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upper tier; and the question is to assign a certain number of mandates for each delegate

according the population of the jurisdiction he or she represents. Unfortunately, there exist
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1 Introduction

The concept of power index is probably the most famous application of game theory to

political sciences. The objective of a power index is to evaluate the a priori influence of a

given player for a given voting rule by computing the number of times he or she is decisive.

In a ‘yes’ or ‘no’ binary decision, a player is said to be decisive each time he or she can

reverse the decision by changing his vote. Most of the literature on power indices is then

devoted to the evaluation of the influence of the different players in different institutions,

e.g. shareholders in a firm, political parties in a parliament, countries in the United Nations,

US states in the Electoral College, etc.

The power indices can also be used from a normative perspective rather than from a

descriptive one. If the objective is to allocate the power to the players according to a pre

established target, what are the political institutions that come closer to this objective? This

institution design problem is known as the ‘inverse problem’ in the power index literature.

It is an issue as old as the field: Penrore [10] already remarked in 1952 that, according to

his measure of power1, the best way to equalize the influence of the citizens of different

states in a two tiers voting system should be to allocate to each state a number of mandates

proportionally to the square root of its population.

In this paper, we study the inverse problem from a more general perspective. Consider

the whole class of weighted quota games, where each player is endowed with a certain

number of mandates, or weights, and where a decision is approved if and only if the number

of players that vote ‘yes’ altogether strictly gathers more than q votes. Then knowing that

the power must be as close as possible to some pre established normative target (typically,

the distribution of population of the different members of a political union) which is the best

voting rule? The problem is tricky and time consuming (see Leech [8]) and an algorithm to

solve the inverse problem is proposed in a companion paper (see Barthélémy and Martin [2]).

But apart from computational issues, another question with the inverse problem approach

is the choice of power index. The literature on power indices has suggested several ways to

measure power, the most famous indices being the ones proposed by Shapley and Shubik

[11] and Banzhaf [1]. Thus, depending on the choice of the power index, the results of

1Penrose’s index is also now known as the absolute Banzhaf index. For more on the history of the power

indices and the fact that they have been rediscovered several times in different fields, see the paper by

Felsenthal and Machover [5].
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the inverse program may lead to different optimal weighted quota games. The primary

objective of this paper is to examine to which extend the choice of different power indices

may change the solution of the optimization problem. As a by product, we will also observe

which index, on average, performs better in terms of minimizing the total distance to a

given target.

The rest of the paper is organized as follows. In Section 2, we present the definitions

and the basic concepts. Section 3 is devoted to a detailed analysis of the three player case.

The results for the general case are presented in Section 4. Section 5 concludes the paper.

2 Definitions

2.1 Weighted quota games

Let N = {1, 2, ..., n} be the set of players (elsewhere voters, states, cities, etc), of cardinality
n. Let G = [q;w1, ..., wn] be a weighted quota game where q is the quota and wi is the weight

attached to the player i, with n
i=1wi = w̄ and q < w̄. We assume that w1 w2 ... wn.

We say that a coalition S ⊆ N (that is a group of players) is winning if and only if

i∈S wi > q.

For example, consider the following weighted quota gameG = [9; 8, 4, 4, 1]. The coalition

S = {1, 2} is winning (we write S ∈ W with W the set of all winning coalitions) since

w1 + w2 > q. If S ∈ W , we attribute a value 1 to S, denoted v(S) = 1 and if S ∈ W , we
have v(S) = 0. We only consider proper voting games, that is voting games such that if

S ∈ W then N\S ∈ W . In particular, this implies q ≥ 1
2w̄. A weighted quota game is a

majority weighted game if q = w̄/2.

2.2 Power indices

Several power indices are proposed in the literature and all of them admit the importance

of a particular player, the decisive player. A player is decisive in a coalition S ∈ W if this

coalition becomes a loosing coalition when the player leaves it. In the previous example,

player 1 is decisive since w2 < q, that is S\{1} ∈ W . In this paper we only consider
the two most important power indices, the Shapley-Shubik power index and the Banzhaf

power index (for a complete description of the power indices, see Straffin [12], Felsenthal

and Machover [5] or Laruelle [7]).
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The Shapley-Shubik index [11] takes into account the following reasoning: consider a

player to construct a coalition and analyze if this coalition is winning. If it is not the case,

add a second player and check again whether this coalition is winning and so on. When

a player, in joining a coalition, makes the coalition winning, we call him a pivotal player.

Now, consider all the possible permutations of the player (n!). The Shapley-Shubik index is

the number of times where a player is pivotal divided by the total number of permutations

of the voters. The Shapley-Shubik index of the player i for a game G reads:

φi(G) =
number of orders with i pivotal

n!
(1)

We derive the following formula

φi(G) =
S⊆N, i∈S

(s− 1)!(n− s)!
n!

[v(S)− v(S\{i})] (2)

with s the number of players in S. Since v(S) = 0 or v(S) = 1, [v(S)−v(S\{i})] is non-null
if and only if the player i is pivotal in S. φ(G) = (φ1(G),φ2(G), ...,φn(G)) is the power

vector associated with the Shapley-Shubik index for the game G.

