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Recovering Risk Aversion from Options 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
 
Cross-sections of option prices embed the risk-neutral probability densities functions 
(PDFs) for the future values of the underlying asset. Theory suggests that risk-neutral 
PDFs differ from market expectations due to risk premia. Using a utility function to 
adjust the risk-neutral PDF to produce subjective PDFs, we can obtain measures of the 
risk aversion implied in option prices. Using FTSE 100 and S&P 500 options, and both 
power and exponential utility functions, we show that subjective PDFs accurately 
forecast the distribution of realizations, while risk-neutral PDFs do not. The estimated 
coefficients of relative risk aversion are all reasonable. The relative risk aversion 
estimates are remarkably consistent across utility functions and across markets for given 
horizons. The degree of relative risk aversion declines with the forecast horizon and is 
lower during periods of high market volatility. 
 
 
JEL Classifications: G13, C12 
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Introduction 

Cross sections of option prices have long been used to estimate implied density 

functions (PDFs). These PDFs represent a forward-looking forecast of the distribution of 

the underlying asset. Option-derived distributions have the distinct advantage of (usually) 

being based on data from a single point in time, rather than data taken from an historical 

time-series. As a result, these PDFs are theoretically much more responsive to changing 

market expectations than are density forecasts estimated from historical data using 

statistical density estimation methods or deriving density forecasts from the 

parameterized time series models. 

Unfortunately, theory also tells us that the PDFs estimated from options prices are 

risk-neutral PDFs. If the representative investor determining options prices is not risk 

neutral, these PDFs need not correspond to the representative investor’s (i.e. the 

market’s) actual forecast of the future distribution of underlying asset values.  

If one assumes that investors are rational the subjective density forecasts should 

correspond, on average, to the distribution of realizations. Thus, one way to test whether 

risk-neutral densities reflect market expectations is to test whether they provide accurate 

density forecasts. If risk-neutral PDFs do not forecast accurately we may infer that the 

difference between the risk-neutral and an accurate or subjective forecast arises from the 

risk aversion of the representative agent. We can then use this difference to infer the 

degree of risk aversion.  

A number of papers have examined the density forecast accuracy for different 

option-derived risk-neutral PDFs.1 Most of these studies have rejected the hypothesis that 

option-derived risk-neutral PDFs are accurate forecasts of the distribution of future 

values of the underlying asset. Thus, evidence suggests that implied PDFs can not 

reliably be used to infer market expectations concerning the future distribution of the 

underlying asset. This is not entirely surprising as there is a large literature establishing 

the existence of risk premia in market prices, particularly equity markets. Nonetheless, 

                                                 
1 Anagnou, Bedendo, Hodges, and Tompkins (2001) provide an excellent review of previous papers before 
adding their own results. 
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numerous other papers have proceeded to interpret risk-neutral PDFs as market 

expectations.2 

While estimating the representative agent’s or market’s degree of risk aversion 

from securities prices has a long history, it is only recently that scholars have begun using 

options data to do so. The methodology used in previous studies has been to separately 

estimate the risk-neutral and subjective (or statistical) density functions, use these two 

separately-derived functions to infer the risk aversion function, and then draw 

conclusions from the implied risk aversion function. Some of these papers permitted the 

risk-neutral density function to vary from observation to observation, however all 

imposed an assumption of stationarity on the statistical density function or underlying 

stochastic process to facilitate estimating the subjective density function from historical 

data. 

Jackwerth (2000) assumes subjective PDF that constant within a 4-year moving 

window. The time series of subjective PDFs are then compared to a time series of risk-

neutral PDFs derived from S&P 500 index options. Ait-Sahalia and Lo (2000), compare 

an ‘average’ risk-neutral PDF over a year-long sample period with an average subjective 

PDF for S&P 500 index, to derive an average implied risk aversion function. They use 

the kernel density method to construct an average subjective PDF. To construct an 

average risk-neutral PDF, they used a two-dimensional kernel smoothing method to find 

the implied volatility smile function with respect to exercise price and maturity, and then 

they derive an average risk-neutral PDF. The disadvantage of this approach is that an 

‘average’ risk-neutral PDF ignores the actual daily movements in the risk-neutral density.   

Ait Sahalia, Wang and Yared (2001) test the joint hypothesis of the efficient 

pricing of options on the S&P500 index and that the index itself follows a one-factor 

diffusion. They compare an average risk-neutral PDF over the sample period with the 

risk-adjusted stochastic process of the index. The later is derived by adjusting the drift of 

the true S&P500 one-factor diffusion process by applying Girsanov’s change-of-measure 

theorem. The disadvantages of this approach is that the stochastic process of the index is 

restricted to be a one-factor diffusion, and that the risk-neutral density is invariant over 

the sample period.  
                                                 
2 See Bliss and Panigirtzoglou (2001) for a partial list. 
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Coutant (2001) compares a series of risk-neutral densities for CAC40 index with a 

series of subjective densities derived from using a parameterized model for the 

underlying stochastic process. As in Ait Sahalia, Wang, and Yared (2001), the stochastic 

process of the index is restricted to follow one-factor diffusion. The volatility structure of 

the diffusion is the same as the risk-neutral densities’ volatility structure, in line with 

Girsanov’s theorem. The mean, which is allowed to vary over time, is different and is 

estimated by maximum likelihood using historical data of the index. Comparing the 

series of risk-neutral densities and subjective densities derives a time-series of risk 

aversion coefficients.  

The aforementioned papers produced implied risk-aversion functions under 

statistical assumptions (stationarity; particular stochastic processes), but imposed no 

theoretical restrictions on the implied risk-aversion functions. Unfortunately, the derived 

risk-aversion functions are somewhat inconsistent with theory. Both Ait-Sahalia and Lo 

(2000) and Jackwerth (2000) estimated U-shaped risk aversion functions. These suggest 

that investors are more risk averse at both higher and lower levels of wealth, while theory 

suggests that they should be more risk averse at lower levels of wealth and less risk 

averse as wealth increases. Jackwerth also estimated risk aversion functions that had the 

coefficient of absolute risk aversion changing signs across the distribution, with large 

negative values in the middle of the distribution and large positive values at the tails. This 

is also inconsistent with theoretical predictions. 

The stationarity assumptions and/or stochastic process assumptions made in these 

same papers are also doubtful. Estimated risk-neutral PDFs are rarely consistent with the 

simple functional forms implied by simple one-factor diffusion models, nor are changes 

in PDFs over time consistent with simple shifts in the mean of the stochastic process. 

When faced with changing risk-neutral PDFs, the stationarity of the subjective PDF 

becomes questionable. The assumption made in the previously discussed papers that the 

true statistical distribution is constant begs the question of why then the risk-neutral 

distribution is not. A stationary statistical distribution requires either that the risk aversion 

function is time-varying or that investors are irrational, that is that they do not account for 

the supposedly stationary distribution of prices, in order to explain the clearly time-

varying risk-neutral distributions that we observe. Directly testing the stationarity of the 
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statistical distribution generally requires more data than is usually available, though 

volatility clustering, spikes and the frequent application of time-varying volatility models 

and regime-switching models to describe financial time-series points to the strong 

possibility that true underlying statistical distributions are time-varying. The risk-aversion 

functions previously estimated by Ait-Sahalia and Lo (2000) and Jackwerth (2000) under 

the assumption of statistical distribution stationarity are simply too implausible to support 

such an assumption. 

An alternative to assuming statistical-distribution stationarity is to assume risk-

aversion function stationarity. We can do this by assuming some well-behaved functional 

form for the underlying utility function, consistent with most papers that have examined 

the question of market risk aversion.  

Bartunek and Chowdhury (1997) follow this approach and assume a power utility 

function with constant relative risk aversion, and a one-factor return generating process 

with constant mean return and variance for the equity index. The mean return is estimated 

historically using S&P 500 index historical values. The remaining parameters of the 

combined model are estimated using the method of simulated moments, and the fitted 

option prices compared to the actual prices. This method produces theoretically 

reasonable risk aversion functions by construction, but continues to impose restrictive 

stationarity assumptions on the statistical distribution.  

Rather than imposing stationarity restrictions on the underlying statistical 

processes to permit estimating the subjective density from a time series of historical 

prices, we impose an alternative restriction on the risk aversion function and permit the 

subjective density to time-vary. We assume a parametric form for the risk aversion 

function, estimate the appropriate risk aversion under the assumption that this value is 

stationary over the sample period and then using time-varying risk-neutral density 

functions estimated from options prices to derive the time-varying implied subjective 

density functions. Our goal is to find implied subjective density functions that are 

consistent with both utility theory and rational expectations. 

