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Abstract

In this paper we propose and analyse the Autoregressive Conditional Root
(ACR) time series model. It is a multivariate dynamic mixture autoregression
which allows for non-stationary epochs. It proves to be an appealing alternative
to existing nonlinear models such as e.g. the threshold autoregressive or Markov
switching classes of models, which are commonly used to describe nonlinear dynam-
ics as implied by arbitrage in presence of transaction costs. Simple conditions on
the parameters of the ACR process and its innovations, are shown to imply geo-
metric ergodicity, stationarity and existence of moments. Furthermore, we establish
consistency and asymptotic normality of the maximum likelihood estimators in the
ACR model. An application to real exchange rate data illustrates the conclusions

and analysis.
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1. Introduction

The purpose of this paper is to propose and analyse the Autoregressive Conditional Root
(ACR) model. A main feature of this multivariate dynamic mixture vector autoregres-
sive model is that it allows for regime switching between seemingly stationary and non-

stationary epochs, where the switching is a function of the magnitude of lagged endogenous
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variables. This way it allows epochs of seeming non-stationarity, giving the impression
that possible long-term relationships, such as e.g. the purchasing power parity, have
broken down, before they endogenously collapse back toward their long term relationship.

The kind of dynamics considered here has been increasingly discussed over the past
decade. For instance, the general equilibrium models developed by e.g. Dumas (1992),
Sercu, Uppal, and Van Hulle (1995), or Berka (2004) imply such dynamics for the real
exchange rate in presence of trading costs. The basic underlying idea is that international
trade in goods occurs only when the gain expected from the home and foreign price dif-
ferential is large enough to offset trading costs. Once trade takes place across countries,
it induces changes in home and foreign prices which bring the real exchange rate back
into the area where international arbitrage is not profitable anymore. The latter area is
a non-arbitrage zone where the real exchange rate behaves like a non-stationary process.
Nevertheless, since any price differential larger than the trading costs will activate cor-
rective international trade, the real exchange rate process is globally stationary or stable.
Another example of the relevance of such kind of non-linear behavior can be found in An-
derson (1997), see also Balke and Fomby (1997) for further examples. In Anderson (1997)
it is argued that transaction costs translate into two-regime dynamics for the interest rate
spread, the switching between an adjusting and a non-adjusting area being defined as a
function of the magnitude of the lagged spread value.

The empirical relevance of these theoretical implications has been explored by a large
number of studies, using either discontinuous or smooth threshold autoregressive mod-
els. For instance, the empirical analyses by Michael, Nobay, and Peel (1997), Obstfeld
and Taylor (1997), Kilian and Taylor (2003), Taylor, Peel, and Sarno (2001), or Bec,
Ben Salem, and Carrasco (2004) provide support for multiple regime dynamics for real
exchange rate data. Regarding the interest rate spread dynamics, similar results are
obtained in e.g. Anderson (1997), Enders and Granger (1998) and Enders and Siklos
(2001).

The proposed ACR model may be viewed as an appealing alternative to the threshold
autoregressive (TAR) class of models retained in the papers cited above, and the Markov
switching (MS) autoregressive class of models. As for the TAR and MS autoregressive
models, it allows for switching between adjusting and non adjusting regimes, but does so
in a different way. By contrast with the TAR models, the ACR model does not require
a fixed threshold. And by contrast to MS models, the switching between regimes in the
ACR model depends explicitly on lagged endogenous variables, in line with the economic
theory outlined above.

The recent mixture autoregressive model (MAR) by Wong and Li (2000) and its ex-
tensions in Wong and Li (2001a), Wong and Li (2001b) and Fong, Li, and Wong (2007),
as well as the dynamic switching Markov chain model of Gourieroux and Robert (2006)

actually share some features similar to our proposed ACR model. Apart from the differ-



ent dynamic interpretation of the models, our contribution to this literature is two-fold:
First, unlike the above mentioned papers, the ACR model and the theory we provide for
it are multivariate with any number of lags. Second, using geometric ergodicity results,
we provide asymptotic theory for inference in this multivariate framework.

Based on a univariate simple version of the ACR model with one lag only, the ACR(1)
model, the mentioned features will be emphasized in Section 2, where the ACR process
is also compared with related nonlinear processes in the literature. Despite the epochs
of seeming non-stationarity allowed by the ACR model, Section 3 establishes stationarity
under simple regularity conditions for the proposed general multivariate ACR model with
k lags. The regularity conditions ensure that the collapses regularize the periods of non-
stationarity forcing the deviation from the long-term relationship to be globally stationary.
Next, Section 4 provides asymptotic theory for the maximum likelihood (ML) estimators
of the parameters of the multivariate model and show how the ML estimators can be
obtained. In particular, we state conditions under which the ML estimators are consistent
and asymptotically normally distributed. These results are illustrated in Section 5 by an
empirical analysis of real exchange rate data. Section 6 discusses possible extensions.
Finally Section 7 concludes the paper, while the Appendix contains the proofs of the
theorems stated in the paper.

Some notation is used throughout: For vectors a = (ay,...,a;) € R¥, we use [|a|| to
denote some vector norm. Key examples, which we use, include the Euclidean and the
L' norms, as given by (a’a)/? and |a;| + ... + |ag| respectively. With A a matrix, we use
|A| to denote the matrix norm as given by ||A||* = tr {A’A}, and p(A) to denote the
largest, in absolute value, of the eigenvalues of A. We apply the notation, dL(A, dA) for
the differential of the matrix function L (-) with increment dA, see Appendix B.

2. The ACR-like dynamics

This section aims at conveying the flavour of the ACR model. To this end, a simple and
univariate version is first presented, and then compared with the threshold autoregressive
class of models. Finally, the specific features of the ACR model are further explored in

the light of a number of other related models such as the Markov switching.

2.1. Univariate ACR(1) example

To fix ideas, consider initially the simplest version of a univariate autoregression of order
one, the ACR(1) model, as given by

PTi_1 + €, if s, =1
Ty = o . (1)
pry 1+ £y, if s, = 0.

for t = 1,2,...,T, with p, p scalars, & an i.i.d. N(0,0?%) sequence and z, fixed. For

simplicity in the exposition here, set p = 1 without loss of generality. Then with 7 = p—1,



the ACR(1) model can be reparametrized as an equilibrium correction model (ECM),
Al’t = §;TTy—1 + &4, (2)

where A is the difference operator. The binary variable s, is allowed to be unobserved,
and the switching stochastic rather than deterministic. More precisely, the conditional

probability, or the switching probability, that s; takes the values one or zero is given by

P(sy = 1]ai-1,60) = p(ai-1), (3)

where the notation p(z;_;) emphasizes dependence solely on z; ;. Vitally if the regime
sy is zero the process behaves locally like a random walk, while the case s; = 1 implies
it is locally like a stationary autoregression of order one provided |p| = |7 + 1| < 1. The
essential requirement for the conditional probability p(x;_1), is that it tends to one as
|z;_1| tends to infinity in addition to it being a function of z; ;. No other condition is

needed. A key example is given by the logistic type specification of p (-),

A1) = log{p(ze-1)/ (1 = p(wr-1))} = a + bf (z1-1). (4)

Here a and b are freely varying reals and f(-) some increasing function in |z, |. In our
empirical illustrations we use the concave function f(z) = |#|'/2 and an ACR model with
more than one lag.

As emphasized, the ACR(1) process in (1) can have epochs of seeming non-stationarity
if p = 1, while at the same time be globally stable or stationary. More precisely for the
case of the simple ACR(1) process with p(-) given by (4), an initial distribution of
exists such that x; in (1) is stationary and has finite moments of all orders provided that
lp| = 1+7| < L and b > 0. Furthermore, as to estimation of the parameters, which in this
case are p (or 7), p, 02, a and b, the likelihood function can be computed via a prediction
decomposition as discussed later. The thereby obtained ML estimators are shown to be
consistent and asymptotically Gaussian distributed.

In their recent paper, written independently and concurrently from our paper, Gourier-
oux and Robert (2006) study in detail a dynamic switching Markov chain model which
as mentioned is closely related to the ACR model. Their model may be viewed as the
ACR(1) process in the constrained case where there is switching between white noise
and a random walk (i.e. the special case of the above process when p = 0 and p = 1),
and where the switching is governed by the sign of x;_; rather than by its magnitude.
In other words, unlike the ACR model, no convergence is assumed regarding p (x; 1) as
|z, 1| = oo. Hence, our model is quite different in the dynamic interpretation and well-
suited for the real exchange rate application we have in mind. By contrast, the wide
ranging paper by Gourieroux and Robert (2006) is motivated by value-at-risk considera-
tions in financial economics. Therefore, it allows a flexible distribution on ¢, and studies

specifically the tail behaviour of the marginal distribution of x;, the distribution of epochs
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of non-stationary behaviour and discusses stability of z; in this case. From a methodolog-
ical point of view, our analysis is complementary: it focuses on estimation and asymptotic
inference for use in empirical work in the general, and also multivariate, version of the
ACR model. We also note that Bec and Rahbek (2004) apply results from this paper to

an analysis of nonlinear adjustments in error correction models.

