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Abstract

We build a new asset pricing framework to study the effects of aggregate illiquidity on

asset prices, volatilities and correlations. In our framework the Black-Scholes economy is

obtained as the limiting case of perfectly liquid markets. The model is consistent with

empirical studies on the effects of illiquidity on asset returns, volatilities and correlations.

We present the model, study its qualitative properties and estimate stocks’ sensitivities to

aggregate liquidity (βs) using nine years data for 24 randomly sampled stocks traded on the

NYSE. These sensitivity parameters (βs) determine the effect that aggregate illiquidity has

on expected returns, volatilities, correlations, CAPM-betas and Sharpe ratios. We find clear

capitalization and sector patterns for liquidity βs.
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1 Introduction

In recent years, considerable effort has been directed towards understanding the impact of illiq-

uidity on asset pricing. There are two main streams of research: the first one is mainly devoted

to the empirical assessment of the effects of illiquidity, while the second is mainly theoretical and

tries to embody illiquidity into asset pricing theory. The literature also distinguishes between

aggregate and stock-specific liquidity. The former is market-wide, fluctuates over time, and has

different impacts on different stocks. The latter is a stock property relating to the fact that,

for example, for some small capitalization stocks, bid/ask quotes might be unreliable due to

unfrequent trading activity. The empirical literature is vast (see, among others, Amihud (2002),

Amihud and Mendelson (1986), Chordia, Roll and Subrahmanyam (2000, 2001), Lo, Petrov

and Wierbicki (2003), and Pastor and Stambaugh (2002)) and equally concerned with the two

notions of liquidity, while the theoretical literature seems to be more devoted to studying the

stock-specific liquidity either by explicitly modeling the price impact of trades of different size

(for example, Cetin, Jarrow and Protter (2002), Papanicolaou and Sircar (1998), and Schoen-

bucher and Wilmott (2000)) or by introducing transaction costs in asset pricing models (for

example, Lo, Mamaysky and Wang (2004), Vayanos (2004), and Acharya and Pedersen (2004)).

Since Mandelbrot’s (1963) and Fama’s (1965) work , it is a stylized fact that volatilities

and correlations change over time. Aggregate illiquidity seems to be a major cause of excess

comovement across assets. Practitioners know by experience that asset correlations and volatil-

ities jump in illiquid markets. However, so far, models have failed to capture the dynamics of

correlation arising from illiquidity to the point that:

”At some firms reliance on historical estimates of correlation and volatility are treated with

skepticism, because of the simple fact that these historical estimates fail miserably in times of

market stress” (Bhansali and Wise, 2001).

There is a long list of stylized facts associated to illiquidity. Among others, Amihud and

Mendelson (1987) and Amihud (2002) analyze the effects of stock-specific and aggregate illiquid-

ity, respectively, on excess returns. They both find that excess returns increase with illiquidity.

Pastor and Stambaugh (2002) provide evidence that aggregate liquidity tends to be low when

market volatility is high. By measuring the Sharpe ratio of a sample portfolio before and af-

ter liquidity shocks, Lo, Petrov and Wierbicki (2003) show that the illiquidity-return property

extends to Sharpe ratios.

The contribution of this paper is twofold.

First, to the best of our knowledge, this is the first theoretical model that studies the effects

of aggregate liquidity/illiquidity on asset returns volatility and correlations. A recent paper by

Longstaff (2004) introduces aggregate illiquidity in a continuous-time exchange economy with

two assets and heterogenous agents. Stock specific and aggregate liquidity are also considered in
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Acharya and Pedersen (2004). However, these papers do not focus on volatilities and correlations.

Therefore, our results are complementary to those of Acharya and Pedersen (2004) and Longstaff

(2004).

Second, our asset-pricing framework allows us to model the effects of aggregate illiquid-

ity on returns, volatilities and correlations, while reproducing all the stylized facts mentioned

above. Each stock has a different sensitivity to aggregate illiquidity (liquidity β). We embed

the Black-Scholes economy in our model in two ways: first, if a stock’s liquidity β is zero, that

stock follows the usual lognormal price process. Second, in the fictitious case of a ”perfectly

liquid” economy, all securities follow lognormal processes. The stock’s β quantifies the impact

of aggregate illiquidity on returns, volatilities and correlations. Stocks with a higher β will have

expected returns, volatilities, correlations, CAPM-betas and Sharpe ratios which fluctuate more

with aggregate illiquidity. Moreover, the model can be easily estimated using standard GMM

techniques. We analyze 24 randomly sampled stocks traded on the NYSE for the period January

1995 - September 2003. We study two stocks for every combination of market capitalization and

sector. We consider large, medium and small capitalization and Consumer Discretionary, Indus-

trials, Utilities and IT sectors. We find the following clear patterns: Consumer Discretionary,

Industrials and Utilities exhibit a β that decreases in capitalization. That is, small caps stocks,

as predictable, are more sensitive to market-wide liquidity. IT stocks exhibit the opposite pat-

tern: larger stocks have higher βs. In terms of magnitude, IT has by far the highest liquidity

βs, and Utilities the lowest.