We investigate these questions using FTSE 100 and S&P 500 options and two 

different methods of estimating the subjective PDFs using different utility functions to 

adjust risk-neutral PDFs. We find, as others have, that risk-neutral PDFs are poor 
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forecasters of the distribution of future values of the underlying indices. We then find the 

optimal value for the parameters of the utility functions used to construct the subjective 

PDFs and show that these subjective PDFs are good forecasters of the distribution of 

future values of the underlying indices. The measures of risk aversion implicit in these 

adjustments are well behaved, of reasonable magnitude, remarkably consistent across the 

two markets and the two utility functions considered. 

The Methodology section of this paper outlines the theory underlying the 

comparison of risk-neutral and subjective densities, details how we estimated risk-neutral 

PDFs, adjust them to get the subjective PDFs, and then test their density forecasts. The 

section concludes with a description of the data. The empirical results are presented and 

analyzed in the Results section, and the conclusion follows. The Appendix discusses 

alternate methods of testing density forecasts, together with the Monte Carlo tests we 

used to select the method used in this paper. 

 

Methodology 

Our approach to studying the risk premium implicit in options prices involves 

looking at the ability of risk-neutral and risk-adjusted or subjective PDFs to forecast 

future realizations of the underlying asset. Our assumption is that investors are rational 

and perhaps risk averse. For instance, if we were interested only in point forecasts this 

would mean that the degree of bias in the forecast could be interpreted as an indication of 

the degree of market risk aversion, provided the bias is of the correct sign, rather than an 

indication that investors are irrational. 

In this study we are interested in forecasts of distributions rather than of a single 

point estimate. We will therefore examine whether the realizations over time are 

consistent with the PDFs implicit in options prices at some horizon prior to the respective 

realizations. Option prices embed risk-neutral PDFs. If these risk-neutral PDFs provide 

good forecasts of the distribution of future realizations then we must conclude that there 

is no evidence of risk premia in the pricing of options. On the other hand if risk-neutral 

PDFs are not good forecasters, we can test whether risk-adjusted PDFs provide better 

forecasts. If this is the case, the relative risk aversion of the utility function used to adjust 

the risk-neutral PDF provides a measure of the degree of risk aversion. 
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To execute our study we need to: 

1. Compute risk-neutral PDFs from option prices, 

2. Test the forecast ability of PDFs, both risk-neutral and subjective. 

3. Adjust risk-neutral PDFs to derive subjective PDFs, 

 

Estimating the Risk-Neutral Probability Density Function 

Breeden and Litzenberger (1978) showed that the PDF for the value of the 

underlying asset at option expiry, ( ),Tf S  is related to the European call price function by 
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where tS  is the current value of the underlying asset, K is the option strike price and T-t 

is the time to expiry. Unfortunately, available option quotes do not provide a continuous 

call price function. To construct such a function we must fit a smoothing function to the 

available data. 

In this paper we employ a refinement of the smoothed implied volatility smile 

method developed by Panigirtzoglou and presented in Bliss and Panigirtzoglou (2001).3 

The essence of the Panigirtzoglou and related methods is to smooth implied volatilities 

rather than option prices and then convert the smoothed implied volatility function into a 

smoothed price function, which can be numerically differentiated to produce the 

estimated PDF.  

The Black-Scholes formula is used to extract implied volatilities for European 

options (FTSE 100) and the Barone-Adesi-Whaley formula is used for American options 

(S&P 500). At the same time strike prices are converted into deltas using the Black-

Scholes delta and the appropriate at-the-money implied volatility, thus producing a series 

of transformed raw data points in implied volatility/delta space. It is important to note 

that the use of the Black-Scholes and Barone-Adesi-Whaley formulae is solely to convert 

data from one space (price/strike) to another (implied volatility/delta) where smoothing 

                                                 
3 Numerous methods have been developed for extracting PDFs from option prices. Bliss and Panigirtzoglou 
(2001) provide a review of many of these. The Panigirtzoglou method itself derives from previous work as 
discussed in Bliss and Panigirtzoglou. The Panigirtzoglou method was selected for this paper because Bliss 
and Panigirtzoglou found it to be relatively robust and the method permits calibrating the desired 
smoothness of the extracted PDF. 
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can be done more efficaciously. Doing so does not presume that either formula correctly 

prices options. 

A weighted natural spline is used to fit a smoothing function to the transformed 

raw data. The natural spline minimizes the following function: 

 ( )2 2

1

min ( , � � � � �
N

i i i
i

w IV IV g x dxλ
∞

−∞
=

′′− ∆ +∑ ∫   

where iIV  is the implied volatility of the ith option in the cross-section; ( , �iIV ∆  is the 

fitted implied volatility which is a function of the ith option’s delta, ,i∆  and the 

parameters, �  that define the smoothing spline, ( ; ��g x  and iw  is the weight applied the 

ith option’s squared fitted implied volatility error. In this paper we use the option vegas, 

�� �≡ ∂ ∂  to weight the observations. The parameter λ  is a smoothing parameter that 

controls the tradeoff between goodness-of-fit of the fitted spline and its smoothness 

measured by the integrated squared second derivative of the implied volatility function. 

In our preliminary tests we used values of λ  ranging from 0.99 to 0.9999 to check the 

sensitivity of our results to the degree of smoothness we impose on the estimated PDF. 

These tests indicated that forecast results were insensitive to the choice of .λ  We 

therefore report results based on 0.99.λ =  

When fitting a PDF it is necessary to extrapolate the spline beyond the range of 

available data.4 The natural spline is linear outside the range of available data points and 

can thus result in negative or implausibly large positive fitted implied volatilities. To 

prevent this happening we force the spline to extrapolate smoothly in a horizontal 

manner. We do this by introducing two pseudo-data points spaced three strike intervals5 

above and below the range of strikes in the cross sections and having implied volatilities 

equal to the implied volatilities of the respective extreme-strike options. These pseudo-

data points are added to the cross-sections before the above transformations and spline-

fitting take place. 

                                                 
4 Anagnou, Bedendo, Hodges, and Tompkins (2001) use PDFs truncated to the range of available strikes 
and then rescaled. This unusual procedure avoids extrapolating the tails of the PDF, but cannot handle 
realizations falling outside the range of strikes available when the PDF was constructed. 
5 Strike intervals refers to the interval between adjacent quoted option strikes. 
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Once the spline, ( ; ��g x  is fitted, 5,000 points along the function are converted 

back to price/strike space using the Black-Scholes formula. The delta-to-strike 

conversion uses the same at-the-money implied volatility used for the earlier strike-to-

delta conversion, thus preserving the consistency in the initial data transformation and its 

inverse. The implied volatility-to-call price conversion uses the implied volatility 

provided by the fitted implied volatility function to produce a fitted European call price 

function. The 5,000 points are selected to produce equally spaced strikes over the range 

where the PDF is significantly different from zero. This range varies with each cross-

section, primarily as the price level of the underlying changes. Finally, we use the 5,000 

call price/strike data points to numerically differentiate the call price function to obtain 

the estimated PDF for the cross-section. 

 

Testing PDF Forecast Ability 

Each option cross-section produces an estimated PDF, ˆ ( ),if ⋅  for a single option 

expiry date. Our goal is to test the hypothesis that the estimated PDFs, ˆ ( ),if ⋅  are equal to 

the true PDFs, ( ).if ⋅  The time-series of PDFs generated for a given forecast horizon are 

all different. Only one realization, ,iX  is observed for each option observation/expiry 

date pair. 

Under the null hypothesis that the iX  are independent and that estimate PDFs are 

the true PDFs, i.e. ˆ ( ) ( ),i if f⋅ = ⋅  the inverse probability transformations of the realizations,  

ˆ ( ) ,
iX

i iy f u du
−∞

= ∫  

will be independently and uniformly distributed: ~  i.i.d. (0,1).iy U 6 The range of the 

transformed data is guaranteed by the inverse probability transformation itself, but the 

                                                 
6 Kendal and Stuart (1979), section 30.36, discusses the case where the Xi are i.i.d. and the estimated 
densities do not depend on the Xi. Where the estimated densities do depend on the Xi, problems may ensue 
and the inverse probability transform need not be independent or uniform. Diebold, Gunther, and Tay 
(1998) show that for a special case (arising in GARCH processes) where the true densities depend only on 
past values of Xi (and no other conditioning information) the i.i.d. uniform result holds. However, in the 
problem addressed in this paper the PDFs are estimated from option prices and values of the underlying, 
which do not include the Xi. We therefore rely on Kendal and Stuart. 
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uniformity need obtain only if the estimated PDF equals the true PDF. Independence 

must also be established as most distributional tests assume independence and would 

generate incorrect inferences if this were not the case, though independence is not always 

verified in practice.  