2.2. ACR and threshold autoregressive models

Clearly, the dynamics of the regimes in the ACR model are determined entirely endoge-
nously and so are similar to the threshold models in Tong (1990) and Enders and Granger
(1998). However, now the threshold is allowed to be stochastic rather than only deter-
ministic. In the general formulation of the ACR model, the switching probability p(-) is
not bounded away from one, and does allow for deterministic switching by defining p (-)
as,

( ) 1, if |z 4| >7>0,
T_ =
P 0, otherwise.

This is indeed a Tong (1990) self-exciting threshold autoregressive (SETAR) process, as
it implies

(5)

I +ep, iAf |z > T,
t=9 - i
pri_1 + €, otherwise.

The implication is that we can view ACR models as softening the thresholds in autore-
gressive threshold models. This point will be amplified in the next subsection.

Thus a noticeable difference between the ACR and the SETAR models stands in the
definition of the binary variable s;. Contrary to the SETAR model, the ACR(1) model
defined by equations (1) and (3) does not require the assumption of a fixed deterministic
threshold. While maintained in SETAR models!, this assumption might be too strong.
Indeed, its relevance may be questioned when the threshold reflects e.g. trading costs
over several decades as is often the case in empirical analyses. Another difference is that
in TAR models (see (5)) there is no uncertainty on the regime conditional of the past
values of the series.

Finally, the link between the ACR model and the Smooth Transition Autoregression
(STAR) class of models initiated by Chan and Tong (1986) can easily be seen from the
conditional expectation of equilibrium correction. For the ACR(1) process with p =1, it
is given by

E(Azi|zi-1) = mp(i-1) 21

Then, if the conditional probability is given by (4), the conditional expected change is

!Note however that the possibility of a Markovian regime for SETAR models has been mentioned by
Tong and Lim (1980) and Tong (1983).



given by,

B(Anle ) = < exp (@ + bf (xi-1)) ) .

1+exp(a+bf (zi1))

If we recast this as,

B exp (a+bf (z1))
Az, = <1 Foxp (@t bf ($t1))> T—1 + Nty

where 7, is a martingale difference sequence, then this is a smooth transition autoregres-
sion (see Luukkonen, Saikkonen, and Terdsvirta (1988), Tong (1990) and Granger and
Terdsvirta (1993, Section 4.2)). Hence the ACR model has many of the features of STAR
models. Importantly however, STAR models do not have epochs of nonstationary be-
haviour — even with p = 1. Consequently, they do not belong to the class of processes

considered in this paper.

2.3. A simulated example

The following simple example allows us to gain a better understanding of the behaviour of
the ACR process. Figure 1(a) shows a sample path from the simplest ACR process given
by (1), (3) and (4), together with the associated conditional probabilities p(z;—1) given in
Figure 1(b). Figure 1(c) reports the corresponding expected change in z;, conditionally to
xy 1, as given by p(z;1)(p— 1)z, ;. The parameters values are a = —9, b = 28, p = 0.75,
p =1, and o0 = 0.009.2 This simulated process delivers realizations for p(x,_;) such that
the conditional probability that s, = 1 never exceeds 0.5, which is enough for the x; series
to be stable. The second column of Figure 1 provides the same results based on a SETAR
model simulated with p = 0.75, p = 1, 0 = 0.009 and p(z; 1) = sy = 1(Jz;1| > 0.04).
Here, the corresponding expected change in x;, conditionally to x,_; is given by 1(|x;_1| >
0.04)(p — 1)zy—;. Comparing Figures 1(c) and 1(f) makes clear that ACR models may be

viewed as softening the SETAR regime switching process.

2.4. Other related models

Apart from the already mentioned threshold class of models, the ACR model is also
related to a number of well known models.

The prediction probability defined in equation (3) implies that the ACR(1) model
appears similar to a Markov switching autoregressive model. In the Markov switching
literature, s; is usually employed to shift the intercept in a time series model, but it has
also been used to make the variance change (Hamilton and Susmel (1994)) delivering a

simple stochastic volatility process, and even to make the root of an autoregression move

2These values are inspired by the estimates of model ACR-III for French franc/Deutche mark real
exchange rate data, reported in section 5. Similarly, the threshold parameter value for the SETAR comes

from the estimate obtained by Bec, Ben Salem, and Carrasco (2004) using the same data.
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between a unit root and a stationary root (Karlsen and Tjgstheim (1990)) or an explosive
root (Hall, Psaradakis, and Sola (1999)). However, a fundamental difference between these
models and the ACR is that the probability that s; takes the values one or zero explicitly
depends on x;_; in the ACR. This in turn implies that a process defined by equations (1)
and (3) is a Markov chain whereas this is not the case for a MS autoregression. This proves
important for estimation as well as for the derivation of results for asymptotic inference in
the ACR model. In fact, as mentioned, the ML estimators are straightforward to compute
and our derived asymptotic theory allows for rigorous inference. This contrasts with the
MS autoregressive models where estimation is based on filtering algorithms, and where a
full asymptotic theory for inference still needs to be explored, even though much progress
in that direction has been made in for example the recent paper by Douc, Moulines, and
Ryden (2004).

The ACR model is also related to the stochastic root model introduced by Granger
and Swanson (1997) and further studied by Leybourne, McCabe, and Mills (1996). Those
papers use (1) but place an exogenous process on the root — allowing stationary, unit
and explosive values. An example of this is where the log of the root is specified as being
a Gaussian autoregression. These models have many virtues, but the likelihood function
cannot usually be computed explicitly. Further, they do not have the clear cut epoch
interpretation of the ACR process.

A related approach is the switching regression idea introduced into economics by
Goldfeld and Quandt (1973). In our context this builds a model for the regime s; in
(1) which can depend upon explanatory variables and lagged values of the x; process. A
simple example of this is given by defining A(z;—1) = a+bx;_; in (4). This is outside our
structure as it does not bound A (-) away from minus infinity and so there is a possibility
that the process will indeed be absorbed into the random walk state. The time series setup
of Mx;—1) = a + bx;_; was also explicitly studied by Wong and Li (2001a), although its
stochastic properties were not derived. Of course this can be generalised to allow A(z;_1)
to depend upon many lags of x; or other potentially helpful explanatory variables. Note
however that this type of models focus on different dynamics for x positive or negative
while in the ACR, the focus is on the magnitude of x, whatever its sign is. Hence these
two classes of models have an entirely different interpretation. Note in this respect that
the model in Wong and Li (2001a) and our ACR model are extensions of the mentioned
static MAR in Wong and Li (2000) where A (z; 1) = a, that is, with constant switching
probability.

Finally observe that the univariate stochastic permanent breaks model of Engle and
Smith (1999) departs from ours as the process is non-stationary and allows for switching
between permanent and transitory shocks. In terms of (2), their model can be mimicked

by replacing s;mx;_1 by s;e4_1, thereby introducing a suitable moving average term.



3. ACR(k)

In this section we introduce the general ACR(k) process. Conditions which ensure sta-
tionarity of the ACR process, despite epochs of non-stationarity, are discussed. These
conditions imply also geometric ergodicity, which, as used in Section 4, again implies that
the law of large numbers in Jensen and Rahbek (2007) holds for moment matrices in the

asymptotic theory of the ML estimators.

3.1. The ACR(k) process

The ACR(k) process X; is an immediate extension of the univariate ACR(1) process
considered in (1). Switching between two autoregressions of order k, the m-dimensional
ACR(k) process X, is defined by the equation,

Xt = S¢ (Althl + ...+ Akthk) + (]_ - St) (Blthl + ...+ Bkthk;) + &¢
= 50 (A1, oo A) Xy + (1= 8)(Bry ooy B)Xey + 24, (7)

for t =1,2,...,T, where X, | = (X]_,,..., X[_,)" and the initial value X; is fixed. Fur-

thermore, (&) is an i.i.d.(0, ) sequence with € > 0, and with ¢; independent of

t=1,2,...
the lagged variables X;_1, X;_s,.... The autoregressive parameters A; and B; are m x m
matrices.

Finally, the distribution of the switching variable, s;, which can take values zero or

one, is given by the prediction or switching probability,
P(si=1]e, X1, X4 2,..) = p(Xi1), (8)

where p (-) is a function of X;_;. Note that in particular s; and ¢; are independent con-
ditional on X;_;, and that an equivalent way of defining s;, is in terms of the indicator
function 1{-},

s =1{r, >1-p(X; 1)},
where (v),_,, is an iid. sequence, independent of (g;)
distributed on [0, 1].
We make here the following assumption for the functional form of the switching prob-
ability p (+):

1 and with v, uniformly

Assumption 1. With p : R™ — [0,1] defined in (8), assume that
p(X) = 1 as [|X]| = o0 9)

where X € Rk,



As previously emphasized, our focus is on the logistic type specification of p (-) satis-
fying Assumption 1. The logistic specfication of p (-) is given by,

AXi1) = log {p(X;1)/ (1 = p(Xe 1))} = a+0f (X)), (10)

where ¢ and b are scalar parameters, b > 0 and f(-) an increasing function in ||X;_;||.
Trivially, in this case,
(1-p(X) =(1+expAX) ' =0

as ||X]| = oo provided b > 0. In other words, the probability is such that whatever state
the process is in, there is always a non-negative probability that it will (re-)enter the state
governed by the A; parameters in (7). In addition, the structure is such that the further
away the process gets from the regime governed by A;, the more the probability of staying
there tends to zero. This mimics closely the economic theory outlined in the introduction
and discussed in the references given there.