The paper is related to the Arbitrage Pricing Theory literature. In fact, our theoretical model

can be viewed as a three-factor model where the factors are, respectively, an idiosyncratic, a

market and an aggregate liquidity factor. The paper is closely related to Pastor and Stambaugh

(2002), who empirically investigate whether market liquidity is an important state variable for

asset pricing, and to Acharya and Pedersen (2004) who developed a theoretical asset pricing

model with liquidity risk. In our model, volatility, covariances and correlations depend on the

liquidity factor. There is a growing literature on these issues - see for example, Ang, Hodrick,

Xing and Zhang (2004).

In section 2 we present the model. For every stock, we derive the market clearing price by

inverting a market-clearing condition (Proposition 1). In section 3 we study the properties of

the derived price processes and show how the model fits the stylized facts mentioned above.

In section 4 we describe moment conditions and the estimation technique, and in section 5

we construct a liquidity measure needed for the estimation. The data used for the empirical

application are presented in section 6, and section 7 contains the estimation results. Section 8

contains brief conclusions. The proof of proposition 1 is in the appendix.
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2 The Model

In this section we present the model. We introduce a reference probability space (Ω,F ,Ft,P),

with 0 ≤ t ≤ T for some fixed time T . We assume that the usual conditions on the coefficients

of the stochastic differential equations below hold. We use Si to denote the price of stock i. In

the model, Si is obtained through a market-clearing condition: Si(t) is the one and only price

that makes the demand for security i clear supply at time t. The demand for stock i at time t

depends on three factors:

1. The stock-specific information at time t (idiosyncratic factor).

2. The systematic factor (e.g. information about the market at time t).

3. The level of aggregate liquidity at time t.

More precisely, we make the following assumptions:

Assumption 1 (Information Process)

The information process for stock i follows

dIi = µiIidt+ ηiIidWi,

with

E(dWidWj) = ρijdt.

Assumption 2 (Liquidity Discount Factor)

Li is the ”liquidity discount factor” for stock i and is defined by

Li(t) = exp(−βiX(t)),

with

dX(t) = v(t)dt+ v(t)dW0.

v is a market liquidity measure defined below and βi is a non-negative constant. We assume

dW0 ⊥ dWi for all i.

Assumption 3 (Supply and Demand Functions and Market Clearing)

The supply for stock i is fixed for simplicity and denoted by Si. The demand function has

the form

Di = Ψi

µ
(Ii)

γi

LiSi

¶
, Ψi any smooth and increasing function, (1)
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where γi =
ki
ηi

> 0 for some ki > 0, Si is the clearing price and Ii and Li are defined above.

The market clearing price Si is defined implicitly by the market-clearing condition

Ψi

µ
(Ii)

γi

LiSi

¶
= Si. (2)

Assumption 1 means that the stock’s information process can be decomposed into an id-

iosyncratic factor and a market factor. For example, we can write

ηidWi = ηi

µ
αidW

⊥
i +

q
1− α2i dWMKT

¶
,

where dW⊥
i is orthogonal to dW⊥

j for i 6= j and dW⊥
i is orthogonal to dWMKT for each

i, for some αi. We are therefore assuming that the information for two stocks i and j, and

hence the clearing prices of stocks i and j, can be correlated through the market factor. This

assumption is very important for the model, since it will allow us to decompose correlation into

market correlation and illiquidity correlation. The idiosyncratic factor can be easily linked to

the stock specific dividend flow. Longstaff (2004) considers a two asset economy and each asset

produces a stream of dividends which is assumed to follow a geometric Brownian motion. This

is very similar to our assumption 1.

The effect of aggregate illiquidity is clear from Assumption 2 together with equation (2): the

more v (t) moves away from zero, the greater the perturbation in the market clearing equation

(2). Ito’s formula applied to Li yields

dLi(t) = Li(t)

µµ
−βiv(t) +

1

2
β2i v(t)

2

¶
dt− βiv(t)dW0

¶
, (3)

and another application of Ito’s formula gives the solution to (3) as (for simplicity we put

Li(0) = 1)

Li(t) = exp

½
−βi

µZ t

0
v(s)ds+

Z t

0
v(s)dW0

¶¾
. (4)

Assumption 3 allows us to invert the market clearing condition and solve for the price. Note

that the ”rational condition” (similarly, Papanicolaou and Sircar (1998) or Schoenbucher and

Wilmott (2000)) that demand decreases in price holds (dropping indices for clarity):

DS = −
Iγ

S2L
Ψ0 < 0,

and that second order derivatives exist and are continuous. Hence, by restricting our analysis

to the family of functions in (1), we can invert the equilibrium equation (2) and recover the

equation satisfied by S. The family (1) has been previously used by Papanicolaou and Sircar
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(1998), and has the property of yielding the Black-Scholes economy when markets are liquid

(see Proposition 1 below). In our setting it has another nice property, namely, the clearing price

does not contain Ψ or any derivatives of Ψ (see the proof of proposition 1 in the appendix).

That is, the market clearing price is independent of the specification of Ψ.