Several non-parametric methods have been proposed for testing the uniformity of 

the inverse probability transformed data, including the Kolmogorov-Smirnov, Chi-

square, and Kupier tests. None of these methods provides a joint test of the assumption 

that the iy  are i.i.d.  

Berkowitz (2001) has proposed a parametric methodology for jointly testing 

uniformity and independence. He first defines a further transformation, ,tz  of the inverse 

probability transformation, ,ty  using the inverse of the standard normal cumulative 

density function, ( ) :Φ ⋅  

1 1 ˆ( ) ( ) .
iX

i i iz y f u du− −

−∞

 
= Φ = Φ    

∫  

Under the null hypothesis, ˆ ( ) ( ), ~  i.i.d. (0,1).i i if f z N⋅ = ⋅  Berkowitz tests the 

independence and standard normality of the tz  by estimating the following model 

1� �t t tz z −− = − +  

using maximum likelihood and then testing restrictions on the estimated parameters using 

a likelihood ratio test.7 Under the null, the parameters of this model should be: ��=  

�� �	
� � ��t= =  Denoting the log-likelihood function as 2( � � ��L  the likelihood 

ratio statistic, 2
3 ˆˆ ˆLR 2 (0,1,0) ( � � � �L L = − −   is distributed 2 �
�  under the null 

hypothesis.  

In practice, it is sometimes necessary to test overlapping forecasts, for example 

60-day-ahead forecasts of monthly realizations. In this case, if the above test rejects it is 

possible that the rejection arises from the overlapping nature of the data, which may 

                                                 
7 The log-likelihood function for this model is given in Hamilton (1994), equation (5.2.9). This test does 
not test the normality of the transformed data per se, but tests that the data is standard normal under the 
assumption that it is normally distributed. Rejecting this test is sufficient to establish that the null 
hypothesis does not hold, however it is not necessary. 
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induce autocorrelation, rather than from problems with the estimated PDFs. This is also 

true for non-overlapping, but serially correlated, data. Berkowitz therefore tests the 

independence assumption separately by examining 2 2
1 ˆˆ ˆ ˆ ˆLR 2 ( � ��� � � � � �L L = − −   

which has a 2 ���  distribution under the null. 

If 3LR  rejects the hypothesis that the ~  i.i.d. (0,1),iz N  failure to reject 1LR  

provides evidence that the estimated PDFs are not providing accurate forecasts of the true 

time-varying densities. On the other hand if both 3LR  and 1LR  reject, we cannot 

determine whether the problem arises from a lack of forecast ability or serial correlation 

in the data. Failure to reject both 3LR  and 1LR  is consistent with forecast power, though 

as in all statistical tests failure to reject the null hypothesis does not necessarily mean that 

the null hypothesis is true. 

The simple AR(1) model used in the above Berkowitz test captures only a specific 

sort of serial dependence in the data, though this is the dependence most likely to occur in 

this case. Berkowitz (2001) shows how to expand the model and associated tests to 

higher order AR(p) processes. However, this results increasing numbers of model 

parameters and reduced power. Other tests for independence, for instance runs tests, 

could be applied to the iy  prior to conducting the LR test, if more complex temporal 

dependencies are suspected. 

The LR test is uniformly most powerful only in a single-sided hypothesis test. 

However, as we show in Appendix A in Monte Carlo simulations the Berkowitz test is 

more reliable than the Chi-squared and Kupier tests in large and small samples under the 

null hypothesis, and is additionally superior to the Kolmogorov-Smirnov test in small 

samples when the data are autocorrelated. We therefore use the Berkowitz test in this 

paper. 

 

Estimating the Subjective Density Function 

To compute and test the forecast ability of a subjective density function it is first 

necessary to hypothesize a utility function for the representative agent and then, 

following Ait-Sahalia and Lo (2000), use this to convert the estimated risk-neutral 

density function into a subjective density function. The forecast ability of the resulting 
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subjective density function is then tested in the same manner as the risk-neutral density 

function. 

Ait-Sahalia and Lo (2000) show that, subject to certain conditions such as 

complete and frictionless markets and a single asset, the risk-neutral density function, 

( ),Tp S  is related to the subjective density function, ( ),Tq S by a third function, 

� ��TS which is in turn related to the representative investor’s utility function, ( ),TU S  as 

follows: 

 
( ) ( )

� �
( ) ( )

T T
T

T t

p S U S
S

q S U S
λ

′
= =

′
  

where λ  is a constant. The resulting subjective density function must be normalized to 

integrate to one. Thus, 
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In this paper we test subjective density functions derived using two representative 

agent utility functions: the power utility function, and the exponential utility function. In 

both cases the utility functions, and thus the resulting subjective density functions, are 

conditioned on the value of the single parameter, �   In testing the subjective density 

functions we first selected the value of  to maximize the forecast ability of the resulting 

subjective PDFs as measured by the Berkowitz LR3 statistic p-value.  

Table 1 provides the functional forms of the power and exponential utility 

functions and the marginal utility function used to transform the risk-neutral density into 

the corresponding subjective density, together with the measure of relative risk aversion 

(RRA) for each utility function. The power utility function has constant relative risk 

aversion, and the measure of RRA is simply equal to the parameter �  However, the 

exponential utility function exhibits constant absolute risk aversion, the parameter �  

rather than constant relative risk aversion. For exponential utility, the RRA is dependent 

on both  and the realization ,TS  which is time varying. Therefore, for exponential 

utility RRA we report the distribution of the RRA across the sample observations. 
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Data Description 

Two sets of equity options contracts are used in this study—S&P 500 options 

traded on the Chicago Mercantile Exchange (CME) and FSTE 100 options traded on the 

London International Financial Futures Exchange (LIFFE)—together with data on the 

underlying asset and the risk free interest rated needed to price options.8 Data included 

options expiries from February 18, 1983 through June 15, 2001 for the S&P 500 options 

and June 19, 1992 through March 16, 2001 for the FTSE 100 index options. 

The CME S&P 500 options contract is an American option on the CME S&P 500 

futures contract. S&P 500 options trade with expiries on the same expiry dates as the 

futures contracts, which trade out to one year with expiries in March, June, September, 

and December. In addition, there are monthly serial options contracts out to one quarter. 

Thus, at the beginning of January options are trading with expiries in January, February, 

March, June, September, and December; at the beginning of February options trade with 

expiries in February, March, April, June, September, and December. Options expire on 

the 3rd Friday of the expiry month, as do the futures contracts in their expiry months. 

Prior to March 1987 the S&P 500 futures settled to the value of the S&P 500 index at the 

close on Friday. Beginning in March 1987 the futures settled to an exchange-determined 

Special Opening Price on the expiry Friday. For serial months there is no futures expiry 

and the options settle to the closing price on the option expiry date of the next maturing 

S&P 500 futures contract. The S&P 500 options realizations used in this study are the 

Special Opening Quote for quarterly contracts beginning in March 1987 and the S&P 500 

futures closing price for serial contracts and all contracts prior to 1987. Option quotations 

used to compute PDFs are the closing prices, the associated value of the underlying is the 

closing price of the S&P 500 futures contract maturing on or just after the option expiry 

date.  

The LIFFE FTSE 100 option contract used in this study is a European option on 

the FTSE 100 equity index. Options are traded with expiries in March, June, September 

and December. Additional serial contracts are introduced so that options trade with 

expiries in each of the nearest three months. FTSE 100 options expire on the third Friday 

                                                 
8 Short Sterling options were also examined but failed to produce enough usable cross-sections for 
meaningful analysis. 
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of the expiry month. FTSE 100 options positions are marked-to-market daily based on the 

daily settlement price, which is determined by LIFFE and confirmed by the Clearing 

House. The FTSE 100 options prices used in this study are the LIFFE-reported settlement 

prices.  

