationary steady

state x, where f(x) = 0, we chose for (17). Let us assume that indeed λ = β. Then

comparing the BW procedure with the standard linear-quadratic approximation discussed

at the beginning of this section, we see that the later is only a good approximation if

(x∗ − x̄) or b are small. In the former case this implies that the output target is close to

the non-inflationary stated state of xt, whilst in the latter case the Phillips curve is nearly

linear. If neither of these conditions apply then the BW procedure must be used.

A.2 The Hamiltonian Procedure

We now show that the LQ procedure of BW is equivalent to a rather simpler one. Consider

the deterministic problem to choose at t = 0 a trajectory {πt} so as to minimize
[ ∞∑

t=0

λt
[
(xt − x∗)2 + π2

t

]
]

(A.12)

subject to

πt = βπt+1 + f(xt) (A.13)

To solve this problem we minimize a Lagrangian

L =
∞∑

t=0

λt
[
(xt − x∗)2 + π2

t + µt(πt − βπt+1 − f(xt))
]

(A.14)

with respect to {πt}, {xt} and the Lagrangian multiplier {µt}. This is the deterministic

component of our original non-linear optimization problem available to the policymaker if

she can commit. The first-order conditions for this problem are

2(xt − x∗)− µtf
′(xt) = 0 (A.15)

2πt + µt − β

λ
µt−1 = 0 (A.16)

πt − βπt+1 − f(xt) = 0 (A.17)
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This system has a steady state (x, π, µ) at

2(x− x∗)− µf ′(x) = 0 (A.18)

2π + µ

(
1− β

λ

)
= 0 (A.19)

(1− β)π − f(x) = 0 (A.20)

Comparing (A.18) to (A.20) with (A.5) to (A.7) and noting that a = f ′(x̄) in (A.5) it

is immediately apparent that (x, π, µ) = (x̄, π̄, h) found in the BW procedure. Then the

modified loss function (??) is a second-order Taylor series approximation to the Lagrangian

(A.14) evaluated at the steady state of the optimal commitment solution µt = µ in the

vicinity of (x, π).

B Proof of Proposition

Firstly, we require the coefficient of π2
t inside the brackets of (60), α + (1 + φ)λ5, to be

positive. A little calculation shows that (with α > 1−hC) this term is greater than 1−hC

provided that σ > 1. Ignoring the shock term at, if we now consider the remaining terms as

a quadratic function of yt and yt− zt, then this quadratic will always be positive provided

that (a) α + (1 + φ)λ5 > 0, (b) σ
1−hC

(1− λ5(1+σ)
1−hC

) > 0 and (c) φ(α + (1 + φ)λ5) σ
1−hC

(1−
λ5(1+σ)
1−hC

) − λ2
5σ2

(1−hC)2
> 0. (a) has already been shown, and it is easy to show that the left

hand side of (b) is greater than σ/(1− hC)2. After some manipulation we can show that

after multiplying (c) through by (1− hC)2 the left hand side becomes

(φ3 − φ− σ)(1− hC)2 + 2α(1− hC)(σφ2 + φ + σ) + (φσ2 − φ− σ)α2

> (φ3 + σφ2)(1− hC)2 + α(1− hC)(σφ2 + φ + σ) + (φσ2 − φ− σ)α2 (B.21)

where the inequality holds when α > 1−hC . Thus the sufficient condition φσ2−φ−σ > 0

is likely to be considerably more stringent a condition than is required.
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