Thus the generalisation differs from the univariate ACR(1) process in (1) in that we
allow for a vector process, a richer lag structure, potentially non-Gaussian errors and
additional flexibility in the dynamics by the introduction of the additional autoregressive
regime parameters B;. Specifically, the univariate ACR(1) example in (1) has m = k =1,
Ay = pand B; = 1. Here A; = p governs the locally stationary regime, while B; = 1
governs the unit-root regime. In the multivariate extension consider as an example the
case of k = 2. Choosing, say, By = I,,, — B; introduces m unit-roots in the s; = 0 regime as
desired and reflects the flexibility of the dynamics in the current parametrization. Below
we demonstrate how the autogressive regime governed by By, ..., By can have unit roots,
even explosive roots, while X; remains globally stationary provided the other regime
corresponding to the A; parameters has no unit or explosive-roots.

Note that it is straightforward to generalize the switching between two regimes, to
switching between any fixed number of regimes. This is not done here in order to avoid un-
necessary and complicated notation. To ensure stationarity of the m-dimensional ACR(k)

process a further assumption is needed:
Assumption 2. Assume that
Iy — 0A1 — .. = " Ap| =0=Jg| > 1, o€ C. (11)

Assumption 2 states that the vector autoregressive process corresponding to the s; =
1 regime satisfies the well-known condition for stationarity. Importantly, there are no
restrictions on the parameters B; of the other regime. Hence this regime, may have unit-
roots and even explosive roots.

The final assumption addresses the distribution of the innovations &;:

Assumption 3. With (g),_, , m-dimensional i.i.d.(0,€2), assume that ¢, has a contin-
uous and strictly positive density with respect to the Lebesgue measure on R™ and that
E ||&||™" is finite for some n > 1.
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When discussing ML estimation and inference on the parameters in Section 4, As-
sumption 3 is particularly satisfied with e, Gaussian distributed, in which case also &,
have finite moments for all n» > 1. The requirement of continuity in Assumption 3 on the
density could be replaced by the less strict assumption that for example the density is

bounded on compact subsets of R”.

Theorem 1. Consider the m-dimensional ACR (k) process X, defined by (7) in terms of
its lagged values in X; | = (Xéfu ...,X{_k)’ and the switching probability p (X, 1) in (8).

Under Assumptions 1, 2 and 3, the mk-dimensional process (Xt)t:1,2,... is a geometri-
cally ergodic process. In particular, Xg = (X[’), ...,XL,CH)' can be given an initial distri-
bution such that X;, and hence also the ACR(k) process X, are stationary. Moreover,
E || X,|*" < oc.

The proof is given in the appendix.

For the ACR(1) case, the result parallels the result in Gourieroux and Robert (2006),
Proposition 7.

As already noted, an important implication of X; being geometrically ergodic is that
the law of large numbers in Jensen and Rahbek (2007), and hence also a central limit
theorem, apply for product moment matrices appearing in the discussion about estimation
in the next section. Note furthermore, as emphasized and discussed by Carrasco and Chen
(2002), that geometric ergodicity implies that the stationary solution X;, and hence also
the stationary ACR(k) process X;, will be f-mixing at an exponential decaying rate.

3.2. Switching and Assumption 1

Assumption 1 in Theorem 1 is important as it implies in particular that the switching prob-
ability depends on all variables in X | = (X[_,,..., X, ,). Based on existing econometric
applications of models with general switching between autoregressions, it is also of interest
to allow the switching probability to depend on only one of the lagged variables X, i, say.
This clearly violates Assumption 1. In that case, to ensure stationarity of X;, while still
allowing unit root behaviour in the regime governed by the B; parameters, the autore-
gressive parameters of the two regimes must be restricted such that Ay = B, ..., Ay = By
corresponding to the lags of X; which do not enter the switching probability. That is, the
lag parameters of the variables not entering the switching probability should be identical
across the two regimes.

More generally, introduce the known mk x ¢ dimensional selection matrix n of full
rank ¢, ¢ < mk and its orthogonal complement 7, , which is mk x (mk — ¢) dimensional
of rank (mk — ¢) and for which n'n; = 0. Now let 7'X; be the ¢ linear combinations of
X; which enter in the definition of p (),

P(s;=1le, X1, X2, ...) = p('X4-1), (12)

11



while the remaining (mk — ¢) linear combinations, 7, X;, do not enter. In terms of this

notation, replace Assumption 1 by:

Assumption 4. With n a known mk x q dimensional matrix of full rank ¢, ¢ < mk, and
with p : R? — [0, 1] defined in (12), assume that:

(i): p(f'X) =1 as [|n'X]| = oo
(ii): (AL — By, ..., Ay — B)nL =0

where X € R™ and A; and B; are the autoregressive parameters in (7).

In particular, with ' = (1,,,0,...,0) and 'X; ; = X; 1, Assumption 4 (i) implies that
the probability of switching tends to one as the norm of X, ; gets large, independently
of the further lagged values, while (i7) implies that the autoregressive parameters corre-
sponding to X; o, ..., X;_x do not switch. With ¢ = mk all elements of X;_; enter p(-)
and all autoregressive parameters switch, while for ¢ = 0 the ACR(k) process reduces to
the well-known pure vector AR(k) process. The formulation is based on Bec and Rah-
bek (2004, Theorem 1) where nonstationary ACR(k) processes are studied. Analogous to
Theorem 1 we have:

Theorem 2. Consider the ACR(k) process X, defined by (7) and the switching proba-
bility in (12). Then under Assumptions 2, 3 and 4, the conclusions in Theorem 1 hold.

The proof is given in the appendix.

4. Likelihood based estimation

In this section we consider estimation and also asymptotic inference for the parameters
of the ACR(k) model with Gaussian i.i.d. innovations. The ACR(k) model is defined
by equations (7) and (8), or rather (7) and (12), where the switching probability may
depend on a few of the lagged variables. Estimation is considered specifically for a logistic
prediction probability function which is used in our application. The results have been
formulated such that it should be possible to apply them also for other types of switching

probability functions. We also discuss briefly how to test hypotheses on the parameters.

4.1. Estimation and inference

We consider here estimation in the general case with switching between AR(k) processes,
where the switching probability is logistic and depends on ¢, ¢ < k, linear known combi-
nations as given by 1'X;_;, see Theorem 2. Thereby the cases where switching depends on
all lagged X, in X;_;, or just one X;_;, say, are all covered simultaneously. A convenient
way to write the ACR(k) model is then,

Xi=sAX 1+ (1 —s)BX 1 +Cn\ Xy 1+ fort=1,2,....,T (13)
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with X, 1 = (X/_1, .., X]_;)", Xy is fixed and &, is an i.i.d.N,, (0, Q) sequence with Q > 0
and ¢; independent of X; i,...,Xy. Here A and B are m x ¢ dimensional matrices of
parameters which switch between the two regimes, while C' is the m x (mk—¢) dimensional
parameter matrix with non-switching parameters.

The parametrization in terms of A, B and C' is a simple reparametrization in terms
of (Ay,...,Ax) and (By, ..., Bg) in (7). Specifically, if switching is allowed to depend on
all variables, that is 'X;_; = X;_1, then C =0, A = (44, ..., Ax) and B = (By, ..., By).
Likewise, A = Ay, B = By, and C = (A,, ..., Ay) = (B, ..., Bg) if ’X;_1 = X;_4, that is
switching is allowed to depend on X;_; alone. Formally, the reparametrization is given
by,

(Ay, ..., Ay) = (A, C) (n,n) and (By,...,By) = (B,C) (n,n.)". (14)

The logistic specfication in (10) of the switching probability in (12) is given by,

Ap (X)) = a+bf (X)), (15)

where a and b are scalar parameters, b > 0 and f : R? — R is an increasing function in
17X |-
With 0 = {A, B,C, a,b,Q}, the log-likelihood function conditional on X is given by

Le(0) =36 (0) =X, log (pasbas + pueds), where (16)
par=(1—pp) =p(0'X1), (17)

and, omitting constants in the Gaussian density,
Pne = |Q|_l/2 exXp (_%SMtQ_lglMt) ;o e = Xy — MU’Xt—l - CniXt—la (18)

for M = A, B. The likelihood function in (16) is numerically maximised to obtain the

maximum likelihood estimator, é, and the following result holds:

