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Abstract

The sophistication of financial decisions varies with age: middle-aged adults borrow at lower

interest rates and pay fewer fees compared to both younger and older adults. We document this

pattern in ten financial markets. The measured effects cannot be explained by observed risk

characteristics. The sophistication of financial choices peaks around age 53 in our cross-sectional

data. Our results are consistent with the hypothesis that financial sophistication rises and then

falls with age, although the patterns that we observe represent a mix of age effects and cohort

effects. (JEL: D1, D8, G2, J14).
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1 Introduction

Performance tends to rise and then fall with age. Baseball players peak in their late 20s

(James 2003). Mathematicians, theoretical physicists, and lyric poets make their most important

contributions around age 30 (Simonton 1988). Chess players achieve their highest ranking in their

mid-30s (Charness and Bosnian 1990). Autocratic rulers are maximally effective in their early 40s

(Simonton 1988). Authors write their most influential novels around age 50 (Simonton 1988).1

The present paper studies an activity that is less august, though it is relevant to the entire adult

population: personal financial decision making. Many financial products are complex and difficult

to understand. Fees are sometimes shrouded and the true costs of financial services are not always

easily calculated. Making the best financial choices takes knowledge, intelligence, and skill.

This paper documents cross-sectional variation in the prices that people pay for financial ser-

vices. We find that younger adults and older adults borrow at higher interest rates and pay more

fees than middle-aged adults controlling for all observable characteristics, including measures of

risk.

The hump-shaped pattern of financial sophistication is present in many markets. We study

interest rates in six different markets: mortgages, home equity loans, home equity credit lines, auto

loans, personal credit cards, and small business credit cards. We study the failure to optimally

exploit balance transfer credit card offers. Finally, we study three kinds of credit card fees: late

payment fees, cash advance fees, and over limit fees. All of the evidence available to us implies a

hump-shaped pattern of financial sophistication, with a peak in the early 50s.

Age effects provide one parsimonious explanation for the hump-shaped pattern of financial

sophistication. We hypothesize that financial sophistication depends on a combination of analytic

ability and experiential knowledge. Research on cognitive aging implies that analytic ability follows

a declining (weakly) concave trajectory after age 20. We hypothesize that experiential knowledge

follows an increasing concave trajectory due to diminishing returns. Adding together these two

factors implies that financial sophistication should rise and then fall with age.

Cohort effects may also explain some of the effects that we observe. Differences in educational

levels may explain why older adults are less financially sophisticated than middle-aged adults.

Naturally, such education effects will not explain why young adults (around age 30) are less so-

phisticated than middle-aged adults. Additional work needs to be done to identify the relative

contributions of age effects and cohort effects.

The paper has the following organization. Section 2 discusses evidence on cognitive performance

from the psychological and medical literature. Section 3 describes the basic structure of the

1What about economists? Oster and Hamermesh (1998) find that economists’ output in top publications declines
sharply with age. This may simply reflect lower motivation with age. More optimistic data are reported in Weinberg
and Galenson (2005)’s study of Nobel (Memorial) Prize winners. They find that “conceptual” laureates peak at age
43, and “experimental” ones at age 61.
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empirical analysis. The next ten sections present results for interest rates on six different financial

products, three different kinds of credit card fee payments, and on the use of balance transfer credit

card offers. Section 14 uses all ten sets of results to estimate the age of peak sophistication. Section

15.1 discusses other findings on the effects of aging and the difficulty in separately identifying age

effects and cohort effects. Section 16 concludes.

2 Motivating Evidence on Aging and Cognitive Performance from

Medical and Psychological Research

Analytic cognitive capabilities can be measured in many different ways, including tasks that

evaluate working memory, reasoning, spatial visualization, and cognitive processing speed (see

Figure 1). Analytic performance shows a robust age pattern in cross-sectional datasets. Analytic

performance is strongly negatively correlated with age in adult populations (Salthouse, 2005 and

Salthouse, forthcoming). On average analytic performance falls by two to three percent of one

standard deviation2 with every incremental year of age after age 20. This decline is remarkably

steady from age 20 to age 90 (see Figure 2).

The measured age-related decline in analytic performance results from both age effects and

cohort effects, but the available panel data implies that the decline is primarily driven by age

effects (Salthouse, Schroeder and Ferrer, 2004).3 Medical pathologies represent one important

pathway for age effects. For instance, dementia is primarily attributable to Alzheimer’s Disease

(60%) and vascular disease (25%). The prevalence of dementia doubles with every five additional

years of lifecycle age (Fratiglioni, De Ronchi, Agüero-Torres, 1999). There is a growing literature

that identifies age-related changes in cognition (see Park and Schwarz 1999, Denburg, Tranel and

Bechara 2005), including the result that older adults appear to pay relatively less attention to

negative information (Carstensen 2006).

Age-driven declines in analytic performance are partially offset by age-driven increases in expe-

rience. Most day-to-day tasks rely on both analytic and experiential human capital — e.g. buying

a car. For such tasks, we hypothesize that task performance is hump-shaped with respect to age.4

Figure 3 illustrates this case.

The current paper tests the prediction that general task performance follows a hump-shaped

pattern with age. We focus on financial decision-making. Because our financial market data span

2This is a standard deviation calculated from the entire population of individuals.
3See Flynn (1984) for a discussion of cohort effects.
4This happens for instance under the following set of sufficient conditions: (i) general task performance is deter-

mined by the sum of analytic capital and experiential capital, (ii) experiential capital is accumulated in diminishing
amounts over the lifecycle, and (iii) analytic capital falls linearly (or concavely) over the lifecycle (see Figure 2).
Then general task performance will under be hump-shaped with to respect to age under simple conditions, e.g., if
experiential capital rises fast enough early in life, and slowly enough late in life.
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Memory
Study the following words and then write as 

many as you can remember

Reasoning
Select the best completion of the missing cell in 

the matrix

Spatial Visualization
Select the object on the right that corresponds to 

the pattern on the left

Perceptual Speed
Classify the pairs as same (S) or different (D) as 

quickly as possible

Goat
Door
Fish
Desk
Rope
Lake
Boot
Frog
Soup
Mule

Figure 1: Four IQ tests used to measure cognitive performance. Source: Salthouse (forthcoming).

a small number of years, we are unable to decompose the relative contributions of age and cohort

effects, and leave that analysis to future research with different data sets.

The main contribution of the paper is to document a robust empirical regularity in all of our

cross-sectional datasets: a hump-shaped relationship between age and financial sophistication. We

note that this hump-shaped pattern is consistent with the aging evidence described above, but we

do not have any direct evidence for this cognitive/aging mechanism. Other explanations — including

cohort effects and other mechanisms — are also plausible. For instance, the outcomes we document

could arise as a result of optimal endogenous accumulation of human capital. The young and

the old might calculate that it is less valuable to acquire relevant human capital, perhaps because

the stakes are smaller for them. Another channel might be social networks. It is plausible that

middle-aged adults are generally in social networks that give them more sophisticated advice about

the management of their finances, perhaps because they have greater access to financially-minded

coworkers.
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Figure 2: Age-normed results from four different cognitive tests. The Z-score represents the age-
contingent mean, measured in units of standard deviation relative to the population mean. More
precisely, the Z-score is (age—contingent mean minus population mean) / (population standard
deviation). Source: Salthouse (forthcoming).
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Figure 3: Hypothesized relation between general task performance and age. Analytical capital
declines with age and experiential capital increase with age. This generates the hypothesis that
general task performance (which uses both analytical and experiential capital) first rises and then
declines with age.
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3 Overview

In the body of the paper, we document a U-shaped age-related curve in financial “mistakes.”