The calculus of the Banzhaf index [1] is simpler. We just have to identify the number

of winning coalitions where the player i is decisive among the 2n − 1 coalitions he belongs
to, irrespective of the order of arrivals in the coalition, and divide it by the total number of

decisive players. The Banzhaf index of the player i for game G is then

βi(G) =
number of times for which player i is decisive

total number of decisive players
(3)

We can write

βi(G) =
S⊆N [v(S)− v(S\{i})]

j∈N S⊆N [v(S)− v(S\{j})]
(4)

β(G) = (β1(G),β2(G), ...,βn(G)) is the power vector associated with the Banzhaf index

for the game G.

2.3 Meeting the target

In some voting problems, there might exist a pre existing norm concerning a distribution

of the power that we may wish to attain. For example, if the players are the countries of

a federal union, one may wish the power of a player to be proportional to its population.

In a charity trust, the different participants may wish their influence to be proportional
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to the amount of their donation. In a firm, some minority shareholders may wish their

interests to be protected from the decisions of a major shareholder. Thus, we assume that

there exists a pre established target vector on the ideal repartition of power. We denote by

p = (p1, . . . , pn) ∈ Pn the target, with Pn = {p ∈ Rn : pi ≥ 0 and n
i=1 pi = 1}. Knowing

this distribution p, we then wish the distribution of power to be as close as possible to p.

The problem is then to determine, given the ”population” vector p representing the ideal

influence of the players, the distribution of the weights (w1, . . . wn) and the quota q such

that the sum of the differences between the target and the power is minimal. This approach

comes from the studies of Leech [8], Pajala [9] or Bisson, Bonnet and Lepelley [3], among

others. In this paper, we only consider the variance2.

Let d(x, y) be the variance

d(x, y) =
n

i=1

(xi − yi)2 , x ∈ Rn and y ∈ Rn (5)

We assume that there exists a link between the target and the weight of player i: we

impose p1 p2 ... pn (a more important target implies a more important weight by

hypothesis). The distance between the Shapley-Shubik index and the target is written dSS.

Similarly, the distance between the Banzhaf index and the target is denoted by dB.

Obviously, the distribution of the weights allocated to the players and so the distribution

of power depends on the choice of the power index. In particular, it can be argued that

no power index is ultimately better than another one from a normative point of view, so

there is no specific reason to privilege one of the index while adopting an inverse problem

perspective. It means that the choice of the power index to determine the distribution of

the weight is of crucial importance. Our main purpose is to examine whether the situations

where the optimal weighted quota games are different while using different power indices are

frequent. In other words, can we search for the best weighted quota game irrespective of the

choice of power measure when the objective is to equalize influence with a pre determined

target vector p? As a by product, we will also discover which power index, in average,

minimizes the distance to a target and best performs for the inverse program. More precisely,

we study three points:

2All the results obtained with the variance were also obtained with the other important measure of

distance in the literature, the sum of differences in absolute value. Since the results were almost the same,

irrespective the choice for a distance, we only present here the results by considering the variance.
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• First, we compute the probability that both power indices give an identical vector of
power for a target chosen randomly from an uniform distribution in the unit simplex

of dimension n. For n players, this probability is denoted Pn(B = SS).

• Let GB(p) (resp. GSS(p)) be the weighted quota game obtained as a solution of the
inverse problem for a target vector p for the Banzhaf index (resp. the Shapley-Shubik

index). The probability that the inverse problem gives the same institutional solution

is thus denoted by Pn(GB = GSS) for n players.

• Thirdly, we compute the probability that the Shapley-Shubik index of power for
GSS(p) implies a minimal distance inferior to the one given by the Banzhaf index

for GB(p) (denoted Pn(B > SS)) and vice-versa (denoted Pn(B < SS)).

Before turning to the general case, we will now study in detail the 3 player game in

order to familiarise the reader with the concepts.

3 The 3 player case

In this section, we give some analytical results for the particular case of 3 players. We

compute the probability that the minimal distance between the power and the target is the

same with the two power indices, that is the probability P3(B = SS). For this, we have to

determine first all the possible vectors of power. Next, we derive P3(GB = GSS) and check

which power index is ”closer” to the target by deriving P3(B > SS) and P3(SS > B).

These probabilities are obtained for any quota and any sum of weights. But we can

add some constraints to the inverse program, for example, by fixing the quota to focus on

majority games or by fixing an a priori w̄. Some particular cases are studied in the third

subsection.

3.1 The number of possible vectors of power

To our knowledge, there does not exist a general formula to determine all the possible

power vectors for a given n and a given power index. However, for n small, it is possible

to enumerate all the possible cases. The details of the calculus for n = 3 are given in

the Appendix and we can summarize these results in table 1. The first column gives the

conditions on the weight vector w. Column 2 and 3 indicate the corresponding Banzhaf and
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Shapley-Shubik power vectors. The last column displays one game G for each class, where

the weights and the quota are integers; notice that all the possible games for n = 3 G1, G2,

G3 and G4 can be described as majority games.

Table 1: The four different weighted quota games for n = 3, with examples.