Theorem 3. Consider the ACR model defined by equations (13) and (15). Then under
Assumptions 2, 3 and 4, and if A # B, there exists with probability tending to one as
T tends to infinity, a unique ML estimator 6 = {fl, B, C’, a, 13, Q} which satisfies the score
equation,

dLy (0,d0)|y_g =0, (19)

for all df. Moreover, 05 0, and O is asymptotically Gaussian,
\/T(é—e) DN (@0,5). (20)

The proof of Theorem 3 is based on establishing Cramér type conditions from Jensen
and Rahbek (2005, Lemma 1) and is given in Appendix B. When discussing an algorithm
to obtain 6 below, the explicit form of the score equation (19) is discussed. A consistent

estimator of ¥ is given in Appendix B, equation (53).
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It should be emphasized that the results show that the maximum likelihood estimators
are asymptotically Gaussian even if the B; regime allows unit and even explosive roots,
provided that the other has only stationary roots. Thus we provide distribution theory
for a model which allows epochs of stationarity and epochs without. As mentioned, we
believe this is the first paper providing this kind of result. As discussed below, here ML
estimators are straightforward to compute and our derived asymptotic theory allows for
rigorous inference. This is illustrated in the empirical application in Section 5, where we
also test for the presence of a unit root in the B; regime by the LR test statistic which
by Theorem 3 is asymptotically x* distributed. Note that the imposed restrictions on
the parameter space rule out the possibility of a unit root in both regimes as well as the
possibility of absorption in either of the two regimes. Indeed usual asymptotic expansions
in terms of score and information would then be problematic as discussed in general in
Andrews and Ploberger (1994), Davies (1987) and Hansen (1996). Related issues have
recently been analysed in the context of threshold autoregressive (TAR) models: Based
on least squares estimation, Hansen (1997) discusses the theory of Wald type testing
for the hypothesis that one of the regimes in a stationary model is an absorbing state.
Testing for a unit root in multiple regimes is treated in Caner and Hansen (2001) and Bec,
Ben Salem, and Carrasco (2004). Furthermore, cointegrated TAR models are discussed
in Hansen and Seo (2002) and Bec and Rahbek (2004).

The results in Theorem 3 are derived specifically for the parametrization and functional
choice of a logistic probability in (15). While our derivations do depend on the chosen
logistic structure for the probabilities p(+) it is straightforward to modify the results to
accommodate alternative specifications of p (). Specifically, for transparency we have
formulated all relevant quantities in terms of the derivative of A(p(-)) with respect to the

parameters in 6 in Lemmas 3, 5 and 6.

4.2. On optimisation of the likelihood

In order to carry out likelihood inference we have to numerically maximise the likelihood
function, and an algorithm for this is discussed here. When presenting the algorithm we

use notation as in least squares and logistic regression. Note that the algorithm could
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equivalently be derived as the EM algorithm?, see e.g. Dempster, Laird, and Rubin (1977)
and Ruud (1991).
Define first the weights

ParPar
Patdar + Ppidpe’

P =1 —pp) = (21)
in terms of the probabilities pa; = (1 — pp:) = p (1'X4—1) in (17) and the Gaussian densi-
ties ¢4, and ¢p; in (18). Denote by p 4, the probability p4, evaluated at the ML estimator
0, and likewise for pp;, ar and pt, with M = A, B.

Next, mimicking least squares regression notation, introduce product moment matri-
ces in terms of the m-dimensional response variable X; and the ¢g-dimensional explanatory
variables p%,7/X;—; and pj;,n'X;_1, as well as ', X;_; which is (mk — ¢)-dimensional. De-
fine,

Sor = ZtT:1 P XeXiin, Sz = ZtT:1 PpXeXi_yn, and Sp3 = ZtT:1 XeXooimo
(22)
Define further the product moments as given by,

St = Zthl ﬁztn,Xt—IX::_N] , Siz= Sél = Zthl ﬁztn,Xt—IX,t_ﬂU_a
Sy = Zthl P Xe 1 X 1n, Siy= S5 = Zthl P X1 X470, (23)
Ss3 =3 1 X1 Xm0 S1g =5y =0.

In terms of these, it follows by Lemma 3 in the Appendix, that the components of the
ML estimator 6 satisfy

< A B é ) - < S()l 502 503 )Sil, (24)
where S is the (¢ +mk) x (¢ +mk) dimensional matrix with entries (S;;).._, , 5 in (23).
Likewise,
R
Q= T Z (ﬁfqtéAté;lt + ﬁ*BtéBtélBt) ] (25)
t=1

*Specifically, treating (s¢),_; , ., as observed variables, the log-likelihood function for the EM algo-
rithm is given by,

T
LEM (9) = 3 log0%ps ' de), ¢ = 9] exp (~ et e))
t=1

and e, = Xy — (st A+ (1 — s¢) B)'X¢—1 — Cn, Xy—1. By definition, E (s|X;,X;—1) = pay, and also
E (s¢e|Xt,X¢-1) = E (71X, Xo—1, ..., Xo) = Pl

Using this, it follows that the updating recursions discussed below are identical to the M, or maximization,
step in the EM algorithm.
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where €,y is £y defined in (18) evaluated at 0 for M = A, B. Finally, the estimators a

and b for the logistic part satisfy the two equations:

T
Z (P —Pa) (1 f('Xemr) ) =0, (26)
t=1

corresponding to a logistic regression for the ‘observations’ p%,.

In other words, § satifies equations (24), (25) and (26) which are therefore not in
closed form. However, an immediate recursive algorithm is the following. For M = A, B,
let py,, denote pj,, evaluated at the previously obtained estimator é(”_l), say, then the
updated estimator #™ is obtained by the least squares regression in (24) and (25), and
the logistic nonlinear optimization in (26). Convergence is then defined by evaluating the
log-likelihood function Lz (A™) until convergence.

The algorithm is implemented in the illustration in the next section.

5. An application to real exchange rate data

We illustrate the ACR model by applying it to different real exchange rates, and compare
this to the MAR and linear AR models. Also we discuss application of the SETAR model.

The possible nonlinear nature of the dynamics of the real exchange rates has been in-
creasingly discussed, both theoretically and empirically, since the beginning of the nineties.
Until then, the so-called Purchasing Power Parity relationship constituted a cornerstone
of most open macroeconomic theoretical models. This relationship comes from interna-
tional arbitrage on goods market under frictionless and costless adjustment assumption.
It states that once converted into the same currency, home and foreign general price levels
should equalize, thanks to international trade in goods. More formally, the PPP relation-
ship writes ep* = p, where e denotes the nominal exchange rate, i.e. the price of foreign
currency in terms of home currency, p and p* are national price levels measured in local
currency. As a consequence of this non-arbitrage condition, the real exchange rate, defined
as ep*/p, should be a linear stationary process. Nevertheless, this implication has been
challenged by a lot of empirical work*. One possible explanation for those results could be
the presence of trading costs, or more generally transaction costs including transportation
costs, tariffs, information costs, etc...> Trading costs imply a nonlinear stationary process
for the real exchange rate, as stressed in the theoretical models by Dumas (1992), Sercu,
Uppal, and Van Hulle (1995) or Berka (2004), from which it follows that international
arbitrage takes place if and only if the international price differential exceeds transaction
costs. Hence, price differentials smaller than these costs are not being corrected by inter-

national trade. The simplest way to formalize this idea consists in defining two distinct

1See e.g. Rogoff (1996) for an overview of this topic.
>The crucial role of trading costs is emphasized in Obstfeld and Rogoff (2000).
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areas for the real exchange rate process. One is the arbitrage area, concerning relatively
large real exchange rate absolute values, where the real exchange rate adjusts towards its
long-term equilibrium. The other area is a non arbitrage area, gathering real exchange
rate observations which are relatively small in absolute value, where the real exchange
rate behaves as if it were non-stationary. A threshold defining these two areas could then
be interpreted as the trading costs level.

As underlined in the introduction, evidence of nonlinearity in the real exchange rate
process has been found by many authors since a decade, using either discontinuous (SE-
TAR) or smooth (ESTAR, LSTAR) threshold models. The ACR model provides an
appealing alternative to model the real exchange rate process, since it does not im-
pose a fixed threshold. So as to illustrate the relevance of this model, let us first con-
sider the logarithm of French franc/Deutsche mark real exchange rate, x;, defined as
log(ey) + log(pPM) — log(pf't), where ¢, is the monthly average of the nominal exchange
rate, and p! is the consumption price index of country 7. These post- Bretton Woods and
pre- Euro data, spanning from 1973:09 to 1998:12, come from Datastream. The centered
FF/DM real exchange rate is plotted in figure 2. In order to check the stationarity of

. M J‘/\/A\\J\A/\A/\
\/ v W

T T T T T T T T T T T T T T T T T T T T T T T T T
1973 1976 1979 1982 1985 1988 1991 1994 1997

Figure 2: Centered FF/DM real exchange rate.

this series, we apply the WguP test statistics developed by Bec, Guay, and Guerre (2008).
Based on simulation experiments, these authors show that the Wg”p unit root test has
power against stationary ACR alternatives. For the FF/DM exchange rate data, this
statistics reaches 31.81, which is well above the 5% critical value of 13.82 (see Table 1 in
Bec, Guay, and Guerre (2008)) and hence allows rejection of the unit-root null hypothesis.