The invertibility of Ψ allows us to solve for S, giving

S =
1

L

µ
Iγ

Ψ−1(S)

¶
. (5)

When v(t) ≡ 0 and L ≡ 1, (5) reduces to

SBS =

µ
Iγ

Ψ−1(S)

¶
. (6)

We will show that under assumptions 1, 2 and 3 the SBS in (6) is a geometric Brownian motion,

hence the Black-Scholes world is embedded in our model as the price corresponding to the

v(t) ≡ 0 case. Furthermore, comparing (5) and (6), we see that

S =
1

L(t)
SBS

and substitution using (4) gives

S = exp

½
β

µZ t

0
v(s)ds+

Z t

0
v(s)dW0

¶¾
SBS. (7)

We compute the following conditional expectation:

E (S|SBS) = E
½
exp

½
β

µZ t

0
v(s)ds+

Z t

0
v(s)dW0

¶¾
SBS |SBS

¾
= SBS exp

½
β

Z t

0
v(s)ds

¾
E
½
expβ

µZ t

0
v(s)dW0

¶¾
= SBS exp

½Z t

0
βv(s) +

1

2
β2v(s)2ds

¾
.

For [β × v (s)] small (positive or negative), the first term in the integral will dominate the

second term, and the expression exp
nR t

0 βv(s) +
1
2β

2v(s)2ds
o
can be interpreted as a conve-

nience yield. For υ (t) positive (negative), we can have simultaneous shortages (gluts) in the

n markets and the exponential term multiplying SBS in (7) can be interpreted as a positive

(negative) convenience yield similarly to Jarrow (2001) or Jarrow and Turnbull (1997).

Jarrow and Turbull’s argument is as follows: Suppose we have two identical bonds, with the

only difference that one has a liquidity problem and the other has not, and it is not possible
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to construct synthetically the illiquid bond. We denote by Bl(t, T ) the bond with the liquidity

problem and with B(t, T ) the liquid bond. Since it is not possible to construct synthetically the

illiquid bond, arbitrage arguments can not be used to force the equality between the prices of

the two bonds, and one of the following inequalities must hold:

Bl(t, T ) ≥ B(t, T ) in a shortage; (8)

Bl(t, T ) ≤ B(t, T ) in a glut. (9)

Therefore a function g(t, T ) exists such that Bl(t, T ) = exp(−g(t, T ))B(t, T ). In a shortage
(glut), g(t, T ) < 0 (g(t, T ) > 0) and the exponential is interpreted as a positive (negative)

convenience yield obtained for holding the bond. Similarly, in our case,

E (S|SBS) ≥ SBS when v (t) is small and positive; (10)

E (S|SBS) ≤ SBS when v (t) is small and negative. (11)

i.e., the stock will on average trade below (above) its Black-Scholes price. We therefore

interpret the value of v(t) as the level of market liquidity at time t. Shortages correspond to

v(t) > 0, while gluts correspond to v(t) < 0. We will prove in Proposition 1 below that the case

v (t) ≡ 0 yields the Black-Scholes economy, and in the next section we will show how, as v (t)
increases in absolute value, the market clearing price processes will exhibit many of the stylized

facts about the effects of illiquidity on asset prices.

In the literature on illiquidity, it is customary to distinguish between the paper value and

the liquidation value of a security/portfolio. The distinction arises from the sparsity of price

quotes in illiquid markets, so that the liquidation value might come as a sudden surprise the

moment a long position has to be liquidated. In our economy, there always exists a price that

clears the whole market supply. We are therefore modeling the security’s liquidation price, the

price at which we have enough buyers to clear the market.

Expression (7) can also be phrased in the Arbitrage Pricing Theory with Illiquidity frame-

work of Cetin, Jarrow and Protter (2002), where it would be the trade-independent, stochastic

case.

In appendix A1, we prove the following.

Proposition 1 Under Assumptions 1, 2 and 3, the market clearing price Si solves

dSi =

µeµi + βiυ(t) +
1

2
β2i v(t)

2

¶
Sidt

+βiv(t)SidW0 + kiSidWi, (12)
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where for notational convenience we have put eµi = µiγi+
1
2η
2
i γi(γi− 1). For the case v ≡ 0, we

have

dSi = eµiSidt+ kiSidWi.

Furthermore, when v ≡ 0, Corr(dSiSi
,
dSj
Sj
) = ρij.

1

In our economy when markets are perfectly liquid, the equilibrium asset price is the familiar

Black-Scholes price. In an interesting paper He and Leland (1993) show that the Black-Scholes

price is the equilibrium price of an economy with a representative agent with von Neumann-

Morgenstern preferences. We may interpret the liquidity discount factor as a perturbation to

the Black-Scholes economy. When there is no perturbation our results recover the Black-Scholes

price, which, following He and Leland (1993), is an equilibrium price in a wider sense. On the

other hand, when markets are illiquid, the asset price moves away form the Black-Scholes price.

In the next section, we investigate the market clearing price process when v(t) 6= 0.

3 Properties of the Derived Price Processes

In this section we show how v(t) 6= 0 can significantly affect expected returns, variances and

correlations of our derived price processes and compare these effects to the literature on illiquidity

and in particular to some stylized facts found in the empirical literature.

