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Abstract. In recent years the computers have shown to be a powerful tool in
financial forecasting. Many machine learning techniques have been utilized to
predict movements in financial markets. Machine learning classifiers involve ex-
tending the past experiences into the future. However the rareness of some events
makes difficult to create a model that detect them. For example bubbles burst
and crashes are rare cases, however their detection is crucial since they have a
significant impact on the investment. One of the main problems for any machine
learning classifier is to deal with unbalanced classes. Specifically Genetic Pro-
gramming has limitation to deal with unbalanced environments. In a previous
work we described the Repository Method, it is a technique that analyses deci-
sion trees produced by Genetic Programming to discover classification rules. The
aim of that work was to forecast future opportunities in financial stock markets on
situations where positive instances are rare. The objective is to extract and collect
different rules that classify the positive cases. It lets model the rare instances in
different ways, increasing the possibility of identifying similar cases in the future.
The objective of the present work is to find out the factors that work in favour of
Repository Method, for that purpose a series of experiments was performed.

1 Introduction

In recent years computers have shown to be a powerful tool in financial applications, for
that reason many machine learning techniques has been applied to financial problems.
In particular, the use of Genetic Algorithms (GAs), for financial purposes, has increased
considerable. As an instance [1] provides excellent readings from various areas of com-
putational finance. GAs are algorithms that emulate evolution and natural selection to
solve a problem. A population of individuals is evolved applying the crossover and mu-
tation operators. The selection is based on the fitness function, it determines how likely
individuals are to reproduce [2]. Genetic Programming (GP) [3] is an evolutionary tech-
nique whose population is composed by programs (decision trees).

Financial forecasting is one of the most important areas in computational finance
[4]. Tsang et. al [5][6][7] used GP to create a forecasting financial tool whose objec-
tive is to detect opportunities for supporting financial decisions. The idea behind this
approach is to train a GP with a data set in order to create a decision tree that model this
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data. However, when the number of opportunities is extremely small it is very compli-
cated to model the data behavior. For example bubbles, burst and crashes are rare cases,
however their detection is crucial since they have a significant impact on the investment.

This work is motivated by the interest to find rare opportunities. Chance Discov-
ery is the discipline that studies the detection of rare, but significant events that may
have an important impact [8][9]. When the frequency of an event is very low the train-
ing data contains very few positive cases in comparison with the negative cases (un-
balanced classes). Machine learning techniques has serious problems to manage un-
balanced classes. Specifically GP has limitation to deal with this feature because this
favours negative classifications, which has a high chance of being correct due to the
nature of the data. During the evolutionary process rules that classify rare cases has low
fitness, because they contain few cases, as a consequence they tend to be eliminated by
the evolutionary process. To cope with imbalanced classes some techniques has been
developed, as an instance [10] presents a compilation of those techniques. In [11] we
proposed Repository Method (RM) to deal with unbalanced classes, this method gath-
ers rules1 that contribute with the classification task, taking care of the rule variety. RM
was able to improve the recall 2 and the precision3 in the prediccions. The objective of
the present work is to analyse the factors that work in favour of RM in order to fully
identify the impact of each of them.

The remainder of this paper is organized as follows: Section 2 describes the problem
that exemplify RM; Section 3 briefly describes the procedure and results of RM, while
Section 4 presents the experiments to test RM factors. Finally, Section 5 summaries the
conclusions.

2 Problem Description

The objective is to train a GP in order to create a classifier that discover classification
rules for predicting future movements in stock prices. This problem has been addressed
previously by [5][6][12]. The data to train the classifier describes the behaviour of the
stock price by means of a set of attributes or independent variables [13]. These are indi-
cators derived from financial technical analysis. Technical analysis is used in financial
markets to analyse the price behaviour of stocks. This is mainly based on historical
prices and volume trends. In addition every case in the data set has a signal, it indicates
the opportunities for buying or not buying and selling or not selling. The signal is cal-
culated looking ahead in a future horizon of n units of time, trying to detect an increase
or decrease of at least r%.