The ACR model considered below is defined by equations (13) and (15), where the
function f(X) retained here is: f(Xi—1) = /|zi—1] + |2i—a| + -+ - + [24—x]. To allow for

more straightforward inference regarding the existence of non-stationary epochs, we rewrite

this ACR model in the following equivalent form:

k-1 k-1
Awy = sy(mamey + Y yaildz i) + (1= s)(mpm1 + Y ypildwe) +& (27)
i=1 =1
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Within this equilibrium correction form of the ACR model, the test for epochs of non-
stationarity simply amounts to testing the null 7g = 0.

The number of lags to include in the ACR model is chosen as the smallest one which
succeeds in eliminating residuals autocorrelation according to the LM test. Computing
residuals for the ACR model is not so straightforward. We have chosen to compute first
the one-step ahead prediction distribution functions

a=plEe () 4 a-pee (),

04 OB

where &;; denotes the maximum likelihood estimators of the ACR residuals in regime i
(1 = A, B), for instance € 4y = Axy — TaT; 1 — Y1 Axy 1 — -+ - — Yap 1A% gy, while & is
the distribution function of the standard normal. These {¢;} are approximately standard
uniform and i.i.d. if the model is true, ignoring the effect of estimating the parameters.
These have been frequently used to define residuals in non-linear time series econometric
models (see, for example, Shephard (1994) and Kim, Shephard, and Chib (1998)). We
then map these to our residuals for the ACR model by the inverse distribution function,
eOR = ~1(¢).

Using these residuals, the LM test of serial autocorrelation leads to retaining two
lags in levels. Then, regarding the ACR model estimation, it is necessary to initialize
the parameters in order to use the EM algorithm. All parameters are initialized from
the corresponding linear model estimates, obtained by setting m4 = wp and v4; = Vg;
Vi=1,---,k—1in equation (27). The last issue consists in initializing the logit function
parameters. The EM algorithm outcome is in fact quite sensitive to these initial condi-
tions. In order to avoid ending up in a local optimum, we highly recommend choosing
them from the plot of the profile likelihood, ¢.e. the likelihood as a function of a and b.
The ACR model log-likelihood is estimated using the EM Maximum Likelihood algorithm,
considering (a, b) fixed, for a wide range of (a, b) values picked up in a grid consistent with
the positiveness requirement for 4. For all EM ML estimations presented hereafter, the
algorithm is stopped as soon as the log-likelihood increment between two steps is less than
10~7. Moreover, so as to make b approximately scale-free, the logit function is reparame-
terized by dividing (|;_|+|7:_2|)'/? by its sample standard deviation. The plot obtained
for the profile log-likelihood of this FF/DM real exchange rate model is in Figure 3, for
a grid over a € [—60;10], and over b € [0.1;300].” As can be seen from the graph at the
top of Figure 3, the shape of the profile log-likelihood suggests that initializing a from

values greater than, say, -20.0, and b from values smaller than 50.0 should allow the EM

6The span of the grid should be adapted to the magnitude of the switching variable: for instance, the

smaller it is, the larger the maximum of the grid over b.
"Extending the grid spans for @ and b actually does not change the conclusions, but makes the graph

less easy to read. Also note that for values of a greater than 10, the EM ML algorithm failed to estimate
the ACR model for b values greater than 200, say, because the variance-covariance matrix of the estimated

residuals becomes singular.
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algorithm to reach the global maximum. This is confirmed by the graph zooming the
profile log-likelihood for these ranges of a and b values, at the bottom of Figure 3.

Table 1 reports linear and ACR models results, where Az, is the left-hand side vari-
able. The standard errors reported in parentheses were computed using equation (53)
in Appendix. The results corresponding to the ACR model described above are given
in column ACR-I. As can be seen from this column, the likelihood of the ACR model is

Linear ACR-I ACR-II ACR-III
Ty -0.039 — — —
(0.013)
S4Lp_1 ~ .0.234 -0.234 -0.258
(0.034)  (0.035)  (0.035)
(1 —sg)xp1 — 0.033 0.029 —
(0.023)  (0.023)
Axy_q 0.304 — 0.319 0.315
(0.055) (0.056)  (0.054)
st ATy — 0.407 — —
(0.104)
(1 —sy)Azp_y — 0.227 — —
(0.074)
a — -6.47 -6.49 -9.41
(2.86)  (272)  (3.69)
b — 14.32 20.09 28.25
(6.69)  (8.89)  (12.14)
O¢ 0.010 0.009 0.009 0.009
LM(AR 1-12) [p-value] | [0.14]  [0.18]  [0.18]  [0.18]
log-L 1237.60 1259.91 1258.52 1257.63

Standard errors in parentheses. LM test of no error autocorrelation.

Table 1: Linear and ACR model estimates

higher than the one of the linear model, as also reflected in the smaller standard error of
estimated residuals. Moreover, this ACR model points to a sharp contrast between the
outer and inner regime dynamics. The outer regime is characterized by a quite strong
adjustment with a coefficient of -0.234 for 74. On the contrary, this model reveals a ran-
dom walk behavior of the real exchange rate associated with small absolute value of the
latter : 75 = 0.033, but it is not significantly different from zero according to its standard
error. This provides evidence in favor of the existence of non-stationary epochs, or in
other words, the existence of a non-arbitrage area. Hence, the conclusion drawn from

the ACR model confirms the findings of numerous empirical studies performed within
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Figure 3: The profile log-likelihood as a function of a and b.
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threshold autoregressive models.
So as to make our analysis more comparable with this empirical literature, Theorem
2 above is used to allow the switching probability to depend only on z;_;. Accordingly,

the logit function is defined in terms of |z,_|'/?

only, and the parameters of Ax;_; are re-
stricted to be identical across regimes (see Assumption 4 above). The profile log-likelihood
obtained in this case (not reported) being very similar to the one plotted in Figure 3, we
initialized the EM algorithm with the same values as the ones retained for the ACR-I
model’s estimation. The resulting ML estimates are reported in column ACR-II of Table
1. They are quite close to their analogues from model ACR-I and clearly point to the
same conclusion. Moreover, the decrease in the log-likelihood is very small. This may
come from the fact that even though the point estimates of Az, ; parameters look rather
different across regimes in model ACR-I (0.407 and 0.227 in the outer and inner regime
respectively), they are not significantly different from each other according to their 5%-
confidence intervals. The similarity of the results from models ACR-I and ACR-II also
suggests that including z; , in the switching probability does not convey crucial informa-
tion about the switches.®

Since the parameter associated to (1 — s;)zy—1 is still found not to be significantly
different from zero, we also present the results of the estimation of the ACR-II model, im-
posing that this coefficient is zero (column ACR-III). The log-likelihood is not significantly
decreased by this restriction: the LR test does not reject it with a statistic value of 1.78 to
be compared to a x*(1) (Theorem 3). Consequently, we will now focus on the restricted
ACR-III model. Again, the regime related to large real exchange rate in absolute value
is characterized by a quick mean reverting dynamics, with an estimated autoregressive
coefficient of -0.258. Overall, these results provide further support to the nonlinear model.

When looking at the estimated conditional probability to be in the outer regime, Figure 4,

T T T T T T T T T T T T T T T T T T T T T
1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Figure 4: Estimated conditional probability (outer regime).

it appears that it peaks more often over the first half of the sample. The two largest peaks

8Testing this hypothesis is not straightforward since the ACR-I and ACR-II models are not nested;
this will be addressed in future research.
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observed in 1974 and 1978 reflect the sharp widening of the French-German inflation gap
after the two oil shocks: the French authorities tried to accommodate the recession by eas-
ing monetary policy. The Bundesbank did the same, but to a lesser extent. The smaller
peak in between corresponds to the year when France abandoned the European snake
system, in 1976. The fourth epoch of increased switching probability also corresponds to
a widening of the French and German inflation rates differential. Beyond the high infla-
tion rates inherited from the oil price shocks, the new French government elected in 1981,
leaded by Prime Minister Pierre Mauroy and President Francois Mitterrand, initiated
a strong Keynesian policy in order to increase domestic demand. This policy resulted
quite quickly in even more inflation and in a sharp weakening of the French franc against
the German mark due to a noticeable worsening of the current account. This nominal
exchange rate central parity was realigned twice between October 1981 and June 1982.
It is worth noting that the conditional switching probability increase precedes the first
franc devaluation by roughly one year. Over the second half of the sample, things look
quieter than before. The reason for this is twofold. First, the Basle-Nyborg Agreement
of September 1987 has probably stabilized the European Monetary System, basically by
allowing the (limited) use of EMS credit facilities for intramarginal intervention®. Second,
this corresponds to the French policy of “franc fort”, or “strong franc”. Actually, whereas
other European countries like United-Kingdom or Italy said they would not defend their
exchange rate against the DM when the Bundesbank maintained such high interest rates
to finance the German unification, France chose the other way to deal with that issue:
the so-called “competitive disinflation”. Consequently, the French-German inflation gap
decreased sharply, hence contributing to the relative stabilization of the real exchange
rate. The last small peaks occur between 1993 and 1995, as a consequence of the spec-
ulative attacks against the French franc in July 1993 which caused the widening of the
fluctuation bands from £2.25% to £15% in September 1993.

