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Abstract: We study the descriptive and the normative consequences of
attribute changes in standard discrete choice models. For additive random
utility models, we derive expressions for the transition choice probabilities for
a change in the systematic utility. We then use these expressions to compute
the CDF’s of the compensating variation conditional on the initial and on
the final choices. The conditional moments of the compensating variation are
obtained as a one-dimensional integral of the transition choice probabilities.
We also provide a stochastic version of Shephard’s Lemma when transitions
are observed. Example of the logit and the disaggregated CES are also
studied.
Keywords: Random Utility Models, Transition Choice Probabilities, Multi-
nomial Logit Model, CES, Conditional Compensating Variation, Shephard’s
Lemma.
JEL Classification: D11, D60.



1 Introduction

Discrete choice models (DCM) describe the individual choices of one
alternative in a set of mutually exclusive alternatives. In the standard ap-
proach adopted here, each alternative (i) is associated with a utility Ui, with
Ui = vi + εi, where vi is the systematic utility and εi is an error term known
by the individual but treated as a random variable by the modeler. The in-
dividual selects the alternative with the largest utility. The modeler assigns
a probability Pi that an individual selects alternative i. Pi is equal to the
probability that the random variable Ui is larger than all the other random
variables Uk, k �= i. This approach corresponds to the random utility models
(RUM).

Such models have initially been studied in the transport literature (to
describe the choice between private and public transportation) and in the
urban literature (to describe residential location; see the early contributions
of Domencich and McFadden [11]). Later on, RUM models have been used in
many other fields, such as education, demography, industrial organization,
public economics, experimental economics, decision theory and marketing
(see Anderson, de Palma and Thisse [3], who have discussed the neoclassical
economic foundations of RUM and developed the theory of structural mod-
els used in industrial organization; see also the survey of McFadden [14]).
Estimation of RUM (logit, probit, ordered probit, generalized extreme value
models, mixed logit, etc.) has attracted a lot of attention during the last half
century (see, e.g. the contributions of McFadden and Train [15] and Train
[18]).

RUM have been used as descriptive tools (to understand the determi-
nants of individuals choices) as well as normative tools (to study the welfare
implications and the social acceptability of a policy). The welfare proper-
ties of the RUM are well known for the simplest model, the multinomial
logit, which leads to the “logsum” formula (in the standard logit, εi are
i.i.d. double-exponentially distributed and income enters the utility function
linearly with a uniform coefficient, i.e. there are no income effect). The ex-
tensions including income effects and using other error terms specifications
are more intricate.

Small and Rosen [17] have addressed the question of income effect in
RUM. They have derived an approximative expression of the expected com-
pensating variation for a price or other attribute change (they focus on taxa-
tion). They extend the conventional welfare approach to the DCM framework
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and show that the expected compensating variation can be computed as an
integral of the Hicksian choice probabilities (compensated choice probabili-
ties). Using a similar approach based on the Hicksian choice probabilities,
Dadgsvik and Karlstrom [7] derive an exact formula for the compensating
variation (CV) associated to a price (or attribute changes). More precisely,
they provide an expression for the distribution of the CV conditional on the
initial individual choices, i.e. given that the individual choices are observed
before the change.2

Welfare measures with income effects have also been studied via numerical
simulations by McFadden [13], who has developed a sampler for computing
the CV caused by a change in the individual environment. For the generalized
extreme value models (or GEV), which extends the multinomial logit model,
he has provided an algorithm, the GEV sampler, to estimate welfare effects.
However, even though this sampler leads to consistent results, it is time
consuming since a large number of iterations must be performed in order to
obtain with a reasonable level of accuracy numerical approximations of the
true welfare impacts.

In this paper, we wish to analyze the theoretical properties of RUM,
when a price or attribute change modifies the utility of various alternatives.
First, as a consequence of the change, some individuals will alter their initial
choices. It is assumed that individual error terms remain the same before
and after the change. The expressions for the transition choice probabilities
are provided in Theorem 1.3 This information is useful per se to evaluate the
consequences of a policy since it is not sufficient, as it is currently the case,
to know only the choice probabilities ex-ante (i.e. before the change) and/or
ex-post (i.e. after the change). Moreover, the estimation of the parameters
is improved when ex-ante and ex-post choices are observed.4 Finally, infor-
mation on transition choice probabilities is crucial to evaluate the welfare
consequences of this change.

Second, we compute the welfare implications consecutive to this change.
More precisely, we compute the distribution of the CV for different sets of
individuals (defined by their ex-ante and their ex-post choices). A simple ex-

2von Haefen [19] has shown that the observed choice behavior of the individuals (i.e.
here the initial choices) improves the accuracy of the calculation of consumer surplus.

3Such expression were derived by de Palma and Kilani [9] for the special case of the
multinomial logit model.

4In this case, the likelihood function depends on the transition choice probabilities; this
problem is beyond the scope of this paper.
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ample shows that the information on the transitions leads to better estimates
of the CV than the ones obtained when only ex-ante or ex-post information
on individual choices are observed. This generalization of the expressions
derived by Dagsvik and Karlstrom [7] and by de Palma and Kilani [8] is
made possible by the use of a direct approach based on Marshalian transi-
tion choice probabilities. By contrast, Dagsvig and Karlstrom use Hicksian
choice probabilities relying on unobservable information, since their values
depend on the unobservable error terms εi.

The structure of the paper is as follows. In Section 2, we compute the
CV for a simple binary linear in income choice model and consider the im-
pacts of a change in one price. In Section 3, we provide the assumptions on
the utility functions and on the distribution of the error terms. We prove
Theorem 1 which provides an analytical formula for the transition choice
probabilities for additive random utility models (ARUM). The logit special
case is handled in Proposition 2. In Section 4, we define the CV for ARUM.
Theorem 4 provides an analytical expression (based on the transition choice
probabilities) for the distribution of the CV conditional on the transitions.
We then compute the various moments of the CV, which are given as a one-
dimensional integral either of the transition choice probabilities (Theorem
6) or of the choice probabilities (Corollary 7). We also introduce a stochas-
tic version of Shephard’s Lemma for DCM (Proposition 8) in the context
of transitions. In Section 5, utility is additive in income and error terms
are double-exponentially distributed. We apply our previous results to the
special case of the logit model with no income effects and verify that the
expected CV coincides with the logsum. For the disaggregated version of
the CES, we propose a new exact welfare measure. In Section 6 we discusses
further extensions.

2 Motivation

We start with a simple example and consider a DCM with two alternatives,
denoted by 1 and 2, and we study the consequences of a price change. We
show that the econometric investigator can get much better estimates of the
welfare impacts of this change, when information concerning ex-ante choice
and ex-post choice are used.

Assume that the ex-ante utility of a given individual is Ui = αi (y − pi)+
εi, where αi > 0 is the marginal utility of income (denoted by y) of good i, pi is
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the prices of good i, and εi is an unobservable error term, i = 1, 2. We assume
that the values of the error terms remain the same ex-ante and ex-post. For
the sake of simplicity, ex-ante prices are such that: U1 − U2 = ε1 − ε2 ≡ η,
where η (also unobservable) is assumed to be uniformly distributed over
[−A,A]. Hence, good 1 is chosen ex-ante if and only if η > 0 (ties are
ignored). We study the transition when the price of good 1 is raised by
∆p1 > 0.

Three cases arise: (a) if η > α1∆p1, the individual chooses 1 ex-ante
and ex-post (this transition is denoted 1 →֒ 1); (b) if α1∆p1 ≥ η > 0, the
individual chooses 1 ex-ante and 2 ex-post (transition 1 →֒ 2); (c) if η < 0,
the individual chooses 2 ex-ante and ex-post (transition 2 →֒ 2).5

The compensating variation cv associated to this price change, defined as
the solution of:

max (U1, U2) = max (U1 − α1cv − α1∆p1, U1 − α2cv) ,

is given by:6

cv =





0, if η ≤ 0;
−η/α2, if 0 < η ≤ α2∆p1;
−∆p1 if α2∆p1 < η.

Let α1 ≥ α2 (larger marginal utility of income for good 1). Three cases
arise: (a) For a transition 1 →֒ 1, we have cv = −∆p1: the individual
receives a compensation of ∆p1 and continues to stick to his original choice
1 after compensation. (b) For a transition 1 →֒ 2, the support of cv is
[−∆p1, 0]. There is a mass at (−∆p1) corresponding to the probability that
the individual shifts (after the price change) from 1 to 2, and returns to 1
after being compensated by −cv. Otherwise, the individual selects good 2
after being compensated by η/α2. (c) For a transition 2 →֒ 2, we have cv = 0.

5The individual can stick to alternative 1 if A > α1∆p1.
6The three cases arise if A > α2∆p1. For simplicity we assume: A > max (α1, α2)∆p1.
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The discussion is illustrated in Figure 1.