Conditions on w Banzhaf Shapley-Shubik Example

w1 > q β1 = (1, 0, 0) φ1 = (1, 0, 0) G1 = (1; 2, 0, 0)

w1 + w3 q and w1 + w2 > q β2 = (12 ,
1
2 , 0) φ2 = (12 ,

1
2 , 0) G2 = (1; 1, 1, 0)

w1 q and w2 + w3 > q β3 = (13 ,
1
3 ,
1
3) φ3 = (13 ,

1
3 ,
1
3) G3 = (3; 2, 2, 2)

w1 q and w2 + w3 q and w1 + w3 > q β4 = (35 ,
1
5 ,
1
5) φ4 = (23 ,

1
6 ,
1
6) G4 = (4; 4, 2, 2)

3.2 A graphic computation of P3(B = SS), P3(GB = GSS) and P3(B > SS)

For the three players case, we can illustrate the inverse problem with simple graphics3. Since

we assume that p1 + p2 + p3 = 1, we can represent all the possible targets in a simplex.

Furthermore, we assume that p1 p2 p3: Thus, the dotted area in Figure 1 represents

all the admissible targets. We assume that any point in this area is equally likely to be an

admissible target vector. Note that the constraint p1 p2 p3 implies p2
1
2 − p1

2 .

The surface of the admissible area A is equal to

A =
1/2

1/3
p1dp1 +

1

1/2
(1− p1)dp1 −

1

1/3
(
1

2
− 1
2
p1)dp1 =

1

12
0.0833 (6)

If we calculate the distances dB and dSS between a vector of power and a target p, we

obtain easily:

- dB = dSS = n
i=1 p

2
i − 1

3 for the vector (1/3, 1/3, 1/3),

- dB = n
i=1 p

2
i +

1
25 − 4p1

5 for the vector (3/5, 1/5, 1/5),

- dSS = n
i=1 p

2
i +

1
6 − p1 for the vector (2/3, 1/6, 1/6),

- dB = dSS = n
i=1 p

2
i +

1
2 − p1 − p2 for the vector (1/2, 1/2, 0),

- dB = dSS = n
i=1 p

2
i + 1− 2p1 for the vector (1, 0, 0).

3A similar graphic interpretation of the power indices has been presented by Jones [6] for the analysis of

the paradoxes of power indices.
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6

(13 ,
1
3 )

( 12 ,
1
2 )

(1, 0) p1

(0, 12 )

(0, 1)

p2

p2 = 1− p1 p2 = p1

p2 =
1
2 − p1

2
. .

. . . .
. . . . . .
. . . . . .
. . . . . .

. . . . .
. . . .

..

.

A

Figure 1: The possible target vectors

We can compare the distances and we obtain that, for the Banzhaf index:

-The vector of power β1 = (1, 0, 0) and G1 minimize d
B if p1 > 5/6.

-The vector of power β2 = (1/2, 1/2, 0) andG2 minimize d
B if p2 > 1/3 and p2 > 5/6−p1.

-The vector of power β3 = (1/3, 1/3, 1/3) and G3 minimize d
B if p2 < 1/2 and p2 <

5/6− p1.
-The vector of power β4 = (2/3, 1/6, 1/6) and G4 minimize d

B otherwise, that is if

7/15 < p1 < 4/5 and p1 + 5p2 < 23/10.

The different zones corresponding to the optimal games are depicted in Figure 2.

The same reasoning for Shapley Shubik enable us to define the following domains:

-The vector of power φ1 = (1, 0, 0) and G1 minimize d
SS if p1 > 4/5.

-The vector of power φ2 = (1/2, 1/2, 0) and G2 minimize d
SS if p2 > 23/50− p1/5 and

p2 > 5/6− p1.
-The vector of power φ3 = (1/3, 1/3, 1/3) and G3 minimize d

SS if p2 < 7/15 and

p2 < 5/6− p1.
-The vector of power φ4 = (2/3, 1/6, 1/6) and G4 minimize d

SS otherwise, that is if
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G1

G4

G2

G3

β2 = (12 ,
1
2 , 0)

β3 = (13 ,
1
3 ,

1
3 )

β1 = (1, 0, 0)

β4 = (35 ,
1
5 ,

1
5 )

•

•

•

•

Figure 2: The different closest games for the Banzhaf index for n = 3

G1

G4

G2

G3

ϕ2 = (12 ,
1
2 , 0)

ϕ3 = (13 ,
1
3 ,

1
3 )

ϕ1 = (1, 0, 0)

ϕ4 = (23 ,
1
6 ,

1
6 )

•

•

•

•

Figure 3: The different closest games for the Shapley-Shubik index for n = 3
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7/15 < p1 < 4/5 and p1 + 5p2 < 23/10.