The quarterly FTSE 100 futures contract expire on the same date as the options 

and therefore will have the same value as the index when the option expires. The 

European-style FTSE 100 contract may thus be viewed as an option on the futures, if one 

assumes that mark-to-market effects are insignificant. LIFFE reports the futures prices as 

the value of the underlying in their options data. For serial months, LIFFE constructs a 

theoretical futures price based on a fair value spread over the current futures front 

quarterly delivery month. In computing FTSE 100 implied volatilities, the value of the 

underlying asset corresponding to each cross-section of option quotes used in this study is 

the actual or theoretical futures price reported by LIFFE for that contract. At expiry the 

options settle to the Exchange Delivery Settlement Price determined by LIFFE by taking 

the average level of the FTSE 100 index sampled every 15 seconds between 10:10 and 

10:30 on the last trading day, after first discarding the highest and lowest 12 observations. 

This series was used to compute option realizations for this study. 

The risk free rates used in this study are the British Bankers Association’s 11 a.m. 

fixings of the 3-month EuroDollar and EuroSterling LIBOR rates reported by 

Bloomberg.9 

A target observation date was determined for horizons of 1, 2, 3, 4, 5, 6 weeks, 1, 

2, 3, 4, 5, 6, 9 months and one year, by subtracting the appropriate number of days 

(weekly horizons) or months (monthly and 1-year horizons) from the option expiry date. 

If no options traded on the target observation date, the nearest options trading date was 

determined. If this nearest trading date differed from the target observation date by no 

more than 3 days for weekly horizons or 4 days for monthly and 1-year horizons, that 

date was substituted for the original target date. If no sufficiently-close options trading 

date existed, that expiry was excluded from the sample for that horizon. 

                                                 
9 Duffee (1996) provides evidence that short maturity U.S. Treasury securities exhibit idiosyncratic 
variations that makes them unsuitable proxies for the U.S. risk free rate. The U.K. does not have a liquid 
Treasury Bill market. The LIBOR market has the dual advantages of liquidity and approximating the actual 
market borrowing and lending rates faced by options market participants. 
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Options quotes for the target dates are then filtered. Because trading in options 

markets is asymmetrically concentrated in at- and out-of-the-money strikes, and because 

the spline algorithm will not accommodate duplicate strikes in the data, we discard in-

the-money options. Options for which it was impossible to compute an implied volatility 

(usually far-away-from-the-money options quoted at their intrinsic value) or options with 

implied volatilities of greater than 100 percent were also discarded. If there were fewer 

than five remaining usable strikes in a given cross-section the entire cross-section was 

discarded. Table 2 presents the resulting cross-section counts and the range and mean of 

the strikes per cross-section of the remaining data. In practice, too few cross-sections 

leads to insufficient power to conduct meaningful tests. FTSE 100 horizons greater than 6 

weeks, and S&P 500 horizons greater than 2 months, were found to have too few usable 

cross-sections for our study. Furthermore, overlapping data produced serious 

autocorrelation problems for longer maturities. Our final sample therefore consistent of 

filtered cross-sections for horizons of between 1 and 6 weeks. 

 

Empirical Results 

The analysis of the empirical results consists of three sequential steps. We first 

examine the risk-neutral PDFs to determine whether there is evidence that they 

adequately capture the distribution of ex post realizations. We next risk adjust the risk-

neutral PDFs and then test these subjective PDFs in the same manner. Conditional on the 

subjective PDFs providing a better forecast of the distributions of future realizations, we 

examine the measures of RRA implicit in these risk-adjusted PDFs. 

Table 3 provides the evidence on our first two questions. We cannot reject the 

hypothesis that the risk-neutral PDFs provide accurate forecasts of the distributions of 

future realizations for either FTSE 100 or S&P 500 contracts at the 1-week horizon. 

Neither can we reject the hypothesis for the S&P 500 contracts at the 2-week horizon. 

However, the p-values for the 1- and 2-week S&P 500 options tests are only slightly 

higher than 10 percent, which is a reasonable threshold given the lack of power in tests of 

goodness-of-fit and the small number of observations. The 1-week FTSE 100 results give 

no comfort however to skeptics of using risk-neutral PDFs as forecasts. 
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However, we are usually interested in forecast horizons beyond one or two weeks. 

At the 6-week horizon, risk-neutral PDFs for both FTSE 100 and S&P 500 clearly reject 

the hypothesis that the PDFs accurately forecast future distributions of the underlying 

indices; however, the supplementary LR1 tests also reject the hypothesis that the inverse 

probability transforms are independent. We therefore can draw no conclusions from the 

6-week results. Thus, the failure to reject for the 1- and 2-week horizons and the rejection 

at the 6-week horizon are ambiguous results that may or may not mean poor density 

forecast ability, recalling that “failure to reject” should not be interpreted as “accepting.” 

The intermediate 2–5 week results for FTSE 100 and 3–5 weeks for S&P 500 

provide evidence that risk-neutral PDFs do not provide accurate forecasts of the future 

distributions of realizations of the underlying indices. The Berkowitz LR3 statistic rejects 

at conventional significance levels, while the supplementary LR1 statistic fails to reject 

the hypothesis of independence. This is consistent with the estimated risk-neutral PDFs 

failing to provide accurate forecasts, rather than a failure of the independence 

assumption. Unlike the 1-, 2-, and 6-week results, we here have evidence that is 

consistently inconsistent with the hypothesis that risk-neutral PDFs forecast the 

distribution of the underlying asset.  

These results also demonstrate that the Berkowitz test has sufficient power to 

reject the good-forecast null, excepting perhaps in the extreme short horizons. This 

observation becomes important when we examine the forecast ability of the risk-adjusted 

PDFs and find very different results. Having previously established that our tests are able 

to reject in the risk-neutral case, we are more secure in interpreting the failure of the same 

test to reject in the subjective cases as arising from superior performance of the risk-

adjusted PDFs rather than lack of power in our test methodology.  

For the 3–5 week horizons the Berkowitz test failed to reject the hypothesis that 

the risk-adjusted PDFs provided good forecast of the distribution of the underlying asset 

values at those horizons. This was equally true for FTSE 100 and S&P 500, and for 

power-utility-adjusted and exponential-utility-adjusted PDFs. P-values were well above 

conventional thresholds. The exponential-utility-adjusted PDFs’ p-values were 

consistently higher than those of the power-utility-adjusted PDFs. This result is 

statistically significant at the 10% level when taken in aggregate, though perhaps not for 
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individual cases.10 However, we offer this as merely suggestive rather than conclusive, 

and continue to examine both methods of risk adjustment. 

The notable exception to this picture of risk-adjusted PDFs out-performing risk-

neutral PDFs is the 2-weeks FTSE 100 case. For this sample the risk-neutral and risk-

adjusted PDFs were rejected as accurate forecasts of the distributions of the forecasts of 

future values of the value of the FTSE 100 index. The supplementary LR1 test p-values 

fail to provide evidence that this is associated with rejection of the joint independence 

assumption. We must therefore conclude that for the 2-week FTSE 100 contracts neither 

the power utility nor the exponential-utility-adjusted PDFs captured the market risk 

premia. 

Having determined that the 3–5 week risk-adjusted PDFs appear to do a 

reasonable job of forecasting the distribution of future values of the underlying asset 

values, while the risk-neutral PDFs do not, we next examine the degree of relative risk 

aversion reflected in the risk-adjusted PDFs. The top panel of Table 4 presents the “all 

observations” RRAs corresponding to the results just discussed.  