Expected Returns. From equation (12) it is easy to see that expected returns are equal

to

E
µ
dSi
Si

¶
=

µeµi + βiυ(t) +
1

2
β2i v(t)

2

¶
dt.

For small v(t), the extra term βiυ(t)+
1
2β

2
i v
2(t) will increase or decrease the expected return for

stock i depending on whether v(t) is positive or negative (see the convenience yield interpretation

given in the previous section), the magnitude of the effect being determined by the value of βi, the

stock’s sensitivity to aggregate illiquidity (liquidity beta). In contrast, for large (both positive

and negative) values of v(t), the quadratic term will dominate the linear one and expected

returns will be increased. Stocks’ expected returns are therefore always increased by sharp

drops in market-wide liquidity.

Previous research on the return-illiquidity relation has focused on quoted bid/ask spreads as

a proxy for illiquidity. Among others, Amihud and Mendelson (1986) and Amihud (2002) find

evidence that asset returns include a significant premium for illiquidity. Figure 1 shows how our

model includes a premium for illiquidity in expected returns.

1To test the coherence of the model we checked whether the variance-covariance matrix of this economy is
positive semi-definite. The proof is in the appendix.
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Variances. The variance for the return of security i is given by

V ar

µ
dSi
Si

¶
=
¡
k2i + β2i v(t)

2
¢
dt.

The positivity of the second term on the right implies that the variance increases with v(t) 6= 0.
A similar result is obtained, for example, by Papanicolaou and Sircar (1998) and Schoenbucher

and Wilmott (2000), who study the effects of the presence in the market of a large trader who

uses dynamic replication strategies. They show that the large trader’s activity perturbs market

equilibrium prices causing an increase in the volatility of the underlying asset. Figure 2 shows

how illiquidity may increase volatilities of asset returns dramatically.

Correlations. It is easy to show that the covariance between the returns of two stocks i

and j is given by

Cov

µ
dSi
Si

,
dSj
Sj

¶
=
¡
kikjρij + βiβjv(t)

2
¢
dt

while the correlation between returns is

Corr

µ
dSi
Si

,
dSj
Sj

¶
=

¡
kikjρij + βiβjv(t)

2
¢n¡

k2i + β2i v
2(t)

¢ ³
k2j + β2jv

2(t)
´o1/2 .

This expression is always increasing in v(t)2, and the magnitude is again determined by the

value of the liquidity beta. The higher the values of the liquidity-betas, the more correlations

will increase with v(t)2. It is well known in the financial industry that historical estimates

of correlation become unreliable in times of high market illiquidity, when it is perceived that

”true”correlations suddenly reach very high values (close to one) (see, Bhansali andWise (2001)).

Our model is able to reproduce this stylized fact. Its correlation structure changes with the levels

of aggregate liquidity and can, in times of market stress, produce a substantial increase in the

value of correlation for stocks which have high liquidity betas. Figures 3 and 4 display two

possible correlation structures as functions of v(t). The effects are dampened for high values

of ks and low values of βs (Figure 3). k is the volatility of stock returns in the Black-Scholes

economy - perfect liquidity v (t) = 0. Therefore, high values of k imply that stock returns are

always very volatile. The impact of illiquidity shocks is, in this case, less strong. On the other

hand, for high values of βs and low values of ks (Figure 4), the effects of aggregate illiquidity

to correlations are remarkable. As a consequence, the CAPM-beta of the stocks in our economy

will also fluctuate with aggregate liquidity levels.
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Sharpe Ratios. The Sharpe ratio for the price process is given by

SR(ai) =

¡eµi + βiυ(t) +
1
2β

2
i v(t)

2
¢
− rq

k2i + β2i v(t)
2

,

r being the riskless short rate in our economy. Figure 5 shows how Sharpe ratios will tend to

increase with v(t) away from zero. Lo, Petrov and Wierbicki (2003), using different liquidity

measures, study the change that occurs in the Sharpe ratio of a portfolio when filtering out of the

portfolio at various dates the securities that fall below a given ”liquidity threshold” (specified

in terms of the different measures). They find that the Sharpe ratio of the portfolio is always

decreased by filtering out the more ”sensitive” stocks, suggesting that illiquidity increases the

stock’s Sharpe ratio.

In this section we showed how our model is able to reproduce all the empirical findings of

the effects of aggregate illiquidity on asset returns, volatilities, correlations and Sharpe ratios.

In what follows, we focus on estimating the parameters’ model.

4 The Econometric Approach

Although the model is developed in a continuous-time setup, the econometric approach is based

on a discrete-time specification. This is not a novelty in the finance literature: Brennan and

Schwartz (1982), Dietrich-Campbell and Schwartz (1986) and Chan (1992), among others, used

this approach - see also Gourieroux, Monfort and Renault (1993).

