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Abstract

We consider a sequence of random length M of independent absolutely continuous
observations Xi, 1 ≤ i ≤M, where M is geometric, X1 has cdf G, and Xi, i ≥ 2, have
cdf F . Let N be the number of upper records and Rn, n ≥ 1, be the nth record value.
We show that N is free of F if and only if G(x) = G0(F (x)) for some cdf G0 and that if
E(|X2|) is finite so is E(|Rn|) for n ≥ 2 whenever N ≥ n or N = n. We prove that the
distribution of N along with appropriately chosen subsequences of E(Rn) characterize
F and G, and along with subsequences of E(Rn−Rn−1) characterize F and G up to a
common location shift. We discuss some applications to the identification of the wage
offer distribution in job search models.
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1. Introduction

Let {Xi, i ≥ 1} be a sequence of independent random variables. Suppose that M is

a positive integer-valued random variable independent of the Xi, and assume that only

{Xi, 1 ≤ i ≤M} are observed. Define L (1) = 1 and L (n) = min
©
k : Xk > XL(n−1)

ª
for

n > 1, and Rn = XL(n) for n ≥ 1. Then R1 is the initial record (sometimes called the trivial
record), and Rn for n ≥ 2 represent the upper record values from the sequence {Xi, i ≥ 1}.
The total number of records we observe is given by N = max {j : L (j) ≤M} and is itself a
random variable.

When the Xi are identically distributed, this model is called the random record model

(see, e.g., Arnold et al., 1998, p. 224). When we further assume that M has a geometric

distribution, i.e. Pr (M = m) = qm−1p for m ≥ 1, where 0 < p < 1 and q = 1 − p,

we have a geometric random record (GRR) model. Nagaraja and Barlevy (2003) derived

several characterization results for the GRR model using record moments. In this paper,

we consider a variation of the GRR model in which the initial observation, X1, has a

potentially different distribution from remaining observations {Xi, i ≥ 2}. We refer to this
as a GRR model with a non-identically distributed initial record or a modified GRR model.

Our purpose in this paper is to determine whether there exist analogous characterization

results for this alternative formulation and to discuss some applications of this variation

concerning identification of job search models.

Formally, let X1 be distributed with continuous cumulative distribution function (cdf) G,

and {Xi, i ≥ 2} be independent and identically distributed (i.i.d.) with continuous cdf F .

Define a mapping Γ from the set of continuous distribution functions into itself so that

G = Γ (F ). This notation allows us to view the model as being parameterized by a single

cdf F . We impose the following assumptions on Γ:

Assumption 1: the probability measure implied by G = Γ (F ) is absolutely continuous

with respect to the probability measure implied by F .

Assumption 2: the composite function G
¡
F−1 (u)

¢
is absolutely continuous in u ∈ (0, 1).

The first assumption implies that the support of G must always form a subset of the support
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of F . The second assumption implies that without loss of generality we can assume X1 has

a well-defined density function, since we can always normalize F (x) = x. We denote this

density function g (x;F (·)) = d

dx
G (x;F (·)).

Remark 1: The identity mapping Γ : F → F satisfies Assumptions 1 and 2. Our model

thus includes the GRR model as a special case.

Remark 2: Our formulation is itself a special case of the Pfeifer (1982) model, in which

the distribution of the underlying observations changes after each record is set. Here, the

distribution changes only after the first record, and the distribution of the first record

G = Γ (F ) is required to satisfy Assumptions 1 and 2. Although Pfeifer assumes M = ∞,
Bunge and Nagaraja (1991) subsequently generalized Pfiefer’s model to allow the number

of observations M to be random.

Remark 3: Our assumptions do not require Γ to be one-to-one, as illustrated by Example

2 below. However, Assumption 1 implies Γ cannot assign a single G to all cdf’s F . Thus, G

cannot be free of F .

Here are some examples of functions G (x) that satisfy Assumptions 1-2. The motivation

for these examples will become clear in Section 6, when we discuss how the model can be

applied to estimate job search models.

1. G (x;F (·)) = F (x)

1 + κ (1− F (x))
for some constant κ

2. G (x;F (·)) = F (x) /z if F (x) ≤ z and 1 if F (x) > z for some constant z ∈ (0, 1)

3. G (x;F (·)) =
R x
−∞H (w) dF (w)R∞
−∞H (w) dF (w)

=

R F (x)
0

H
¡
F−1 (u)

¢
duR 1

0
H (F−1 (u)) du

where H (·) is a cdf.

In Example 1, G(x) =
P∞

i=1 pq
i−1F (x)i, where p = (1+ κ)−1, or X1 has the same distribu-

tion as the maximum of a random (geometric) number of i.i.d. random variables distributed

like X2. In Example 2, G arises from F by the truncation of its upper tail, and in Example

3, G has the form of a weighted distribution. Note that in the first two examples, G = Γ (F )

assumes the form G0 (F (x)) for some function G0, i.e. the cdf G evaluated at x depends

on F (x) but not on the value of F at any point other than x. This is not true for the last

example.
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We show in Section 2 of the paper that Γ (F ) = G0 (F (x)) if and only if the distribution of

the number of observed records N is independent of F . In Section 3, we focus on mappings

Γ where Γ (F ) = G0 (F (x)), and show that under an additional assumption on Γ, the

distribution F is characterized by subsequences of the following moments:

a. E (Rn | N ≥ n)

b. E (Rn | N = n)

c. E (Rn −Rn−1 | N ≥ n)

d. E (Rn −Rn−1 | N = n) .

In demonstrating this result, we appeal not only to the Müntz-Szász theorem, which is often

invoked in moment-based characterization theorems (see Kamps, 1998), but also to a con-

volution theorem due to Titchmarsh (1926). In Section 4, we consider arbitrary mappings

Γ that satisfy Assumptions 1 and 2, and provide characterizations of F and G using sub-

sequences of these moments together with the distribution Pr (N = n). All of these results

are premised on a fixed distribution for M . In Section 5, we derive conditions that jointly

characterize F and G as well as the distribution for M . Section 6 then discusses how our

results can be used to non-parametrically identify the wage offer distribution in job search

models when wage data can only be measured with noise.