The corresponding zones are depicted in Figure 3. Now, by comparing Figure 2 and 3,

we can immediately identify in Figure 4 the regions where the minimizing distance process

does not lead to the same vector of power. The dotted area D in Figure 4 is equal to

D =
19/30

7/15
(
23

50
− p1
5
)dp1 +

2/3

19/30

1

3
dp1 +

5/6

2/3
(1− p1)dp1 −

5/6

7/15
(
1

2
− 1
2
p1)dp1

D =
169

3600
(7)

Thus the probability that the Banzhaf index and the Shapley-Shubik index give the same

vector of power and the same minimal distance to a target is

P3(B = SS, d) = 1− D

1/12
=
131

300
0.4366 (8)

Similarly, the dotted area D’ in Figure 5 represents the target vectors which lead to

different games as solution of the inverse problem. We derive :

P3(GB = GSS) =
1

12

19
30

7
15

(
23

50
− 1
5
p1)dp1 −

27
40

19
30

(
23

50
− 1
5
p1)dp1 −

5
6

4
5

(
1

2
− 1
2
p1)dp1

−
1
2

7
15

(
1

2
− 1
2
p1)dp1 −

19
30

1
2

1

3
dp1 +

2
3

19
30

1

3
dp1

+

27
40

2
3

(1− p1)dp1 +
5
6

4
5

(1− p1)dp1

=
61

6
≈ 0.1016 (9)

3.3 Particular cases: majority weighted games and other constraints

When designing a voting rule, several constraints may complete our model: we may focus

on the majority rule only, or set w̄ to be an odd integer, for example. We deal here with

the most important voting game in the literature, that is the majority voting game where

q = w̄
2 . All the games presented in the table 1 are majority games. However, we show in the

appendix that when w̄ is odd, only the games G1 and G3 can appear. Hence, the possible

vectors are the same ones with the Banzhaf and the Shapley-Shubik indices, and trivially,

P3(B = SS) = P3(GB = GSS) = 1.
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( 715 ,
4
15 )

( 12 ,
1
2 )

( 56 ,
1
12 )

(1, 0) p1( 715 , 0)

(0, 13 )

(0, 2350 )

(0, 12 )

(56 , 0)

(1930 ,
1
3 )( 715 ,

11
30 ) ( 23 ,

1
3 )

p2 =
1
2 − p1

2

p2 =
23
50 − p1

5

. .

. . . . .

. . . . . .

. . . . .

. . .
.

6

-

D

Figure 4: The area corresponding to P3(B = SS)

G4

G2

G3

G1

G4

G2

G3
...
.............
...
...
...
..

..

...

...

...

...

Figure 5: Different Shapley-Shubik and Banzhaf inverse games for n = 3
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If w̄ is even and greater than 4, the four games Gi can appear, thus the results with

the majority game are equivalent to the ones obtain in section 3.2. However, if w̄ = 4 with

integer weights, the situation is different since the game G3 and its (1/3, 1/3, 1/3) power

repartition is no longer possible. The detail of the calculus of P3(B = SS) with a graphic

representation are omitted, but with a reasoning similar to the one presented in the previous

subsection, we derive P3(B = SS) =
49
150 ≈ 0.3266.

In conclusion, in this simple three player game, we can see that by slightly changing the

class of voting rules we wish to obtain, the results of the inverse program can be radically

different. This drastic changes will also be illustrated in the next section, depending whether

we impose some conditions on the set of possible games.

3.4 Is Shapley-Shubik better than Banzhaf?

In the previous subsection, we have seen that there exists an area D in Figure 4 for which

the minimal distance to a vector of power is different and depends on the chosen index of

power. We now determine the area which is such that the Banzhaf index “does better”,

that is minimizes the minimal distance to a vector of power. In other words, for a target

p, we search whether p is closer to a β or a φ vector. We calculate the probability, denoted

P3(B < SS), that the Banzhaf index gives a minimal distance smaller than the one given

by the Shapley-Shubik index.

By the previous section, we derived dB = n
i=1 p

2
i +

1
25− 4p1

5 for the vector (3/5, 1/5, 1/5)

and dSS = n
i=1 p

2
i +

1
6 − p1 for the vector (2/3, 1/6, 1/6). Thus, Banzhaf minimizes the

minimal distance if n
i=1 p

2
i +

1
25 − 4p1

5 < n
i=1 p

2
i +

1
6 − p1. We obtain p1 < 19/30. In

Figure 4, we can split the dotted area D in two parts: for p1 < 19/30, the choice of the

Banzhaf index implies a smaller distance than the choice of the Shapley-Shubik index. For

p1 > 19/30, the contrary holds. Therefore, we have

P3(B < SS) = 12
2/3

19/30

1

3
dp1 +

5/6

2/3
(1− p1)dp1 −

5/6

19/30
(
1

2
− 1
2
p1)dp1

=
1

4
= 25% (10)

Since P3(B < SS) + P3(B = SS) + P3(B > SS) = 1, we have

P3(B > SS) =
47

150
0.3133 (11)
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Thus, when the objective is to find a distribution of power as close as possible to a pre

established target, the Shapley-Shubik index tends to perform slightly better than the

Banzhaf index. When there is no constraint on the choice of the possible games, this result

will be confirmed for a higher number of players by the following section.

4 The general case, n 3

When the number of players increases, the analytical approach becomes very tedious or

simply impossible when we wish to evaluate the different probabilities. For example, there

are at least 14 710 vectors of power with 7 players when we consider the Banzhaf index! A

graphic illustration is no longer possible. Thus, the only solution is to rely upon computer

simulations:

- Firstly, using a computer program presented in a companion paper [2] we enumerate

(and store) the different possible vectors of power obtained with the Banzhaf index

and the Shapley-Shubik index. This is done for n = 3 to n = 8. This method may

not catch all the possible vectors, and we will just get a lower bound on the number

of possible vectors. However, we are quite confident that we come extremely close to

the exact value.