Starting from the equilibrium price process in Proposition 1 and applying Ito’s Lemma to

derive the rate of return of the price process, the discrete-time econometric model can easily be

written as follows

ri,t =

µeµi − 12ki
¶
+ βivt + ui,t (13)

E (ui,t) = 0 (14)

E
¡
u2i,t
¢
= k2i + β2i v

2
t (15)

E (ui,tuj,t) = kikjρij + βiβjv
2
t ∀i 6= j

where ri,t = ln (Si,t/Si,t−1) and i = 1, 2, ...N .

It is important to note that the processes in (13)-(15) are only an approximation of the

continuous-time time processes implied by Proposition 1.2 In fact, by measuring rates of re-

turns of the price process over discrete-time intervals, entails integrals on the right-hand side of

equation (12) and, therefore, in equations (13)-(15). We are approximating the integrals with

2See Longstaff (1989).
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the area of the rectangle defined by the upper bound value of the process. However, it is possible

to show that the approximation error is of second-order importance over short intervals.

The estimation procedure adopted is GMM - see Chan (1992) and Gourieroux, Monfort and

Renault (1993). The GMM technique is very flexible and does not require any distributional

assumption about the return process. As long as the distribution of asset returns is stationary

and ergodic with finite relevant moments, the model’s parameters can be easily estimated.

Following the standard GMM approach, we define

ft (θ) =

⎛⎜⎜⎜⎜⎝
ui,t

ui,tνt

u2i,t −
¡
k2i + β2i ν

2
t

¢
ui,tuj,t −

¡
kikjρij + βiβjν

2
t

¢

⎞⎟⎟⎟⎟⎠
where θ =

©eµi, ki, βi, ρijª, i = 1, 2, ...N . Equations (13)-(15) imply E (ft (θ)) = 0. The

GMM technique consists of replacing the population moments with the sample moments g (θ) =

T−1
XT

t=1
ft (θ). The parameters’ vector can be estimated by minimizing the quadratic form

J (θ) = g (θ)0W (θ) g (θ)

where W (θ) is a positive-definite symmetric matrix. The total number of parameters in θ

is equal to 3N + N (N − 1) /2, where N is the number of assets considered in the estimation

procedure. This implies that we have exact identification.

To account for autocorrelation, cross-correlation and heteroskedasticity, we computed robust

standard errors using the Newey-West procedure.

5 Measuring Market Illiquidity

In our model expected returns, volatilities and correlations, as well as Sharpe ratios and CAPM-

βs, are functions of vt. To estimate the model we need a proxy for vt.
3 While liquidity is still

an elusive concept, there is, nonetheless, consensus on the following definition which is simple

and serves our purposes.

Definition 2 Liquidity is the ability to trade quickly any amount at the market price with no

additional cost.

An illiquid market, therefore, is characterized by the possibility of a sudden rise/drop of a

security’s price with modest trading volume. In the literature, the most common stock-specific

3An alternative approach would be to estimate vt from a dynamic panel model.
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liquidity measures used are bid-ask spreads, volume and turnover.4 Higher bid-ask spreads

correspond to higher transaction costs, while it is believed that low volume and turnover make it

easier for a single trade to move the equilibrium price. The main problem with these measures is

that they are one-dimensional and can be inconsistent, meaning that a stock could be considered

illiquid in terms of bid-ask spreads but liquid in terms of volume and vice versa. We propose a

simple measure that can capture a sudden rise/drop of a security’s price with modest trading

volume: evt = ri,t
Vi,t

(16)

where ri,t and Vi,t denote the time t return and trading volume for security i, respectively.5

Note that this measure inherits the sign of the time t return, but normalizes the return by

the trading activity. We therefore expect the measure to oscillate around zero and to have

positive (negative) peaks when a substantial positive (negative) price movement is accompanied

by modest volume.

When moving from stock-specific to aggregate illiquidity measures, it is customary to define

an aggregate liquidity measure as an average of the specific liquidity measures of each stock in

the sample.6 However, this makes the aggregate measure highly dependent on the composition

and size of the sample of stocks. By using the measure (16) directly for the S&P500 index return

and volume, we avoid the aggregation problem.

To understand how this measure of liquidity works, we produce a simple example in Table

1.

Daily Returns Daily Volume evt
(Billions)

Liquid Market 0.07% 0.0135 0.052
Illiquid Market -3.6% 0.005 -7.20

Table 1: Measuring Illiquidity: An Example.

The data for the liquid market are the average return and volume of the S&P500 index for

the period January 2003 - September 2003.

The value of evt is, in this case, close to zero, indicating a situation in which the market is
fairly liquid and there is not any unbalances between demand and supply. Since illiquidity is

mostly associated to sudden price drops accompanied by tiny volume, the Illiquid Market in

Table 1 represents a situation in which the index falls by 3.6% and volume is at the minimum

in the analyzed sample. In this case, evt is large and negative as a result of a large negative
movement in the price set off by small trading activity.