 

ηηηη    
α1∆p1 α2∆p1 
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 -∆∆∆∆p1111    −−−−ηηηη/α/α/α/α2222    

0 

Transition

0000    cv 

Case α1>α2 

−Α Α 

Figure 1: Transitions and CV with respect to η

Let α1 ≤ α2. Again three cases are envisaged: (a) For a transition 1 →֒ 1,
cv has [−∆p1,−ρ12∆p1] as support where ρ12 ≡ α1/α2. The CV has a mass
at (−∆p1) corresponding to probability that the individual sticks to good 1
after the change, and after compensation. Otherwise, the individual shifts
to good 2 after being compensated by η/α2. (b) For transition 1 →֒ 2, the
support of cv is [−ρ12∆p1, 0]. The individual continues to select good 2 after
being compensated by η/α2. (c) For a transition 2 →֒ 2, we have cv = 0 (see
Figure 2).
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α1∆p1 α2∆p1 
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 -∆∆∆∆p1111    −−−−ηηηη/α/α/α/α2222    

0 
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Case α1<α2 

Α −Α 

Figure 2: Transitions and CV with respect to η

We can use the above discussion to compute the expected CV conditional
to the transition i →֒ j, i, j = 1, 2. We denote this conditional expected CV
by Ei→֒j (cv). If α1 ≥ α2, we have:

E1→֒1 (cv) = −∆p1; E1→֒2 (cv) = − (1− ρ21/2)∆p1; E2→֒2 (cv) = 0.
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If α1 ≤ α2, we obtain:

{
E1→֒1 (cv) = − [(2A− α1ρ12∆p1 − α2∆p1) /2 (A− α1∆p1)]∆p1;
E1→֒2 (cv) = − (ρ12/2)∆p1; E2→֒2 (cv) = 0.

We wish to compare the quality of the estimates of cv with respect to
the knowledge of the ex-ante and/or ex-post choice. We set α1 = α2 = α
(no income effects). Without ex-ante and/or ex-post information concerning
individual’s choice, an appropriate estimate of cv is the expected CV denoted
by E (cv) and given by

E (cv) = −
1

2

(
1−

α∆p1
2A

)
∆p1.

First, assume that only the ex-ante choice is observed. If the individual
selects 2 ex-ante, cv is deterministic and equal to 0, so that the conditional
expectation denoted by E2→֒ (cv) verifies: E2→֒ (cv) = 0. If the individual
selects 1 ex-ante, cv is random and replaced by its conditional expectation
denoted by E1→֒ (cv) given by

E1→֒ (cv) =
E (cv)

(1/2)
= −∆p1

(
1−

α∆p1
2A

)
.

Second, assume that only the ex-post choice is observed. If the individual
selects 1 ex-post: E→֒1 (cv) = −∆p1. If the individual selects 1 ex-post, we
get:

E→֒2 (cv) =
E1→֒2 (cv)× P1→֒2

P→֒2
= −

∆p1
2

(
α∆p1

α∆p1 + A

)
.

Third, assume that the ex-ante and the ex-post choices are observed. If 1
is selected ex-ante and ex-post, then cv = −∆p1; if 2 is selected ex-ante and
ex-post, then cv = 0. If 1 is selected ex-ante and 2 is selected ex-post then
cv is random and replaced by its conditional expectation denoted E1→֒2 (cv):
E1→֒2 (cv) = −∆p1/2.

In summary: the individual in 2 ex-ante or in 1 ex-post receive a de-
terministic compensation. By contrast, the observation of the choice of 1
ex-ante only or of 2 ex-post only is insufficient: information on ex-ante and
ex-post choices (1 →֒ 2) improves the quality of information on the CV.
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We have computed the root-mean square errors σ (cv |I ) for the four
estimators based on the information I on individual choice: ”without” infor-
mation, with “ex-ante”, with“ex-post” and with “transitions” information.
The largest gains occur when transitions are observed. When only ex-post
information is available, the gain can be small. Figure 3 shows the impact of
the magnitude of the change ∆p1 for α = 1 and A = 1.

Figure 3: R.M.S.E. with four information regimes

These results suggest that the information on the ex-ante and/or ex-post
individual choices lead to better estimates of the CV, but that an ex-ante
information only is better than ex-post information only. Note that when
∆p1 = 1, there are no more transitions so that “ex-ante” and “transitions”
information regimes coincide. Similarly, “without” and with “ex-post” infor-
mation regimes also coincide.

3 Transition choice probabilities

There are n alternatives and preferences are described by an ARUM. We
consider the impacts of a change and study the individual choices before (ex-
ante) and after (ex-post) the change. The ex-ante (conditional) utility Ui of
an individual selecting i is given by Ui = vi+εi, where vi, the ex-ante system-
atic component of the utility Ui of i is assumed to be observable and where
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εi is an error term, which captures unobservable individual characteristics
that are modelled by the econometric investigator as a random variable.

Let F be the CDF of the vector of error terms (ε1...εn) which is assumed
to be absolutely continuous with respect to the Lebesgue measure over a
convex support. Therefore (see McFadden [12]) the probability Pi (v), that
an individual selects ex-ante i can be written in an integral form7

Pi (v) ≡ Pr (Ui > Uk, k �= i) =

∫ +∞

−∞

F i (u− v1...u− vn) du, (1)

where v ≡ (v1...vn) is the systematic utility vector and where: F i (x1...xn) ≡
∂F (x1...xn) /∂xi . Note that the choice probabilities are invariant up to a
shift: Pi (v1 + δ...vn + δ) = Pi (v).

8 The expected individual demand Xi for
alternative i can be obtained by using Roy’s identity (see Anderson de Palma
and Nesterov [2] and Section 5 for an illustration in the CES case).

Let Πji be minus the derivative of Pi with respect to vj. A derivation of
(1) under the integral sign (see Anderson et al. [3]) yields:

Πji ≡ −
∂Pi
∂vj

=

∫ +∞

−∞

F ij (u− v1...u− vn) du, (2)

where F ij ≡ ∂F i /∂xj , i, j = 1...n. Note the equality of the cross-derivatives:
Πji = Πij, j �= i.9

The ex-post utility of an individual selecting j is Υj = ωj + εj , where ωj
is the (observable) ex-post systematic component of Υj . The probability of
selecting ex-post j is given by Pj (ω), where ω ≡ (ω1...ωn) (see Eq. (1)).

7We will omit the argument of the choice probabilities and of the other functions
introduced in the sequel when it is unambiguous.

8It can be verified that:
∑
i Pi = 1. Using Eq. (1), we obtain that:

∑

i

Pi =

∫ +∞

−∞

∑

i

F i (u− v1...u− vn) du.

An antiderivative of
∑
i F

i (u− v1...u− vn) is F (u− v1...u− vn). It follows that:

∑

i

Pi = lim
u→+∞

F (u− v1...u− vn)− lim
u→−∞

F (u− v1...u− vn) = 1.

9Morover Eq. (2) implies that
∑
iΠ

j
i = −∂ [

∑
i Pi] /∂vj = 0 since

∑
i Pi = 1.
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The (transition) choice probability that an individual selects i ex-ante
and j ex-post is

Pi→֒j (v;ω) ≡ Pr (Ui > Uk, k �= i; Υj > Υr, r �= j) . (3)

Theorem 1 provides an integral form for these transition choice probabilities.
Let δk ≡ Υk − Uk = ωk − vk, k = 1...n, be the utility variation10 of k.
We assume without loss of generality the ranking δ1 ≤ ... ≤ δn. Define
t+ = max(t, 0). We have:

Theorem 1 For an ARUM, consider the change: v → ω. The transition
choice probabilities from i to j are given by:

Pi→֒j (v;ω) =





Pi

(
v1 + (δ1 − δi)

+ ...vn + (δn − δi)
+) , if j = i;∫ δj

δi
Πji
(
v1 + (δ1 − z)+ ...vn + (δn − z)+

)
dz, if j > i;

0, if j < i.

(4)

Proof. The probability Pi→֒i (see Eq. (3)) given by
Pi→֒i = Pr (Ui > Uk, k �= i; Υi > Υr, r �= i), can be rewritten as

Pi→֒i = Pr (Ui > Uk, k �= i;Ui > Ur + (δr − δi) , r �= i) ,

and further simplified as

Pi→֒i = Pr
(
Ui > Uk + (δk − δi)

+ , k �= i
)
. (5)

Comparing (5) with (1), we deduce that

Pi→֒i = Pi
(
v1 + (δ1 − δi)

+ ...vn + (δn − δi)
+) .

If j �= i, with δj > δi, Pi→֒j given by (3) can be rewritten as

Pi→֒j = Pr
(
Ui > Uk +

(
δk − ζ ij

)+
, k �= i, j; δj > ζ ij > δi

)
, (6)

where the random variable ζ ij ≡ Υj−Ui represents the utility variation after
the change.
Clearly, if i > j and therefore δi ≥ δj, then Pi→֒j = 0 as required.