- Secondly, using this information, we search for the closest games GSS(p) and GB(p)

for vectors p drawn from the uniform distribution in the unit simplex Pn (with the
constraint that p1 ≥ p2 ≥ . . . ≥ pn), and then estimate Pn(GB = GSS).

- Thirdly, we estimate the probability that the same Banzhaf and Shapley-Shubik vector

of power minimizes the distance with the target, that is we estimate Pn(B = SS).

- Fourthly, we estimate the probability that Shapley-Shubik ”does better” than Banzhaf,

that is Pn(SS < B). This corresponds to the case where the minimal distance to a

Shapley-Shubik vector of power is smaller than the one get with the Banzhaf index.

4.1 The number of vectors of power

The first column (q w̄/2) of table 2, present a lower bound for the total number of vectors

of power (for the details of these simulations, see Barthélémy and Martin [2]). Note that
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these vectors are obtained for all the possible values of the quota q and for all the possible

values of sum of weight w̄.

Constraints may be added in order to get the number of vectors of power in more

particular cases. In the two other columns of table 2, the number of vectors of power given

for two relative quotas, the majority game (denoted q = w̄/2) and the 2/3 majority game(

q = 2w̄/3). In these last cases, it is obvious that the number of vectors of power is less

important4.

Table 3 gives the number of vectors of power in the case where there is no dummy player

(a dummy player is a player without power). In fact, we may impose, while minimizing the

distance to a vector of power, that each player has at least a positive power, which means

that we should exclude some power vectors and some games as possible outputs.

4.2 Computation of Pn(GB = GSS) for n ≥ 3
The first column of table 4 displays the probabilities Pn(GB = GSS) for n = 3, 4, 5, 6. The

figures in this table tell us whether the choice of a power index has an impact on the choice

of the weighted game that better fits to a pre established target. The answer is clear:

the probability that the optimal weighted quota games are the same declines steadily as n

increases. The choice of a ”best voting mechanism” cannot be done irrespective of the power

index that we choose. Notice that we have computed Pn(GB = GSS) with no restriction

of the game, allowing in particular for games with dummy players and any value for the

quota. By focussing on majority games only (Column 2, Table 4), the higher values that we

observe neither prevent us from a steady decline for Pn(GB = GSS) as n increases. Quite

surprisingly, the first column of Table 5 shows that considering games without dummy

players tends to slightly increase the probability of agreement when all quota games are

possible.

4Notice that when q is fixed, we have always obtained an equal number of vectors of power for the two

indices. The difference in the number of vectors for the Shapley-Shubik index and the Banzhaf index is due

to the fact that the same vectors can be obtained for different fixed values of q and w̄.
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All q q = w̄/2 q = 2w̄/3

n Banzhaf Shapley Banzhaf Shapley Banzhaf Shapley

Shubik Shubik Shubik

3 4 4 4 4 4 4

4 12 11 9 9 9 9

5 57 53 27 27 27 27

6 555 536 138 138 133 133

7 14 710 14 178 1 663 1 663 1 440 1 440

8 63 583 63 583 44 934 44 934

Table 2: An estimation of the number of vectors of power for the Banzhaf and Shapley-

Shubik indices of power.

All q q = w̄/2 q = 2w̄/3

n Banzhaf Shapley Banzhaf Shapley Banzhaf Shapley

Shubik Shubik Shubik

3 2 2 2 2 2 2

4 8 7 5 5 5 5

5 45 42 18 18 18 18

6 498 483 111 111 106 106

7 14 155 13 642 1 509 1 509 1 298 1 298

Table 3: An estimation of the number of vectors of power with no dummy player for the

Banzhaf and Shapley-Shubik indices of power.

Table 4: Pn(GB = GSS) for n = 3, 4, 5, 6, 7.

n all q q = w̄/2 q = 2w̄/3 q = 3w̄/4

3 89.92 89.92 89.92 89.92

4 65.68 86.23 62.68 59.87

5 44.52 73.98 39.92 21.27

6 34.60 62.63 30.82 06.93

7 45.08 14.69 04.46
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4.3 Probability of equal minimal distance for Banzhaf and Shapley Shu-

bik indices without or with constraints

To get the result displayed on tables 4 and 5, we have generated the different vectors of

power for the Banzhaf and Shapley Shubik power indices for a given number of players

(n = 3, . . . , 8). Hence, for a given target vector p = {p1, . . . , pn}, the optimal vector of
power can be found, optimal in the sense that it minimizes a the distance between the index

of power and the target vector (see the previous section, for the case where n = 3). Let’s

denote, dB
∗
(p) and dSS

∗
(p) the minimal distances in the two studied cases for a target

vector p.

Generating P target vectors by simulation5, we can also evaluate the proportion of cases

where dB
∗
(p) = dSS

∗
(p). Table 6 presents the estimated probabilities for the three different

values of q studied in the previous section. For the case where q > w̄/2, 0.4396 is an

estimation of the theoretical value 0.4366 calculated in the previous section.6 As one may

have guessed, the probability of having the same optimal repartition of the power among

the players with two different indices quickly crashes for all the cases (different relative

quotas, presence or absence of dummy players, see table 7).