4See, among others, Amihud & Mendelson (1986), Lo, Petrov & Wierbicki (2003).
5Amihud (2002) used a similar measure given by the ratio of absolute returns and trading volume.
6See, for example, Amihud (2002), and Chordia, Roll & Subrahmanyam (2001).
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6 Data

We analyze daily data over the period 04 January 1995 - 15 September 2003. The data are taken

from the Yahoo! Finance website. We collected daily data for the S&P500 index, both price and

volume, in order to construct our liquidity measure, evt. For the stock data we selected companies
in terms of sector and market capitalization. In particular, we consider four sectors - Consumer

Discretionary, Industrials, IT and Utilities - and three market capitalization - large, medium and

small caps. For each sector we analyze six stocks, two for each market capitalization, therefore

our sample is composed by a total of 24 companies. The sectors analyzed represent a wide

spectrum of stock market performances and, for each sector and capitalization, we randomly

selected companies that were continuously traded on the NYSE during the period analyzed. We

are aware that we are considering a small sample that may not be sufficient in order to identify

systematic patterns. However, our results already show capitalization and sector patterns for

only 24 stocks. We leave a systematic empirical analysis of the model for future research.

Illiquidity Measure evt. Figure 6 graphs the illiquidity measure evt. We first computed the
S&P500 daily return and then divided by the daily volume.7 We deleted the day before and

after Christmas, New Year, 4th of July and Thanksgiving. It is evident that this measure is

very volatile and shows clusters. Recall that downward (upward) spikes represent modest trading

volume with large negative (positive) price movements. Since illiquidity is mostly associated to

the risk of sudden price drops, we concentrate our attention to downward peaks only. Figure 6

shows that this measure is able to capture the market illiquidity generated by the Asian crisis

(October 1997), the Russian Default/LTCM crisis (August 1998), the technology crisis (April

2000), the war in Iraq (March 2003). Note that 9/11 is not detected as a liquidity crisis, because

of the significant trading activity that took place when market reopened a week later. Table 2,

first column, reports summary statistics for evt. The mean is small and positive indicating that
over the sample period analyzed, there has been, on average, excess demand. This implies, that

over the sample period analyzed, stock market prices increased. Skweness and kurtosis indicate

that evt is not normally distributed and the ADF test8 provides evidence in favor of the I (0)
alternative.

While our measure of illiquidity is able to detect many of the major liquidity crises of the

past 9 years (see Figure 6), it is questionable whether every single movement in the measure

should be seen as a relevant shift in aggregate liquidity. We believe that this measure performs

7One might argue that our liquidity measure is simply capturing returns dynamics. A graphical analysis ofevt and of the return process shows that this is not the case. To the best of our knowledge, we are the first to
propose this liquidity measure. However, Pastor and Stambaugh (2002) use a a similar measure. In particular,
they multiply the return sign by the dollar volume. Amihud (2002) measures illiquidity by the ratio between
absolute returns and volume.

8Results not reported.
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well on its peaks but contains noise. In Brunetti and Caldarera (2004) we use wavelet denoising

techniques to separate the noise from the signal.

Stock Returns We exclude from our sample days without transaction for every stock. The

inclusion of those days could cause a distortion due to artificial serial correlation, a problem that

could particularly affect small cap stocks.

Table 2 reports summary statistics for the 24 asset returns analyzed. We group them accord-

ing to sector. It is interesting to note that for the Consumer, Industrials and Utilities sectors

the standard deviation of daily returns increases as market capitalization decreases. This is not

the case for IT, where standard deviations are generally high when compared to other sectors.

We also point out that extreme values for daily returns (max/min) are sharper as capitalization

decreases. As for the standard deviation, IT does not have this pattern in capitalization. The

distributions of returns exhibit excess kurtosis and negative skewness.

7 Results

For simplicity, we estimated the model two stocks at a time. For each combination of sector and

capitalization, we have a different set of estimates. We list below the results grouped by sector.

Consumer Discretionary βs increase as capitalization decreases. The average β for

Consumer Discretionary is the second highest after IT at about 0.52. The correlations between

the information processes (ρij) are the smallest in the sample, and never significantly different

from zero.

Industrials βs increase as capitalization decreases. The average β for Industrials is the

third highest after Consumer Discretionary at about 0.41. The correlations between the infor-

mation processes (ρij) increase from zero to 0.11 as capitalization decreases.

IT βs decrease as capitalization decreases. The average β for IT is the highest at about

0.8. The correlations between the information processes (ρij) increase from zero to 0.18 as

capitalization decreases. IT exhibits a strong capitalization effect for correlations, since βs

decrease while ks increase. As we move down in capitalization, more and more correlation is

explained by the constant part.

Utilities βs increase as capitalization decreases. The average β for Utilities is the lowest

at about 0.21. The correlations between the information processes (ρij) decrease from 0.3849 to
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0.144 as capitalization decreases. Utilities also exhibit a strong capitalization effect for correla-

tions, since βs increase while ks decrease. As we move down in capitalization, more and more

correlation is explained by the non-constant part.

8 Conclusions

We have presented a new asset pricing framework to study the effects of aggregate illiquidity on

asset price volatilities and correlations. We have shown how the model is a natural extension

of the Black-Scholes world and incorporates the stylized facts from the empirical literature. We

have estimated stocks’ liquidity βs for a sample of 24 stocks. Although the size of the sample

does not allow us to draw definitive conclusions, there is evidence of capitalization patterns.