10The utility variation δk is deterministic since the (additive) error terms of the utility
are assumed to be invariant after the change.
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If j > i, we associate to Ui and to Υj the variables of integration u and w,
respectively. Remark that if z ≡ w − u verifies δj ≥ z ≥ δi, then u − vi =
u − vi − (δi − z)+ and w − ωj = u − vj − (δj − z)+. The transition choice
probability (6) can then be written in the following integral form:

Pi→֒j =

∫ ∞

−∞

∫ u+δj

u+δi

F ij
(
u− v1 − (δ1 − z)+ ...u− vn − (δn − z)+

)
dwdu.

Using the change of variable z = w − u within the inner integral, we get:

Pi→֒j =

∫ ∞

−∞

∫ δj

δi

F ij
(
u− v1 − (δ1 − z)+ ...u− vn − (δn − z)+

)
dzdu.

The Fubini’s theorem allows us to permute the integral signs so that:

Pi→֒j =

∫ δj

δi

∫ ∞

−∞

F ij
(
u− v1 − (δ1 − z)+ ...u− vn − (δn − z)+

)
dudz.

Thanks to Eq. (2), the inner integral is Πji
(
v1 + (δ1 − z)+ ...vn + (δn − z)+

)
,

and therefore:

Pi→֒j =

∫ δj

δi

Πji
(
v1 + (δ1 − z)+ ...vn + (δn − z)+

)
dz,

which is the required expression. �

The probability Pi→֒i to select i before and after the change is given by
a choice probability as defined by (1). We discuss the case 1 < i < n, with
n > 2 (the other cases are left to the reader). For k < i, δk ≤ δi; therefore, if
an individual selects i (with utility vi) ex-ante, he will prefer i to k ex-post.
Let k > i with δk ≥ δi. In this case, an individual who selects i ex-post (with
utility ωi) prefers i to k ex-ante. Therefore,

Pi→֒i = Pi(v1...vi, ωi+1 − δi...ωn − δi) = Pi(v1 + δi...vi−1 + δi, ωi...ωn) (7)

represents the probability that an individual selects i ex-ante and ex-post.
The transition choice probabilities from i to j, j �= i are clearly zero if j

is weakly deteriorated in relative term with respect to i (δj ≤ δi). For j ≥ i,
we define the transition i →֒ j to be feasible if it occurs with a strictly posi-
tive probability. The transition choice probabilities are explained intuitively
below. For δj > δi, these transition choice probabilities Pi→֒j are given by

10



an integral on z = (ωj + εj) − (vi + εi), which represents the utility varia-
tion of an individual who shifts from i to j. Note that z > δi (the utility
variation when staying in i) and z < δj (otherwise j would have been pre-
ferred to i to ex ante). The integrand Πji

(
v1 + (δ1 − z)+ ...vn + (δn − z)+

)

represents the probability density that the individual who experienced a util-
ity change of z shifts from i to j. Finally note that the argument z in(
v1 + (δ1 − z)+ ...vn + (δn − z)+

)
plays a similar role than δi in the vector(

v1 + (δ1 − δi)
+ ...vn + (δn − δi)

+).
When n = 2 or 3, transition choice probabilities reduce to choice prob-

abilities (using standard constraints on probabilities). For n > 3, there are
a priori n (n− 1) /2 integrals. However, using the 2n − 3 constraints, the
computation of all transition choice probabilities requires the computation
of at most (n− 2) (n− 3) /2 integrals.

The constraints on the transition choice probabilities can be easily checked.
As expected, the ex-ante and ex-post choice probabilities can be recovered by
summation of the transition choice probabilities given in Theorem 1. More
precisely, using (4) it can be shown that:11

∑

j

Pi→֒j = Pi (v) and
∑

i

Pi→֒j = Pj (ω) . (8)

Note that these expressions are straightforward to derive if one uses directly
the expressions in (3).

We consider below a simple example, where only one alternative is changed.
In this case, the transition choice probabilities can be computed and inter-
preted easily.
Example 1 (One alternative deteriorated) Assume that 1 is deterio-
rated: v → (ω1, v2...vn) with (ω1 < v1). Applying Theorem 1, the transition
choice probabilities are given by:12

P1→֒j
=

{
P1 (ω1, v2...vn) , if j = 1;

Pj (ω1, v2...vn)− Pj(v), if j > 1.

11The proof is available on request
12Clearly: P1→֒1 = P1 (v1, v2 − δ1...vn − δn) = P1 (ω1, v2...vn). For z ∈ [δ1, 0], we have:

(v1 + (δ1 − z)
+
...vn + (δn − z)

+) = (v1, v2 − z...vn − z), so that for j > 1 we have:

P
1→֒j

=
∫ 0
δ1
Πj1(v1, v2 − z...vn − z)dz which can be rewritten as:

P
1→֒j

=

∫ 0

δ1

Π1j (v1 + z, v2...vn)dz = Pj (ω1, v2, ..., vn)− Pj (v) .

11



Note that if an individual selects 1 ex-post with the systematic component of
the utility (ω1, v2...vn), he will also selected 1 ex-ante. Hence, P1 (ω1, v2...vn)
represents the probability that 1 is selected ex-ante and ex-post. Recall that the
probability that an individual selects j ex-post is Pj (ω1, v2...vn). Therefore,
Pj (ω1, v2...vn)−Pj(v) corresponds to the probability that an individual shifts
towards j, j �= 1 after the change. Note also that if j is selected ex-post
with the systematic component of the utility (ω1, v2...vn), it means that j was
selected ex-ante. As a consequence, Pj (ω1, v2...vn) − Pj(v1...vn) represents
the probability that i is chosen ex-ante and that j is selected ex-post.
Example 2 (One alternative improved) Similarly, assume that n is
improved: v → (v1...vn−1, ωn) with (ωn > vn). Using Theorem 1, we have:

P
i→֒n

=

{
Pi (v)− Pi (v1...vn−1, ωn) , if i < n;

Pn (v) , if i = n.

The proof and the discussion are easily adapted from the previous case.
The transition choice probabilities are explicit for the logit model. In this

case, the CDF is given by:13

F (x1...xn) = exp

(
−
∑

i

e−xi

)
, (9)

which yields the following choice probabilities (see Domencich and McFadden
[11]):

Pi (v) =
evi∑
k evk

. (10)

We will use in the rest of the paper the following notations:




sr ≡
∑

k≤r e
vk ;

σr ≡ σ0 −
∑

k≤r e
ωk , with σ0 ≡

∑
k eωk ;

Ωr ≡ sr + σre
−δr , r = 1...n.

(11)

Proposition 2 For the logit specification (9), consider the change: v → ω.
The transition choice probabilities from i to j are given by:

Pi→֒j =





evi
Ωi

, if j = i;
∑j−1

r=i

(
evi
Ωr+1

− evi
Ωr

)
eωj

σr
, if j > i;

0, if j < i.

(12)

13The margins are i.i.d. according to the double-exponential distribution.
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Proof. If j = i, using Eq. (7) with the logit choice probabilities (10) we
get: Pi→֒i = evi/Ωi, where Ωi =

∑
k≤i e

vk +
∑

k>i e
ωk−δi , i < n and where

sn =
∑

k evk .
If δj > δi, with n > j > i > 1, using Eq. (4), we have:

Pi→֒j =

j−1∑

r=i

∫ δr+1

δr

Πji (v1...vr, ωr+1 − z...ωn − z)dz.

For the logit, Πji = PiPj so that

Pi→֒j = evieωj
j−1∑

r=i

∫ δr+1

δr

e−z

(sr + σre−z)
2dz.

We integrate in each interval [δr, δr+1] to get:

Pi→֒j =

j−1∑

r=i

(
evi

Ωr+1
−

evi

Ωr

)
eωj

σr
,

since sr + σre
−δr = Ωr and

sr + σre
−δr+1 =

∑
k≤r e

vk +
∑

k>r e
ωk−δr+1 =

(sr − evr+1) +
(
eωr+1−δr+1 + σre

−δr+1
)
= Ωr+1.

The remaining cases i = 1 and j = n are left to the reader. �

First remark that in the case of Example 1 with ω1 < v1, P1→֒j
, with

j �= 1, can be written, in the logit case, as:

P
1→֒j

=

[
ev1∑
k evk

−
eω1

eω1 +
∑

k>1 e
vk

]
×

evj∑
k>1 e

vk
,

where the first term on the RHS represents the probability that an individual
abandon 1, while the second term is the probability that j is the second best
choice (this independence results is specific to the logit).14 The other cases
are more involved and explained below.

Note that evi/Ωr, r ≥ i represent the probability to choose i ex-ante
and to get a utility variation in [δi, δr]. The probability of this event can

14The reader is also referred to de Palma and Kilani [9] who compute the conditional
transition probabilities, where changes are conditional to the ex-ante choice.
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be written as Pr
(
Ui > Uk + (δk − δr)

+ , k �= i
)
; it corresponds to a choice

probability with the systematic utility given by (v1...vr, ωr+1 − δr...ωn − δr).
In particular, if r = i, evi/Ωi is the probability to have a utility variation of
exactly δi. It corresponds to Pi→֒i

since the individual sticks to alternative i
if anf only if he has a utility variation of δi.