Such mistakes reflect the hump-shaped sophistication pattern discussed in the previous section.

We study ten separate contexts: home equity loans and lines of credit; auto loans; credit card

interest rates; mortgages; small business credit cards; credit card late payment fees; credit card

over limit fees; credit card cash advance fees; and use of credit card balance transfer offers.

We diagnose mistakes in three forms: higher APRs (Annual Percentage Rates, i.e., interest

rates); higher fee payments; and suboptimal use of balance transfer offers.

For each application, we conduct a regression analysis that identifies age effects and controls

for observable factors that might explain patterns of fee payments or APRs by age. Thus, unless

otherwise noted, in each context we estimate a regression of the type:

(1) F = α+ β × Spline(Age) + γ × Controls+ �.

Here F is the level of the APR paid by the borrower (or the frequency of fee payment), Controls is a

vector of control variables intended to capture alternative explanations in each context (for example,

measures of credit risk), and Spline(Age) is a piecewise linear function that takes consumer age as

its argument (with knot points at ages 30, 40, 50, 60 and 70).5 We then plot the fitted values for

the spline on age. Regressions are either pooled panel or cross-sectional, depending on the context.

Each section discusses the nature of the mistake, briefly documents the datasets used, and

presents the regression results and graphs by age. We provide summary statistics for the data sets

in the Appendix.

4 Home Equity Loans

4.1 Data Summary

We use a proprietary panel dataset constructed with records from a national financial institution

that has issued home equity loans and home equity lines of credit. The lender has not specialized in

subprime loans or other market segments. Between March and December 2002, the lender offered

a menu of standardized contracts for home equity credits. Consumers chose between a credit loan

and line; between a first and second lien; and could choose to pledge different amounts of collateral,

with the amount of collateral implying a loan-to-value (LTV) ratio of less than 80 percent, between

80 and 90 percent, and between 90 an 100 percent. In effect, the lender offered twelve different

5For instance, in Table 1, the “Age 30-40” spline is: max (30,min (40, Age)), the “Age < 30 ” spline ismin (30, Age),
and the “Age > 70 ” spline is max (70, Age).
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contract choices.6 For 75,000 such contracts, we observe the contract terms, borrower demographic

information (age, years at current job, home tenure), financial information (income and debt-to-

income ratio), and risk characteristics (credit (FICO) score, and LTV). 7 We also observe borrower

estimates of their house values and the loan amount requested.

4.2 Results

Table 1 reports the results of estimating regressions of APRs (interest rates) on home equity

loans on a spline for age and control variables. As controls, we use all variables observed by the

financial institution that might affect loan pricing, including credit risk measures, house and loan

characteristics, and borrower financial and demographic characteristics. The control variables all

have the expected sign, and most are statistically significant, although some of them lack economic

significance, surprisingly so in some cases.

The measure of credit risk, the log of the FICO score (lagged three months because it is only

updated quarterly), is statistically significant but with a negligible magnitude. Discussions with

people who work in the industry reveal that financial institutions generally use the FICO score

to determine whether a loan offer is made, but conditional on the offer being made, do not use

the score to do risk-based pricing. The results here, and for the other consumer credit products

discussed below, are consistent with this hypothesis.

Loan APRs do depend strongly on the absence of a first mortgage (reducing the APR) and

whether the property is a second home or a condominium. The absence of a first mortgage reduces

the probability of default and raises the amount that might be recovered conditional on a default.

Second homes and condominiums are perceived as riskier properties. Log income and log years

on the job also have large and negative effects on APRs, as expected, since they indicate more

resources available to pay off the loan and perhaps less risk in the latter case. The largest effects

on APRs come from dummy variables for LTV ratios between 80 and 90 percent and for ratios

greater than 90 percent. This is consistent with different LTV ratios corresponding to different

contract choices.8

Even after controlling for these variables, we find that the age splines have statistically and

6We interpret a high APR as the sign of a mistake for four reasons. First, contracts do not differ in points charged
or in other charges to the borrower. Second, even conditioning on contract choice some borrowers pay higher APRs
than others. Third, we control for borrower risk characteristics. Fourth, in section 5.3, we show that the residual
variation in APRs is explained by the propensity to make an identifiable mistake in the loan acquisition process.

7We do not have internal behavior scores (a supplementary credit risk score) for these borrowers. Such scores are
performance-based, and are thus not available at loan origination.

8We estimate three variants as a specification check. First, we allow the FICO scores, income, and LTV ratios
to have quadratic and cubic terms. This allows us to make sure that the nonlinear effects with age that we see are
not a consequence of omission of potential nonlinear effects of other control variables. Second and third, we allow
the splines to have knot points at every five years, and have a dummy for each age, to ensure that the smoothing
caused by the use of ten-year splines does not artificially create a U-shape. In all three cases, our results are not
qualitatively or quantitatively changed.
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Home Equity Loan APR
Coefficient Std. Error

Intercept 8.1736 0.1069
Log(FICO Score) -0.0021 0.0001
Loan Purpose—Home Improvement 0.0164 0.0138
Loan Purpose—Rate Refinance -0.0081 0.0113
No First Mortgage -0.1916 0.0097
Log(Months at Address) 0.0021 0.0039
Second Home 0.3880 0.0259
Condominium 0.4181 0.0165
Log(Income) -0.0651 0.0077
Debt/Income 0.0034 0.0002
Log(Years on the Job) -0.0246 0.0039
Self Employed 0.0106 0.0161
Home Maker -0.0333 0.0421
Retired 0.0355 0.0225
Age < 30 -0.0551 0.0083
Age 30-40 -0.0336 0.0043
Age 40-50 -0.0127 0.0048
Age 50-60 0.0102 0.0039
Age 60-70 0.0174 0.0076
Age > 70 0.0239 0.0103
LTV 80-90 0.7693 0.0099
LTV 90+ 1.7357 0.0111
State Dummies YES
Number of Observations 16,683
Adjusted R-squared 0.7373

Table 1: The first column gives coefficient estimates for a regression of the APR of a home equity
loan on a spline with age as its argument, financial control variables (Log(FICO) credit risk score,
income, and the debt-to-income-ratio), and other controls (state dummies, a dummy for loans made
for home improvements, a dummy for loans made for refinancing, a dummy for no first mortgage
on the property, months at the address, years worked on the job, dummies for self-emplyed, retiree,
or homemaker status, and a dummy if the property is a condominium).
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Home Equity Loan APR by Borrower Age
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Figure 4: Home equity loan APR by borrower age. The figure plots the residual effect of age, after
controlling for other observable characteristics, such as log(income) and credit-worthiness.

economically significant effects. Figure 4 plots the fitted values on the spline for age for home

equity loans. The line has a pronounced U-shape.9 For this and the nine other studies, we present

in section 14.2 a formal hypothesis test for the U-shape. To anticipate those results, we reject the

null hypothesis of a flat age-based pattern in 9 out of 10 cases.

5 Home Equity Lines of Credit

5.1 Data Summary

The dataset described in the previous section is used here.

5.2 Results

Table 2 reports a regression of the APRs from home equity lines on a spline for age and the

same control variables used for the home equity loans regression. The control variables have similar

9Mortgage and other long-term interest rates were generally falling during this period. Thus, another possible
explanation for the observed pattern is that younger and older adults disproportionately borrowed at the beginning
of the sample period. However, we found no time-variation in the age distribution of borrowers over the sample
period.
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Home Equity Credit Line APR by Borrower Age
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Figure 5: Home equity credit line APR by borrower age. The figure plots the residual effect of age,
after controlling for other observable characteristics, such as log(income) and credit-worthiness.

effects on home equity line APRs as they did on home equity loan APRs. APRs.