2. Characterization results for Γ and N

We begin with results that characterize the mapping Γ. Our first result shows that the

number of observed records N is identical for all continuous cdf’s F if and only if Γ is such

that G = Γ (F ) evaluated at x can be expressed as a function of F (x).

Proposition 1: In the modified GRR model, the number of observed records N is inde-

pendent of F if and only if G (x;F (·)) = G0 (F (x)) for some absolutely continuous cdf G0

with support [0, 1].

Proof : Building on Bunge and Nagaraja (1991) and Nagaraja and Barlevy (2003), we can
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express the likelihood of exactly n observed records with values r1 through rn as

h (r1, ..., rn ∩N = n) =
(1− q) g (r1;F (·))

1− qF (r1)

nY
i=2

qf (ri)

1− qF (ri)
.

Next, we integrate out r2 through rn to get

h (r1 ∩N = n) =
1

(n− 1)!
1− q

1− qF (r1)

µ
ln

µ
1− qF (r1)

1− q

¶¶n−1
g (r1;F (·)) .

Hence, Pr (N = n) can be expressed as

Pr (N = n) =
1

(n− 1)!
Z ∞
−∞

1− q

1− qF (r1)

·
ln

µ
1− qF (r1)

1− q

¶¸n−1
g (r1;F (·)) dr1.

Suppose G (x;F (·)) = G0 (F (x)) where G0 (·) is an absolutely continuous function. We
want to show that Pr (N = n) is independent of F (·). Since G0 is absolutely continuous, it
has a related density function g0 (x) =

d

dx
G0 (x). This implies

g (r1;F (·)) = d

dx
G0 (F (x))

¯̄̄̄
x=r1

= g0 (F (r1)) f (r1) .

Substituting this in and using the change of variables u = F (r1), we find

Pr (N = n) =
1

(n− 1)!
Z 1

0

1− q

1− qu

·
ln

µ
1− qu

1− q

¶¸n−1
g0 (u) du

which is indeed independent of F (·).

Next, suppose Pr (N = n) is independent of F (·). We want to show this impliesG (x;F (·)) =
G0 (F (x)) where G0 (·) is an absolutely continuous cdf. Given Assumption 1, we can rewrite
Pr (N = n) using the change of variables u = F (r1) so that

Pr (N = n) =
1

(n− 1)!
Z 1

0

1− q

1− qu

·
ln

µ
1− qu

1− q

¶¸n−1 g ¡F−1 (u)¢
f (F−1 (u))

du. (1)

Since {Pr (N = n) , n ≥ 1} does not depend on the distribution of F (·), then for any two
distributions F1 (·) and F2 (·), we have for n = 1, 2, 3, ...Z 1

0

1− q

1− qu

·
ln

µ
1− qu

1− q

¶¸n−1 g ¡F−11 (u) ;F1 (·)
¢

f1
¡
F−11 (u)

¢ du

=

Z 1

0

1− q

1− qu

·
ln

µ
1− qu

1− q

¶¸n−1 g ¡F−12 (u) ;F2 (·)
¢

f2
¡
F−12 (u)

¢ du.

Let F1 (·) = F (·) be any continuous distribution function, and let F2 (·) to be the uniform
distribution, i.e. F−12 (u) = u and f2 (u) = 1 for all u ∈ (0, 1). Let us further define
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h (u) = g (u;u), i.e. the density function g (·) evaluated when F (·) is uniform. By the
Müntz-Szász theorem, it follows that for almost all u ∈ (0, 1),

g
¡
F−1 (u) ;F (·)¢
f (F−1 (u))

= h (u) .

Since G (x;F1 (·)) =
R x
−∞ g (y;F1 (·)) dy, we have

G (x;F (·)) =

Z x

−∞
g (y;F (·)) dy

=

Z x

−∞
h (F (y)) f (y) dy

=

Z F (x)

0

h (z) dz

≡ G0 (F (x)) .

Since G (·) is a cdf, it follows that G0 (·) is non-decreasing, G0 (0) = 0, and G0 (1) = 1.

Hence, G0 is a cdf with support [0, 1]. Absolute continuity of G0 is immediate. ¥

The probability mass function (pmf) of N in (1) implies N − 1 has a mixed Poisson distri-
bution. An interesting property of this pmf, stated below, will be useful for us later.

Lemma 1: In the modified GRR model, the sequence {Pr(N = nj), j ≥ 1} such thatP∞
j=1 n

−1
j =∞ uniquely determines the pmf of N .

Proof : Consider two modified GRR models with cdfs F1, G1 and F2,G2. If Pr(N = nj)

remains the same for these two models, from (1) we haveZ 1

0

1− q

1− qu

·
ln

µ
1− qu

1− q

¶¸nj−1 "g1 ¡F−11 (u)
¢

f1
¡
F−11 (u)

¢ − g2
¡
F−12 (u)

¢
f2
¡
F−12 (u)

¢# du = 0.
Set t = ln

µ
1− qu

1− q

¶
and rewrite the equation above as

Z − ln(1−q)
0

h1(t)t
nj−1dt = 0.