15 If the individual shifts from i
to j, the associated utility variation lies within the interval [δi, δj]. The term
evi/Ωr+1−evi/Ωr represents the probability that an individual abandon i and
have a utility variation in the interval [δr, δr+1]. He will choose an alternative
k such that k > r. The probability that he chooses j among the feasible
choices k (with k > r) is eωj/

∑
k>r e

ωk .

4 Welfare

In the previous section, we provided an expression for the transition choice
probabilities Pi→֒j for a change v → ω. We study now the distribution of
individual compensations and the welfare impacts associated to this change.
We assume that the ex-ante (ex-post) indirect utility Uk (resp. Υk ) of k is a
function of the individual’s income y. They are denoted as Uk (y) (resp. as
Υk (y))

16 and assumed to be strictly increasing and continuous in y.

Welfare distribution

The compensating variation cv is defined as the amount of income needed
to restore the ex-ante individual’s utility level after the change v → ω. In
the DCM literature (see, McFadden [13]), this means:

max
k

(Uk) = max
k

[Υk (y − cv)] . (13)

Since the utilities are random due to the presence of the error terms (recall
Ui = vi + εi), cv is also a random variable.

In order to insure that Eq. (13) admits a unique solution, we should make
an additional assumption. Let δk (c) ≡ Υk (y − c)−Uk be the (deterministic)
utility variation of k after the change and after compensation of −c, with
δk (0) = δk. We require that for any i, k, there exists a real ψik defined by:

δk (ψik) = (δk − δi)
+ . (14)

15Note that
∑j−1
r=i [(e

vi/Ωr+1 − evi/Ωr)] = evi/Ωj − evi/Ωi represents the probability
that an individual chooses i ex-ante and incurs a utility variation in [δi, δj ].
16We skip the argument of the utility function, when these are unnecessary.
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The interpretation of the (ψik)
′ s is provided in the following Lemma:

Lemma 3 Given a feasible transition i →֒ j, the support of cv is included
in [mij,mj ], where mij ≡ max

(
ψii, ψij

)
and where mj ≡ maxk

(
ψjk
)
.

Proof. See Appendix 1. �

As we have seen in Section 2, the CV conditional on the transitions i →֒ i
can be stochastic. This is not the case in the absence of income effects.

We wish to compute the distribution of cv using the information on the
individual transitions after the change: v → ω. Consider a feasible transition
i →֒ j. The CDF of cv, conditional on a feasible transition i →֒ j, denoted
by Φi→֒j , is given by:

Φi→֒j (c) ≡
Pr (c ≥ cv;Ui > Uk, k �= i; Υj > Υr, r �= j)

Pi→֒j (v, ω)
. (15)

In Theorem 4, an analytic expression for Φi→֒j is provided. Let δ+k (c) =
max (δk (c) , 0) and recall that mij ≡ max

(
ψii, ψij

)
and mj ≡ maxk

(
ψjk
)
.

We have:

Theorem 4 For an ARUM, consider the change: v → ω. The CDF of
the compensating variation conditional on the transition i →֒ j has support
(mij ,mj] and is given by:

Φi→֒j (c) =
Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)

Pi→֒j (v, ω)
, c ≥ mij, (16)

where the transition choice probabilities Pi→֒j (., .) are given in Theorem 1.

Proof. If i is chosen ex-ante, the event {c ≥ cv} can also be written as:

{
max
k

[Υk (y − cv)] ≥ max
k

[Υk (y − c)]
}
= {Ui ≥ Υk (y − c) , ∀k} ,

using the fact that the Υk’s are strictly increasing in y and recalling the
definition of cv. For c ≥ mij ≥ ψii, we have necessarily Υi (y − ψii) = Ui ≥
Υi (y − c) , so we get {c ≥ cv} = {Ui ≥ Υk (y − c) , k �= i} or

{c ≥ cv} = {Ui ≥ Uk + δk (c) , k �= i} .
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Hence, {c ≥ cv} = {Ui > Uk + δk (c) , k �= i}, a.e., and we rewrite Eq. (15)
as:

Φi→֒j (c) =
Pr (Ui > Uk + δk (c) , k �= i;Ui > Uk, k �= i; Υj > Υr, r �= j)

Pi→֒j (v, ω)
,

or further as:

Φi→֒j (c) =
Pr
(
Ui > Uk + δ+k (c) , k �= i; Υj > Υr, r �= j

)

Pi→֒j (v, ω)
. (17)

Comparing the numerator of Eq. (17) with Eq. (3), we deduce that it takes
the form of a transition probability of the type i →֒ j corresponding to a
change

(
v1 + δ+1 (c) ...vn + δ+n (c)

)
→ ω. Therefore, according to Theorem 4,

we get Eq. (16).
According to Lemma 3, the support of cv conditional to transition i →֒ j is
included in [mij ,mj]. We proof here that the support is (mij,mj ].
First, the ith component of

(
v1 + δ+1 (c) ...vn + δ+n (c)

)
is vi while the other

components are vk + δ+k (c) ≥ vk, k �= i, with at least one strict inequality.
As a consequence,

Pi→֒j (v, ω) > Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)
,

so that 1 > Φi→֒j (c). Therefore, the support of cv extends up to mj .
Second, if j = i, and c ≥ mii = ψii, we necessarily have Φi→֒j (c) > 0 since
we always have

Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)
> 0.

Third, if j > i (and δj > δi), let c > mij. We have δ+i (c) = 0 since c > ψii
and δ+j (c) < δj − δi since c > ψij . As a consequence, in both cases, a

transition i →֒ j is feasible with a change
(
v1 + δ+1 (c) ...vn + δ+n (c)

)
→ ω

(see Theorem 1) since

ωi −
(
vi + δ+i (c)

)
= δi < ωj −

(
vj + δ+j (c)

)
= δj − δ+j (c) , (18)

which implies that Φi→֒j (c) > 0. Finally, note that if mij = ψij, the previous
inequality (18) became an equality for c = ψij so that the (conditional on
i →֒ j) distribution of cv has no jump at the lower bound of the support, i.e.
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for c = mij. Otherwise, if mij = ψii > ψij , the inequality is still strict for
c = mij = ψii, so that the distribution has no jump at this point. �

This expression allows the computation of the distribution of cv when
only the ex-ante or the ex-post choice is observed. In this case, the condi-
tional distribution of cv depends on the choice probabilities and not on the
transition choice probabilities as in Theorem 4. We now compute Φi→֒ (resp.
Φ→֒j) the conditional CDF of cv given the ex-ante (resp. ex-post) choice
of i (resp. j). Let mj ≡ mini (mij) and let Hmij

(c) ≡ 1 if c ≥ mij and
Hmij

(c) ≡ 0 otherwise be the Heaviside function at mij.

Corollary 5 For an ARUM, consider the change: v → ω. The CDF of the
compensating variation
(a) conditional on the ex-ante choice of i has support [ψii,mn] and is:

Φi→֒ (c) =
Pi

(
v1 + δ+1 (c) ...vn + δ+n (c)

)

Pi (v)
, c ≥ ψii; (19)

(b) conditional on the ex-post choice of j, has support
[
mj,mj

]
and is:

Φ→֒j (c) =

∑
iHmij

(c)× Pi→֒j
(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)

Pj (ω)
, c ≥ mj . (20)

Proof. See Appendix 2. �

The CDF (19) coincides with the CDF derived by Dagsvik and Karlstrom
[7] and by de Palma and Kilani [8] in the case where only the ex-ante choices
are observed. Note that for the logit model, the CDF of the CV conditional
on the ex-ante choice of i is given by:

Φi→֒ (c) =

∑
k evk

∑
k evk+δ

+
k
(c)

, c ≥ ψii. (21)

Finally, the unconditional distribution of cv can be computed using Eq. 19
and making use of the theorem on total probability (see also Dagsvik and
Karlstrom [7] and de Palma and Kilani [8]):

Φ (c) =
∑

i

Hmii
(c)× Pi

(
v1 + δ+1 (c) ...vn + δ+n (c)

)
.

Welfare moments
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We now compute the conditional to the ex-ante and/or ex-post choice as
well as the unconditional moments of the distribution of cv.