Fitted values on the age splines, plotted in Figure 5, continue to reveal a pronounced U-shape.

5.3 One Mechanism: Borrower Misestimation of Home Values

The amount of collateral offered by the borrower, as measured by the loan-to-value (LTV)

ratio, is an important determinant of loan APRs. Higher LTVs imply higher APRs, since the

fraction of collateral is lower. At the financial institution that provided our data, borrowers first

estimate their home values, and ask for a credit loan or credit line falling into one of three categories

depending on the implied borrower-generated LTV estimate. The categories correspond to LTVs

of 80 percent or less; LTVs of between 80 and 90 percent; and LTVs of 90 percent or greater.

The financial institution then independently verifies the house value using an industry-standard

methodology. The bank then constructs a bank-generated LTV based on the bank’s independent

verification process. The bank-LTV can therefore differ from the borrower-LTV.10

Loan pricing depends on the LTV category that the borrower falls into and not on the specific

LTV value within that category; for example, a loan with an LTV of 60 has the same interest

10Bucks and Pence (2006) present evidence that borrowers do not generally have accurate estimates of their house
values.
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Home Equity Line APR
Coefficient Std. Error

Intercept 7.9287 0.0570
Log(FICO Score) -0.0011 0.0000
Loan Purpose—Home Improvement 0.0551 0.0051
Loan Purpose—Rate Refinance -0.0386 0.0047
No First Mortgage -0.1512 0.0054
Log(Months at Address) -0.0160 0.0019
Second Home 0.3336 0.0132
Condominium 0.4025 0.0079
Log(Income) -0.1474 0.0037
Debt/Income 0.0044 0.0001
Log(Years on the Job) -0.0164 0.0020
Self Employed 0.0135 0.0073
Home Maker -0.0818 0.0215
Retired 0.0139 0.0109
Age < 30 -0.0529 0.0050
Age 30-40 -0.0248 0.0023
Age 40-50 -0.0175 0.0022
Age 50-60 0.0152 0.0035
Age 60-70 0.0214 0.0064
Age > 70 0.0290 0.0154
LTV 80-90 0.6071 0.0050
LTV 90+ 1.8722 0.0079
State Dummies YES
Number of Observations 66,278
Adjusted R-squared 0.5890

Table 2: The first column gives coefficient estimates for a regression of the APR of a home equity
lines of credit on a spline with age as its argument, financial control variables (Log(FICO) credit
risk score, income, and the debt-to-income-ratio), and other controls (state dummies, a dummy
for loans made for home improvements, a dummy for loans made for refinancing, a dummy for
no first mortgage on the property, months at the address, years worked on the job, dummies for
self-employed, retiree, or homemaker status, and a dummy if the property is a condominium).
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rate as a loan with an LTV of 70, holding borrower characteristics fixed, since the LTVs of both

loans are less than 80.11 If the borrower has overestimated the value of the house, so that the

bank-LTV is higher than borrower-LTV, the financial institution will direct the buyer to a different

loan with a higher interest rate corresponding to the higher bank-LTV. In such circumstances, the

loan officer is also given some discretion to depart from the financial institution’s normal pricing

schedule to offer a higher interest rate than the officer would have offered to a borrower who had

correctly estimated her LTV. If the borrower has underestimated the value of the house, however,

the financial institution need not direct the buyer to a loan with a lower interest rate corresponding

to the bank-LTV (which is lower in this case than the borrower-LTV); the loan officer may simply

choose to offer the higher interest rate associated with the borrower-LTV, instead of lowering the

rate to reflect the lower bank-LTV.12

Since the APR paid depends on the LTV category and not the LTV, home value misestimation

leads to higher interest rate payments if the category of the bank-LTV differs from the category

of the borrower-LTV. If, in contrast, the borrower’s estimated LTV was 60, but the true LTV

was 70, the borrower would still qualify for the highest quality loan category (LTV<80) and would

not suffer an effective interest rate penalty. We define a Rate-Changing Mistake (RCM) to have

occurred when the borrower-LTV category differs from the bank-LTV category — for instance, when

the borrower estimates an LTV of 85 but the bank calculates an LTV of 75 (or vice versa).13 We

find that, on average, making a RCM increases the APR by 125 basis points for loans and 150 basis

points for lines (controlling for other variables, but not age).

To highlight the importance of RCMs, we first study the APR for consumers who do not make a

Rate-Changing Mistake. Figures 6 and 7 plot the fitted values from re-estimating the regressions in

Table 1 and 2, but now conditioning on borrowers who do not make a RCM. The plots show only

slight differences in APR paid by age. The APR difference for a home equity loan for a borrower

at age 70 over a borrower at age 50 has shrunk from 36 basis points to 8 basis points; for a home

equity line of credit, it has shrunk from 28 basis points to 4 basis points. For a borrower at age 20,

the APR difference over a borrower at age 50 has shrunk to 3 basis points for home equity loans

and 3 basis points for home equity lines of credit. We conclude that, conditional on not making a

RCM, the APR is essentially flat with age. So the U-shape of the APR is primarily driven by the

Rate-Changing Mistakes.

We next study who makes a RCM. Figures 8 and 9 plot the probability of making a rate-

changing mistake by age for home equity loans and home equity lines, respectively. The figures

11We have verified this practice in our dataset by regressing the APR on both the level of the bank-LTV and
dummy variables for whether the bank-LTV falls into one of the three categories. Only the coefficients on the
dummy variables were statistically and economically significant.
12Even if the financial institution’s estimate of the true house value is inaccurate, that misestimation will not

matter for the borrower as long as other institutions use the same methodology.
13Recall that the categories are less than 80, 80 to 90, and greater than 90.
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Home Equity Loan APRs for Borrowers Who Do Not Make a 
Rate-Changing Mistake
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Figure 6: Home equity loan APRs for borrowers who do not make a rate-changing mistake. The
figure plots the residual effect of age, after controlling for other observable characteristics, such as
log(income) and credit-worthiness.

Home Equity Credit Line APRs for Borrowers Who Do Not 
Make a Rate-Changing Mistake
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Figure 7: Home equity credit line APRs for borrowers who do not make a rate-changing mistake.
The figure plots the residual effect of age, after controlling for other observable characteristics, such
as log(income) and credit-worthiness.
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Propensity of Making a Rate-Changing Mistake on Home 
Equity Loans by Borrower Age
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Figure 8: Propensity of making a Rate Changing Mistake on home equity loans by borrower age.
We define a Rate Changing Mistake to have occurred when a borrower’s misestimation of house
value causes a change in LTV category and potentially a change in interest rate paid (see the text
for a full definition). The figure plots the residual effect of age, after controlling for other observable
characteristics, such as log(income) and credit-worthiness.

Propensity of Making a Rate-Changing Mistake on Home 
Equity Credit Lines by Borrower Age
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Figure 9: Propensity of making a Rate Changing Mistake on home equity credit lines by borrower
age. We define a Rate Changing Mistake to have occurred when a borrower’s misestimation of
house value causes a change in LTV category and potentially a change in interest rate paid (see
the text for a full definition). The figure plots the residual effect of age, after controlling for other
observable characteristics, such as log(income) and credit-worthiness.
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show U-shapes for both. Borrowers at age 70 have a 16 (19) percentage point greater chance of

making a mistake than borrowers at age 50 for home equity loans (lines); borrowers at age 20 have

a 35 (41) percentage point greater chance of making a mistake than borrowers at age 50. The

unconditional average probability of making a rate-changing mistake is 24 percent for loans and 18

percent for lines.