It follows from the Müntz-Szász theorem that h1(t) = 0 almost everywhere or

g1
¡
F−11 (u)

¢
f1
¡
F−11 (u)

¢ = g2
¡
F−12 (u)

¢
f2
¡
F−12 (u)

¢ (2)

for almost all u ∈ (0, 1). Again, upon appealing to (1) we conclude that Pr(N = n), and

thus Pr(N ≥ n), remain the same for all n ≥ 1 under the two models. ¥
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The mapping Γ can also be characterized by the dependence structure of the record indica-

tors derived from {Xi, i ≥ 1}. Define them-th record indicator Im as a random variable that
takes on a value of 1 if Xm is a record, i.e. if Xm > max {X1, ...,Xm−1}, and 0 otherwise.
Previous work by Nevzorov (1986) has shown that if Xi are independent random variables

and Xi has cdf

Fi (x) = {F (x)}α(i) , (3)

for some common F , then {Im, m ≥ 2} are independent and Im is Bernoulli with success

probability α(m)/{Pm
i=1 α(i)}. Conversely, Nevzorov shows that if the supports of Xi are

not disjoint and {I2, ..., In−1} and In are independent for any Fn, then (3) holds for m =

1, . . . , n− 1. (see also Arnold et al (1998), p. 219). In our model, (3) implies that

G(x) = Γ (F (x)) = {F (x)}α (4)

for some α > 0. Our next proposition establishes that Γ satisfies (4) if and only if the record

indicator I2 is independent of the record indicators {I3, ..., Im} for all m, conditional on at
least m observations.

Proposition 2: In a random record model with a non-identically distributed initial record,

Pr(I3 = 1, . . . , Im = 1 | M ≥ m) = Pr(I3 = 1, . . . , Im = 1 | I2 = 1,M ≥ m) (5)

for all m = mj(≥ 3), j ≥ 1 such that
P

j m
−1
j =∞, if and only if (4) holds.

Proof : The given condition (5) can be expressed as

Pr(I2 = 1, . . . , Im = 1) = Pr(I3 = 1, . . . , Im = 1)Pr(I2 = 1).

Without loss of generality we take F (x) = x. Upon conditioning on X1, the LHS can be

simplified to

1

(m− 1)!
Z 1

0

(1− x)m−1dG(x) or
1

(m− 2)!
Z 1

0

(1− x)m−2G(x)dx.

Further Pr(I3 = 1, . . . , Im = 1) = LHS +Pr(I2 = 0, I3 = 1, . . . , Im = 1). The second term,

upon conditioning on X1, can be written as

1

(m− 2)!
Z 1

0

(1− x)m−2xg(x)dx.

Let c = Pr(I2 = 1)(=
R 1
0
G(x)dx). Then (5) reduces to the conditionZ 1

0

(1− x)m−2[(1− c)G(x)− cxg(x)]dx = 0, m = mj , j ≥ 1. (6)
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By the Müntz-Szász theorem, it follows that for almost all x ∈ (0, 1),
g(x)

G(x)
=
(1− c)

c

1

x
.

This differential equation clearly shows that (4) holds with α = (1− c)/c.

Conversely, if (3) holds, with F (x) = x,G(x) = xα, then set c = (1 + α)−1. It follows that

(1− c)G(x) = cxg(x) for all x ∈ (0, 1). Thus (6) holds for all m ≥ 1, or (5) holds. ¥

Corollary: If (5) holds, then (4) holds, and in turn the record indicators {Im,m ≥ 2} are
all independent. Moreover, the distribution of the number of observed records N must be

independent of F .

3. Characterization results for a special case

We now turn to characterization results for F . We begin by deriving expressions for the

relevant moments we use, and provide conditions for these moments to exist. We then

consider the special case where Γ (F ) = G0 (F (x)) and provide a characterization result.

Consider record moments that condition on the event N ≥ n. Using the expression for

the likelihood h (r1, ...rn ∩N ≥ n) from Bunge and Nagaraja (1991) and integrating out

r2 through rn−2 yields the following expression for the joint likelihood of r1, rn−1, and rn

when N ≥ n for n ≥ 3:

h (r1, rn−1, rn ∩N ≥ n) =
1

(n− 3)!
·
− ln

µ
1− qF (rn−1)
1− qF (r1)

¶¸n−3
qg (r1)

1− qF (r1)

qf (rn−1)
1− qF (rn−1)

f (rn) .

Limiting attention to n ≥ 3, we derive the following expression for E (Rn | N ≥ n):

E (Rn | N ≥ n) =
1

P (N ≥ n)

Z ∞
−∞

Z rn−1

−∞

Z ∞
rn−1

rnh (r1, rn−1, rn ∩N ≥ n) drndr1drn−1

=

Z 1

0

Z un−1

0

h
− ln

³
1−qun−1
1−qu1

´in−3
(n− 3)!P (N ≥ n)

g
¡
F−1 (u1)

¢
f (F−1 (u1))

·φF (un−1)
qdu1
1− qu1

qdun−1
1− qun−1

(7)

where

φF (un−1) =
Z 1

un−1
F−1 (un) dun. (8)
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Similarly, the expected record spacing E (Rn −Rn−1 | N ≥ n) when n ≥ 3 can be expressed
as

E (Rn −Rn−1 | N ≥ n) =

Z 1

0

Z un−1

0

h
− ln

³
1−qun−1
1−qu1

´in−3
(n− 3)!P (N ≥ n)

g
¡
F−1 (u1)

¢
f (F−1 (u1))

·φF (un−1)
qdu1
1− qu1

qdun−1
1− qun−1

(9)

where

φF (un−1) =
Z 1

un−1

£
F−1 (un)− F−1 (un−1)

¤
dun. (10)

In the same fashion, we can use the expression for h (r1, ..., rn ∩N = n) derived above and

integrate out r2 through rn−2 to obtain the joint likelihood of r1, rn−1, and rn when N = n,

where n ≥ 3:

h (r1, rn−1, rn ∩N ≥ n) =
1

(n− 3)!
·
− ln

µ
1− qF (rn−1)
1− qF (r1)

¶¸n−3
qg (r1)

1− qF (r1)

qf (rn−1)
1− qF (rn−1)

f (rn) .