Theorem 6 For an ARUM, consider the change: v → ω. The pth moment
(p ≥ 1) of the compensating variation conditional on the transition i →֒ j is
given by:

Ei→֒j [cv
p] = mp

j − p

∫ mj

mij

cp−1
Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)

Pi→֒j (v, ω)
dc. (22)

Proof. For 0 ≤ π ≤ 1, define the conditional quantile function Φ−1i→֒j (π) ≡
sup {c ∈ [mij ,mj] |π ≥ Φi→֒j (c)}, which is the inverse of the conditional CDF
of cv. By definition, the pth conditional moment of cv verifies Ei→֒j [cv

p] ≡∫ 1
0

[
Φ−1i→֒j (π)

]p
dπ. For c ∈ [mij ,mj], the function Φi→֒j (c) is continuous

and monotonic. It is therefore a.e. differentiable according to the Lebesgue
theorem (cf. Rudin [16]). As a consequence, a PDF φi→֒j can a.e. be
defined. Using the change of variable: π = Φi→֒j (c), with c ∈ [mij ,mj], we

get Ei→֒j [cv
p] = mp

ijΦi→֒j (mij)+
∫ mj

mij
zpφi→֒j (c) dc. Then using an integration

by parts, we obtain: Ei→֒j [cv
p] = mp

j − p
∫ mj

mij
cp−1Φi→֒j (c) dc. This general

property can be used for the ARUM specification where Φi→֒j (.) is given by
(16) and leads to the required result (22). �

When p = 1, Eq. (22) provides the expected CV conditional on the
observed transitions. This is reminiscent of the standard treatment of sur-
plus, and involves the computation of areas under the compensated transition
choice probabilities curves.

Corollary 7 For an ARUM, consider the change: v → ω. The pth (p ≥ 1)
moment of the compensating variation conditional is given for
(a) the ex-ante choice of i by:

Ei→֒ [cvp] = mp
n − p

∫ mn

ψii

cp−1
Pi

(
v1 + δ+1 (c) ...vn + δ+n (c)

)

Pi (v)
dc; (23)

(b) the ex-post choice of j by:

E→֒j [cv
p] = mp

j − p
∑

i

∫ mj

ψii

cp−1
Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)

Pj (ω)
dc. (24)
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Proof. Use the same technique as for the proof of Theorem 6 by considering
Φi→֒ given by (19) instead of Φi→֒j or by considering Φ→֒j given by (20) instead
of Φi→֒j. �

Equation (23) with p = 1 coincides with the expected CV conditional on
the ex-ante choice derived by Dagsvik and Karlstrom [7] and by de Palma
and Kilani [8]). In this case, areas under the compensated choice probability
curves are required. Equation (24) is new and relies on the expressions
obtained in Theorem 6.

Using Corollary 7 with Eq. (8), the pth unconditional moment of the CV
verifies:

E [cvp] = mp
n − p

∑

i

∫ mn

ψii

cp−1Pi
(
v1 + δ+1 (c) ...vn + δ+n (c)

)
dc. (25)

In particular, the expectation of cv is given by

E [cv] = mn −
∑

i

∫ mn

ψii

Pi

(
v1 + δ+1 (c) ...vn + δ+n (c)

)
dc. (26)

According to Eq. (26), E [cv] is the sum of the integrals of parametrized
choice probabilities Pi

(
v1 + δ+1 (c) ...vn + δ+n (c)

)
. An approximative expres-

sion for the expected CV was previously envisaged by Small and Rosen [17].

Shephard’s lemma

We assume that the systematic component of the utility (ex-ante and ex-
post) of k depends on income y and on price level pk and is given by Vk (y, pk).
Assuming that Vk (., .) is differentiable with respect to both arguments, the
conditional (individual) demand xk for good k is determined by using Roy’s
identity: xk = − (∂Vk/∂pk) / (∂Vk/∂y) , k = 1...n. Note that in ARUM,
the conditional demands are deterministic, i.e. are independent on the error
terms. Let ∆pk be a price change of good k. The corresponding CV for an
individual who sticks to good k is ψkk. Shephard’s Lemma, which is a direct
application of the Envelope Theorem, gives: lim∆pk→0 ψkk/∆pk = −xk.

In the RUM approach, when an individual modify her choice after an
infinitesimal price change, the corresponding CV is stochastic (i.e. depends
on the error terms of the initial and of the final good). Therefore, we com-
pute the expected CV, conditional of the transition in order to write the
counterpart of Shephard’s Lemma in the RUM models. We have:
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Proposition 8 For an ARUM, consider the infinitesimal change of the price
of one good. The expected change in CV per dollar for an infinitesimal price
increase of good 1, conditional on the ex-ante and the ex-post choices is:

lim
∆p1→0+

E1→֒j [cv]

∆p1
=





−x1, if j = 1;
−
ρ1j
2

x1 if j > 1, ρ1j ≤ 1;
−
(
1−

ρj1
2

)
x1 if j > 1, ρj1 ≤ 1,

(27)

where ρij ≡ (∂Vi/∂y) / (∂Vj/∂y) .
The expected change in CV per dollar for an infinitesimal price decrease of
good n, conditional on the ex-ante and the ex-post choices is:

lim
∆pn→0−

Ei→֒n [cv]

∆pn
=

{
−1
2
xn, if i < n;

−xn, if i = n.
(28)

Proof. See Appendix 3. �

To illustrate Proposition 8, consider a price increase. The result for the
case if j = 1 is trivial, since this is Sheppard’s Lemma. The intuition for the
case if j > 1 is more subtle. First note that the consumer who is indifferent
between 1 and j (i.e. the first individual to shift) requires no compensa-
tion. Second, consider the “last” individual ready to shift from 1 to j, i.e.
indifferent between state 1 and state j. The indifference ex-post implies that:

v1(p1 +∆p1, y) + ε1 = vj(pj, y) + εj.

Since ∆p1 → 0, we have: εj − ε1 = v1+∆p1 (∂V1/∂p1)− vj (where argument
are omitted when unnecessary). The CV gives:

v1(p1, y) + ε1 = vj(pj , y − cv) + εj .

Since cv → 0 as ∆p1 → 0, v1+ ε1 = vj − cv (∂Vj/∂y) + εj , so that, using the
expression for εj − ε1 derived above, we get:

cv =
vj − v1 + (εj − ε1)

∂Vj/∂y
= ∆p1

∂V1/∂p1
∂Vj/∂y

.

Using Roy’s identity (x1 = − (∂V1/∂p1) / (∂V1/∂y)), we get:

cv

∆p1
= −x1

∂V1/∂y

∂Vj/∂y
= −x1ρ1j .
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Therefore, the average (per dollar) CV is given, as required, by: −x1ρ1j/2.
Finally, note that by applying the theorem on total probability to (27) and

(28), one obtains: lim∆p1→0+ E [cv] /∆p1 = X1 and lim∆pn→0− E [cv] /∆pn =
Xn, respectively. Recall that Xi, i = 1...n, represents the expected individual
demand for good i. This weaker version of the Shephard’s has been obtained
by Dagsvik and Kalstrom [7] and by de Palma and Kilani [8].

5 Additive in Income logit specification

In this section, we concentrate our attention on the logit model, where the
transition choice probabilities have an explicit form (see Proposition 2). We
assume that the utility is additive in income, i.e. that Uk − v (y) (resp.
Υk − v (y)) is independent on income, where v (.) is strictly increasing. Note
that we consider the case where v (.) is independent from the alternatives.

We first provide the expressions for the CDF of CV’s conditional on the
transition i →֒ j. They have closed forms given by:

Proposition 9 For the logit specification (9) with additive in income utility,
consider the change: v → ω. The compensating variation conditional on the
transition i →֒ j has support

[
ψii, ψjj

]
. For c ∈

[
ψll, ψ(l+1)(l+1)

]
, j > l ≥ i,

the CDF is given by:

Φi→֒j (c) =
1

Ξij

[
Ξil +

1

σl

(
1

sl + σle−δy(c)
−

1

Ωl

)]
, (29)

where Ξii = 0 and Ξil =
∑l−1

r=i σ
−1
r

(
Ω−1r+1 − Ω−1r

)
, l > i, with sr, σr and Ωr

given by (11).

Proof. We have: δk (c) = δk − δy (c), where δy (c) ≡ v (y) − v (y − c) is
strictly increasing in c. The ψ′iks, defined by (14), verify:

ψik =

{
δ−1y (δk) , if k < i;
δ−1y (δi) , if k ≥ i.

Note that ψik ≤ ψii since δ−1y is increasing and since δk ≤ δi for k ≤ i.
Therefore, the support of the distribution of cv conditional on the transition
i →֒ j, j ≥ i, is:

[
ψii, ψjj

]
, since ψij = ψii = δ−1y (δi) = mij and since

mj = δ−1y (δj) = ψjj.
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If c ∈
[
ψll, ψ(l+1)(l+1)

]
, then v + δ+ (c) = (v1...vl, ωl+1 − δy (c) ...ωn − δy (c))

so that ω −
[
v + δ+ (c)

]
= (δ1...δi...δl, δy (c) ...δy (c)). Therefore, we have the

ranking δ1 ≤ ... ≤ δl ≤ δy (c). Using Eq. (12) (see Proposition 2), we get

Pi→֒j

(
v + δ+ (c)

)
= evi+ωj

∑j−1
r=i σ

−1
r

[
Ω−1(r+1)l (c)− Ω−1rl (c)

]
, where

Ωrl (c) =

{
Ωr, if r ≤ l;

sl + σle
−δy(c), if r > l.