This age effect is consistent with the cost of a RCM calculated above and the additional prob-

ability of making a RCM by age. For example, a 70-year old has a 16 and 19 percent additional

chance of making a RCM for loans and lines, respectively. Multiplying this by the average APR

cost of a RCM for home equity lines and loans of about 150 and 125 basis points, respectively, gives

an expected incremental APR paid of about 26 and 23 basis points. These differences are very

close to the estimated differences of about 23 basis points for loans (reported in Figure 4) and of

about 28 basis points for lines (reported in Figure 5).

We conclude that in the example of home equity lines and loans, we have identified the channel

for the U-shape of the APR as a function of age (as always, controlling for other characteristics).

Younger and older consumers have a greater tendency to misestimate the value of their house,

which leads to a Rate-Changing Mistake, which leads them to borrow at an increased APR. On

the other hand, for consumers who do not make a Rate-Changing Mistake, the APR is essentially

independent of age. Hence, this channel explains quantitatively the higher APR paid by younger

and older adults.

Given the large costs associated with a Rate-Changing Mistake, one might ask why borrowers

do not make greater effort to more accurately estimate their house values. One possibility is that

potential borrowers may not be aware that credit terms will differ by LTV category; or, even if they

are aware of this fact, they may not know how much the terms differ by category. This particular

aspect of loan pricing may thus be a shrouded attribute.

6 “Eureka” Moments: Balance Transfer Credit Card Usage

6.1 Overview

Credit card holders frequently receive offers to transfer account balances on their current cards

to a new card. Borrowers pay substantially lower APRs on the balances transferred to the new

card for a six-to-nine-month period (a ‘teaser’ rate). However, new purchases on the new card

have high APRs. The catch is that payments on the new card first pay down the (low interest)

transferred balances, and only subsequently pay down the (high interest) debt accumulated from

new purchases.

The optimal strategy during the teaser-rate period, is for the borrower to make all new purchases

on her old credit card and to make all payments to her old card. The optimal strategy implies
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that the borrower should make no new purchases with the new card to which balances have been

transferred (unless she has already repaid her transferred balances on that card).

We hypothesize that some borrowers will identify this optimal strategy immediately — before

making any purchases with the new card. Some borrowers will never identify the optimal strategy.

Some borrowers may not initially identify the optimal strategy, but will discover it after one or more

pay cycles after observing their (surprisingly) high interest charges. Those borrowers will make

purchases for one or more months, then have a “eureka” moment, after which they will implement

the optimal strategy.14

6.2 Data Summary

We use a proprietary panel data set from several large financial institutions, later acquired by

a single financial institution, that made balance transfer offers nationally. The data set contains

14,798 individuals who accepted such balance transfer offers over the period January 2000 through

December 2002. The bulk of the data consists of the main billing information listed on each

account’s monthly statement, including total payment, spending, credit limit, balance, debt, pur-

chases, cash advance annual percentage rates (APRs), and fees paid. We also observe the amount

of the balance transfer, the start date of the balance transfer teaser rate offer, the initial teaser

APR on the balance transfer, and the end date of the balance transfer APR offer. At a quarterly

frequency, we observe each customer’s credit bureau rating (FICO) and a proprietary (internal)

credit ‘behavior’ score. We have credit bureau data about the number of other credit cards held

by the account holder, total credit card balances, and mortgage balances. We have data on the

age, gender, and income of the account holder, collected at the time of account opening. In this

sample, borrowers did not pay fees for the balance transfer. Further details on the data, including

summary statistics and variable definitions, are available in the Appendix.

6.3 Results

About one third of all customers who make a balance transfer do no spending on the new card,

thus implementing the optimal strategy immediately. Slightly more than one third of customers

who make a balance transfer spend every month during the promotional period, thus never expe-

riencing a “Eureka” moment. The remaining nearly one-third of customers experience “Eureka”

moments between the first and sixth months.

Figure 10 plots the frequency of Eureka moments for each age group. The plot of those who

never experience a “Eureka” moment — that is, who never implement the optimal strategy — is a

pronounced U-shape by age. The plot of those who implement the optimal strategy immediately

(the "Month One" line) is a pronounced inverted U-shape by age. Plots for Eureka moments

14We thank Robert Barro for drawing our attention to this type of potentially tricky financial product.
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Fraction of Borrowers in Each Age Group Experiencing a 
Eureka Moment, by Month
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Figure 10: Fraction of borrowers in each age group experiencing specific delays. For example,
the dashed line plots the fraction of borrowers experiencing no delay to a Eureka moment. These
sophisticated borrowers represent a large fraction of middle-aged households and a much smaller
fraction of younger and older households.

in the interior of the time space (that is Eureka moments that occur strictly after Month One)

are flat.15 The No Eureka line implies that the groups with the greatest frequency of maximal

confusion are younger adults and older adults. The group with the greatest frequency of optimality

is middle-aged adults.

Table 3 reports the results of a regression of a dummy variable for ever having a Eureka moment

on a spline for age and controls for credit risk (log(FICO)), education, gender, and log(income).16.

Credit risk is included because higher scores may be associated with greater financial sophistication.

Similarly, we would expect borrowers with higher levels of education to be more likely to experience

Eureka moments The coefficients on the age spline imply that young adults and older adults are

less likely to experience Eureka moments.

Figure 11 plots the fitted values of the age splines for the propensity of ever experiencing a

“Eureka” moment. Note that, unlike the other figures, higher values indicate a smaller propensity

to make mistakes. Consistent with the evidence so far, we observe a performance peak in middle

15Although the average percent of borrowers for each of the intermediate categories is small—on the order of five
percent—summing over all the months yields a fraction of borrowers equal to the one-third of total borrowers.
16Although we report an OLS regression for ease in interpreting the coefficients, we have also run the regression as

a logit and found similar results.
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Propensity of ever experiencing a “Eureka” Moment
Coefficient Std. Error

Intercept 0.2587 0.0809
Age < 30 0.0134 0.0026
Age 30-40 0.0019 0.0005
Age 40-50 -0.0001 0.0000
Age 50-60 -0.0029 0.0009
Age 60-70 -0.0035 0.0008
Age > 70 -0.0083 0.0072
Some High School -1.6428 0.9570
High School Graduate -0.6896 0.8528
Some College -0.4341 0.8944
Associate’s Degree -0.2439 0.4537
Bachelor’s Degree 0.3280 0.5585
Graduate Degree 0.6574 0.3541
Log(FICO) 0.0102 0.0019
Log(Limit) 0.0120 0.0022
Log(Income) -0.0044 0.0067
Number of Observations 3,622
Adjusted R-squared 0.1429

Table 3: This table reports estimated coefficients from a panel regression of the month in which the
borrower did no more spending on the balance transfer card (the “Eureka” moment) on a spline
with age as its argument and other control variables.

age.

7 Credit Cards

7.1 Data Summary

We use a proprietary panel dataset from several large financial institutions that offered credit

cards nationally, later acquired by a larger financial institution. The dataset contains a representa-

tive random sample of about 128,000 credit card accounts followed monthly over a 36 month period

(from January 2002 through December 2004). The bulk of the data consists of the main billing

information listed on each account’s monthly statement, including total payment, spending, credit

limit, balance, debt, purchases and cash advance annual percent rates (APRs), and fees paid. At

a quarterly frequency, we observe each customer’s credit bureau rating (FICO) and a proprietary

(internal) credit ‘behavior’ score. We have credit bureau data about the number of other credit

cards held by the account holder, total credit card balances, and mortgage balances. We have data

on the age, gender and income of the account holder, collected at the time of account opening.