There is close agreement between the power utility RRAs and the mean 

exponential utility RRAs. Furthermore, the RRAs for FTSE 100 and S&P 500 are nearly 

identical for matched horizons.11 This is not an artifact of the methodology as the samples 

are entirely distinct and we see variation between RRAs for different horizons. The 

median exponential utility RRAs are slightly lower than the mean, reflecting the positive 

skew in the distribution of index values. Thus, while the exponential-utility-adjustment 

appears to produce somewhat superior forecasts of density, the (mean) measured RRAs 

are broadly consistent between the two risk adjustment functions. However, the range of 

                                                 
10 Monte Carlo was used to determine the probability of observing 8 instances of exponential utility PDFs 
achieving higher Berkowitz statistics out of 8 cases (3–5 week horizons) or 11 of 14 cases (all 7 horizons), 
under the assumption that the data were drawn from identically distributed, but cross-horizon correlated 
data. Paired sets (A and B) of uniformly distributed data were generated having the same correlation 
structure as the actual inverse probability transforms and with series lengths also matching the data. 
However, the paired data sets were constructed to have otherwise identical distributions. Pairs of Berkowitz 
statistics were then computed for each pair of constructed series. The process was repeated 10,000 times 
and the frequency of Berkowitz(A) > Berkowitz(B) in 8 of 8 cases (6.5% of simulations) and 11 of 14 cases 
(6.3% of simulations) was noted. 
11 This is true for the power utility and mean and median values for the exponential utility. The S&P 
exponential utility RRA ranges are greater than the corresponding FTSE 100 ranges because of the greater 
range found in the values of the S&P index, which in turn arises from the longer time-series available for 
S&P data. 
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RRAs permitted by the exponential-utility-adjustment, which is quite substantial, coupled 

with the suggestion of better fit, suggests that the constant relative risk aversion inherent 

in the power-utility-adjustment may be unduly restrictive, and that constant absolute risk 

aversion seems to be more consistent with the data.  

In all cases the RRAs are consistent with the moderate values found in most other 

studies shown in Table 5. There is no evidence in these results of the extreme, “puzzle” 

values found in Mehra and Prescott (1985) and Cochrane and Hansen (1992). 

The RRAs are generally declining with the forecast horizon. If we focus on the 3–

5 week results, which show the clearest contrast between risk-neutral and risk-adjusted 

forecast performance, the RRAs decline monotonically by a factor of slightly less than 2 

over that range of forecast horizons. This strong horizon-dependence in estimated RRAs 

suggests that investors are more risk averse when investing at shorter horizons.  

Our methodology necessarily imposes the assumption that the utility function 

parameter is constant across the sample. With only one realization per observation it is 

difficult, if not impossible, to estimate time-varying values for the utility function 

parameters. However, we can examine the robustness of this constant parameter 

assumption by dividing the sample into sub-samples and re-estimating the parameters for 

each sub-sample. Recalling that the data did not reject the full sample risk-adjusted PDFs, 

allowing sub-sample variation is unlikely to be statistically significantly better on a case-

by-case basis using a Wald or similar test. However, the patterns that emerge are 

consistent and instructive.  

Rather than divide the sample by time-period we elected to divide it into two 

equal-sized sub-samples corresponding to periods of high and low volatility as measured 

by the implied volatility of at-the-money options. The rationale was the risk aversion is 

more likely to vary with the degree of risk than in a simple linear time-trend. The middle 

and lower panels in Table 4 present the RRAs measured over these two sub-samples. The 

results are marked and consistent. For every horizon, and for both FTSE 100 and S&P 

500, the low-volatility RRAs exceed the high-volatility RRAs by a factor of between 3 

and 5. 

This is consistent with what is observed in equity markets. When market 

volatility, usually measured by at-the-money option implied volatilities, spikes during 
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crises we do not observe falls in equity prices which would be consistent with the equity 

risk premium rising in line with volatilities.12 This is evidence that the risk aversion 

implied in equity risk premia is inversely related to the level of risk. Our results confirm 

that this phenomenon is measured in the pricing of options as well. A possible 

explanation for this inverse relation between equity risk and measures of risk aversion 

lies in our using equity risk as a proxy for consumption risk. Equity prices and volatility 

are much more volatile than consumption and consumption uncertainty. Thus, use of 

equity returns as a proxy for consumption introduces excess volatility, which is reflected 

in volatility dependence in the derived measures of risk aversion. 

Our full-sample results show that, at least for forecast horizons of 3 to 5 weeks, 

the risk-neutral distributions provide poor forecasts of future densities while the 

subjectively-adjusted densities provide reasonably good (i.e. not statistically rejectable) 

forecasts. An obvious question is how much the risk-neutral and subjective densities 

differ. One measure of this is to look at the tail percentile points under the risk-neutral 

and subjective distributions. The estimation of tail-percentile points is of particular 

importance in risk management where value-at-risk is widely used. Suppose we were to 

compute the 1-percentile value under the (rejectable) risk-neutral density forecast each 

period. These values of the underlying will have different percentile values under the 

(not-rejectable) subjective densities, and the corresponding subjective percentiles of the 

risk neutral 1-percentile values may vary from observation to observation. Table 6 

presents the results of these computations. Thus, at the 2 week horizon the values of the 

FTSE 100 corresponding to the 1-percentile of the risk-neutral density measured each 

observation period have subjective cumulative probabilities (percentiles) ranging between 

0.2 and 0.8 percent for the power-utility-adjusted densities and between 0.2 and 0.9 

percent for the exponential-utility-adjusted densities, with means of 0.6 and 0.7 percent 

respectively. For all forecast horizons, percentile points, both utility functions and both 

contract types, the risk-neutral percentile points have lower probabilities under the 

subjectively-adjusted densities than under the risk-neutral densities. Thus, reliance on 

                                                 
12 In a standard consumption CAPM, the equity risk premium is proportional to the covariance of equity 
returns with the marginal utility of consumption. This covariance is, in turn, proportional to the standard 
deviation (volatility) of equity returns. 



 21

risk-neutral densities to estimate and hold capital against a 1 percent value-at-risk would 

be unduly conservative (and expensive) for long equity positions, and would understate 

the risk and required capital for short positions. Whether these differences are material 

depends on the particular application. For instance, differences may be economically 

unimportant for an unlevered equity portfolio, while for a highly levered or equity 

derivative portfolios these differences could be critical to the sound management of 

risk.13 

These are, of course, average results. The high-low implied volatility results 

presented in Table 4 show that the reliance on risk-neutral densities would be less 

problematical during periods of high volatility and more problematical during period of 

low volatility. 

The difference between the mean of the risk-neutral and the subjective PDFs, 

normalized by one of the means (we use the risk-neutral PDF mean), is an approximate 

measure of the equity risk premium. Figure 1 plots the time series of the 1-month forecast 

horizon risk premia for the S&P 500 contract. The same data is presented in both panels 

with differing scales for clarity. Until 1997 the exponential-utility-estimated risk 

premium was less than that estimated using a power-utility adjustment. Since 1997 this 

relation has been reversed. Changes in the risk premia appear to be correlated across risk-

adjustment methods, as one would expect. Differences in estimated risk premia can be 

large. For instance during the 1987 stock market crash the power-utility-adjusted PDF 

suggested a risk premium nearly three times as large as that estimated using an 

exponential utility function to adjust PDFs. This spike results from the subjective PDFs 

having markedly higher variances during the 1987 crash (power: 0.33; exponential: 0.31) 

than the corresponding risk-neutral PDF (0.27).14 

Figure 2 compares the standard deviations and skewness coefficients implied by 

the subjective PDFs against those from the risk-neutral PDFs for one contract/horizon 

                                                 
13 The differences between the 2-week horizon mean risk-neutral 1st percentile point (3975) and the 
corresponding power and exponential-utility-adjusted 1-percentile points (4010 and 4015) is a small 
percentage of the mean level of the index. However, when compared to the mean absolute change in the 
index level over the 2-week horizon (85) the 1-percentile point differences (35/45) are large. Comparisons 
for other horizons /contracts are similar. 
14 Campbell, Lo and MacKinlay (1997) point out that the market risk premium is proportional to the market 
volatility. 
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(S&P500; 1-month). Results for other contracts and horizons are similar. Figure 2 shows 

that for most observations second and third moments do not differ substantially between 

risk-neutral and subjective PDFs. The exception is the September 16, 1987 observation 

which shows up as an outlier on the scatter plots. Nonetheless, the differences in the first 

3 moments are sufficient to induce a statistically significant difference in the forecast 

ability of the subjective and risk-neutral PDFs and a time-varying equity risk premium of 

around 10 percent per annum for most of the 1983 to 2001 period. 

 

Conclusions 

Options prices embed market expectations of the distribution of futures values of 

the underlying asset. This can provide potentially useful information for risk managers 

and analysts wishing to extract forecasts from security market prices. However, the risk-

neutral density forecasts that are produced from options prices cannot be taken at their 

face value. We have shown, consistent with the work of others, that risk-neutral PDFs 

estimated from S&P 500 and FTSE 100 options do not provide good forecasts of the 

distribution of future values of the underlying asset, at least at the horizons for which we 

can obtain unambiguous results.  