5In order to avoid noise due to sampling variations, the same P target vectors have been used for all the

cases. The same seed has been used to generate uniform (pseudo) random numbers for all the simulation.

P is set to 10 000 for the estimations.
6The 99% confident interval [0.4238; 0.4494] contains the true probability Prob(B = SS) which is equal

to 0.4366.
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4.4 Is Shapley-Shubik better than Banzhaf?

The previous subsection focused on the probability of having the same vector of power for

Banzhaf and Shapley-Shubik when minimizing the distance between the indices of power

and a target. This result may be extended and we may estimate:

- the probability that the minimal distance obtained with the Banzhaf index is less than

the one obtained with the Shapley-Shubik index; the estimation is the proportion of

cases where dB
∗
(p) < dSS

∗
(p).

- the probability that the minimal distance obtained with the Banzhaf index is greater

than the one obtained with the Shapley-Shubik index; the estimation is the proportion

of cases where dB
∗
(p) > dSS

∗
(p).

These two estimated probabilities as well as the probability of equality between those

two indices are presented in tables 8 (with dummies) and 9 (without dummies) for the

case where q > w̄/2 with all the vectors of power. The numbers in bold correspond to

the probabilities presented in the table 6. The slight ”advantage” of the Shapley-Shubik

compared to the Banzhaf that we observed for n = 3 still prevails and seems to increase

when we impose a positive power for all the players.

The fact that the possible Shapley-Shubik vectors perform better when we wish to come

as close as possible to a pre established target is still observed with majority games (see

tables 10 and 11 but disappears for the 2/3 and 3/4 quotas (tables 12, 13, 14, 15).
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Table 5: Pn(GB = GSS) for games without dummy player.

n all q q = w̄/2 q = 2w̄/3 q = 3w̄/4

3 91.50 91.50 91.50 91.50

4 70.15 95.47 70.06 65.78

5 48.94 75.13 44.15 27.61

6 35.46 62.46 25.79 07.05

7 42.17 10.48 03.38

Table 6: Probability of having the same minimal distance for Banzhaf and Shapley-Shubik

indices of power.

n all q q = w̄/2 q = 2w̄/3 q = 3w̄/4

3 43.96 43.96 43.96 43.96

4 32.09 61.95 25.41 12.67

5 08.74 27.51 18.27 03.21

6 02.18 13.60 06.59 01.51

7 05.95 02.01 00.65

Table 7: Probability of having the same minimal distance for Banzhaf and Shapley-Shubik

indices of power without dummy player.

n all q q = w̄/2 q = 2w̄/3 q = 3w̄/4

3 16.38 16.38 16.38 16.38

4 29.83 74.02 18.97 02.24

5 05.14 09.84 10.94 00.06

6 01.68 05.02 00.00 00.61

7 02.16 00.00 00.03
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Table 8: Probability of having a Banzhaf minimal distance under, equal or over the Shapley-

Shubik’s one, all q

n Pn(B < SS) Pn(B = SS) Pn(B > SS)

3 24.75 43.96 31.29

4 32.33 32.09 35.58

5 42.07 08.74 49.19

6 46.36 02.18 51.46
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Table 9: Probability of having a Banzhaf minimal distance under, equal or over the Shapley-

Shubik’s one, all q, without dummy player

n Pn(B < SS) Pn(B = SS) Pn(B > SS)

3 43.44 16.38 40.18

4 30.59 29.83 39.58

5 41.89 05.14 52.97

6 44.77 01.68 53.55

Table 10: Probability of having a Banzhaf minimal distance under, equal or over the Shapley-

Shubik’s one, q = w̄/2.

n Pn(B < SS) Pn(B = SS) Pn(B > SS)

3 24.75 43.96 31.29

4 19.87 61.95 18.18

5 29.97 27.51 42.52

6 34.89 13.60 51.51

7 38.13 05.95 55.92

Table 11: Probability of having a Banzhaf minimal distance under, equal or over the Shapley-

Shubik’s one, q = w̄/2, without dummy player.

n Pn(B < SS) Pn(B = SS) Pn(B > SS)

3 43.44 16.38 40.18

4 17.31 74.02 08.67

5 35.51 09.84 54.65

6 35.56 05.02 59.42

7 38.24 02.16 59.60
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Table 12: Probability of having a Banzhaf minimal distance under, equal or over the Shapley-

Shubik’s one, q = 2w̄/3.

n Pn(B < SS) Pn(B = SS) Pn(B > SS)

3 24.75 43.96 31.29

4 41.29 25.41 33.30

5 50.99 18.27 30.74

6 61.58 06.59 31.83

7 69.12 02.01 28.87

Table 13: Probability of having a Banzhaf minimal distance under, equal or over the Shapley-

Shubik’s one, q = 2w̄/3, without dummy player.

n Pn(B < SS) Pn(B = SS) Pn(B > SS)

3 43.44 16.38 40.18

4 45.06 18.97 35.97

5 55.10 10.94 33.96

6 66.99 00.00 33.01

7 70.94 00.00 29.06

Table 14: Probability of having a Banzhaf minimal distance under, equal or over the Shapley-