Further details on the data, including summary statistics and variable definitions, are available in
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Propensity of Ever Experiencing a "Eureka" Moment by 
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Figure 11: Propensity of ever experiencing a “Eureka” moment by borrower age. The figure plots
the residual effect of age, after controlling for other observable characteristics, such as log(income),
education, and credit-worthiness.

the data Appendix.

7.2 Results

Table 4 reports the results of regressing credit card APRs on a spline with age as its argument

and other control variables. As controls, we again use information observed by the financial

institution that may influence pricing. As before, we find that credit scores have little impact on

credit card APRs. APRs rise with the total number of cards, though the effect is not statistically

significant. Other controls, including the total card balance, log income, and balances on other

debt, do not have economically or statistically significant effects on credit card APRs.

Figure 12 plots the fitted values on the spline for age. A U-shape is present, though it is much

weaker than the age-based patterns that we document for other financial products.

8 Auto Loans

8.1 Data Summary

We use a proprietary data set of auto loans originated at several large financial institutions

that were later acquired by another institution. The data set comprises observations on 6,996

loans originated for the purchase of new and used automobiles. We observe loan characteristics
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Credit Card APR
Coefficient Std. Error

Intercept 14.2743 3.0335
Age < 30 -0.0127 0.0065
Age 30-40 -0.0075 0.0045
Age 40-50 -0.0041 0.0045
Age 50-60 0.0023 0.0060
Age 60-70 0.0016 0.0184
Age > 70 0.0016 0.0364
Log(Income) -0.0558 0.0803
Log(FICO) -0.0183 0.0015
Home Equity Balance 0.0003 0.0022
Mortgage Balance -0.0000 0.0000
Number of Observations 92,278
Adjusted R-squared 0.0826

Table 4: This table gives coefficient estimates for a regression of the APR of a credit card on a
spline with age as its argument, financial control variables (Log(FICO) credit risk score, income,
total number of cards, total card balance, home equity debt balance and mortgage balance).

Credit Card APR by Borrower Age
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Figure 12: Credit card APR by borrower age. The figure plots the residual effect of age, after
controlling for other observable characteristics, such as log(income) and credit-worthiness.
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Auto Loan APR
Coefficient Std. Error

Intercept 11.4979 1.3184
Age < 30 -0.0231 0.0045
Age 30-40 -0.0036 0.0005
Age 40-50 -0.0054 0.0005
Age 50-60 0.0046 0.0007
Age 60-70 0.0031 0.0017
Age > 70 0.0091 0.0042
Log(Income) -0.3486 0.0176
Log(FICO) -0.0952 0.0059
Debt/Income 0.0207 0.0020
Japanese Car -0.0615 0.0270
European Car -0.0127 0.0038
Loan Age 0.0105 0.0005
Car Age 0.1234 0.0031
State Dummies YES
Quarter Dummies YES
Number of Observations 6,996
Adjusted R-squared 0.0928

Table 5: This table gives coefficient estimates from a regression of the APR of an auto loan on a
spline with age as its argument, financial control variables (Log(FICO) credit risk score, income,
and the debt-to-income-ratio), and other controls (state dummies, dummies for whether the car is
Japanese or European, loan age and car age).

including the automobile value and age, the loan amount and LTV, the monthly payment, the

contract rate, and the time of origination. We also observe borrower characteristics including

credit score, monthly disposable income, and borrower age.

8.2 Results

Table 5 reports the results of regressing the APR paid for auto loans on an age-based spline

and control variables. FICO credit risk scores again have little effect on the loan terms. Higher

incomes lower APRs and higher debt-to-income ratios raise them, though the magnitudes of the

effects are small. We also include car characteristics, such as type and age, as one of us has

found those variables to matter for APRs in other work (Agarwal, Ambrose, and Chomsisengphet,

forthcoming)—though we note that the financial institutions do not directly condition their loans

on such variables. We also include loan age and state dummies.

Figure 13 plots the fitted values on the spline for age. The graph shows a pronounced U-shape.
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Auto Loan APR by Borrower Age
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Figure 13: Auto loan APR by borrower age. The figure plots the residual effect of age, after
controlling for other observable characteristics, such as log(income) and credit-worthiness.

9 Mortgages

9.1 Data Summary

We use a proprietary data set from a large financial institution that originates first mortgages in

Argentina. Using data from one other country provides suggestive evidence about the international

applicability of our findings. The data set covers 4,867 owner-occupied, fixed rate, first mortgage

loans originated between June 1998 and March 2000 and observed through March 2004. We

observe the original loan amount, the LTV and appraised house value at origination, and the APR.

We also observe borrower financial characteristics (including income, second income, years on the

job, wealth measures such as second house ownership, car ownership and value), borrower risk

characteristics (Veraz score, a credit score similar to the U.S. FICO score, and mortgage payments

as a percentage of after-tax income), and borrower demographic characteristics (age, gender, and

marital status).

9.2 Results

Table 6 reports results of regressing the mortgage APR on an age-based spline and control

variables. As controls, we again use variables observed by the financial institution that may affect

loan pricing, including risk measures (credit score, income, mortgage payment as a fraction of
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Mortgage APR by Borrower Age
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Figure 14: APR for Argentine mortgages by borrower age. The figure plots the residual effect of
age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

income, and LTV), and various demographic and financial indicators (gender, marital status, a

dummy variable for car ownership, and several others — these coefficients are not reported to save

space). The coefficients on the controls are again of the expected sign and generally statistically

significant, though of small magnitude.

The coefficients on the age spline are positive below age 30, then negative through age 60 and

positive thereafter. Figure 14 plots the fitted values on the spline for age. The figure provides

only partial support for the U-shape hypothesis.

10 Small Business Credit Cards

10.1 Data Summary

We use a proprietary data set of small business credit card accounts originated at several large

institutions that issued such cards nationally. The institutions were later acquired by a single

institution. The panel data set covers 11,254 accounts originated between May 200 and May 2002.

Most of the business are very small, owned by a single family, and have no formal financial records.

The data set has all information collected at the time of account origination, including the business

owner’s self-reported personal income, the number of years the business has been in operation, and

the age of the business owner. We observe the quarterly credit bureau score of the business owner.

23



Mortgage APR
Coefficient Std. Error

Intercept 12.4366 4.9231
Age < 30 0.0027 0.0046
Age 30-40 -0.0023 0.0047
Age 40-50 -0.0057 0.0045
Age 50-60 0.0127 0.0093
Age 60-70 0.0155 0.0434
Age > 70 0.0234 0.0881
Log(Income) -0.2843 0.1303
Log(Credit Score) -0.1240 0.0217
Debt/Income 0.0859 0.2869
Loan Term -0.0114 0.0037
Loan Term Squared -0.0000 0.0000
Loan Amount -0.0000 0.0000
Loan to Value 0.1845 0.0187
Years on the Job -0.0108 0.0046
Second Home 0.1002 0.1014
Auto 0.1174 0.0807
Auto Value 0.0000 0.0000
Gender (1=Female) 0.0213 0.0706
Married -0.0585 0.0831
Two Incomes -0.1351 0.1799
Married with Two Incomes -0.0116 0.1957
Employment: Professional -0.0438 0.1174
Employment:Non-Professional 0.0853 0.1041
Merchant -0.1709 0.1124
Bank Relationship -0.2184 0.1041
Number of Observations 4,867
Adjusted R-squared 0.1004

Table 6: This table reports the estimated coefficients from a regression of mortgage APR on a
spline with age as its argument and financial and demographic control variables.
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Small Business Credit Card APR
Coefficient Std. Error

Intercept 16.0601 0.6075
Age < 30 -0.0295 0.0081
Age 30-40 -0.0068 0.0040
Age 40-50 -0.0047 0.0038
Age 50-60 -0.0017 0.0055
Age 60-70 0.0060 0.0209
Age > 70 0.0193 0.0330
Years in Business 1-2 -0.5620 0.1885
Years in Business 2-3 -0.7463 0.1937
Years in Business 3-4 -0.2158 0.1031
Years in Business 4-5 -0.5100 0.0937
Years in Business 5-6 -0.4983 0.0931
Log(FICO) -0.0151 0.0008
Number of Cards 0.1379 0.0153
Log(Total Card Balance) <0.0001 <0.0001
Log(Total Card Limit) <0.0001 <0.0001
Number of Observations 11,254
Adjusted R-squared 0.0933

Table 7: This table reports the estimated coefficients from a regression of the APR for small business
credit cards on a spline with the business owner’s age as its argument and other control variables
(dummies for years in business, log(FICO) credit risk score, number of cards, total card balance,
and total card limit).