As a consequence, for j > l ≥ i, we have

Pi→֒j

(
v + δ+ (c)

)
= evi+ωj

{
Ξil + σ−1l

[(
sl + σle

−δy(c)
)−1

− Ω−1l

]}
.

Using the fact that Pi→֒j (v) = evieωjΞij , j > i, we get Eq. (29). �

The expected CV’s conditional on the transition i →֒ j can be computed
up to (n− 1) integral terms:

Proposition 10 For the additive in income logit, consider the change: v →
ω. The expected compensating variation conditional on the transition i →֒ j,
j > i, is given by:

Ei→֒j [cv] =

{
ψii, if j = i;

1
Ξij

∑j−1
r=i

1
σr

[
ψ(r+1)(r+1)
Ωr+1

− ψrr
Ωr
− θr

]
, if j > i,

(30)

where Ξij ≡
∑j−1

r=i σ
−1
r

(
Ω−1r+1 − Ω−1r

)
, j > i, and where

θr ≡

∫ ψ(r+1)(r+1)

ψrr

dc

sr + σre−δy(c)
, r = 1...n− 1, (31)

with sr, σr and Ωr given by (11).

Proof. See Appendix 4. �

The formula (30) with (31) generalizes the standard logsum expression
(discussed below) in many ways. It conditions the expected CV on both the
ex-ante and the ex-post choices and it captures income effects.

Using the same integral terms θr (r = 1...n − 1), it is possible to derive
expressions of the expected CV when the ex-ante or the ex-post (Corollary
11) are observed. We have:
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Corollary 11 For the additive in income logit, consider the change: v → ω.
The expected compensating variation conditional on
(a) the ex-ante choice of i is:

Ei→֒ [cv] =

{
ψnn − sn

∑n−1
r=i θr, if i < n;

ψnn, if i = n;
(32)

(b) the ex-post choice of j is:

E→֒j [cv] =

{
ψ11, if j = 1;

σ0

{
ψjj
σj−1

−
∑j−1

r=1
1
σr

(
eωrψrr
σr

− srθr

)}
, if j > 1,

(33)

with sr, σr and Ωr given by (11).

Proof. (a) If i < n, we have

Ei→֒ [cv] =
n∑

j=i

Pi→֒j (v, ω)

Pi (v)
Ei→֒j [cv] . (34)

Using (10) and (12) (see Proposition 2), the ratio of probabilities are:

Pi→֒j (v, ω)

Pi (v)
=

{
sn/Ωi, if j = i;

sne
ωjΞij , if j > i.

(35)

Therefore, using (35) and (30) (see Proposition 10), we write (34) as

Ei→֒ [cv] = sn

{
ψii
Ωi

+
n∑

j=i+1

j−1∑

r=i

eωj

σr

[
ψ(r+1)(r+1)

Ωr+1
−

ψrr
Ωr

− θr

]}
,

which can be rewritten by inverting the two sum signs as

Ei→֒ [cv] = sn

{
ψii
Ωi

+
n−1∑

r=i

n∑

j=r+1

eωj

σr

[
ψ(r+1)(r+1)

Ωr+1
−

ψrr
Ωr

− θr

]}
,

and simplified as

Ei→֒ [cv] = sn

{
ψii
Ωi

+
n−1∑

r=i

[
ψ(r+1)(r+1)

Ωr+1
−

ψrr
Ωr

− θr

]}
.
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It can be readily be shown that this expression is equivalent to Eq. (32).
Finally, if i = n, clearly we have En→֒ [cv] = ψnn.
(b) See Appendix 5. �

Given that E [cv] =
∑n

i=1 Pi (v)Ei→֒ [cv], we get that for the additive in
income logit, the expected CV is:17

E [cv] = ψnn −
n−1∑

r=1

srθr. (36)

Assume for example that for all initial choice, the individual has benefited
from the change. In this case, ψnn is the maximal benefit induced by this
change. This benefit has to be reduced to take into account that the indi-
vidual with another ex-ante choice requires a smaller compensation.

Proposition 10, Corollary 11 and Eq. (36) show that the conditional and
the unconditional CV’s can be obtained from the same set of values θr. When
income is additive and linear or logarithmic, there exists an explicit formula
for the θ′rs that will be exploited below.

Applying the Theorem

We consider below the two well known logit and CES specifications:
Example 3 (The linear in income logit) If v (y) = (1/µ) y, with µ > 0,
we have δy (c) = (1/µ) c and ψkk = µδk. We get the following explicit
expression of the integral term

θr = µ

(
δr+1 − δr + lnΩr+1 − ln Ωr

sr

)
, r = 1...n− 1.

Using these expression of θr in (36) leads to the following formula for the
unconditional expected CV:

E [cv] = µ ln (σ0/sn) = µ ln
∑

k

eωk − µ ln
∑

k

evk . (37)

This expression (37) corresponds to the difference between the ex-post
and ex-ante logsums. The well known logsum formula has been intuitively
derived by Ben-Akiva [4] and formalized by McFadden [12]) as a welfare

17Using e.g. Eq. (32), we get E [cv] = ψnn−
∑n−1
i=1

∑n−1
r=i e

viθr. Eq. (36) is obtained by
inverting the two sum signs.
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measure. It is widely used in many application of the linear in income multi-
nomial logit model. The formula for the conditional CV’s (see Proposition
10 and Corollary 11) are explicit in this case. Our analysis allows to compute
conditional logsums which provide more accurate evaluation of surplus when
ex-ante and/or ex-post choices are observed (see the numerical illustrations
provided in Section 2).

When the utility is additive but non linear in income, as for the CES
model, we can still derive an explicit formula for the expected CV’s:
Example 4 (The logarithmic in income logit) If v (y) = (1/µ) ln y,
with µ > 0, we have δy (c) = − (1/µ) ln (1− c/y) and ψkk = y

(
1− e−µδk

)
.

The integral term in this case is given by18

θr = µy
sµ−1r

σµr
B sr

Ωr
, sr
Ωr+1

(1− µ, µ) , r = 1...n− 1,

where B denotes the generalized incomplete Beta function19. The expected
CV for the logarithmic in income logit model is

E [cv] = y

[
1− e−µδn −

1

β

n−1∑

r=1

(
sr
σr

)µ
B sr

Ωr
, sr
Ωr+1

(1− µ, µ)

]
. (38)

Assume for example that the systematic component of the utility has the
following specification: vk = (1/µ) (ln y − ln pk) where pk denotes the ex-ante
price of good k. Using the Roy’s identity, the (ex-ante) expected demand for

good i is: Xi = yp
− 1
µ
−1

i /
∑

k p
− 1
µ

k .
Anderson et al. [1] have shown that the CES representative consumer

model (see Dixit and Stiglitz [10]) can be derived as a logit model with in-
come additive logarithmic specification and double-exponentially distributed
error terms. We provide below an expression for the conditional (and un-
conditional) CV corresponding to the CES. Anderson et al. [3] (pp. 97-100)
show that “a rise in the CES indirect utility function does not necessarily im-
ply that all constituent consumers (...) can be made better off by appropriate
redistribution of income.” This criticism of the representative consumer can
be handled when the CV is first computed at the individual level and then

18Use the change of variable t = sr/
[
sr + σr (1− c/y)

1/µ
]
.

19Recall that the generalized incomplete Beta function is given by: Bz0,z1 (a, b) ≡∫ z1
z0
ta−1 (1− t)b−1 dt, where a, b ∈ R and z0, z1 ∈ ]0, 1[.
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aggregated over the population. We provide this result below. Consider a
change in prices (p1...pn) → (ρ1...ρn), where ρk is the ex-post price of good
k. In this case, the expected (aggregated) CV for the CES is given by

E [cv] = y

[
1−

ρn
pn
− µ

n−1∑

r=1

Πr
Pr
×B sr

Ωr
, sr
Ωr+1

(1− µ, µ)

]
, (39)

where Pr =
(∑r

k=1 p
−1/µ
k

)−µ
and Πr =

(∑n
k=r+1 ρ

−1/µ
k

)−µ
are respectively

the partial ex-ante and the ex-post CES price indices, and where in this case
the arguments of the Beta function are such that:





sr/Ωr =
[
1 + (prΠr/ρrPr)

−1/µ
]−1

,

sr/Ωr+1 =
[
1 +

(
pr+1Πr/ρr+1Pr

)−1/µ]−1
.

(40)

These expressions differ from the aggregate standard welfare measures of
the CES model. They provide alternative welfare measure to assess the
policy implication of price changes. These disaggregated measures can be
easily aggregated and challenge the existing standard aggregate CES welfare
measures used in various applications in economics. Further extensions are
discussed in the next section.