Verification of these patterns constitutes an interesting topic for future research.

On the one hand, a limitation of our approach is that the equilibrium price does not derive

from the optimization behavior of agents. This is an interesting area for future research. On

the other hand, however, an advantage of our framework is that it is conveniently tractable and

the model can be easily estimated using standard econometrics.
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9 Appendix: Proofs

9.1 Proposition 1

For demand functions of type (1), we can apply the implicit function theorem to equations (1),

to conclude that there exist unique functions Zi such that Si = Zi(Li, Ii), with Zi ∈ C1, i = 1, 2.

Since the calculations are identical, we will only deal with the case the case i = 1,and drop the

index. If Z is C2, we can use Ito’s formula to get

dS =
∂Z

∂L
dL+

∂Z

∂I
dI +

1

2

∂2Z

∂L2
(dL)2 +

1

2

∂2Z

∂I2
(dI)2 (A1)

where the first and second derivatives are

∂Z

∂L
= −DL

DS
and

∂Z

∂I
= −DI

DS
,
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∂2Z

∂L2
= −DLL

DS
+ 2

DLSDL

D2
S

− DSSD
2
L

D3
S

and
∂2Z

∂I2
= −DII

DS
+ 2

DISDI

D2
S

− DSSD
2
I

D3
S

.

Note that the terms
∂2Z

∂L∂I
=

∂2Z

∂I∂L

are irrelevant because of the assumed orthogonality (see Assumption 2).

Computing the relevant derivatives, we obtain the expressions

ZL = −S
L
,

ZI =
γS

I
,

ZLL =
2S

L2
,

and

ZII =
γ(γ − 1)S

I2
.

Substituting in (A1) and using Assumptions 1 and 2 for the dynamics of L and I, we obtain

dSi =

µ
µiγi +

1

2
η2i γi(γi − 1) + βiυ(t) +

1

2
β2i v(t)

2

¶
Sidt

+βiv(t)SidW0 + kiSidWi.

Note that since the price process does not depend on Ψ, each security could be characterized by

a different Ψ, as long as Ψ satisfies (1) in Assumption 3.

9.2 Variance-Covariance Matrix Positive Semi-definite

We prove the statement for the economy with two stocks.

Denoting by Covi,j the 2 × 2 variance-covariance matrix for the returns of stocks i and j,

and using the expressions in section 3, we see that

Covi,j =

Ã
k2i + βi

2v2(t) kikjρij + βiβjv(t)
2

kikjρij + βiβjv(t)
2 k2j + βj

2v(t)2

!
.

Since the diagonal elements are sums of squares, we only have to check that detCovi,j ≥ 0 to
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prove positive semidefiniteness. We have

detCovi,j =
¡
k2i + βi

2v2(t)
¢ ¡
k2j + βj

2v2(t)
¢
−
¡
kikjρij + βiβjv(t)

2
¢2
. (17)

From −1 ≤ ρij ≤ 1 (since ρij is the correlation in the Black-Scholes economy) and the condition
ki > 0, ∀i (see Assumption 3), we have

¡
kikjρij + βiβjv(t)

2
¢
≤
¡
kikj + βiβjv(t)

2
¢
, hence

−
¡
kikjρij + βiβjv(t)

2
¢2 ≥ − ¡kikj + βiβjv(t)

2
¢2

and using this inequality in (16) gives:

detCovi,j ≥
¡
k2i + βi

2v2(t)
¢ ¡
k2j + βj

2v(t)2
¢
−
¡
kikj + βiβjv(t)

2
¢2

=
¡
kiβj − kjβi

¢2
v(t)2 ≥ 0.
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vt Consumers Disc.