10.2 Results

Table 7 reports the results of regressing the APR for small business credit cards on an age-

based spline and control variables. As with individual credit card accounts, we control for the

FICO score of the business owner, the total number of cards, card balance, and card limit. We

also include dummy variables for the number of years the small business has been operating —

we expect APRs to fall for businesses with longer operating histories. All control variables are

statistically significant and have the expected sign, though only the dummies for years in business

have substantial magnitudes.

APRs are decreasing in the age of the borrower through age 60 and increasing thereafter. Figure

15 plots the fitted values on the spline for age. The graph shows a pronounced U-shape.
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Small Business Credit Card APR by Borrower Age
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Figure 15: Small business credit card APR by borrower age. The figure plots the residual effect of
age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

11 Credit Card Fee Payments: Late Fees

11.1 Overview

Certain credit card uses involve the payment of a fee. Some kinds of fees are assessed when

terms of the credit card agreement are violated. Other fees are assessed for use of services.

In the next three sections, we focus on three important types of fees: late fees, over limit fees,

and cash advance fees.17 We describe the fee structure for our data set below.

1. Late Fee: A late fee of between $30 and $35 is assessed if the borrower makes a payment

beyond the due date on the credit card statement. If the borrower is late by more than 60

days once or by more than 30 days twice within a year, the bank may also impose ‘penalty

pricing’ by raising the APR to over 24 percent. The bank may also choose to report late

payments to credit bureaus, adversely affecting consumers’ FICO scores. If the borrower

does not make a late payment during the six months after the last late payment, the APR

17Other types of fees include annual, balance transfer, foreign transactions, and pay by phone. All of these fees
are relatively less important to both the bank and the borrower. Few issuers (the most notable exception being
American Express) continue to charge annual fees, largely as a result of increased competition for new borrowers
(Agarwal et al., 2005). The cards in our data do not have annual fees. We study balance transfer behavior using
a separate data set below. The foreign transaction fees and pay by phone fees together comprise less than three
percent of the total fees collected by banks.
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will revert to its normal (though not promotional) level.

2. Over Limit Fee: An over limit fee — also between $30 and $35 — is assessed the first time

the borrower exceeds his or her credit limit. Over limit violations generate penalty pricing

that is analogous to the penalty pricing that is imposed as a result of late fees.

3. Cash Advance Fee: A cash advance fee — which is the greater of 3 percent of the amount

advanced, or $5 — is levied for each cash advance on the credit card. Unlike the first two

fees, this fee can be assessed many times per month. It does not cause the imposition of

penalty pricing. However, the APR on cash advances is typically greater than the APR on

purchases, and is usually 16 percent or more.

Payment of these fees is not generally a mistake. For example, if a card holder is vacationing in

Tibet, it may not be optimal to arrange a credit card payment for that month. However, payments

of fees are sometimes mistakes, since the fee payment can often be avoided by small and relatively

costless changes in behavior. For instance, late fees are sometimes due to memory lapses that

could be avoided by putting a reminder in one’s calendar.

We use the same data set as that used for the credit card APR case study discussed above.

11.2 Results

Table 8 presents panel regressions for each type of fee. In each of the three regressions, we

regress a dummy variable equal to one if a fee is paid that month on an age-based spline and control

variables. Hence the coefficients give the conditional effects of the independent variables on the

propensity to pay fees.

The control variables differ from those of the preceding six examples. Now we control for factors

that might affect the propensity to pay a fee, which are not necessarily the same as factors that might

lead borrowers to default or otherwise affect their borrowing terms. “Bill Existence” is a dummy

variable equal to one if a bill was issued last month; borrowers will only be eligible to pay a late

fee if a bill was issued. “Bill Activity” is a dummy variable equal to one if purchases or payments

were made on the card; borrowers will only be eligible to pay over limit or cash advance fees if the

card was used. “Log(Purchases)” is the log of the amount purchased on the card, in dollars; we

would expect that the propensity to pay over limit and cash advance fees would be increasing with

the amount of purchases. “Log(FICO)” is the credit risk score, and “Log(Behavior)” is an internal

risk score created by the bank to predict late and delinquent payment beyond that predicted by

the FICO score. Higher scores mean less risky behavior. The scores are lagged three months

because they are only updated quarterly. We would expect the underlying behavior leading to

lower credit risk scores would lead to higher fee payment. “Debt/Limit” is the ratio of the balance
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Late Fee Over Limit Fee Cash Adv. Fee
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Intercept 0.2964 0.0446 0.1870 0.0802 0.3431 0.0631
Age < 30 -0.0021 0.0004 -0.0013 0.0006 -0.0026 0.0011
Age 30-40 -0.0061 0.0003 -0.0003 0.0001 -0.0004 0.0002
Age 40-50 -0.0001 0.0000 -0.0002 0.0000 -0.0002 0.0000
Age 50-60 -0.0002 0.0000 -0.0002 0.0000 -0.0003 0.0000
Age 60-70 0.0004 0.0002 0.0003 0.0001 0.0004 0.0000
Age > 70 0.0025 0.0013 0.0003 0.0001 0.0004 0.0000
Bill Existence 0.0153 0.0076 0.0104 0.0031 0.0055 0.0021
Bill Activity 0.0073 0.0034 0.0088 0.0030 0.0055 0.0021
Log(Purchases) 0.0181 0.0056 0.0113 0.0023 0.0179 0.0079
Log(Behavior) -0.0017 0.0000 -0.0031 0.0012 -0.0075 0.0036
Log(FICO) -0.0016 0.0007 -0.0012 0.0003 -0.0015 0.0005
Debt/Limit -0.0066 0.0033 0.0035 0.0013 0.0038 0.0012
Acct. Fixed Eff. YES YES YES
Time Fixed Eff. YES YES YES
Number of Obs. 3.9 Mill. 3.9 Mill. 3.9 Mill.
Adj. R-squared 0.0378 0.0409 0.0388

Table 8: This table reports coefficients from a regression of dummy variables for credit card fee
payments on a spline for age, financial control variables (log(FICO) credit risk score, internal bank
behavior risk score, debt over limit) and other control variables (dummies for whether a bill existed
last month, for whether the card was used last month, dollar amount of purchases, account- and
time- fixed effects).

of credit card debt to the credit limit; we would expect that having less available credit would raise

the propensity to pay over limit fees, and possibly other fees.

For late fee payments — column one of the table —all control variables have the expected signs

and are statistically significant, though they are also small in magnitude. Note that some control

variables may partly capture the effects of age-related cognitive decline on fees. For example, if

increasing age makes borrowers more likely to forget to pay fees on time, that would both increase

the propensity to pay late fees and decrease credit and behavior scores. Hence the estimated

coefficients on the age splines may understate some age-related effects.