6 Concluding remarks

In this paper, we have presented a first step towards a dynamic choice model,
where individuals alter their current choice after a change in the attributes
of the alternatives. For ARUM, we have computed the transition choice
probabilities and the associated welfare measures (CV) and have provided
analytical functional forms. Using these formulae will ease the econometric
and the welfare analysis both at the theoretical and empirical levels. Theses
applications reamain unexplored till now.

The proposed framework can be extended in several directions. The most
important extension involves the mixed logit model, widely used in empir-
ical applications (see Berry et al. [5], [6], McFadden and Train [15], and
Train [18]). In this case, some parameters entering the systematic utility are
distributed so that the transition choice probabilities will involve a kernel
that have been computed in Section 3, while the various welfare measures
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(conditional and unconditional distribution and moments of CV) will involve
explicit kernels provided in Section 5. In this sense, the mixed logit would
only add an integral for each parameter that is being distributed.

We have concentrated our analysis on the case where only one series of
change occur at once, and individual choices are observed ex-ante and ex-
post (i.e. before and after this change). Moreover, we have assumed that the
error terms remain the same, and this is not necessary the case in a truly
dynamic model. It is easy to consider situations, and model situations where
individuals have some probability to inherit a new error term (for some or
all alternatives) when a change has occurred. Besides, practical situations
may involve several changes staggered over time. In this case, the exact
dynamics of the error term is relevant. Indeed, without fixed error terms,
each change induces transitions which provide information on the parameters
of the systematic utility as well as on the value of the error terms. As a
consequence the model may lead to inconsistent sequence of choice if the
error terms are individual specific. The redraw of the error terms avoid to
avoid these inconsistent series of choices. There is still have a long way to
compute exact formulae for truly dynamic random utility models. We hope
that this paper provides a useful first step in this direction.
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this paper.
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Appendix

1 Proof of Lemma 3

Proof. First note that ψii restores the utility of i to its ex-ante level Ui,
since Υi (y − ψii) = δi (ψii) + Ui = Ui.
For a transition i →֒ i, we have Ui ≥ Uk + (δk − δi)

+ (see (5)). As a con-
sequence, since Υk (y − c) = Uk + δk (c), then ψik (which solves δk (ψik) =
(δk − δi)

+) is the largest amount needed to restore the utility of alternative k
to the ex-ante level Ui. As a consequence, ψii = mi ≤ cv ≤ maxk (ψik) = Mi.
For a transition i →֒ j, j > i, since Uj +(δj − δi) ≥ Ui ≥ Uj, then ψij (which

solves δj
(
ψij
)
= δj − δi) and ψjj (which solves δj

(
ψjj
)
= 0) are respectively

the lowest and the largest amount needed to restore the utility of alternative j
to the ex-ante level Ui, with necessarily ψij ≤ ψjj . Moreover, for k �= i, j, we

have Uk+
(
δk − ξij

)+
≤ Ui, where ξij ≡ Υj−Ui (see (6)). Since δj ≥ ξij ≥ δi,

ψjk (which solves δj
(
ψjj
)
= (δk − δj)

+) is the largest amount needed to re-
store the utility of alternative k to the ex-ante level Ui. Altogether, the above
conditions imply: max

(
ψii, ψij

)
= mij ≤ cv ≤ max

[
ψii,maxk �=i

(
ψjk
)]
.

Since δi ≤ δj , we have that ψji = ψii, we get: mij ≤ cv ≤ mj. �

2 Proof of Corollary 5

Proof. (a) Using Theorem 4, for feasible transitions, we have mij ≥ ψii.
Moreover, since ψjk solves δk

(
ψjk
)
= (δk − δj)

+, and since δk (c) is decreasing

in c, we have (recall that mj ≡ maxk
(
ψjk
)
) the ranking:

m1 ≤ ... ≤ mn.

Since δk (ψnk) = (δk − δn)
+ = 0, we have ψnk = ψkk so thatmn = maxk (ψkk).

Therefore, the support of cv conditional to the ex-ante choice of i is [ψii,mn].
Moreover, according to Theorem 4, we get that:

Φi→֒ (c) =

∑
j∈Fi→֒

Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)

Pi (v)
, (41)

where Fi→֒ stands for the set of alternatives j such that i →֒ j is feasible. For
non-feasible transitions i →֒ j where δi ≥ δj , if c ≥ ψii the ith component
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of
(
v1 + δ+1 (c) ...vn + δ+n (c)

)
is vi while its jth component is vj + δ+j (c). We

have

ωi − vi = δi ≥ ωj −
(
vj + δ+j (c)

)
= δj − δ+j (c) ,

so that for a change
(
v1 + δ+1 (c) ...vn + δ+n (c)

)
→ ω, the transitions i →֒ j is

non-feasible. Therefore,

Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)
= 0.

This allows us to extent the sum sign in (41) to all alternatives to get:

Φi→֒ (c) =

∑
j Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)

Pi (v)
.

Then, using Eq. (8), we get Eq. (19).
(b) According to Theorem 4, the support of cv conditional to the ex-post
choice of j is

[
mini∈Fj (mij) ,mj

]
where Fj is the set of alternatives i such

that i →֒ j is feasible. For non feasible transitions verifying δi ≥ δj , we
have ψij = ψjj and therefore that mij ≥ ψjj = mjj . As a consequence,

mini∈Fj (mij) = mini (mij) = mj and the support is
[
mj ,mj

]
.

For c ≥ mj, using Theorem 4, we get that

Φ→֒j (c) =

∑
i∈Fj

Hmij
(c)× Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)

Pj (ω)
. (42)

The sum can be extended to non feasible transitions i →֒ j to get Eq. (20).
Indeed, either c < mij and therefore Hmij

(c) = 0 or, if c ≥ mij, since

δj
(
ψij
)
= (δj − δi)

+ = 0, we have that c ≥ mij ≥ ψjj . The ith component

of
(
v1 + δ+1 (c) ...vn + δ+n (c)

)
is vi and its jth component is vj so that for(

v1 + δ+1 (c) ...vn + δ+n (c)
)
→ ω, the transitions i →֒ j is non-feasible and

hence

Pi→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω

)
= 0. �

3 Proof of Proposition 8

Proof. Recall that (see Eq. (22)):

E1→֒j [cv] = mj −
1

P1→֒j (v;ω1, v2...vn)

∫ mj

m1j

Ij (δ1, c) dc, (43)
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where Ij (δ1, c) ≡ P1→֒j

(
v1 + δ+1 (c) ...vn + δ+n (c) ;ω1, v2...vn

)
, j = 1...n, and

where mj = maxk
(
ψjk
)
, with ψjk solving δk

(
ψjk
)
= (δk − δj)

+ , k = 1...n,
(see Eq. (14)).
Note that ψ11 < 0 since δ1 < 0. The Roy’s Identity applied in the deter-
ministic case leads to: lim∆p1→0+ (ψ11/∆p1) = −x1. Moreover, since δk = 0,
k = 2...n, we have: δk (ψ1k) = (0− δ1)

+ = −δ1, k = 2...n. Accordingly,
ψ1k < 0, k = 2...n, and limδ1→0− (ψ1k/δ1) = (∂Vk/∂y)−1. Therefore, using
again the Roy’s Identity in the deterministic cas we have:

lim
∆p1→0+

(
ψ1k
∆p1

)
= −x1ρ1k, k = 1...n.

Therefore: lim∆p1→0+ (m1/∆p1) = −mink (ρ1k)x1. Now, since I1 (δ1, c) is
continuous in c, using the mean value theorem for integration, we get

E1→֒1 [cv] = m1 −
(m1 − ψ11) I1 (δ1, c̃1)

P1→֒1 (v;ω1, v2...vn)
,

where c̃1 ∈ (ψ11,m1). Now using the fact that lim∆p1→0+ I1 (δ1, c̃1) = I1 (0, 0)
= P1→֒1 (v, v) = P1 (v) and that lim∆p1→0+ P1→֒1 (v;ω1, v2...vn) = P1 (v), we
get:

lim
∆p1→0+

E1→֒1 [cv]

∆p1
= −min

k
(ρ1k)x1 −

(
−min

k
(ρ1k)x1 − x1

)
= −x1.

Let j > 1. Since δk ≤ 0, k = 1...n, and δj = 0, we have: δk
(
ψjk
)
= δ+k = 0.

As a consequence, ψj1 = ψ11 < 0 (since δ1 (ψ11) = δ1
(
ψj1
)
= 0) and ψjk = 0,

k > 1. Hence, mj = 0 which allow us to rewrite (43) as:

E1→֒j [cv] =
1

P1→֒j (v;ω1, v2...vn)

∫ m1j

0

Ij (δ1, c) dc.