Theory tells us that if investors are risk averse and rational the subjective density 

functions they use in forming their expectations will be linked to the risk-neutral density 

functions used to price options by a risk aversion function. Theory also suggests certain 

properties this risk aversion function might be expected to have. We have employed two 

widely used, and theoretically plausible, utility functions to infer the unobservable 

subjective densities by adjusting the observed risk-neutral densities. Our criterion in 

making this adjustment is to choose the risk aversion parameter that produces subjective 

densities that best fit the distributions of realized values. That is, we assume that investors 

are rational forecasters of the distributions of future outcomes and thus the risk aversion 

parameter value that best fits the data is most likely to correspond to that of the 

representative agent. 

In applying this methodology we assume that investors risk aversion functions are 

stationary. This contrasts with the assumption made in previous papers that the statistical 

distribution was stationary. The subjective density functions derived under this 
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assumption cannot be rejected as good forecasters of the distributions of future outcomes 

(unlike the unadjusted PDFs), and so this assumption seems validated on a practical level, 

subject to the caveat that there is some evidence of volatility dependence in risk-aversion 

estimates. 

The coefficient-of-risk-aversion estimates obtained by our methodology are 

comparable to those obtained in most previous studies. There is little evidence of risk 

aversions so high as to constitute a puzzle. We have also been able to establish, we 

believe for the first time, that the risk aversion estimates are surprisingly robust to 

differences in the specification of the representative investors utility function and to the 

data set used. We also show that the estimated coefficients of risk aversion decline with 

the forecast horizon and are higher during periods of low volatility; both results 

suggestive that theoretical models need to evolve to capture these effects. 
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Appendix 

Density Forecast Evaluation 

Testing whether a series of estimated time-varying density functions, ˆ ( ),if ⋅  equals 

the true underlying density functions, ( ),if ⋅  when we observe a series of single outcomes, 

,iX  for each density, reduces to testing whether the inverse probability density 

transforms, ,iy  

ˆ ( ) ,
iX

i iy f u du
−∞

≡ ∫  

are uniformly distributed. The test statistics used for making this determination all 

assume that the iy  are independently and identically distributed; therefore, independence 

is a necessarily joint hypothesis with uniformity.  

Several non-parametric methods have been proposed for testing the uniformity of 

the inverse-probability-transformed data. The Chi-square test is based on dividing the 

[0,1] interval into a number of buckets and then counting the number of times the inverse 

probability transform falls into each bucket. The result is a series of counts , 1,..., ,in i K=  

where K is the number of buckets and 
1

K

i
i

N n
=

= ∑  is the number of observations. Under 

the null hypothesis that ~  i.i.d. (0,1),iy U each bucket is expected to 

contain n E( )i in N K≡ =  observations. The Chi-square test then uses the statistic 

2
2

1

( n )

n

K
i i

i i

n

=

−≡ ∑  which is distributed 2  with K-1 degrees of freedom under the null 

hypothesis. 

The Kolmogorov-Smirnov, and Kupier tests are based on the difference between 

the observed and theoretical density functions ˆ( ) ( ) ( ).i i iD y F y F y= −  In this case the 

theoretical density is the uniform, so ( ) .i iF y y=  The observed density is just the rank 

order divided by the number of observations, 
( )

( ) .i
i

rank y
F y

N
=  The Kolmogorov-

Smirnov test is the maximum absolute difference between the observed and theoretical 
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cumulative densities: 
1

ˆmax ( ) ( ) .KS i i
i N

D F y F y
≤ ≤

= −  The significance level for an observed 

value of KSD  under the uniformly-distributed null is given by 

( )( )Pr ob( ) 0.12 0.11/ ,KS KS KSD observed Q N N D> = + +  

where 

2 21 2

1

( ) 2 ( 1) ,j j x
KS

j

Q x e
∞

− −

=

= −∑  

which we approximate by taking summing the first 1000 terms. 

The Kupier test sums maximum positive and negative differences between the 

observed and theoretical cumulative densities: 

 ( ) ( )
1 1

ˆ ˆmax ( ) ( ) max ( ) ( ) .K i i i i
i N i N

D F y F y F y F y
≤ ≤ ≤ ≤

= − + −  

 The significance level for an observed value of KD  under the uniformly-

distributed null is given by 

( )( )Pr ob( ) 0.155 0.24 / ,K K KD observed Q N N D> = + +  

where 

2 22 2 2

1

( ) 2 (4 1) ,j x
K

j

Q x j x e
∞

−

=

= −∑  

which we again approximate by taking summing the first 1000 terms. 

None of these methods provides a test the joint assumption that the iy  are i.i.d. 

Diebold, Gunther, and Tay (1998) suggest testing the independence and uniformity 

separately using the correlogram for the iy  to test for independence and, subject to not 

rejecting the hypothesis that the data were independent, using a Chi-square test to test the 

hypothesis that the probability integral transforms are uniformly distributed. However, as 

they point out, to separate fully the desired )1,0(U and i.i.d. properties of ,iy  “we would 

like to construct confidence intervals for histogram bin heights that condition on 

uniformity but they are robust to dependence of unknown form,” and “confidence 

intervals for the autocorrelations that condition on independence but are robust to non-

uniformity.” Unfortunately, since there is no serial-correlation-adjusted Chi-square test of 

known small sample properties for the uniformity hypothesis, Diebold, Gunther, and Tay 
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are unable to conduct a simultaneous joint test of the i.i.d. and uniformly distributed 

properties. They use the Kolmogorov-Smirnov (K-S) and the Chi-square statistics for 

testing for uniformity but, as they point out, the impact of departures from randomness on 

the performance of these non-parametric tests is not known.  

To test the significance of autocorrelations, Diebold, Gunther, and Tay construct 

finite-sample confidence intervals that condition on independence but are robust to 

deviations from uniformity by sampling with replacement from the series of the 

probability integral transforms and building up the distribution of sample 

autocorrelations. The drawback of their methodology is that they separate the joint 

hypothesis test into two different tests. The use of the binomial distribution that they 

mention in their paper is also controversial since the numbers of observations in each bin 

are not independent and actually follow a multinomial distribution. The Chi-square test is 

the appropriate test for the uniform-distribution null hypothesis in this case. 

Berkowitz (2001) proposes a density evaluation methodology that does provide a 

joint test of independence and normality. Furthermore, unlike the non-parametric Chi-

square, Kolmogorov-Smirnov, and Kupier test which discard sample information either 

by bucketing or by selecting single observations (maximum deviations), the Berkowitz 

test utilizes all observations. The Berkowitz joint hypothesis test, LR3, described in the 

body of this paper, tests both uniformity and independence. For diagnostic purposes, 

restricted forms of the Berkowitz test are possible; for instance, in LR1, tests 

independence under the assumption that the data are uniform. 

To choose between alternative methods for testing the uniformity of the inverse-

probability transformed data, we used Monte Carlo simulations to test the small sample 

properties of these different statistical tests, both under the null hypothesis of 

independently-distributed uniform random variates and when the simulated data were 

autocorrelated. To do this we needed to generate autocorrelated uniformly-distributed 

random numbers. Beginning with a series of random standard normal numbers, 

~ (0,1),ix N we construct autocorrelated normally-distributed random variables with 1st 

order correlations equal to �  by creating create the MA(1) variables 1�t t ty x x −= +  

where  
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
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

 

 

The 2(0,1 ��ty N +�  with autocorrelation �  To create uniformly distributed 

numbers tu  we transform the ty  using the inverse cumulative normal distribution, that is, 

1 2( ;0,1 ��t tu y−= Φ + where 1 2( ; � �x−Φ  is the inverse of the normal cumulative density 

function with parameters and 2 �  evaluated at x. These uniform random numbers also 

have a 1st order autocorrelation of �  

We test three small sample sizes—50, 100, and 200— and three autocorrelations 

coefficients—0, 0.1, and 0.2—using 10,000 replications for each size/autocorrelation 

pair. To validate our simulations we also ran large sample simulations using 10,000 data 

points in each simulation. For each size/autocorrelation pair we computed the number of 

times each test statistic exceeded its theoretical 90, 95, and 99 percent levels. The results 

are presented in Table A1. 