Coefficients on the age splines are uniformly negative for splines through age 50, negative or

weakly positive for the spline between age 50 and 60, and positive with increasing slope for splines

above age 50.

The top line in Figure 16 plots fitted values for the age splines for the late fee payment regres-

sion.18

18 In Agarwal, Driscoll, Gabaix and Laibson (2006), we study this propensity of paying fees as the interaction of
learning from the payment of past fees, and forgetting.
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Frequency of Fee Payment by Borrower Age

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80

Borrower Age (Years)

Fe
e 

Fr
eq

ue
nc

y 
(p

er
 m

on
th

)
Late Fee Over Limit Fee Cash Advance Fee

Figure 16: Frequency of fee payment by borrower age. The figure plots the residual effect of age,
after controlling for other observable characteristics, such as log(income) and credit-worthiness.

12 Credit Card Fee Payments: Over Limit Fees

The second column of Table 8 presents regression results for the over limit fee, on the same

controls and age splines that were used for the late fee. Results are similar to those generated in

analysis of the late fee.

The bottom line in Figure 16 plots fitted values of the age splines for the over limit fee payment

regression.

13 Credit Card Fee Payments: Cash Advance Fees

The second column of Table 8 presents regression results for the cash advance fee, on the same

controls and age splines that were used for the late fee. Results are similar to those generated in

analysis of the late fee and the over limit fee.

The middle line in Figure 16 plots fitted values of the age splines for the cash advance fee

payment regression.
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14 The Peak of Performance

14.1 Locating the Peak of Performance

Visual inspection of the age splines for the ten case studies suggests that financial mistakes are

at a minimum in the late 40s or early 50s. To estimate the minimum more precisely, we re-estimate

each model, replacing the splines between 40 and 50 and 50 and 60 with a single spline running

from 40 to 60, and the square of that spline. This enables us to more precisely estimate the local

properties of the performance curve.

In other words, we run the following regression, where F is the outcome associated respectively

with each of the 10 studies:

F = α+ β × Spline(Age)Age/∈[40,60] + γ × Controls+ �(2)

+a× Spline (Age)Age∈[40,60] + b · Spline (Age)2Age∈[40,60] .

Here Spline(Age) is a piecewise linear function that takes consumer age as its argument (with

knot points at ages 30, 40, 60 and 70). Spline(Age)Age/∈[40,60] represents the splines outside of the

[40, 60] age range, while Spline (Age)Age∈[40,60] is the linear spline with knot points at 40 and 60.

Hence, for age between 40 and 60, the above formulation is implicitly quadratic in age:

F = Controls+ a×Age+ b×Age2.

The peak of performance is defined as the value that minimizes the above function:

(3) Peak = −a/ (2b) .

We calculate the asymptotic standard errors on Peak using the delta method, so that the standard

error of Peak is the standard error associated with the linear combination: −1/(2b)·(Coefficient on
age) + a/(2b2)·(Coefficient on age2).

In Table 9, we report the location of the ‘age of reason’: the point at which financial mistakes

are minimized. The mean age of reason appears to be at 53.3 years. The standard deviation

calculated by treating each study as a single data point is 4.3 years.

Formal hypothesis testing (H0: a + 2b × 53 = 0) shows that only the location of the Eureka

moment is statistically different from 53 years. Interestingly, the Eureka task is arguable the most

most dependent on analytic capacity and least dependent on experience (since the kinds of balance

transfer offers that we study were new financial products when our data was collected). It is not

surprising that the peak age for succeeding at that task would be earlier than the peak age for the

other tasks. However, since we do not have a rigorous measure of the “difficulty” of a task, the

interpretation of the Eureka case remains speculative.
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Age of Peak Performance Standard Error
Home Equity Loans—APR 55.9 4.2
Home Equity Lines—APR 53.3 5.2
Eureka Moment 45.8 7.9
Credit Card—APR 50.3 6.0
Auto Loans—APR 49.6 5.0
Mortgage—APR 56.0 8.0
Small Business Credit Card—APR 61.8 7.9
Credit Card Late Fee 51.9 4.9
Credit Card Over Limit Fee 54.0 5.0
Credit Card Cash Advance Fee 54.8 4.9
Average over the 10 Studies 53.3

Table 9: Age at which financial mistakes are minimized, for each case study

14.2 Formal Test of a Peak of Performance Effect

Table 9 allows us do a formal test for a peak effect. In regression (2), the null hypothesis of a

peak effect is: (i) b > 0, and (ii) Peak = −a/ (2b) ∈ [40, 60]. Together these conditions imply that
mistakes follow a U-shape, with a peak that is between 40 and 60 years of age.

For criterion (i), we note that the b coefficients are positive for all 10 studies. For 9 of the

10 studies, b is significantly different from zero (the credit card APR study is the exception).19

For criterion (ii), Table 9 shows that a peak in the 40-60 age range can not be rejected for all ten

studies.

14.3 A Possible Interpretation of the Location of the Performance Peak

What determines the age of peak performance? If peak performance reflects a trade-off be-

tween experience (that is accumulated with diminishing returns) and analytic ability (that declines

linearly after age 20), the sooner people start experimenting with the product, the earlier peak

of performance should be. For instance, take the simple functional forms presented in section 2.

Suppose Analytic Capital declines linearly with age, so that Analytic Capital = α − age/β. Sup-

pose that Experiential Capital is accumulated with diminishing returns — for instance, Experiential

Capital = ln(age− γ age0), where age0 is the actual age at which people start using the product,

and γ age0 < age0 is the effective age at which people start using the product (so γ < 1). The

effective age is less than the actual age since consumers get indirect experience (observation and

advice) as a result of their interactions with slightly older individuals who use the product. The

19To save space, we only report the t−statistics associated with the b coefficients. Following the order of Table 9,
they are: 2.20, 4.55, 7.80, 8.77, 17.05, 1.61, 4.57, 2.91, 3.08, 2.67.

31



model implies that peak performance occurs at Peak = β + γ age0. Hence, peak performance is

later when people start using the product later in life.

To evaluate this hypothesis for each financial product, we first construct the distribution of the

ages of the users of this product in our data set and calculate the age at the 10th percentile of the

distribution, which we call “age10% ”. It is a crude proxy for the age at which people start using

the product. We then regress the location of the peak of performance on age10%. We find: Peak=

33 + 0.71×age10%, (R2 = 0.62, n = 10; the s.e. on the coefficients are respectively 5.7 and 0.19).20

We reject the null hypothesis of no relationship between Peak and age10%. Products that are first

used later in life tend to have a later performance peak.

This minimal analysis only provides suggestive evidence. It would be desirable to explore this

correlation and the hypothesized mechanism with other data sets.

15 Discussion and Related Work

15.1 Alternative Explanations

Age effects offer a parsimonious explanation for our findings. However, our cross-sectional

evidence does not definitively support this interpretation. In the current section, we review some

alternative explanations.

Risk: Some of our results could be driven by unobserved variation in default risk. For instance,

the U-shape of APRs could be due to a U-shape of default by age. We test this alternative hypothesis

by regressing default rates on age splines for credit cards, auto loans, and home equity loans and

credit lines. We plot fitted values in Figure 17. None of the graphs is U-shaped. On the contrary,

home equity loans and lines show a pronounced inverted U-shape, implying that the young and

old have lower default rates. Credit cards and auto loans also show a slight inverted U-shape.

Hence, Figure 17 contradicts the hypothesis that our results are driven by an unmeasured default

risk. Also, note that age-dependent default risk could not explain the observed patterns in credit

card fee payments or suboptimal use of balance transfers.