Using this, one can deduce that

E (Rn | N = n) =

Z 1

0

Z un−1

0

h
− ln

³
1−qun−1
1−qu1

´in−3
(n− 3)! Pr (N = n)

g
¡
F−1 (u1)

¢
f (F−1 (u1))

·φF (un−1)
qdu1
1− qu1

qdun−1
1− qun−1

(11)

where

φF (un−1) =
Z 1

un−1
F−1 (un)

(1− q) dun
1− qun

, (12)

and likewise

E (Rn −Rn−1 | N = n) =

Z 1

0

Z un−1

0

h
− ln

³
1−qun−1
1−qu1

´in−3
(n− 3)!P (N = n)

g
¡
F−1 (u1)

¢
f (F−1 (u1))

·φF (un−1)
qdu1
1− qu1

qdun−1
1− qun−1

(13)

where

φF (un−1) =
Z 1

un−1

1− q

1− qun

£
F−1 (un)− F−1 (un−1)

¤
dun (14)

All four moment sequences above can thus be expressed as an integral of a common term

multiplying a function φF (un−1) that varies with the particular moment at hand.

We now provide a sufficient condition for the above moments to exist. Here we use the fact

that for any random variable Y , E (Y ) exists if and only if E (|Y |) <∞.
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Proposition 3: If E (|X2|) <∞, then

a. E (|Rn| | N ≥ n)

b. E (|Rn| | N = n)

exist for all n ≥ 2.

Proof : Suppose first that n ≥ 3. From (7),

E (|Rn| | N ≥ n) =

Z 1

0

Z un−1

0

Z 1

un−1

h
− ln

³
1−qun−1
1−qu1

´in−3
(n− 3)!P (N ≥ n)

·g
¡
F−1 (u1)

¢
f (F−1 (u1))

¯̄
F−1 (un)

¯̄
dun

qdu1
1− qu1

qdun−1
1− qun−1

.

Since u1 and un−1 both lie in [0, 1],the above expression

≤ [− ln (1− q)]
n−3

(n− 3)!P (N ≥ n)

µ
q

1− q

¶2 Z 1

0

Z 1

un−1

(Z un−1

0

g
¡
F−1 (u1)

¢
f (F−1 (u1))

du1

) ¯̄
F−1 (un)

¯̄
dundun−1

=
[− ln (1− q)]n−3

(n− 3)!P (N ≥ n)

µ
q

1− q

¶2 Z 1

0

Z 1

un−1
G
¡
F−1 (un−1)

¢ ¯̄
F−1 (un)

¯̄
dundun−1

≤ [− ln (1− q)]n−3

(n− 3)!P (N ≥ n)

µ
q

1− q

¶2 Z 1

0

Z 1

0

G
¡
F−1 (un−1)

¢ ¯̄
F−1 (un)

¯̄
dundun−1

≤ [− ln (1− q)]
n−3

(n− 3)!P (N ≥ n)

µ
q

1− q

¶2
E (|X2|) .

As long as E (|X2|) <∞, then E (|Rn| | N ≥ n) exists. A similar argument applies for the

case where n = 2. Extending the argument for E (|Rn| | N = n) is straightforward. ¥

Remark 4: For n ≥ 2, the existence of the n-th record moment does not depend on whether
E (X1) exists. This is because for n ≥ 2, the relevant moment is always conditioned on an
event in whichM ≥ n and max {X2, ...,XM} > X1. As demonstrated in Nagaraja and Bar-

levy (2003), ifM is geometric with success probability p, thenE (E (|max {X2, ...,XM}| | M))
< p−1E (|X2|) . Thus, we are conditioning on the event that X1 is exceeded by a random

variable whose mean is finite. Even if X1 does not have a well-defined unconditional mean,

conditioning on the event that its value is exceeded by a random variable with a finite mean

suffices to ensure that E (X1 | N ≥ n) is finite.

Equipped with these preliminaries, we turn to characterizing F from moment sequences.

However, we first need to impose an additional assumption on the range of Γ.
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Assumption 3: For any cdf F , there exists an ε > 0 such that g
¡
F−1 (u) ;F (·)¢ =

d

dx
Γ (F )

¯̄̄̄
x=F−1(u)

is positive for almost all u ∈ (0, ε).

This assumption implies that G−1 (0) = F−1 (0). This assumption is clearly necessary: if

two distributions F1 6= F2 differ only below G−1 (0), they would necessarily yield identical

record moment sequences.

We first focus on a special case, namely where G (x;F (·)) = G0 (F (x)) for some absolutely

continuous cdf G0 :[0, 1] → [0, 1]. Recall from Proposition 1 that this is true if and only if

Pr (N = n) does not depend on F . We return to the more general case in the next section.

Proposition 4: Suppose Assumptions 1-3 are satisfied, E (|X2|) < ∞, and G (x;F (·)) =
G0 (F (x)) for some absolutely continuous cdf G0 :[0, 1]→ [0, 1].

a. If two distributions F1 and F2 give rise to either the same sequence E (Rn | N ≥ nj)

or the same sequence E (Rn | N = nj) where
P

j n
−1
j = ∞, then F1 (x) = F2 (x) for

almost all x;

b. If two distributions F1 and F2 give rise to either the same sequenceE (Rn −Rn−1|N ≥ nj)

or the same sequence E (Rn −Rn−1 | N = nj) where
P

j n
−1
j =∞, then there exists

a c such that F−11 (x) = F−12 (x) + c for almost all x.