In large samples, 10,000,N =  and when the null hypothesis is true, i.e. ���  all 

four tests perform well. However, when the null hypothesis is true, but sample sizes are 

small, only the Berkowitz and Kolmogorov-Smirnov tests perform well. The Chi-squared 

test does slightly worse; however, the Kupier test is quite unreliable. In large samples 

with autocorrelated data, the Berkowitz test rejects with near certainty, while the Chi-

squared, Kolmogorov-Smirnov, and Kupier tests reject at approximately the same 

frequency as with uncorrelated data. In small samples the Berkowitz test rejects slightly 

more frequently than with uncorrelated data with the rejection rate increasing in the 

degree of autocorrelation. For the same data the Kolmogorov-Smirnov tests rejects only 

trivially more frequently than for uncorrelated data. 

Thus, we conclude that the Kupier test is wholly inadequate for small-sample 

analysis. The Chi-squared test, while perhaps adequate, is dominated by the Berkowitz 

and Kolmogorov-Smirnov tests for small sample analysis. While both the Berkowitz and 

the Kolmogorov-Smirnov tests appear to do well under the null hypothesis in large and 

small samples, the Berkowitz test has an edge when the data is in fact autocorrelated. 



 30

Since some of our actual data are from overlapping observations (5- and 6-week 

horizons) we are concerned about potential autocorrelation. For this reason, and because 

the Berkowitz test is the only one of the four tests to jointly test independence and 

normality, we choose to use the Berkowitz test in this paper. 
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Table 1: Utility functions and associated formulae. 

Utility Function ( )TU S  ( )TU S′  RRA 

Power 1 1

1
TS − −

−
 TS −   

Exponential TSe−

−  TSe−  TS  

 

 

 

 

 

 

Table 2: Summary Statistics for Samples of Options Cross-Sections 

 

FTSE 100 S&P 500 
Strikes per 

Cross-section 
Strikes per 

Cross-section 
Forecast 
Horizon Number of 

Cross-Sections 
Min. Max. Mean 

Number of 
Cross-Sections 

Min. Max. Mean 
1 week 94 5 10.6 28 167 5 14.9 64 
2 weeks 104 5 14.6 43 171 5 20.0 63 
3 weeks 104 7 18.3 54 178 5 23.6 70 
4 weeks 104 7 21.2 59 182 5 25.3 77 
1 month 103 9 22.2 56 182 5 26.1 76 
5 weeks 103 10 23.9 62 182 5 27.2 83 
6 weeks 105 11 26.1 66 182 5 28.0 81 
2 months 56 7 32.8 80 175 5 27.9 94 
3 months 41 8 35.9 91 78 7 31.0 98 
4 months 35 9 24.4 87 72 5 29.5 77 
5 months 34 9 23.7 91 71 6 25.1 60 
6 months 35 8 22.3 56 65 5 20.7 56 
9 months 24 9 21.4 59 38 5 18.2 30 

1 year 3 11 11.3 12 3 5 6.7 8 
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Table 3: Berkowitz statistics p-values for risk-neutral and power- and exponential-utility-
adjusted PDFs. 

 
FTSE 100 S&P 500 Forecas

t 

Horizon 

PDF 
N LR3 LR1 N LR3 LR1 

Risk-neutral  0.3304 0.5915 0.1268 0.5435 
Power         0.9007 0.5377 0.7579 0.6187 1 week 
Exponential   

94 
0.8461 0.3988 

167 
0.8877 0.7555 

Risk-neutral  0.0070 0.5276 0.1017 0.6255 
Power         0.0156 0.4112 0.2936 0.7848 2 weeks 
Exponential   

104 
0.0184 0.3023 

171 
0.4220 0.9685 

Risk-neutral  0.0504 0.4654 0.0286 0.4459 
Power         0.4172 0.7541 0.7747 0.6650 3 weeks 
Exponential   

104 
0.5325 0.9839 

178 
0.9441 0.9497 

Risk-neutral  0.0412 0.3112 0.0283 0.3179 
Power         0.2207 0.5056 0.3629 0.4786 4 weeks 
Exponential   

104 
0.2794 0.6470 

182 
0.6385 0.8662 

Risk-neutral  0.0890 0.7977 0.0119 0.6466 
Power         0.2897 0.5728 0.1940 0.9178 1 month 
Subjective    

103 
0.3184 0.4367 

182 
0.3696 0.6565 

Risk-neutral  0.0406 0.7864 0.0098 0.6313 
Power         0.1209 0.5735 0.1810 0.5020 5 weeks 
Exponential   

103 
0.1444 0.4227 

182 
0.2287 0.3022 

Risk-neutral  0.0294 0.0993 0.0038 0.0286 
Power         0.0596 0.0619 0.0264 0.0160 6 weeks 
Exponential   

105 
0.0566 0.0466 

182 
0.0235 0.0086 

 

• LR3 is the p-value of the Berkowitz likelihood ratio test for i.i.d. normality of the 
inverse-normal transformed inverse-probability transforms of the realizations: 

2
3 ˆˆ ˆLR 2 (0,1,0) ( � � � �L L = − −    

• LR1 is the p-value of the Berkowitz likelihood ratio test for independence of the same 

transformed data: 2 2
1 ˆˆ ˆ ˆ ˆLR 2 ( � ��� � � � � �L L = − −   

• Power and Exponential PDFs are constructed by adjusting the risk-neutral PDF using 
the appropriate utility function. The utility function parameter was selected to 
maximize the Berkowitz statistic LR3.
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Table 4: Measures of relative risk aversion implied by PDFs adjusted using power and 

exponential utility functions. 
 
 

FTSE 100 S&P 500 
Exponential Utility Exponential Utility 

Forecast 
Horizon Power 

Utility Range Mean Median 
Power 

Utility Range Mean Median 
All Observations 

1 week 7.136 3.281-9.195 6.269 5.879 7.225 2.590-16.737 7.414 5.166 
2 weeks 3.876 2.135-5.983 3.978 3.555 3.751 1.023-9.265 4.056 2.859 
3 weeks 5.169 2.740-7.678 5.105 4.563 5.417 1.280-12.209 5.190 3.719 
4 weeks 3.943 2.183-6.118 4.068 3.636 3.976 0.952-9.584 4.007 2.904 
1 month 3.140 1.612-4.517 2.994 2.670 3.854 0.905-9.114 3.811 2.762 
5 weeks 2.769 1.474-4.130 2.734 2.441 3.742 0.846-8.519 3.562 2.582 
6 weeks 1.983 0.926-2.595 1.731 1.550 2.720 0.534-5.381 2.250 1.631 

High ATM Implied Volatilities Observations 
1 week 3.423 1.744-4.888 3.885 4.256 4.601 1.342-8.676 4.435 4.426 
2 weeks 1.008 1.077-3.019 2.368 2.617 0.100 0.023-0.150 0.079 0.080 
3 weeks 2.768 1.757-4.593 3.604 3.981 3.479 1.034-6.650 3.631 3.982 
4 weeks 1.138 0.597-1.674 1.324 1.462 2.354 0.502-5.032 2.765 3.075 
1 month 0.100 0.238-0.666 0.515 0.578 2.601 0.555-5.570 3.046 3.336 
5 weeks 0.890 0.675-1.765 1.334 1.523 2.603 0.510-5.117 2.769 3.065 
6 weeks 0.720 0.644-1.685 1.313 1.476 1.337 0.216-2.168 1.177 1.298 

Low ATM Implied Volatilities Observations 
1 week 12.461 7.435-19.630 11.434 11.073 12.787 4.952-29.074 11.224 9.231 
2 weeks 7.530 5.169-13.647 7.626 7.336 10.777 3.313-29.619 10.481 9.127 
3 weeks 9.339 5.891-16.183 9.000 8.662 8.781 3.037-28.575 8.809 8.624 
4 weeks 8.276 5.581-14.798 8.137 7.836 6.607 2.290-11.695 6.611 6.737 
1 month 9.731 6.571-17.424 9.797 9.569 5.879 1.944-14.751 5.666 5.721 
5 weeks 5.919 3.674-10.092 5.827 5.603 5.669 2.042-14.889 6.068 6.107 
6 weeks 4.479 2.785-7.359 4.313 4.205 6.005 2.206-16.090 6.513 6.599 

 
• High ATM implied volatility observations were those with at-the-money implied 

volatilities greater than or equal to the median value for ATM implied volatilities 

across all observations.  

• Low ATM implied volatility observations were the remaining observations. 

• Relative risk aversions were generated using formulae given in Table 1. 

• Relative risk aversions for exponential utility cases were computed using the 

minimum, maximum, mean, and median for the value of the realizations for each 

sample. 
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Table 5: Coefficient of relative risk aversion estimates from previous studies. 