Shubik’s one, q = 3w̄/4.

n Pn(B < SS) Pn(B = SS) Pn(B > SS)

3 24.75 43.96 31.29

4 46.79 12.67 40.54

5 60.66 03.21 36.13

6 68.77 01.51 29.72

7 74.98 00.65 24.37
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Table 15: Probability of having a Banzhaf minimal distance under, equal or over the Shapley-

Shubik’s one, q = 3w̄/4, without dummy player.

n Pn(B < SS) Pn(B = SS) Pn(B > SS)

3 43.44 16.38 40.18

4 52.65 02.24 45.11

5 62.11 00.06 37.83

6 69.48 00.61 29.91

7 75.71 00.03 24.26
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4.5 Graphical representations

The two minimal distances relative to the two indices of power can be represented in a two

dimension space: the Shapley-Shubik minimal distance as a function of the Banzhaf min-

imal distance. To each target vector p corresponds a point (dB
∗
(p), dSS

∗
(p))in this space.

Then, as we have generated P = 1 000 000 target vectors, we may have a scatter plot of a

1 000 000 points. In the case of perfect adequation between these two minimal distances,

the scatter plots would be linear (it would be the first bisecting line of the two dimensional

space). In such a graph, hundred percents of the generated population vectors would lead

to the same minimal distance for the two indices of power. Then, the first bisecting line

will be the reference.

The percentage of points plotted on the first bisecting line corresponds to the estimated

probability of having the same minimal distance for the indices of power, this estimated

probability being listed in tables 6 and 8. The estimated probability that the minimal

distance obtained with the Banzhaf index is less than the one obtained with the Shapley-

Shubik index is graphically the percentage of points plotted over the bisecting line (with

Shapley-Shubik represented on the y axes). In the same way, the percentage of points plot-

ted below the first bisecting line corresponds to the estimated probability that the minimal

distance obtained with the Banzhaf index is higher than the one obtained with the Shapley-

Shubik index.

For instance, for the majority game, the following results appear from the graphical repre-

sentations (figures 6 and 7):

- the relative weight of the bisecting line is decreasing as n increases.

- the distribution of points above and over this line is not symmetric.

- the higher values of distance are computed with the Banzhaf index.

Moreover, the minimal distance cumulative distributions for a given number of player

can be estimated (using the P simulations). Figure 8 illustrates in the case of 3 players,

the fact that Banzhaf minimal distances may be higher than the Shapley-Shubik’s (this is

linked to the asymmetry around the bisecting line shown in the scatter plots).
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Figure 6: Scatter plots with n = 3

24



Figure 7: Scatter plots with n = 6

5 Conclusion

This paper was partly designed as an application of the method proposed by Barthélémy and

Martin [2] for the enumeration of all the possible weighted quota games. When designing a

voting rule, we may wish the voters not to have the same influence in the decision process.

By choosing adequately the weights and the quota in a weighted quota game, we may try

to come as close as possible to the desired repartition of influence among the players. To

realize this objective, we effectively need to know what are all the possible weighted quota

games at our disposal. Thus, the main objective of this paper was to prove that this exercise

could not be done irrespectively of the choice of the power index. For 6 players, the Shapley

Shubik index and the Banzhaf index already disagree on the optimal game to choose for

about two third of the cases. Unfortunately, the large number of possible games for small

values of n (at least 14710 for n = 7) did not allow us to estimate the probability for a

larger number of players, and it may be difficult to obtain results for significatively higher

values, even if we restrict ourselves to majority games with no dummy players (see Table
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Figure 8: Banzhaf and Shapley-Shubik minimal distances repartition function in the 3

player case
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7).

We have also observed that the Shapley-Shubik index seems to performs slightly better

than the Banzhaf index when the objective is to minimize the distance to a target. However,

the results we have for n = 3 to n = 6 depend on the fact that all the possible weighted

quota games are available at the same time. They cannot be extrapolated for fixed relative

quotas. On this ground, we can compare our results to the ones obtained by Chang, Chua

and Machover [4] which tested the Penrose’s law for high values of n. Penrose’s law asserts

that, under certain conditions, the ration between the Banzhaf power of any two voters

converges to the ratio between their weights as n increases. Using the sum of differences

in absolute values, Chang, Chua and Machover proved that the conjecture is true for the

Banzhaf index, going from n = 15 to n = 55, and q close to w̄/2. They also performed

the same exercise for the Shapley-Shubik index, showing that then Penrose’s conjecture is

true for almost all the values of q. From their tables, we can also derive that, on average,

the proportionality seems to be slightly better for the Banzhaf index than for the Shapley

Shubik index. This is in fact corroborated by the results we obtained when we set the

relative quota to be fixed at the level 2/3 or 3/4 for n = 3 to n = 7.
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6 Appendix

Let {q, w1, w2, w3} be a voting game. Firstly, we determine all the different vectors of power
with the two power indices. Let us begin with the Banzhaf index. All the coalitions are