3 Repository Method

This section presents a brief overview of RM, more detailed information about this
method and its experimental results are available in [11]. The objective of RM is to

1 A Rule is a minimal set of conditions that satisfy a decision tree
2 Recall is the proportion of positive cases that were correctly identified
3 Precision is the proportion of the predicted positive cases that were correct



mine the knowledge acquired by the evolutionary process in order to compile several
rules that model the rare cases in diverse ways. Since the number of positive examples
is very small, it is important to gather all available information about them. The over-
learning produced by this method attempts to compensate the lack of positive cases in
the data set. A GP system is able to produce multiple solutions for a single problem.
However, the normal procedure is to choose only the best individual of the evolution
as the optimal solution of the problem. Regardless that a GP process spends a lot of
computational resources evolving complete populations for several generations the rest
of the population is discarded. In [11] we showed that the remaining individuals could
contain useful information that is not necessarily included in the best individual.

3.1 Repository Method Procedure

A brief description of RM procedure is given in this section, detailed information is
available in [11]. In order to understand RM procedure, let T be a decision tree gener-
ated by a GP. Let define condition as the equation that makes a comparison between i)
two variables (e.g. V ar1 > V ar2) or ii) one variable and a threshold (e.g. V ar1 > 0.9).
Let Rk be a rule from tree T , where Rk is defined as a minimal set of conditions, whose
intersection satisfy T (see Figure 1).

1. Rule extraction: This involves the analysis of decision trees in order to delimit their
rules. Once a rule Rk ∈ T has been identified this is individually evaluated against
the training data. If the precision of Rk achieves a predefined Precision Threshold
(PT), then Rk is considered for the next step (rule simplification), otherwise Rk is
discarded. In other words we have to identify all minimal set of conditions in tree
T , as Figure 1 shows.
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R1 = (Var1 > 0.87)  AND (Var2 < Var3) = { C3, C7 }

R2 = (Var1 > 0.87)  AND (Var2 > 0.09) = { C3, C10 }
Where Ci is the condition composed by nodes i, i + 1 and i + 2

Fig. 1. Example of a decision tree and its rules R1 and R2

2. Rule Simplification: The simplification of rules could be a hard task, specially in
advanced stages of the evolutionary process, due to decision trees generated by



GP tend to grow. Unfortunately this growth does not necessarily contribute with
quality of the proposed solution [14][15][16][17]. The simplification involves i)
removing noisy and redundant conditions from Rk and ii) reducing conditions that
hold thresholds, for instance conditions (V ar1 > .50) and (V ar1 > .89) can be
replaced by V ar1 > .89.

3. New rule detection: Once the rule Rk has been simplified, it is possible to compare
this against the rules in the repository and determine if Rk is not present in that
collection. Thus the following actions will be taken:

– If Rk is a new rule this is be added to the repository
– If there is a rule Ri in the repository such as Ri and Rk are similar rules4 and

Performance(Ri) < Performance(Rk) then Ri is replaced by Rk.
– Otherwise Rk is discarded

3.2 Repository Method results

The experimental results, reported in [11], showed that by combining rules from the
whole population and accumulating these from previous generations RM outperformed
the best tree generated by GP, improving the precision and recall.

3.3 Factors that benefit Repository Method

In this paper we examine the impact of the following factors on the RM:

– The collection of rules in a wider part of the population. It means that combining
rules from several individuals or even the complete population, it is possible to
gather more information about the positive cases in the data set.

– The accumulation of rules from previous generations. We presume that some use-
ful rules can be lost in the evolutionary process, for that reason, it is important to
compare the performance of RM when it is composed by rules of decision trees
from just a specific generation and the performance of RM when it accumulates
rules from previous generations.

A series of experiments was carried out to find out the impact of the mentioned
factors in RM performance.

4 Experiments Description

To study the impact of each of the factors that benefit RM a series of experiment was
carried out. This section describes the experimental design and results.

4 Rk and Ri are similar rules if they have the same hard conditions and similar flexible con-
ditions. A hard condition is a comparison of two variables (e.g. var1 < var2). A flexible
condition is the equation between a variable and a threshold (e.g.var1 < .8). When two flexi-
ble conditions have the same variable and operator they are defined as similar conditions (e.g.
var1 < 3 and var1 < 2 are similar conditions)



Table 1. Financial indicators used in the experiment

Short Long
Indicator name period period

(Days) (Days)
Price moving average 12 50
Price Trading breaking rule 5 50
Filter rule 5 63
Price volatility 12 50
Volumen moving average 10 60
Momentum 10 60
Momentum 10 days moving average 10 –
Momentum 60 days moving average 60 –
Generalized Momentum indicator 10 60
FOOTSIE moving average 12 50
LIBOR: 3 months moving average 12 50

4.1 Population creation

In order to analyse the factors that work in favour or RM, this was tested with a series of
populations from different stages of the evolutionary process. These populations were
created as follows: A population of 1,000 individuals was evolved using a GP system
during 100 generations. Every ten generations the entire population was saved, lets
call them P10, P20 . . . , P100. This process was repeated twenty times. All experimental
results given in the subsequent sections are grouped and averaged by generation and
PT.