Proof : Since Γ (F ) = G0 (F (x)), it follows that g (x;F (·)) = g0 (F (x)) f (x), which implies
g
¡
F−1 (u1)

¢
f (F−1 (u1))

= g0 (u1). Substituting in, any of the moments above can be expressed as

1

(n− 3)!P (N ≥ n)

Z 1

0

Z 1

u1

g0 (u1)

·
− ln

µ
1− qun−1
1− qu1

¶¸n−3
φF (un−1)

qdun−1
1− qun−1

qdu1
1− qu1

where φF (·) depends on the particular moment in question, i.e. either (8) or (10) in case
(a) and either (12) or (14) in case (b). Changing variables according to

t = − ln (1− qun−1)⇒ dt =
qdun−1
1− qun−1

, un−1 =
1− e−t

q

s = − ln (1− qu1)⇒ ds =
qdu1
1− qu1

, u1 =
1− e−s

q

and setting c = − ln (1− q) allows us to rewrite the above expression as

1

(n− 3)!P (N ≥ n)

Z c

0

Z c

t=s

g0

µ
1− e−s

q

¶
φF

µ
1− e−t

q

¶
(t− s)

n−3
dtds.
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We change variables yet again by setting ω = t− s to rewrite the above as

1

(n− 3)!P (N ≥ n)

Z c

ω=0

Z c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φF

µ
1− e−t

q

¶
ωn−3dtdω.

Define

ηF (ω) =

Z c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φF

µ
1− e−t

q

¶
dt.

Let F1 (·) and F2 (·) denote two continuous cdf’s that give rise to the same subsequence of
moments. Since G (x;F (·)) = G0 (F (x)) implies Pr (N ≥ n) is the same for all F (·), it
follows that for all n ≥ 3,Z c

ω=0

ηF1 (ω)ω
n−3dω =

Z c

ω=0

ηF2 (ω)ω
n−3dω

By the Müntz-Szász theorem, it further follows that ηF1 (ω) = ηF2 (ω) for almost all ω ∈
(0, c), i.e.Z c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φF1

µ
1− e−t

q

¶
dt =

Z c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φF2

µ
1− e−t

q

¶
dt (15)

for almost all ω ∈ (0, c).

We next argue that (15) implies φF1

µ
1− e−t

q

¶
= φF2

µ
1− e−t

q

¶
for almost all t ∈ (0, c).

It will suffice to prove that ifZ c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φ (t) dt = 0 for almost all ω ∈ (0, c) (16)

then φ (t) = 0 for almost all t ∈ (0, c). Appealing to a change in variables w = c − t and

z = c− ω, (16) can be transformed into the following integral equation:Z z

0

a (z − w) b (w) dw = 0 for almost all z ∈ (0, c) (17)

where a (x) = g0

µ
1− e−x

q

¶
and b (x) = φ (c− x). Applying Theorem VII in Titchmarsh

(1926) [or from Theorem 151 in the more accessible reference Titchmarsh (1948, p. 324-5)],

there exists a c∗ such that a (x) = 0 for all x ∈ (0, c∗) and b (x) = 0 for all x ∈ (0, c− c∗).

But Assumption 3 implies that there exists an ε > 0 such that g0 (z) > 0 for almost all

z ∈ (0, ε), which in turn implies that a (z) > 0 for almost all z ∈ (0, ε). Hence, c∗ must
equal 0, implying b (z) = 0 for almost all z ∈ (0, c). But then φ (t) = b (c− t) = 0 for almost

all t ∈ (0, c), as claimed.
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Lastly, we need to show that the statement of the proposition follows from the fact

φF1 ((1− e−t)/q) = φF2 ((1− e−t)/q) for almost all t ∈ (0, c). Consider case (a); thenZ 1

1−e−t
q

£
F−11 (u)− F−12 (u)

¤
du = 0

or Z 1

1−e−t
q

·
F−11 (u)− F−12 (u)

1− qu

¸
du = 0

for almost all t ∈ (0, c). But from Taylor (1965, p. 415), this implies that the function inside
the integral is equal to 0 almost surely, which implies F−11 (u) = F−12 (u) almost surely as

claimed. In case (b), with φF given in (10), the fact that φF1 (t) = φF2 (t) for almost all

t ∈ (0, c) implies that for almost all u ∈ (0, 1),Z 1

u

£
F−11 (un)− F−11 (u)

¤
dun =

Z 1

u

£
F−12 (un)− F−12 (u)

¤
dun

or with φF in (14) we getZ 1

u

·
F−11 (un)− F−11 (u)

1− qun

¸
dun =

Z 1

u

·
F−12 (un)− F−12 (u)

1− qun

¸
dun

Nagaraja and Barlevy (2003) already showed that this implies there exists a constant c such

that F−11 (u) = F−12 (u) + c. ¥

Remark 5: From the proof above, we can further deduce what happens when we relax

Assumption 3, i.e. when we assume that G−10 (0) > 0. By the Titchmarsh convolution

theorem, for any solution b (w) to (17), there exists a value c∗ such that a (x) = 0 for all

x ∈ (0, c∗) and that b (x) = 0 for all x ∈ (0, c− c∗). However, without Assumption 3, we

can only conclude that c∗ ≤ − ln ¡1− qG−10 (0)
¢
. Consequently, we can deduce that φ (t) =

b (c− t) = 0 for almost all t ∈ ¡− ln ¡1− qG−10 (0)
¢
, c
¢
, and hence that φF1 ((1− e−t)/q) =

φF2 ((1− e−t)/q) for almost all t ∈ ¡− ln ¡1− qG−10 (0)
¢
, c
¢
. In case (a) it would therefore

follow that F1 (x) = F2 (x) for almost all x > F−1
¡
G−10 (0)

¢
, and in case (b) it would follow

that F−11 (u) = F−12 (u) + c for almost all u > G−10 (0). In other words, one can generalize

Proposition 4 to imply that the moment sequences in the statement of the proposition

uniquely characterize the distribution F over the range
¡
F−1

¡
G−10 (0)

¢
,∞¢.

4. Characterization results for the general case

We now move to the general case of any arbitrary function G (x;F (·)) which satisfies As-
sumptions 1-3. In this case, it may no longer be true that record moments alone characterize
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the distribution F . However, record moments and the distribution of the number of records

together do characterize F .