{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2} and {3}. Since w1 w2 w3 and the voting game

is proper, v({2}) = 0 and v({3}) = 0. Assume v({1}) = 1. It means that the player 1

belongs to all the winning coalitions, it has all the power (it is always a decisive player)

and the vector of power is (1, 0, 0). Assume now that v({1}) = 0 and v({2, 3}) = 1. Thus
we have v({1, 2, 3}) = 1, v({1, 3}) = 1 and v({1, 2}) = 1. In {1, 2, 3}, there is no decisive
player while in {1, 2}, {1, 3} and {2, 3}, every player is decisive. Therefore the vector of
power is (1/3, 1/3, 1/3). Assume now that v({2, 3}) = 0 and v({1, 3}) = 1. Thus we have
v({1, 2, 3}) = 1 and v({1, 2}) = 1. In {1, 2, 3}, only the player 1 is decisive while in {1, 2},
and {1, 3} every player is decisive. Therefore the vector of power is (3/5, 1/5, 1/5). Assume
now that v({1, 3}) = 0 and v({1, 2}) = 1. Thus we have v({1, 2, 3}) = 1. In {1, 2, 3}, only
the player 3 is not decisive while in {1, 2} every player is decisive. Therefore the vector of
power is (1/2, 1/2, 0). Assume now that v({1, 2}) = 0, we have v({1, 2, 3}) = 1. In {1, 2, 3},
every player is decisive and the vector of power is (1/3, 1/3, 1/3). Finally, there are 4 vectors

of power, (1/3, 1/3, 1/3), (3/5, 1/5, 1/5), (1/2, 1/2, 0) and (1, 0, 0).

For the Shapley-Shubik index with 3 players, there are 6 possible orders. If v({1}) = 1,
then the player 1 is the only pivotal, even if it arrives last in the coalition, thus the vector

of power is (1, 0, 0). Assume now that v({1}) = 0 and v({2, 3}) = 1. Thus we have

v({1, 2, 3}) = 1, v({1, 3}) = 1 and v({1, 2}) = 1. For each order, the player which is in

second position is pivotal, therefore the vector of power is (1/3, 1/3, 1/3). Assume now that

v({2, 3}) = 0 and v({1, 3}) = 1. Thus we have v({1, 2, 3}) = 1 and v({1, 2}) = 1. When the
player 1 is not first in the order, it is always pivotal and when the player 1 is first in the

orders, the pivotal is the player which arrives second in the order. Therefore the vector of

power is (2/3, 1/6, 1/6). Assume now that v({1, 3}) = 0 and v({1, 2}) = 1. Thus we have
v({1, 2, 3}) = 1. When the player 1 is first in the order, the player 2 is pivotal and when
the player 2 is first in the order, the player 1 is pivotal. In the orders 312 and 321, the

player which arrives last is pivotal. Therefore the vector of power is (1/2, 1/2, 0). Assume

now that v({1, 2}) = 0, we have v({1, 2, 3}) = 1. Thus it is always the player who arrives
last in the orders the pivotal and the vector of power is (1/3, 1/3, 1/3). Finally, there are 4

vectors of power, (1/3, 1/3, 1/3), (2/3, 1/6, 1/6), (1/2, 1/2, 0) and (1, 0, 0).
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In the reasoning above, the quota is not fixed since our purpose is to determine all the

possible vectors of power. We show now that the result can be different if we consider the

majority games. The result is different in function of the parity of w̄.

* w̄ is odd. It means that v(S) = 0 ⇐⇒ v(N\S) = 1. Assume that v(1) = 1, the

vector of power is thus (1, 0, 0), with the two power indices. Actually, the player 1 is the

only player who is decisive since v(2, 3) = 0. Assume now that v(1) = 0, thus v(2, 3) = 1,

and v(1, 3) = v(1, 2) = 1. All the players are decisive the same number of times with the

two power indices : the vector of power is (1/3, 1/3, 1/3). Therefore we have two possible

solutions and these are the same for the Banzhaf index and the Shapley-Shubik index.

∗w̄ is even. We show that, for any w̄ > 4, the four vectors of power are possible. In

this case, the probability is the same as above since the conditions are not modified.

For (1, 0, 0), it is obvious if we suppose that w1 = w̄.

For (1/2, 1/2, 0), we must have w1+w2 > q, w1+w3 q and w1 q. Let w1 = w2 =
w̄
2 ,

this implies w3 = 0, the conditions are verified.

For (3/5, 1/5, 1/5) for Banzhaf and (2/3, 1/6, 1/6) for Shapley-Shubik, we must have

w1+w3 > q, w2+w3 q and w1 q. Assume that w1 <
w̄
2 . This implies that w2+w3 >

w̄
2

or w2 + w3 > q which is not possible. Thus w1 =
w̄
2 and w2 + w3 = q. Assume w3 = 1 and

w2 = w̄ − w1 − w3 and the conditions are trivially verified.
For (1/3, 1/3, 1/3), we must have w1 q and w2 + w3 > q or w1 + w2 q. Let

w1 = w2 = q − 1 and w3 = 2, which is possible since w̄ is even and the conditions w1 q

and w2+w3 > q are verified. Notice that if w̄ = 4, all the vectors of power are not possible.

In this case, w1 is necessary equal to 2, the condition w2 + w3 > q or w1 + w2 q are not

possible.
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