Finally, it is worth noting that the conditional switching probability peaks at around
0.80, and that only 1.3% of the sample is associated with a probability larger than 0.5
to switch to the outer regime. By fitting a SETAR to the same data, Bec, Ben Salem,
and Carrasco (2004) have found a threshold at 0.0455. In Figure 5, ACR and SETAR
estimated probabilities to lie in the outer regime are plotted. The SETAR probabilities
closely match their non-zero ACR analogues. However, the SETAR classification looks
quite crude compared to the ACR one.

As noted above, the British and Italian exchange rate policies were more independent
from the German policy than the French one. As an additional check of the relevance
of the ACR model, we now consider these two other real exchange rates series from the

ACR model’s versions which are close to those commonly used in the empirical literature,

9Before this agreement, the use of EMS credit facilities was allowed at the edge of the fluctuation
bands only, which weakened the credibility of the EMS.
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Figure 5: Estimated ACR conditional probability (solid line) and SETAR regimes (shaded

area).

namely the ACR-II and ACR-III models. According to the Wy test statistics, the null
of a unit-root is strongly rejected against the stationary alternative, with values of 20.47
and 36.84 for UK and Italy respectively. Table 2 summarizes the ACR-II and ACR-III
models estimated for the British and Italian real exchange rates vis-a-vis the DM. The
conclusions emerging from these results are quite similar to those obtained for the FF/DM
real exchange rate. Actually, large deviations from PPP are associated with strong and
significant adjustment coefficients (-0.11 and -0.28 for UK and Italy respectively). In both
cases, the null hypothesis that small deviations are not corrected, i.e. 7 = 0, cannot
be rejected according to the LR test statistics. The latter equals 0.6 in the British case
and 0.06 in the Italian case, and hence is smaller than the x?(1) 5% critical value. The
only noticeable difference compared to the French case is the fact that the logit function
parameters a and b are less accurately estimated here. Finally, it is possible to compare
the ACR model with the Mixture AutoRegressive (MAR) nonlinear model developed by
Wong and Li (2000). Indeed, imposing b = 0 in the ACR model amounts to assume that
the transition probability is constant, in which case the ACR model reduces to the MAR
model. Table 3 reports the likelihood ratio tests corresponding to this constraint in the
ACR-IT model for the three real exchange rates series. In all cases, the MAR restriction
is strongly rejected by the data. Hence, this test provides additional empirical support to
the ACR model.

6. Potential extensions

It is noted in Wong and Li (2000) that the conditional variance of the static mixture
MAR process is non-constant. Likewise for the ACR process in (1) with p = 1, where

straightforward computations give

V(zz s =2) =0+ (p(z) p’2” + (1 —p(2)) 2*) + (p (x) pr + (1 — p(z)) 2)°.
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United-Kingdom Italy
ACR-II ACR-III | ACR-II ACR-III
StTi—1 -0.113 -0.111 | -0.278 -0.278
(0.031)  (0.030) | (0.036)  (0.036)
(1 = s¢)xi—1 -0.008 -0.002 —
(0.010) (0.008)
Axy_y 0.361 0.363 0.335 0.334
(0.053)  (0.053) | (0.051)  (0.050)
a -31.66 -27.38 | -16.65 -16.40
(18.57)  (15.52) (7.99) (7.71)
b 63.97 55.78 31.95 31.40
(37.39)  (31.74) | (17.91) (17.33)
Oe 0.020 0.020 0.015 0.015
LM(AR 1-12) [p-value] | [0.27] [0.27] [0.97] [0.97]
log-L 1021.29  1220.99 | 1106.55 1106.52

Standard errors in parentheses. LM test of no error autocorrelation.

Table 2: ACR model estimates for UK and Italy

France United-Kingdom Italy

LR 10.04 9.12 4.16
p-values | 0.001 0.002 0.041

Table 3: Comparing ACR and MAR models

Thus the processes indeed allow for non-constant conditional variances (while x; has a
constant unconditional variance). However, note that the form of the conditional variance
induced by the ACR is rather restricted as for instance the conditional variance of Az,
V (Axg|z—y), is constant.

ACR models could be developed for more sophisticated models of conditional vari-

0

ance'’. As an example, consider first the traditional financial econometrics model with

x| F 1 ~ N(0,02),where the conditional variance follows a GARCH type recursion (see
for a review Bollerslev, Engle, and Nelson (1994)) such as

2 _ 2 2 _ 2 2 2
07 =y + arx) | +awop | =ag+a (¢7, — 07 ) +po;

where p = a; + ay. Here ap, oy and «ay are non-negative reals and, say, F; = o {x, 0, ...}

10See also Zhang, Li, and Yuen (2006) and Wong and Li (2001b) for similar extensions of related
models.

24



Although this GARCH model is strictly stationary even if p = 1, this unit root implies
that the process is not covariance stationary and the multistep forecasts of volatility
will trend upwards. This is often regarded as being unsatisfactory, however empirically
near unit root GARCH models are often estimated. See the discussion in, for example,
Bollerslev and Engle (1993) and Engle and Lee (1999).

We can use the ACR structure to construct a GARCH model which behaves mostly
like a unit-root process, but which is regularised by periods of stationary GARCH. This is
simply achieved by writing 4| F;_1,s; ~ N(0,07) and changing the conditional variance
into

o = ap+ {(a1 + ap)® — ap}a? | + ol |.

Now when s; = 0 the GARCH process has a unit root, while when s; = 1, the process is

locally covariance stationary. The idea would be to allow, in the simplest case,
Moi_y) = a+ 07y,

with v being positive. This would mean that if the conditional variance becomes large
the process has a chance to switch to a covariance stationary process, while when the

conditional variance is low the process behaves like an integrated GARCH.

7. Conclusion

This paper has proposed a new type of time-series model, an autoregressive conditional
root model, which endogenously switches between being stationary and non-stationary.
The periods of stationarity regularise the overall properties of the model, implying that
although the process has epochs of true non-stationarity, overall the process is both strictly
and covariance stationary.

This model was motivated by our desire to reflect the possibility that long-term eco-
nomic relationships between variables seem to sometimes breakdown over quite prolonged
periods, but when the disequilibrium becomes very large there is a tendency for the re-
lationship to reassert itself. This type of behaviour is quite often predicted by economic
theory. Now we have a rather flexible time-series model which can test for this type
of behaviour within the framework of some established econometric theory. Based on
this, cointegration and nonlinear adjustment are discussed for the ACR model in Bec and
Rahbek (2004)
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Appendix
The Appendix is divided into two parts: Appendix A is concerned with Markov chain
theory used for the proof of geometric ergodicity in Section 2. Appendix B is about

asymptotic inference in Markov chain models. This is mostly covered in Section 3 of the

paper.

A. Proof of Theorems 1 and 2:

With the m-dimensional ACR(k) process X; defined by (7) and the switching probability
in (12), we show that X, = (X,_,, ...,X{fk)' is a Markov chain on R™ which is geo-
metrically ergodic, see Meyn and Tweedie (1993) and Tong (1990) for an introduction to
Markov chain theory and geometric ergodicity. The proof falls in two parts: First it is
verified in Lemma 1 that the Markov chain X is irreducible with respect to the Lebesgue
measure p on R™ it is aperiodic and that compact sets K C R™ are small. By Meyn
and Tweedie (1993) these regularity conditions imply that if a drift criterion is shown
to hold, then X; is geometrically ergodic and has finite moments as defined by the drift
function. Geometric ergodicity of X; implies that Xy can be given an inital distribution
such that X;, and hence also X;, are stationary as claimed. This is established in Lemma
2. Thus Theorem 2 holds by Lemmas 1 and 2. Likewise, Theorem 1 holds by setting
N = L.

A similar strategy has been used in Bec and Rahbek (2004) and Saikkonen (2005) to
establish stationarity of cointegrated relations in nonstationary nonlinear vector autore-
gressive processes. In particular, Bec and Rahbek (2004, proof of Theorem 1) use the
results of Lemma 1 here:

Lemma 1. Under Assumption 3 and Assumption 4 (i), (X;) is a p-irreducible, ape-

t=0,1,..
riodic Markov chain on (R™ B™*) where B™ is the Borel o-algebra on R™ . Moreover,
compact sets K C R™ are small.

Proof of Lemma 1: By definition of X; and s;, X; conditional on X;_; has density
f(Xy|X; 1) given by

FXXe) =p('Xis1) g (X — AXy 1) + (1 —p (n'Xe21)) g (X — BX, 1), (28)
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where A = (A, ..., A), B = (By, ..., Bg) and g (-) is the density of £, which is well-defined
by Assumption 3. Next, by straightforward factorization, X;,; conditional on X; has

density,
k
h(Xek[X0) = [ S (XeilXesica). (29)
=1

That is, X; has a well-defined k-step transition density, which, similar to Tjgstheim (1990),
will be exploited in the next step.