Proposition 5: Suppose Assumptions 1-3 are satisfied, and E (|X2|) <∞.

a. If two distributions F1 and F2 give rise to the same sequences E (Rn | N ≥ nj) and

Pr (N = nj) where
P

j n
−1
j =∞, then F1 = F2 and G1 = G2 almost surely

b. If two distributions F1 and F2 give rise to the same sequences E (Rn −Rn−1 | N ≥ nj)

and Pr (N = nj) where
P

j n
−1
j = ∞, then F−11 (x) = F−12 (x) + c and G−11 (x) =

G−12 (x) + c for some constant c.

Proof : Since both F1 and F2 give rise to the same sequence Pr (N = nj) where
P

j n
−1
j =

∞, from Lemma 1 and (2) we conclude that Pr (N ≥ n) also match for n ≥ 1, and for almost
all u ∈ (0, 1),

g1
¡
F−11 (u)

¢
f1
¡
F−11 (u)

¢ =
g2
¡
F−12 (u)

¢
f2
¡
F−12 (u)

¢ .
Let us write this common function as g0 (u). In contrast to the previous section, g0 (u) now

depends on the sequence Pr (N = nj) as opposed to a stand-alone function.

Recall that all four moment sequences above can be written as

Z 1

0

Z un−1

0

h
− ln

³
1−qun−1
1−qu1

´in−3
(n− 3)!P (N ≥ n)

g0 (u1)φF (un−1)
qdu1
1− qu1

qdun−1
1− qun−1

for appropriately defined φF (·). Using the change of variables

t = − ln (1− qun−1)⇒ ds =
qdun−1
1− qun−1

, un−1 =
1− e−t

q

s = − ln (1− qu1)⇒ dt =
qdu1
1− qu1

, u1 =
1− e−s

q

c = − ln (1− q)

we can rewrite this expression asZ c

0

Z c

t=s

g0

µ
1− e−s

q

¶
φF (t)

(t− s)n−3

(n− 3)!P (N ≥ n)
dtds

Setting ω = t− s, we can further rewrite this expression asZ c

ω=0

Z c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φF (t)

ωn−3

(n− 3)!P (N ≥ n)
dtdω

14



Let us define

ηF (ω) =

Z c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φF (t) dt

Let F1 and F2 denote two continuous cdf’s that give rise to the same sequences. Define N1

as the number of records when X2 ∼ F1 and N2 as the number of records when X2 ∼ F2.

If F1 and F2 give rise to the same moment sequences, then

1

(n− 3)!P (N1 ≥ n)

Z c

ω=0

ηF1 (ω)ω
n−3dω =

1

(n− 3)!P (N2 ≥ n)

Z c

ω=0

ηF2 (ω)ω
n−3dω

Since Pr (N1 ≥ n) = Pr (N2 ≥ n), it follows thatZ c

ω=0

ηF1 (ω)ω
n−3dω =

Z c

ω=0

ηF2 (ω)ω
n−3dω

and then by the Müntz-Szász theorem ηF1 (ω) = ηF2 (ω) almost surely, i.e.Z c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φF1 (t) dt =

Z c

t=ω

g0

µ
1− e−(t−ω)

q

¶
φF2 (t) dt

As in the proof of Proposition 4, we rely on the Titchmarsh convolution theorem to establish

that φF1 (t) = φF2 (t) almost surely, from which we conclude that F1 = F2 in case (a) and

F−11 (u) = F−12 (u) + c in case (b).

Next, in case (a), we use the fact that F1 (x) = F2 (x) for almost all x and the fact (from

Lemma 1) that
g1
¡
F−11 (u)

¢
f1
¡
F−11 (u)

¢ = g2
¡
F−12 (u)

¢
f2
¡
F−12 (u)

¢
for almost all u to conclude that

g1
¡
F−11 (u)

¢
= g2

¡
F−12 (u)

¢
for almost all u ∈ (0, 1). Hence,

G1 (x) =

Z x

F−11 (0)

g1 (x) dx =

Z x

F−12 (0)

g2 (x) dx = G2 (x)

as claimed.

In case (b), we use the fact that F−11 (u) = F−12 (u) + c for almost all u, to conclude that

g1
¡
F−12 (u) + c

¢
f1
¡
F−12 (u) + c

¢ = g2
¡
F−12 (u)

¢
f2
¡
F−12 (u)

¢
But for almost every u ∈ (0, 1), it must also follow that f1

¡
F−12 (u) + c

¢
= f2

¡
F−12 (u)

¢
.

Hence, we have
g1
¡
F−12 (u) + c

¢
f2
¡
F−12 (u)

¢ =
g2
¡
F−12 (u)

¢
f2
¡
F−12 (u)

¢ .
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This implies that for almost every u ∈ (0, 1),

g1
¡
F−12 (u) + c

¢
= g2

¡
F−12 (u)

¢
and hence that

G1 (x+ c) =

Z x+c

F−12 (0)+c

g1 (x) dx =

Z x

F−12 (0)

g2 (x) dx = G2 (x)

which implies G−11 (u) = G−12 (u) + c. This completes the proof. ¥

By a similar argument, one can show that the proposition above remains true if we condition

on the event that N = n rather than on the event that N ≥ n.

Remark 6: If Γ is known, then once we identify F , we can also recover G = Γ (F ). But

Proposition 5 implies that G is itself characterized by the sequences E (Rn | N ≥ n) and

Pr (N = n). Hence, we can test certain conjectures on Γ by checking whether the distribution

Γ (F ) at the F we identify is the same as the G directly implied by the moment sequences

and the distribution of N .