 

Study CRRA Range 

Arrow (1971) 1 

Friend and Blume (1975) 2 

Hansen and Singleton (1982, 1984) 0–1 

Mehra and Prescott (1985) 55 

Epstein and Zin (1991) 0.4–1.4 

Ferson and Constantinides (1991) 0–12 

Cochrane and Hansen (1992) 40–50 

Jorion and Giovannini (1993) 5.4–11.9 

Normandin and St-Amour (1996) <3 

Ait-Sahalia and Lo (2000) 12.7 

Guo and Whitelaw (2001) 3.52 

 

• This table is an updated version of Ait-Sahalia and Lo (2000) Table 5. 

• The CRRA value of 12.7 reported in Ait-Sahalia and Lo (200) is an 

average value, however they informally reject CRRA in favor of a broadly 

U-shaped relative risk aversion function that between 0 and 60.
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Table 6: Percentiles under subjective PDFs of various risk-neutral percentile-point values 

FTSE 100 S&P 500 
Power Utility Exponential Utility Power Utility Exponential Utility Horizon Risk-Neutral 

Percentile 
Range Mean Range Mean Range Mean Range Mean 

1% 0.2–0.8 (0.6) 0.3–0.8 (0.6) 0.2–0.8 (0.6) 0.1–0.9 (0.6) 
5% 1.6–4.0 (3.2) 1.7–4.3 (3.4) 1.3–4.0 (3.2) 0.4–4.4 (3.3) 
95% 90.3–94.1 (93.1) 90.0–94.3 (93.2) 87.3–94.2 (93.2) 81.7–94.5 (92.9) 

1 Week 

99% 97.7–98.8 (98.5) 97.5–98.8 (98.5) 96.5–98.8 (98.5) 94.2–98.9 (98.4) 
1% 0.2–0.8 (0.6) 0.2–0.9 (0.7) 0.3–0.8 (0.7) 0.2–0.9 (0.7) 
5% 1.6–4.1 (3.6) 1.6–4.4 (3.6) 2.0–4.2 (3.6) 1.5–4.7 (3.6) 
95% 91.4–94.3 (93.7) 90.6–94.4 (93.5) 90.0–94.4 (93.8) 89.1–94.7 (93.5) 

2 Weeks 

99% 98.0–98.8 (98.6) 97.7–98.9 (98.6) 97.5–98.9 (98.7) 97.2–98.9 (98.6) 
1% 0.1–0.7 (0.5) 0.1–0.8 (0.5) 0.1–0.7 (0.5) 0.1–0.9 (0.6) 
5% 0.8–3.7 (2.8) 0.8–4.1 (2.9) 0.8–3.8 (2.8) 0.7–4.7 (3.1) 
95% 89.8–93.8 (92.7) 88.1–94.1 (92.5) 86.5–94.0 (92.8) 86.0–94.6 (92.5) 

3 Weeks 

99% 97.5–98.7 (98.4) 97.0–98.8 (98.3) 96.3–98.7 (98.4) 96.1–98.9 (98.3) 
1% 0.1–0.7 (0.5) 0.2–0.8 (0.5) 0.1–0.8 (0.6) 0.1–0.9 (0.6) 
5% 1.1–3.8 (3.0) 1.1–4.1 (3.0) 0.6–4.0 (3.1) 0.8–4.7 (3.2) 
95% 90.9–94.0 (93.0) 89.3–94.2 (92.7) 84.4–94.2 (93.2) 86.2–94.7 (92.9) 

4 Weeks 

99% 97.9–98.7 (98.5) 97.3–98.8 (98.4) 95.4–98.8 (98.5) 96.1–98.9 (98.4) 
1% 0.3–0.7 (0.6) 0.3–0.8 (0.6) 0.1–0.8 (0.6) 0.1–0.9 (0.6) 
5% 1.8–4.0 (3.3) 1.8–4.3 (3.4) 0.5–3.9 (3.0) 0.9–4.7 (3.2) 
95% 92.0–94.1 (93.4) 91.0–94.4 (93.3) 74.6–94.2 (93.0) 87.0–94.7 (92.8) 

1 Month 

99% 98.2–98.8 (98.6) 97.9–98.8 (98.5) 91.4–98.8 (98.5) 96.5–98.9 (98.4) 
1% 0.2–0.7 (0.6) 0.3–0.8 (0.6) 0.2–0.8 (0.6) 0.1–0.9 (0.6) 
5% 1.7–4.0 (3.3) 1.7–4.4 (3.4) 1.3–3.9 (3.0) 0.7–4.7 (3.2) 
95% 92.0–94.2 (93.5) 90.8–94.4 (93.4) 89.6–94.1 (93.0) 84.5–94.6 (92.8) 

5 Weeks 

99% 98.2–98.8 (98.6) 97.8–98.8 (98.6) 97.4–98.8 (98.5) 95.5–98.9 (98.4) 
1% 0.3–0.8 (0.7) 0.4–0.9 (0.7) 0.3–0.8 (0.6) 0.3–1.0 (0.7) 
5% 2.0–4.2 (3.6) 2.4–4.5 (3.8) 1.7–4.1 (3.3) 1.5–4.8 (3.7) 
95% 92.6–94.4 (93.9) 92.5–94.6 (93.9) 90.6–94.3 (93.5) 90.0–94.8 (93.6) 

6 Weeks 

99% 98.4–98.8 (98.7) 98.3–98.9 (98.7) 97.7–98.8 (98.6) 97.5–98.9 (98.6) 
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Table A1: Frequency with which computed statistics exceed theoretical levels using 
randomly generated uniformly distributed data of varying autocorrelations. 

 

Berkowitz  N 
LR3 LR1 

Chi-
square 

Kolmogorov- 
Smirnov 

Kupier 

����=  

50 0.901 0.905 0.839 0.890 0.487 
100 0.896 0.903 0.846 0.893 0.621 
200 0.898 0.904 0.858 0.893 0.718 

0 
(i.i.d.) 

10,000 0.898 0.899 0.889 0.901 0.881 

50 0.918 0.915 0.850 0.896 0.503 
100 0.933 0.931 0.858 0.899 0.639 
200 0.961 0.957 0.858 0.899 0.725 

0.1 

10,000 1.000 1.000 0.892 0.906 0.885 

50 0.961 0.951 0.862 0.904 0.521 
100 0.985 0.984 0.867 0.903 0.657 
200 0.999 0.999 0.871 0.908 0.736 

0.2 

10,000 1.000 1.000 0.896 0.920 0.894 

����=  

50 0.949 0.953 0.898 0.943 0.588 
100 0.950 0.950 0.917 0.945 0.722 
200 0.950 0.950 0.926 0.947 0.806 

0 
(i.i.d.) 

10,000 0.952 0.949 0.942 0.949 0.936 

50 0.958 0.960 0.908 0.947 0.599 
100 0.965 0.966 0.928 0.949 0.734 
200 0.981 0.979 0.926 0.945 0.812 

0.1 

10,000 1.000 1.000 0.946 0.953 0.941 

50 0.982 0.978 0.914 0.949 0.618 
100 0.992 0.992 0.929 0.951 0.744 
200 0.999 1.000 0.933 0.951 0.822 

0.2 

10,000 1.000 1.000 0.948 0.960 0.945 

����=   

50 0.990 0.989 0.984 0.987 0.744 
100 0.991 0.990 0.981 0.988 0.857 
200 0.991 0.991 0.984 0.989 0.919 

0 
(i.i.d.) 

10,000 0.991 0.990 0.987 0.989 0.985 

50 0.992 0.992 0.985 0.989 0.751 
100 0.993 0.994 0.984 0.987 0.864 
200 0.995 0.996 0.984 0.987 0.917 

0.1 

10,000 1.000 1.000 0.988 0.989 0.984 

50 0.997 0.996 0.985 0.988 0.764 
100 0.999 0.999 0.982 0.989 0.865 
200 1.000 1.000 0.984 0.990 0.927 

0.2 

10,000 1.000 1.000 0.990 0.992 0.987 
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Figure 1: Plot of Risk Premia Implied by Risk-Neutral and Subjective PDFs
(S&P 500 options with 1-month to expiry)
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Figure 2: Comparison of Standard Deviations and Skewness Coefficients from
                Risk-Neutral and Subjective PDFs

Data are taken from PDFs generated using S&P 500 options with 1-month to expiry.