Let P" (D|z) = P (X4 € D|X; = x) denote the n-step transition probabilities for
the Markov chain X;, where x € R™ and D € B™. Then irreducibility with respect
to u follows by Meyn and Tweedie (1993, Proposition 4.2.1 (ii)), by noting that for all
z € R™ and D € B with u(A) > 0,

oo ,P"(Dlz) > P* (D|z) = [,k (y|z)dy > 0, (30)

which holds by (29) and Assumption 3.
Likewise, with K C R™ a compact set, and (x,y) € K x K, h(y|x) > ¢ for some
d > 0 by Assumptions 4 (i) and 3. Then for any 2 € K and any D € B?,

P*(D | z) > P*(DNK | 2) = [, h(ylx)dy > ép(DNK).

Hence for all z € K, P¥(- | ) is minorized by u(-NK ) and the compact set K by definition
is small, cf. Meyn and Tweedie (1993, p. 106).

Finally, an irreducible chain is periodic if it has period d > 1 and aperiodic if d = 1.
If X; has period d > 1, then by Meyn and Tweedie (1993, Theorem 5.4.4) there exist
disjoint sets Dy, D1, ..., Dg_1 in B™ such that

P! (D;y1]z) =1forx € Dy and i =0,1,..,d — 1 (mod d)

and furthermore, w(Ud ' D;)¢ = 0, where ¢ is a maximal irreducibility measure. By Meyn
and Tweedie (1993, Proposition 4.2.2 (ii)) p is absolutely continuous with respect to v
and therefore also p((J’,D; 1)¢ = 0. For this to hold at least one of the sets Dy, say,
must have p(D;) > 0, which implies P* (D;|z) > 0 for all x as in (30).
[terating k times one gets for some j, the contradiction,
P*(Dy]x) = 0 with 2 € U, ;D

Hence X; has period d = 1 and is aperiodic. 0

Lemma 2. Under Assumptions 3 and 2, and Assumption 4 (i) and (ii), (X;),_, , satisfies

a drift criterion such that X; is geometrically ergodic and has finite 2n'th order moments.

Proof of Lemma 2: By Lemma 1 X; is a Markov chain for which we can apply the drift
criterion as stated in e.g. Meyn and Tweedie (1993, Theorem 15.0.1 (iii)). As to choice
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of drift function d (X;) > 1 and calculation of E(d(X;)|X;_; = ) the arguments mimic
Bec and Rahbek (2004, proof of Theorem 1). Specifically, a drift function in Feigin and

Tweedie (1985) implying finite second-order moments is given by

d(r)=1+2Ve,V=> A'A"

1=0

where A is the mk X mk dimensional matrix given by,

A Ay - A
I, 0 - 0
A= _
0 Iy, 0

Note that A’V A =V — I. Assumption 2 is equivalent to the assumption that p (A) < 1,
and therefore d (-) is well-defined. Defining B similarly in terms of the B; coefficients, it
follows that

E(d(X,)[Xi1 =) = (1 - T = (V) 5(561) —+ ("Ix))h(””)> d(x), with  (31)

h(z) =2 (A —B)D(A—B)z —2:'A'D(A — B)z,

For some A > 1, define the compact set K = { | 2'Va < A}. Note initially, that on its
complement K€ it holds by definition that

d(z) =1+a'Ve <2'Va (1+ 1) < 22'Va.
Hence for A\ large enough,

atr(@QV) (L pa)h() ~ ofw _ r(QV) + (1 — p(y'z))h(z)

d(x) = 2z¢'Vz d (1')
(V) + (1= p(o/e)h(a)
= 2p(V) d(x)

Write « = nij'x + .77, x, where e.g. 7=n('n) . Assumption 4 (i) implies that h ()

can be written as:
h(z) = (2'n) 7' (A —B)'D (A —B) 5 (n'z) — 22’ A'D(A — B)n (') = hi () — ho ()

Note that as ||z||*> — oo, either (a) ||7fz|| — oo or (b) |7/ z|| = oco. In case of (a), as
hy (z) and hsy (z) are O (1), clearly (1 — p(n'z))h(z)/d (z) — 0 by assumption on p (-).
In case (b) hy(z) — 0 and also hy (z) — 0 since hy (x) = O (||n'z|| ||z||) and again
(1 — p(n'x))h(z)/d (x) — 0 holds since 1 — p(-) is bounded. We can therefore conclude

that
tr(2V) + (L = p(y'z))h(z)

1) — 0
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Summarizing, for A large enough,

for x € K¢ and some 0 > 0. On K, F(d(X;)|X; 1 = z) given by (31) which is continuous

and hence bounded on the compact set. O

B. Proof of Theorem 3:

Theorem 3 holds by establishing the regularity conditions (A.1), (A.2) and (A.3) in Jensen
and Rahbek (2004, Lemma 1), which are classical Cramér type conditions addressing first,
second and third order differentials of the log-likelihood function. These hold by Lemma
5 and Lemma 6 below.

We apply notation as in Magnus and Neudecker (1988) for derivatives of matrix func-
tions: With %, [, m and n integers, the mapping G, G : R¥*! — R™" (G is differentiable
of order three in X € = C R if

G(X +dX) = G(X) + dG(X,dX) 4+ d*G(X, dX,dX) + d*G(X,dX,dX,dX) + o(||[dX|]*)

as [|dX|| — 0. Here, say, dG(X,dX) is the differential of G at X with increment dX €

R where X + dX is in the interior of =. The Jacobian, ﬁmvec{G(X)}, and the

differential are connected through the vec-operator by the identity,

!
vee {dG(X,dX)} = [%] vee(dX). (32)

Likewise for the second order derivative or Hessian, see Magnus and Neudecker (1988).

B.1. First and second order differentials

We start by listing the first and second order differentials, or score and observed in-
formation. In both case, the differentials have been stated such that it is possible to

accommodate different choices of the logistic specification in (15).

Lemma 3. With p(-) on the logistic form in (15), the first-order differential for the log-
likelihood function in (16) is given by

dty(8,d0) = (ply, — par) dN(0,dO) + {p’,dlog pai (0, dO) + pp,dlog pp(0,d0)},  (33)
such that with pyy, Dy, Gae and ey for M = A, B defined in (17), (21) and (18)

dt; (0,dA) = tr{Q 'peaX, ndA'},  dl,(0,dB) = tr{Q 'phepX, ndB'}  (34)
dl; (0,dC) = tr{Q " (p',ea+Dien) X, n.dC"}, (35)

dt; (0,d(a,0)") = (Pl — par) d(a,b)ve, v = (1, f(n'Xe1)) (36)

dty (0,dS2) = %tT{Q_IdQ[Q_I(pZtgAtdqt + P iEp) — Iml} (37)
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Proof of Lemma 3: The result follows by direct differentiation of the log likelihood function
in (16) combined with the identity (21). O

Lemma 4. With the notation from Lemma 3,

d2£t(07 dea dg) = pj:ltp*Bt {d)‘(ea de) + d IOg ¢At(07 de) - d IOg ¢Bt(07 de)}2 + (38)
(D58 10g G416, O, dO) + pis,d* 1og dpi (6, O, d0) } — papse {dN(6, dO)}?

The second-order differentials for the autoregressive parameters are given by,

d20,(0, dA, dA)
d20,(0, dA, dB)
d20,(9, dA, dC)

d20,(0,dB, dB)
d20,(0, dB, dC)

d20,(0,dC, dC)

PP (tr{Q e a Xy ndA'})? — plytr{ Q7 d Ay X, X nd A’}
— i D tr{Q e 4 X nd A"} r{Q e, X, ndB'}
—pitr{Q7 O X, 1 X ndA'}+

Papptr{Q e aXi_ nd A tr{Q e ar — epe]X_ 01 dC"}

PP (tr{Q " ep X ndB'})? — pp,tr{Q~'dBn'X, 1 X} ndB'}
— i tr{ Q1 dC X1 X]_ ndB'}—

Palptr{Q e X_1ndB' 1r{Q e a, — e, X 11 dC"}
—tr{Q7'dCn X, 1 X, 0 dC'}+

P (tr{Q  ea — e Xy n1dC'})?