5. Characterization results across GRR models

The modified GRR model we study can be summarized by a triple {Γ, F, q}. So far, we
have implicitly focused on results that characterize F within a given model. That is, for

a given q and Γ, we showed that there is at most one F for which the model is consistent

with a given sequence of record moments and a given distribution for N . In this section,

we ask whether it is possible to characterize the model itself as opposed to the distribution

F within a given model. We show that if two models {Γ1, F1, q1} and {Γ2, F2, q2} yield the
same record moments and the same distribution of the number of records, then q1 = q2,

F1 = F2 almost surely, and Γ1 (F1) = Γ2 (F2) almost surely. In other words, the sequences

considered in Proposition 5 characterize not only F and G but also the distribution of M .

Proposition 6: Suppose two models {Γ1, F1, q1} and {Γ2, F2, q2} both satisfy Assumptions
1-3, and E (|X2|) < ∞ in both models. Let G1 = Γ1 (F1) and G2 = Γ2 (F2) and assumeP

j n
−1
j =∞.

a. If {Γ1, F1, q1} and {Γ2, F2, q2} give rise to the same sequence Pr (N = nj), then q1 = q2
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and (2) holds, i.e.,
g1
¡
F−11 (u)

¢
f1
¡
F−11 (u)

¢ = g2
¡
F−12 (u)

¢
f2
¡
F−12 (u)

¢
for almost all u ∈ (0, 1).

b. If, in addition to the condition in (a), the two GRR models give rise to the same

sequence E (Rn | N ≥ nj), then G1 = G2 almost surely, and F1 = F2 almost surely.

c. If, in addition to the condition in (a), the two GRR models give rise to the same

sequence

E (Rn −Rn−1 | N ≥ nj), then there exists a c such that G
−1
1 (x) = G−12 (x)+c almost

surely, and F−11 (x) = F−12 (x) + c almost surely.

Proof : We prove (a). The remaining two claims then follow from Proposition 5.

Since both {G1, F1, q1} and {G2, F2, q2} give rise to the same sequence Pr (N = nj), then

for j = 1, 2, 3, ...Z 1

0

1− q1
1− q1u

·
ln

µ
1− q1u

1− q1

¶¸nj−1 g1 ¡F−11 (u)
¢

f1
¡
F−11 (u)

¢du
=

Z 1

0

1− q2
1− q2u

·
ln

µ
1− q2u

1− q2

¶¸nj−1 g2 ¡F−12 (u)
¢

f2
¡
F−12 (u)

¢du.
Set t = ln ((1− q1u)/(1− q1)) and ln ((1− q2u)(1− q2)) respectively on the left hand side

and right hand side above. We can then rewrite the equation above as

Z − ln(1−q1)
0

1− q1
q1

g1

³
F−11

³
1−(1−q1)et

q1

´´
f1

³
F−11

³
1−(1−q1)et

q1

´´ tn−1dt
=

Z − ln(1−q2)
0

1− q2
q2

g2

³
F−12

³
1−(1−q2)et

q2

´´
f2

³
F−12

³
1−(1−q2)et

q2

´´ tn−1dt.
Let us rewrite this equation asZ − ln(1−q1)

0

h1 (t) t
n−1dt =

Z − ln(1−q2)
0

q1
q2

1− q2
1− q1

h2 (t) t
n−1dt.

We now proceed to prove the claim by contradiction. Suppose wlog that q2 > q1. Then

− ln (1− q2) > − ln (1− q1) .
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Define

bh1 (t) =
 h1 (t) if t ≤ − ln (1− q1)

0 if t ∈ (− ln (1− q1) ,− ln (1− q2)) .

Then we have Z − ln(1−q2)
0

bh1 (t) tn−1dt = Z − ln(1−q2)
0

q1
q2

1− q2
1− q1

h2 (t) t
n−1dt

for all n = 1, 2, 3, ... By Müntz-Szász, it follows that

bh1 (t) = q1
q2

1− q2
1− q1

h2 (t)

for almost all t ∈ (0,− ln (1− q2)), which implies h2 (t) = 0 for almost all t in

(− ln (1− q1) ,− ln (1− q2)). But this implies g2 (x) = 0 for almost all x in£
F−12 (0) , F−12 ((q2 − q1)/[q2 (1− q1)])

¤
, which violates Assumption 3.

Given q1 = q2 ≡ q, the fact that both {G1, F1, q} and {G2, F2, q} give rise to the same
sequence Pr (N = nj) implies, in view of Lemma 1, that (2) holds. ¥

6. Application

Finally, we discuss how the results of this paper can be used to identify the wage offer

distribution in job search models. In particular, we show that the offer distribution is

identified in a larger class of models than was previously demonstrated in work by Nagaraja

and Barlevy (2003) and Barlevy (2005).

Consider the following model of job search, which is frequently used in labor economics.

(The literature on job search is too vast; for a survey of previous work on the identification

and estimation of these models, see Eckstein and Van den Berg (2005).) At any point

in time, a worker can be either employed or unemployed. While unemployed, all workers

receive a fixed dollar amount X∗ per unit time (which may be zero). This amount can reflect

unemployment benefits, as well as the monetary value of the leisure she enjoys while not

working. Employed and unemployed workers encounter employers at a constant rate λ per

unit time. Each time a worker encounters an employer, the latter offers her a wage of X that

is drawn independently from a continuous offer distribution F . The worker must then choose

whether to stay on her current job (alternatively, remain unemployed) or accept the new offer

and change employers (alternatively, exit unemployment). In addition, a worker can lose her
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job, an event that occurs at constant rate δ whenever she is employed. When a worker loses

her job, she cannot recall any of her past offers, and instead becomes unemployed. Workers

are assumed to maximize their earnings. Hence, the optimal strategy for an employed

worker is to only accept offers that surpass her current wage. Similarly, while unemployed,

the worker should only accept offers that exceed X∗. We assume F−1 (0) ≥ X∗, i.e. all

employers offer at least X∗ (otherwise their offers would never be accepted).