Using Eq. (4) and applying the mean value theorem for integration we get:

E1→֒j [cv] = −

∫ m1j

0
Ij (δ1, c) dc

δ1Π
j
1

(
v1, v2 − δ̃...vn − δ̃

) ,

where δ̃ ∈ (δ1, 0). Using Eq. (4) we rewrite Ij (δ1, c) as:

Ij (δ1, c) =

∫ −δj(c)

δ1

Πj1
(
v1, v2 + (−δ2 (c)− z)+ ...vn + (−δn (c)− z)+

)
dz.
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Let ε > 0 small enough. Since the integrand tends towards Πj1 as δ1 and z
tend towards zero, we can find δ1 and c arbitrarily small in order that

(−δj (c)− δ1)
(
Πj1 − ε

)
≤ Ij (δ1, c) ≤ (−δj (c)− δ1)

(
Πj1 + ε

)
.

Applying the Taylor’s theorem to δj (c), we get

(
∂Vj
∂y

c−R− δ1

)(
Πj1 − ε

)
≤ Ij (δ1, c) ≤

(
∂Vj
∂y

c−R− δ1

)(
Πj1 + ε

)
,

where R verifies |R| ≤ Mc2 with M a positive constant. Therefore, by
integration and taking the limit ε→ 0, we get:

lim
δ1→0−

1

δ21

∫ m1j

0

Ij (δ1, c) dc = −

(
lj −

∂Vj
∂y

1

2
l2j

)
Πj1.

where lj ≡ limδ1→0− (m1j/δ1). Recall that m1j = max
(
ψ11, ψ1j

)
. Therefore,

using the chain rule, we get:

lj = min

(
lim
δ1→0−

ψ11
δ1

, lim
δ1→0−

ψ1j
δ1

)
=

{
(∂Vj/∂y)−1 , if ρ1j ≤ 1;

(∂V1/∂y)−1 , if ρj1 ≤ 1.
. (44)

Using the chain rule and the Roy’s Identity, we get:

lim
∆p1→0+

E1→֒j [cv]

∆p1
=

x1 (∂V1/∂y)

Πj1
lim
δ1→0−

1

δ21

∫ m1j

0

Ij (δ1, c) dc.

Hence

lim
∆p1→0+

E1→֒j [cv]

∆p1
=

{
−
ρ1j
2

x1, if ρ1j ≤ 1;
−
(
1−

ρj1
2

)
x1, if ρj1 ≤ 1.

Now, recall that (see Eq. (22)):

Ei→֒n [cv] = mn −
1

Pi→֒n (v;ω1, v2...vn)

∫ mn

min

Ji (δn, c) dc, (45)

where Ji (δn, c) ≡ Pi→֒n

(
v1 + δ+1 (c) ...vn + δ+n (c) ; v1...vn−1, ωn

)
, j = 1...n,

and where mn = maxk (ψnk), with ψnk solving δk (ψnk) = (δk − δn)
+ , k =

1...n, (see Eq. (14)). Since δk ≤ δn, then ψnk is solving δk (ψnk) = 0, k =
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1...n, (see Eq. (14)). Therefore, ψnk = 0, k = 1...n− 1 and ψnn > 0. There-
fore, mn = maxk (ψnk) = ψnn. Moreover, we have: min = max (ψii, ψin) =
max (0, ψin), i = 1...n − 1, where ψin is solving δn (ψin) = (δn − δi)

+ = δn.
Therefore, ψin = 0 and min = 0. For c ∈ (0, ψnn), we have:

Ji (δn, c) =

∫ δn−δn(c)

0

Πni (v1..., vn−1, ωn − z) dz =

(δn − δn (c))Π
n
i (v1..., vn−1, ωn − z̃) ,

where z̃ ∈ (0, δn − δn (c)). Using the fact that Πni (v1..., vn−1, ωn − z̃) tends
towards Πni as δn tends towards zero and applying the Taylor’s theorem to
δn (c), we get:

lim
δn→0+

1

δ2n

∫ ψnn

0

Ji (δ1, c) dc =
1

2
Πni

∂Vn
∂y

lim
δn→0+

ψ2nn
δ2n

=
1

2
Πni (∂Vn/∂y)−1 .

Therefore, using the chain rule, we get:

lim
∆pn→0−

Ei→֒n [cv]

∆pn
=

1

2

(∂Vn/∂pn)

(∂Vn/∂y)
= −

1

2
xn.

Now, since En→֒n [cv] = ψnn, we have lim∆pn→0− (En→֒n [cv] /∆pn) = −xn. �

4 Proof of Proposition 10

Proof. Clearly, for a transition i →֒ i, we have Ei→֒i [cv] = ψii. For a feasible
transition i →֒ j, with j > i, using Theorem (6) with p = 1, we get

Ei→֒j [cv] = ψjj −

∫ ψjj

ψii

Φi→֒j (c) dc,

which can be rewritten as:

Ei→֒j [cv] = ψjj −

j−1∑

l=i

∫ ψ(l+1)(l+1)

ψll

Φi→֒j (c) dc. (46)

Using (46) and (29), we get:

Ei→֒j [cv] = ψjj −
1

Ξij

j−1∑

l=i

∫ ψ(l+1)(l+1)

ψll

[
Ξil +

1

σl

(
1

sl + σle−δy(c)
−

1

Ωl

)]
dc,
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which can be rewritten as:

Ei→֒j [cv] = ψjj −
1

Ξij

j−1∑

l=i

∫ ψ(l+1)(l+1)

ψll

Ξi(l+1)dc

+
1

Ξij

j−1∑

l=i

σ−1l
[
Ω−1l+1

(
ψ(l+1)(l+1) − ψll

)
− θl

]
.

Using the fact that Ξi(l+1) =
∑l

r=i σ
−1
r

(
Ω−1r+1 − Ω−1r

)
and inverting the sign

sums we get

Ei→֒j [cv] = ψjj −
1

Ξij

j−1∑

r=i

∫ ψjj

ψrr

σ−1r
(
Ω−1r+1 − Ω−1r

)
dc

+
1

Ξij

j−1∑

l=i

σ−1l
[
Ω−1l+1

(
ψ(l+1)(l+1) − ψll

)
− θl

]
,

which can be simplified as:

Ei→֒j [cv] = ψjj −
1

Ξij

j−1∑

r=i

∫ ψjj

ψrr

σ−1r
(
Ω−1r+1 − Ω−1r

)
dc

+
1

Ξij

j−1∑

r=i

σ−1r
[
Ω−1r+1

(
ψ(r+1)(r+1) − ψrr

)
− θr

]
,

or further as:

Ei→֒j [cv] = ψjj −
1

Ξij

j−1∑

r=i

σ−1r
(
Ω−1r+1 − Ω−1r

) (
ψjj − ψrr

)

+
1

Ξij

j−1∑

r=i

∫ ψ(r+1)(r+1)

ψrr

σ−1r Ω−1r+1dc−
1

Ξij

j−1∑

lr=i

σ−1r θr.

We further simplify this expression as:

Ei→֒j [cv] =
1

Ξij

j−1∑

r=i

σ−1r
(
Ω−1r+1 − Ω−1r

)
ψrr

+
1

Ξij

j−1∑

r=i

σ−1r Ω−1r+1
(
ψ(r+1)(r+1) − ψrr

)
−

1

Ξij

j−1∑

lr=i

σ−1r θr,

which is equivalent to Eq. (30). �
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5 Proof of Corollary 11 (b)

Proof. If i = 1 clearly we have E→֒1 [cv] = ψ11.
If j > 1, we have

E→֒j [cv] =

j∑

i=1

Pi→֒j

Pj
Ei→֒j [cv] . (47)

Using (10) and (12) (see Proposition 2), we get the ratio of probabilities:

Pi→֒j

Pj
=

{
σ0e

−δj/Ωj , if i = j;
σ0e

viΞij , if i < j;
(48)

From (48) and (30) we get:

E→֒j [cv] = σ0

{
j−1∑

i=1

j−1∑

r=i

evi

σr

[
ψ(r+1)(r+1)

Ωr+1
−

ψrr
Ωr

− θr

]
+

ψjj
eδjΩj

}
.

Inverting the two sum signs we obtain

E→֒j [cv] = σ0

{
j−1∑

r=1

r∑

i=1

evi

σr

[
ψ(r+1)(r+1)

Ωr+1
−

ψrr
Ωr

− θr

]
+

ψjj
eδjΩj

}
,

which can be simplified as

E→֒j [cv] = σ0

{
j−1∑

r=1

sr
σr

[
ψ(r+1)(r+1)

Ωr+1
−

ψrr
Ωr

− θr

]
+

ψjj
eδjΩj

}
.

This expression can be rewritten as

E→֒j [cv] = σ0

{
j∑

r=2

srψrr
σrΩr

−

j−1∑

r=1

srψrr
σrΩr

−

j−1∑

r=1

srθr
σr

+
ψjj
Ωjeδj

}
.

Noting that σrsr−σrsr = −eωrΩr, that s1/σ1Ω1 = eω1/σ0σ1 and that sj−1+
e−δjσj−1 = Ωj, we obtain the required expression (33). �
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