4.2 Data sets description

This section describes the data sets that were used to train and test the GP system. Every
data set contain information from the London stock market. Each of them are comprised
by 890 records from Barclays stock (from March, 1998 to January, 2005). The attributes
of each record are composed by indicators derived from financial technical analysis;
these were calculated on the basis of the daily closing price5, volume and some financial
indices as the FTSE6 and LIBOR7. The financial indicators used to forecast the data are
listed in Table 1. These were calculated using two periods of time, one short and one
long. Each period provides a different interpretation. The shorter the time span, the
more sensitive the indicator will be to changes. We looked for events when the price
decrease in 15% in a horizon of 10 days.

5 The settled price at which a traded instrument is last traded at on a particular trading day.
6 An index of 100 large capitalization companies stock on the London Stock Exchange, also

known as ”Footsie
7 London interbank offered rate



4.3 Experimental procedure

To find out the factors that favour RM a series of experiments was performed. Lets
Accumulated Repository Method (ARM) be the procedure that collects rules through
different generations (This experiment was designed to accumulate rules just from pre-
vious generations that are multiple of 10) and let Simple Repository Method (SRM)
be the process that compiles rules just from a specific generation. AR and SR denote
two rules repositories created by ARM and SRM respectively. Subscripts indicates the
number of top individuals that were analyzed to collect rules. Superscript specifies the
generation that was analyzed to compile rules. For instance, AR70

100 is a repository that
compiles rules from the top 100 individuals, these rules were accumulated during gen-
erations 10,20,. . . ,70. On the other hand SR70

10 is a repository that comprises rules from
the top 10 individuals in just generation 70.

Table 2. Simple Repository Method results. The table displays the recall, precision and accuracy
for (a) Best Individual, (b) SR10 (c) SR100 (d) SR1000. where SR represents an simple repository
of rules and subscripts denote the number of top individuals used to created the repository. The
Precision Threshold is 60%

Gen Recall Precision Accuracy
(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

10 1% 2% 2% 1% 1% 1% 2% 1% 97% 96% 96% 97%
20 0% 1% 3% 4% 0% 3% 3% 2% 96% 97% 96% 95%
30 12% 2% 7% 12% 2% 1% 3% 5% 94% 95% 94% 93%
40 11% 4% 7% 20% 4% 3% 3% 6% 90% 95% 93% 91%
50 11% 3% 14% 28% 6% 2% 5% 8% 93% 94% 92% 90%
60 7% 6% 13% 31% 6% 5% 5% 9% 94% 94% 92% 89%
70 17% 7% 17% 35% 6% 5% 6% 8% 87% 94% 91% 88%
80 10% 10% 21% 41% 4% 7% 6% 9% 93% 93% 90% 87%
90 6% 12% 20% 36% 7% 6% 6% 8% 94% 93% 90% 87%
100 14% 14% 23% 41% 2% 7% 7% 8% 88% 92% 90% 86%

To find out the effects of the number of individuals involved in the rule search,
we applied SRM in order to create three simple repositories. The first gathers rules
from the top ten individuals of the population, the second collects rules form the top
100 individuals and finally the third compiles rules in the complete population (1000
individuals). Lets call them SR10,SR100 and SR1000, respectively. This process was
applied to population P10, P20, . . . , P100 described in 4.1, using PT = 60%. Table 2
shows the recall (b), precision (d) and accuracy (f) of this experiment.