Let M denote the number of job offers a worker receives between intervening spells of

unemployment, and index the offers according to the order in which they arrive so that Xi

denotes the i-th offer since the worker was last unemployed. Barlevy (2005) shows that

M will have a geometric distribution, i.e. Pr (M = m) = qm−1p where p = δ (δ + λ)
−1 and

q = 1−p. Given the worker’s strategy, the wages on the jobs the worker accepts corresponds
to records from the sequence {Xi, 1 ≤ i ≤M}. In the typical datasets economists use,

workers are only queried on the jobs they work on, not on job offers they received but

turned down. Thus, we assume that the only available data consists of {Rn, 1 ≤ n ≤ N},
not the original observations {Xi, 1 ≤ i ≤M} or even the number of observations M . A
question of interest for economists is whether this data can identify the offer distribution F .

Since R1 = X1, the distribution F is obviously identified from the empirical distribution

of wages of workers on the first job. However, a key obstacle in taking the above model

to data is that empirically a considerable number of workers voluntarily move into lower

wage jobs, in direct violation of the model. To resolve this discrepancy, economists have

argued that wages in the data are a noisy version of wages in the model, i.e. we observe

not Rn but Rn + εn for some random variable εn where E (εn) = 0. The εn can be viewed

as measurement error, but alternative interpretations for this term have been offered (see

Barlevy (2005) for a discussion). Once we assume that we only observe Rn + εn, we can no

longer identify F from the distribution of X1. Previous work, as summarized in Eckstein

and Van den Berg (2005), resorted to parametric assumptions on F and the distribution

of ε to proceed with estimation. By contrast, Nagaraja and Barlevy (2003) and Barlevy

(2005) argued that characterization results for the GRR model imply that F is identified

non-parametrically, since one can still recover E (Rn) from noise-ridden data.

However, in order to apply this identification result, we need to keep track of all jobs

between spells of unemployment so that we can determine which record number n each job

represents. Unfortunately, this is not possible in many datasets. In particular, many surveys
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collect data on workers that are already employed. For those workers, we have no way of

classifying which record number to assign to the jobs we observe for them. Although we

could wait until the worker is next unemployed, unemployment is often a sufficiently low

probability event that a large part of the data would have to be thrown out. The results

of this paper suggest a way to incorporate data for workers who are already employed. In

particular, we know from previous work on search models, e.g. Burdett and Mortensen

(1998), that the economy described by this model converges in the limit to a steady state

in which the fraction of all employed workers who earn a wage of x or less is equal to

G (x) =
F (x)

1 + λ/δ (1− F (x))
(18)

Moreover, the number of offers the worker receives starting from any job continues to have

a geometric distribution. Thus, as long as the economy we consider is at its steady state,

the wages on the jobs we observe for a randomly chosen employed worker will correspond to

records from a sequence {Xi, 1 ≤ i ≤M} where M has a geometric distribution, X1 ∼ G as

defined in (18), and X2, ...,XM ∼ F . Since G = G0 (F (x)), we can appeal to Proposition 4

to argue that average wages or average wage changes identify the wage offer distribution F .

For example, if the average wage gains of workers is constant regardless of how many jobs

they have changed since the first job we observe them on, the wage offer distribution must

be exponential.

More generally, our results can be applied whenever the distribution of the wage on the

first job we observe for a worker differs from the offer distribution F . For example, some

surveys focus on the poor, and use the initial earnings of a worker as a criterion for selection

into the survey. In this case, even if we could track workers from their very first job out of

unemployment, the distribution of wages on the worker’s first job would correspond to

G (x) =

(
F (x) /z if F (x) < z

1 else
(19)

where z reflects the percentile of the threshold wage workers must earn within the wage

offer distribution to qualify for the survey. Once again, we can appeal to Proposition 4 to

argue that average wages or average wage changes identify the offer distribution F .

Discrepancies between the wage on the first job we observe for a worker and the offer

distribution F (·) are not confined to sampling issues. Suppose we could track workers from
the first job out of unemployment and that no wages were censored. However, suppose

the amount workers earn while unemployed varies across workers. For example, they might
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enjoy leisure differently, or they might earn different unemployment benefits (which is not

unreasonable given these often depend on what the worker earned on his last job before

becoming unemployed). Let H (x) denote the fraction of workers whose X∗ is x or less, and

suppose H−1 (0) ≤ F−1 (0). Workers whose X∗ will hold out for a higher wage before they

accept a job offer. The wage on the first job out of unemployment for a worker chosen at

random from H is now given by

G (x;F (·)) =
R x
−∞H (w) dF (w)R∞
−∞H (w) dF (w)

=

R F (x)
0

H
¡
F−1 (u)

¢
duR 1

0
H (F−1 (u)) du

. (20)

Workers continue to draw offers from F at rate λ, so the wages of a worker chosen at random

between two consecutive unemployment spells will correspond to records from a sequence

{Xi, 1 ≤ i ≤M} where M has a geometric distribution, X1 ∼ G as defined in (20), and

X2, ...,XM ∼ F . Since G (x;F (·)) cannot be represented as G0 (F (x)) for some function
G0 (·), we must appeal to Proposition 5 to argue that average wages or average wage changes,
together with the distribution of the number of jobs workers hold between unemployment

spells, identify F . If the distribution of reservation wages H is itself unknown, Proposition

5 implies we can also identify the distribution of wages of workers on their first job G.

It is easily demonstrated that given F and G, one can recover H. Thus, when workers

have different reservation wages, not only is the common offer distribution F they face

still identified, but so is the distribution of X∗ across workers. Thus, we could infer the

distribution of how much workers value leisure from the extent of job mobility we observe

for them once they become employed. Lastly, Proposition 6 tells us that we do not need to

know the ratio λ/δ in advance to identify F , since we can recover it from data on N , i.e. the

distribution of how many jobs workers hold between consecutive unemployment spells. For

an empirical implementation of these ideas using panel data on young workers, see Barlevy

and Nagaraja (2005).
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