Large caps Medium Caps Small Caps

JCP MHP MBG RDA FLE KDE

Mean (%) 0.0847 -0.318 0.0822 0.0271 -0.0608 -0.0512 0.1830

St.Dev. (%) 1.4798 2.6406 1.7376 2.8771 2.2315 3.3783 6.7116

Min (%) -10.2529 -12.9685 -11.9421 -22.9697 -18.0283 -32.7949 -27.4436

Max (%) 6.3057 16.2094 13.3779 20.8207 16.0803 24.2668 31.1436

Ske. -0.2849 0.4404 0.2821 -0.1982 0.1586 -0.7185 0.2353

Kurt. 5.8176 6.8924 7.4634 11.0638 9.8073 17.2214 5.2672

Industrials

Large Caps Medium Caps Small Caps

CBE LMT SPW VCI JLG ROP

Mean (%) 0.0210 0.0482 0.0724 0.0354 0.0515 0.0477

St.Dev. (%) 2.0873 2.070 2.5449 2.1825 3.4785 2.4796

Min (%) -21.4690 -14.7863 -22.1084 -29.5723 -40.2789 -24.5315

Max (%) 24.2594 13.7242 13.4784 10.9038 28.3461 15.2155

Ske. -0.0915 -0.1064 -0.4528 -1.3255 -0.8278 -0.4029

Kurt. 21.3939 8.7932 9.3369 22.8074 19.9375 9.8475

IT

Large Caps Medium Caps Small Caps

AMD CA ARW SY CDT TNL

Mean (%) -0.0455 0.0517 -0.0261 -0.0604 0.0172 0.0882

St.Dev. (%) 4.6033 3.6373 3.0688 4.0809 3.8255 3.6020

Min (%) -39.1595 -36.6794 -19.8451 -53.1395 -18.9906 -46.6486

Max (%) 23.2193 19.8252 41.8360 23.1877 25.2343 22.3915

Ske. -0.3275 -0.4564 1.3988 -0.5653 0.2609 -0.6860

Kurt. 9.1798 11.1375 24.3066 20.0439 5.6281 20.7479

Utilities

Large Caps Medium Caps Small Caps

D PCG EAS POM CNL SWX

Mean (%) 0.0754 0.0451 0.0770 0.013 0.0708 0.0478

St.Dev. (%) 1.4288 2.3166 1.5125 1.4785 1.6657 1.6208

Min (%) -13.6716 -14.0273 -7.6685 -7.7542 -14.4082 -9.9835

Max (%) 8.3728 19.5586 13.8534 9.2885 11.4033 9.3160

Ske. -0.9684 0.2854 0.6188 0.3585 -0.6332 0.2006

Kurt. 13.7734 12.5733 9.1211 6.9332 12.4071 6.3867

Table 2: Summary Statistics.
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Consumers Disc. Large caps Medium Caps Small Caps

JCP & MHP MBG & RDA FLE & KDE

Param. St.Err. Param. St.Err. Param. St.Err.

µ1 2.7480 (0.2302) 3.5142 (0.2875) 4.9242 (0.5920)

µ2 1.1602 (0.1008) 2.0864 (0.1679) 22.0375 (1.4955)

k1 2.3775 (0.0912) 2.6577 (0.1083) 3.1643 (0.1872)

k2 1.4926 (0.0623) 2.0876 (0.0757) 6.6157 (0.2233)

β1 0.5480 (0.0409) 0.5254 (0.0452) 0.5673 (0.0494)

β2 0.4244 (0.0241) 0.3758 (0.0365) 0.5382 (0.1333)

ρ 0.0059 (0.0338) -0.0132 (0.0287) -0.0044 (0.0186)

Obs. 2090 2090 1932

Industrials Large Caps Medium Caps Small Caps

CBE & LMT SPW & VCI JLG & ROP

Param. St.Err. Param. St.Err. Param. St.Err.

µ1 1.6082 (0.2257) 2.8403 (0.2359) 5.5388 (0.5790)

µ2 1.9491 (0.1667) 2.0770 (0.2431) 2.7750 (0.2122)

k1 1.8333 (0.1202) 2.3687 (0.1006) 3.3250 (0.1776)

k2 1.9631 (0.0840) 2.0363 (0.1234) 2.3493 (0.0910)

β1 0.4775 (0.0340) 0.4436 (0.0433) 0.4863 (0.0591)

β2 0.3129 (0.0291) 0.3742 (0.0336) 0.3780 (0.0422)

ρ -0.0378 (0.0464) 0.0601 (0.0294) 0.1133 (0.0246)

Obs. 2090 2089 2090

IT Large Caps Medium Caps Small Caps

AMD & CA ARW & SY CDT & TNL

Param. St.Err. Param. St.Err. Param. St.Err.

µ1 8.0548 (0.6732) 3.3440 (0.5231) 6.4893 (0.4521)

µ2 4.5177 (0.5276) 7.000 (0.8680) 5.2024 (0.5736)

k1 4.0470 (0.1642) 2.6210 (0.1923) 3.6116 (0.1192)

k2 3.0160 (0.1795) 3.7745 (0.2312) 3.2177 (0.1828)

β1 1.0465 (0.0876) 0.7613 (0.0646) 0.6021 (0.0639)

β2 0.9702 (0.0525) 0.7393 (0.0758) 0.7731 (0.0689)

ρ 0.0751 (0.0430) 0.0701 (0.0318) 0.1788 (0.0300)

Obs. 2090 2088 2083

Utilities Large Caps Medium Caps Small Caps

D & PCG EAS & POM CNL & SWX

Param. St.Err. Param. St.Err. Param. St.Err.

µ1 0.9973 (0.1188) 1.1303 (0.0922) 1.2670 (0.1576)

µ2 2.6227 (0.2914) 1.002 (0.0905) 1.1894 (0.0791)

k1 1.3699 (0.0898) 1.4622 (0.0546) 1.5618 (0.1050)

k2 2.2780 (0.1285) 1.4181 (0.0569) 1.5256 (0.0467)

β1 0.1932 (0.02181) 0.1841 (0.0230) 0.2758 (0.0238)

β2 0.1996 (0.0311) 0.1989 (0.0203) 0.2607 (0.0272)

ρ 0.3849 (0.0361) 0.3167 (0.0303) 0.1446 (0.0330)

Obs. 2084 2088 2086

Table 3: Estimation Results. Robust Standard Errors in Parenthesis.
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Figure 1

Figire 2
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Figure 3

Figure 4
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Figure 5
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Figure 6
Illiquidity Measure
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