Next, for the logistic parameters,

d20,(0, d(a,
d*0,(0, d(a,
d*0,(0, d(a,
20,(0, d(a,

(39)
',d(a,b)) = (pf;tp}}t — papse) {d(a, b)Ut}2
A) = PP tr{Q teaX|_indA'}d(a, b)v, w0
B) = —PZtPEttT{Q_1€BtXQ,1 ndB'}d(a, b)v,
C) = phwitr{Q ear — epdXi_110dC"}d(a, D),

And finally, for the covariance,

d20,(0, d9, dS)

d20,(6, d, dA)

d20,(6, d, dB)

d?0,(0,dQ, dC)

d20,(0, dS2, d(a, b))

tr{(51m — Q[P aEy + P Bies]) Q2 QO Q)+
piltp’}%t(tr{%gildggil[5At51At — e}’
pféxtpi?ttr{%g_ldﬂﬂ_l[5At5£4t — el Hr{Q e aX]_ ndA'} -
pitr{Q QO e 4 X, ndA'}

_pfqtpgttr{%ﬂildﬂﬂil[5At514t — epep r{Q tepX,_ndB'} -

P tr{Q 1 dOQ e X, ndB'}

—tr{Q 1 dQQ  (pear + PiyE) X _1 11 dC }+
pféxtpi?ttr{%g_ldﬂﬂ_l[5At5£4t — e Hr{Q 7 ear — e X111 dC"}

PPt %Q_ldQQ_l [ atela — Emielp] Hd(a, b)vy
(41)
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Proof of Lemma 4: Differentiation in (33) gives,

d20,(0, 0, d9) = p'y,d* 1og §4,(0, d, d0) + piy,d” log (6, d, dO)
+ (P, — pac) N6, d9, dB) + [dp’y, (6, dB) — dp.a,(6, d6)] dA(6, dB)
+dp’y,(0,d0) (dpa(0,dl) — dop(0, db))

which equals (38) using the identity dpa.(0, d0) = pappidA(0, dF), the identity
dp,(0,d8) = piy,ph, (dX(8, dO) + dlog ¢ a (0, dO) — dlog i (0, d))

and that d*\(0, df, df) = 0. The results in (39)-(41) hold by using the identities,

dlogda, (0,dA) = tT{QilgAtX::—lndAl}a
dlog ¢4 (0,dC) = tr{Q ey X _1n.dC"} (42)
d*log pas(0,dA,dA) = tr{Q 'dAn'X, X ndA'}

d?log pa(0,dA,dC) = tr{Q 'dANX-1X]_yn,dC"}
and similarly for dB as well as standard matrix calculus results such as dlog|Q| =

tr {Q1dOY. O

B.2. Regularity conditions

Next, we verify that the information equality holds, positive definiteness of the information
and that the third-order differential is bounded:

Lemma 5. Under the Assumptions of Theorem 3 it holds that
E(dl,(0,d0))* = —E(d*(,(0,d0, db)) > 0. (43)
Furthermore, for each 6 there is a neighborhood N (6) of § such that

E sup |d*¢; (0,d0,do,df)]| < .
GeN(0)

Proof of Lemma 5:
To see that e.g. F (dl,(0,dA)?) = —E (d*(,(0,dA,dA)) for all m x q matrices dA we

use the conditional independence of s; and ¢; given X; ;: First note that
sigar = se(Xp — AKXy — O Xy1) = s
and using (21),
E(pucal Xim1) = E(E (s Xo, Xem1) £ae| Xim1) = E (518 X4o1) = 0. (44)

By definition,
E (piyl Xe1) = E (se| n'Xe1) = par- (45)
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Now,
(dy(0, dA)?)+d*0,(0,dA, dA) = p'y,[tr {QflsAtXffflndA'}Q—tr {Q dAYX, 1 X ndA'}],

and it holds that
E ((dt,(8,dA)?) + d*6,(0,dA,dA)| X,-1) =0.

as desired. Likewise for the remaining terms in (43) the results follow by repeated use of
the additional identities

(I—=si)epe = (L —se)er, E((ppene Xi—1) =0 (46)
E (pheacy + 0 Xim1) = 52+ (1 — 5,)Q = Q (47)
Cov (tr {ei, P}, tr {,6,Q}) = 2tr { PQQN} (48)

for P, () symmetric p X p matrices. For instance, using (48) together with (47) and (46)
it follows that

E (de,(0,dR))” + E (d?6,(6, dS, dS))
= 1B [tr {0100 1) = b {0 a0} + o { [0 1] }] =0,

— 1

Next, observe that E(df¢,(6,df))* > 0 for all df, is equivalent to linear independence of

the first-order differentials or simply,
dly(0,dA) + dt,(0,dB) + dt; (0, dC) + dt, (0, d(a,b) + d,(0,dQ) =0

implies dA = dB = dC = d(a,b) = dS2 = 0. Note initially that by the definition of p%, in
(21) then
P — Par = Papsi(dar — dni) (49)

Thus if A = B then by (49) p%, = pa: and the claimed implication does not hold. More
precisely, conditioning on X; ; and choosing dA = pdB # 0 for some real p, d¢,(0,dA) +
dly(0,dB) = 0. This is a consequence of the fact that conditional on X;_;, and with a
and b known, the considerations simplify to the well-known for mixed normal models, see
e.g. Titterington, Smith, and Makov (1985). Therefore we focus on the non-singularity

of the derivative with respect to (a,b)’,

dly(0,d(a,b)" = dt, (0,d(a,b)) = (p’y, — par) d(a, b)v,
= (Pae — par) (da+ f (n'X;-1) db)
By (49) and Assumption 1, (p%, — par) # 0 almost surely (as b > 0). Next, the proof
of geometric ergodicity of X; implies that the Markov chain has the Lebesgue measure

as irreducibility measure. This again implies, by the Lebesgue decomposition, that the

invariant measure has a component which has a strictly positive density w.r.t. Lebesgue
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measure and hence that, Pr(f (7'X;_ ;) # constant) > 0 and therefore d¢,(0,d(a,b)" # 0
almost surely.

For the third-order differential, use Lemma 4 and note that with
Wt = dlog o = tr {01 [XX_yy— My, X, ] dIM} (50
for M = A, B, cf. (42), then
wi| <k K X+ o || X1 X0 |
for # € N (6) and some constants r;, i=1,2. Consider first the direction of A,
000,04, 04, dA)] = | (it {97 AWK K nd A} + (L= 2000 (o)
< o [ [ + Ry [t

for some constants £;, i=1,2. Hence Ey supge vy |d30,(0,dA, dA, dA)| is finite by existence
of second-order moments of X;. Apart from tedious calculus, similar results hold for the

remaining third-order differentials. ([

Lemma 6. Under the assumptions of Theorem 3, then as T — oo:
Provided ¢(-,-) is measurable and E ||¢ (X, X¢1)|| < oo, then for each 0

LY 20, (0, d0, d0) 2 E(d?(, (6,d6, db)). (51)
Furthermore,
LT de, (0, d0) = N (0, E [de,(0,d6))) (52)
where E [d(,(0, df)]” satisfies (43).
Proof of Lemma 6: By the law of large numbers in Jensen and Rahbek (2007),
26 (X0 X)) = (9 (X, X0m0),

for all ¢(-,-) measurable and F ||¢ (X;,X; 1)|| < 0o as X; is geometrically ergodic. Using
the expressions in Lemma 4 for the second-order differential, the convergence in (51) holds
as all moments are finite. Next, note that d¢,(,df) is a Martingale difference sequence
with respect to F; = o (X, X; 1, ...) . Specifically,

E(de,(0,d0)| Fiey) = E(d6,(0,d0)| X)) = 0

using the expression for the differentials in Lemma 3 together with the identities (44),
(45), (46) and (47) applied in the proof of Lemma 4. Again the established geometric

ergodicity and existence of moments imply that
T B ([d6(0,d0)| X )

converges in probability by the law of large numbers. Furthermore, the Lindeberg con-
dition in Brown (1971) applies and the claimed asymptotic normality of the first-order
differential follows. U
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B.3. Information

We end this section by stating the observed information, that is minus the second-order
derivative of the log-likelihood function, which is used in the application as a consistent
estimator for £ 7! in Theorem 3. Consistency of the observed information, or Hessian,
evaluated at é, holds by Lemma 5 and Lemma 6 as the third-order derivative is uniformly
bounded in mean in a neigborhood of #, that the Hessian evaluated at 6 is consistent, and
finally that 0 is consistent by Theorem 3.

Using Lemma 4, the observed information can be represented as follows setting

vec = ((vecA)', (vecB)', (vecC)', (vecQ)', a,b,)".

The corresponding consistent estimator of the covariance matrix is given by ¥ ! evaluated

at § where X! is given by

T
1
Yl 43, = T Z(blockdiag (Te @ Q7" 0ax2) + W) (53)

t=

Here Y, is the (¢ +m(k +1))x (¢ + m(k + 1)) dimensional matrix defined by,

P X1 Xi qn 0 P X1 Xi o pgtnlxt—lsialtﬂ_l
0 P Xe1 X _qm P Xe 1 X4 _ym1 p*BtnIXt—l‘slBtQ_l
P Xe X pp X Xi_m 0L X1 XG_im M X1 3o a g PrreEn Y

P rearXiim pRQ em Xl QT Yy a g PhemeXiine QN v a g PireEmeehy — 39O
Next, U, is the (¢ +m(k + 1) +2)x (¢ +m(k + 1) +2) dimensional matrix given by

v, = pAthti/)twé - pztp}}tw: Z '

where

o = | vee (@ teaXi_ ) —vee (@ temXim), vee (301QY', o |,

Uy = [ 0, 0, 0, v ] . Q= leacy —emey] and v, = (1, f (1'Xe1)).
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