In order to test the effects of rule accumulation the previous experiment was re-
peated for ARM, results are displayed in Table 3. Figure 2 shows the graphs that com-
pare the performance of the best individual against the performance of the experiment
(a),(c),(e).
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Fig. 2. Graphs show the results using Accumulated Repository Method (ARM) and Simple
Repository Method (SRM), the experiment was performed using a PT=60% (a) ARM Recall,
(b) SRM Recall, (c) ARM Precision, (d) SRM Precision, (e) ARM accuracy, (f) SRM Accuracy



Table 3. Accumulated Repository (AM) results. The table displays the recall, precision and ac-
curacy for (a) Best Individual, (b) AR10 (c) AR100 (d) AR1000. where AR represents an accu-
mulated repository of rules and subscripts denote the number of top individuals used to created
the repository. Precision Threshold is 60%

Gen Recall Precision Accuracy
(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

10 1% 2% 2% 1% 1% 1% 2% 1% 97% 96% 96% 97%
20 0% 3% 3% 4% 0% 2% 2% 2% 96% 96% 96% 95%
30 12% 5% 8% 14% 2% 2% 3% 5% 94% 95% 93% 92%
40 11% 8% 11% 25% 4% 3% 4% 7% 90% 94% 92% 90%
50 11% 9% 17% 34% 6% 4% 5% 8% 93% 93% 91% 89%
60 7% 10% 20% 40% 6% 5% 6% 9% 94% 93% 91% 88%
70 17% 12% 25% 45% 6% 6% 7% 9% 87% 93% 90% 87%
80 10% 18% 32% 48% 4% 7% 8% 9% 93% 92% 89% 86%
90 6% 20% 34% 48% 7% 7% 8% 9% 94% 91% 88% 85%
100 14% 23% 36% 49% 2% 7% 8% 9% 88% 90% 88% 85%

4.4 Experimental results

This section shows the results of the experiments in 4.3. As Figure 2 shows the best
individual of the population is not consistent because its recall and precision fluctuate
from generation to generation. It may be because during the training procedure the best
tree picks a limited number of rules that model the training data, however when the
same tree is tested with another data set, it may or may not model the new data. In
contrast RM steadily improved its recall and precision. It indicates that the best indi-
vidual of the population does not necessarily include all the information produced by
the evolutionary process, showing that the analysis of the information from a wider part
of the population is able to contribute with the classification task. When the repository
was created extracting rules from a bigger number of individuals the recall and preci-
sion increases. It shows that many useful information could be extracted from a wider
part of the population. However, in all cases the accuracy decreases when the recall
and precision increases. The reason for this is that the tree is classifying more positive
cases. However, despite the fact that precision improved, the classifier produces more
mistakes affecting the accuracy.

As can be seen from figure 2, the recall and precision reported by ARM (a),(c)
outperformed the SRM results (b),(d). The difference between them is that ARM ac-
cumulates rules though generations and SRM does not. It means that ARM compiles
more useful rules than SRM. It proves that some useful rules could be lost during the
evolutionary process.

4.5 Rule distribution

In order to identify which individuals contribute to the repository rule. We counted the
number of rules that every individual provided. This number indicates the number of
rules that were included in the rule repository.



Fig. 3. Distribution of rules

Figure 3 shows the number of rules per individual in an accumulated repository
of 1,000 individuals, during 100 generations. The X-axis refers every individual in the
population, they are ordered according to their fitness function 8. The best individual
is in the first position, while the worst is in position 1,000, To smooth the graph, the
number of rules was averaged on groups of twenty individuals. On the other hand Y-
axis represents the average number of rules per individual. This uses different precision
thresholds PT =60,70,80. As can be observed ARM picked rules from all sectors of
the population. However, the number of rules tends to reduce slightly when the ranking
decreases. The fact that the graph oscillates may be due to individuals that have similar
fitness hold similar rules. In that case RM does not extract new rules because one con-
dition to be included in the repository is the novelty of the rule. As one might expect
the number of rules tends to decrease when PT increases because the method become
stricter and fewer rules are selected.

5 Conclusions

Experiments show that RM is able to gather rules that together classify more positive
cases. The analysis of a wider part of the population helps to gather more rules that
improve the recall and precision. On the other hand the experiment showed that some
useful rules can be lost in the evolutionary process. For that reason the accumulation of
rules, through generations aids to classify positive cases. From experimental results we
can conclude that the factors that benefit RM are the collection of rules from a wider
part of the population as the accumulation of rules though generations.

8 The fitness function is geometric mean of the product of precision and recall. This evaluation
is suitable to deal with imbalanced classes [10]
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