Opportunity Cost of Time: Some age effects could be generated by age-variation in the

opportunity cost of time (Aguiar and Hurst, forthcoming). However, such opportunity-cost effects

would predict that retirees make fewer mistakes, which is not what we observe in our data. Nev-

ertheless, our findings and those of Aguiar and Hurst do not contradict one another. Shopping

for a familiar commodity, like a gallon of milk, is less analytically demanding than shopping for

a complicated and somewhat unfamiliar product that can differ across many dimensions, like a

20The effect is robust to the choice of the 10th percentile. For instance, the correlation between Peak age and
Median age (of users for the product, in our data set) is 0.83.
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Percent Defaulting by Borrower Age
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Figure 17: Default frequency by borrower age. The figure plots the residual effect of age, after
controlling for other observable characteristics, such as log(income) and credit-worthiness.

mortgage. Hence, we should expect to see older adults sustain or even improve their ability to

shop for food at the same time that they lose ground in the domain of financial decision-making.

In addition, shopping at stores and supermarkets may be a more pleasant activity than shopping

at banks and other lenders, leading consumers to do more comparison shopping for food than for

loans.

Medical Expenses: Older consumers may need to borrow to meet higher medical expenses.

This increased demand for borrowing may worsen their borrowing terms; it may also lead them to

be less attentive to terms and fee payments.

Using individual credit card transactions data, we look at the average fraction of monthly

spending on medical categories. The fraction is 1.18 percent for borrowers between ages 20 and 39;

1.19 percent for borrowers between ages 40 and 59; and 1.06 percent for borrowers between ages

60 and 79. Thus, it does not appear that older consumers are disproportionately using credit card

borrowing to finance medical expenditures.

Discrimination: The presence of age effects might also be interpreted as evidence for some

kind of age discrimination. We believe this to be unlikely, for two reasons. First the U-shaped

pattern shows up in contexts such as fee payments and failures to optimally use balance transfer

offers in which discrimination is not relevant (since all card holders face the same rules). Second,
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firms avoid age discrimination for legal reasons. Penalties for age discrimination from the Fair

Lending Act are substantial (as would be the resulting negative publicity).

Sample Selection: Measured age effects could also be attributable to differences in the

pool of borrowers by age group: a selection effect. Older consumers using home equity loans

and lines of credit may, on average, be a less financially savvy group that the pools of 40-to-50-

year-old borrowers, since more savvy borrowers may instead choose to use their savings to finance

expenditures.21

Three reasons lead us to doubt that this effect is quantitatively large. First, the pool of borrowers

in their 20s through 40s should not be on average financially less savvy than other groups, since

most people in these age groups will use at least one of the financial products we study. Yet that

group does worse in all ten domains than slightly older individuals.

Second, measurable financial characteristics do not show a pattern consistent with a worsening

pool by age. Figure 17 above showed that default rates are lower for older borrowers. Figure

18 shows that credit risk (FICO) scores on home equity loans and lines decline by about 5 points

over the age distribution – an amount too small to either change lending terms or represent a

substantial change in riskiness. Figure 19 shows that loan to value ratios decline substantially

with age, indicating that borrowers are devoting a smaller fraction of their assets to servicing this

particular kind of debt.

Third, Figure 20 below shows the results of re-estimating the regressions for home equity loans

and lines of credit, but dropping data on all borrowers over the age of 60. There is less reason

to believe that the pool of borrowers below 60 are subject to the sample selection issues discussed

above. The results still show a U-shape, albeit a somewhat less pronounced one.22

Cohort Effects: Older borrowers in the cross-section may make less sophisticated financial

choices not because they are older, but because they belong to a cohort that is less familiar with

current financial products. Although we cannot eliminate the possibility that cohort effects are

driving the patterns that we observe, several facts make us skeptical of this explanation.

First, one leading cohort story would imply that borrowers currently in their 20s, 30s and 40s

would be best positioned to understand new financial products. However, we find that younger

borrowers are prone to make less sophisticated financial choices than borrowers in middle-age.

Second, we observe the U-shaped pattern over a broad range of products; while some of these

products, such as mortgages, have seen substantial changes in their institutional characteristics

over time, others, such as auto loans, have not.

Third, if cohort effects were dominant, we might expect to see differences in APRs between male

and female borrowers on the grounds that the current cohort of older female borrowers has tended

21While they may in principle also be riskier, we have discussed that possibility above.
22This graph also reinforces the arguments above that potential higher riskiness of borrowers above age 60 is likely

not responsible for the results.
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FICO Score By Home Equity Borrower Age
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Figure 18: This figure plots the FICO (creditworthiness) scores of home equity loan and line of
credit borrowers by age. A high FICO score means a high creditworthiness.
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Figure 19: This figure plots the loan-to-value (LTV) ratio of home equity loan and line of credit
borrowers by borrower age.
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APR by Home Equity Borrower Age, Removing Borrowers 
above Age 60
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Figure 20: This figure plots the residual effect of age on home equity loan and line APRs, after
controlling for other observable characteristics, such as log(income) and credit-worthiness. Obser-
vations on borrowers over age 60 have been dropped.

to be less involved in financial decision making than their male contemporaries. Figures 21 and 22

plot the residual effects of age on home equity line and loan APR for female and male borrowers,

respectively. Both show a U-shaped pattern by age, with no substantive difference between the

two groups.

Finally, for two products—auto loans and credit cards—we have data from 1992, ten years earlier

than the data used for our other studies. Figures 23 and 24 replicate the plots of the fitted values of

the effects of age on APR for this earlier dataset. Both plots show the same pronounced U-shape,

with the minimum in the early 50’s (like our results using later cross-sections). If our findings were

driven by cohort effects, the U-shape should not reproduce itself in cross-sections from different

years.

15.2 Market Equilibrium

The markets we describe may seem paradoxical. First, they look competitive, since there are

many competing firms selling commodity credit products. However, consumers with identical risk

characteristics fare differently, implying that somehow the good being sold is being de-commodified.

Markets like this have been described in the industrial organization literature. A first generation

of models (e.g. Salop and Stiglitz 1977, Ellison 2005, and the citations therein) emphasizes different
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Home Equity Line and Loan APR by Borrower Age - Women
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Figure 21: This figure plots the residual effect of age on home equity loan and line APRs for women,
after controlling for other observable characteristics, such as log(income) and credit-worthiness.

Home Equity Line and Loan APR by Borrower Age - Men
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Figure 22: This figure plots the residual effect of age on home equity loan and line APRs for men,
after controlling for other observable characteristics, such as log(income) and credit-worthiness.
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Auto Loans APR by Borrower Age, 1992 Data
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Figure 23: Auto loan APR by borrower age. The figure plots the residual effect of age, after
controlling for other observable characteristics, such as log(income) and credit-worthiness. Data
is from 1992.

Credit Card APR by Borrower Age, 1992 Data
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Figure 24: Credit card APR by borrower age. The figure plots the residual effect of age, after
controlling for other observable characteristics, such as log(income) and credit-worthiness. Data
is from 1992.
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“search costs,” which are costs of discovering the products of different firms. A second generation

(sometimes under the name of “behavioral industrial organization”, e.g. Gabaix and Laibson

2006, Ellison 2005) emphasizes different levels of rationality and farsightedness by consumers. For

instance, a balance transfer offer provides a rent that only some consumers are smart enough to

exploit. Some consumers unravel the shrouded attribute — the “catch” that they should transfer

balances to the card but make no purchases with it — and some consumers never get it. In the

market equilibrium (with competition and free entry), the naive consumers end up paying above

marginal cost, subsidizing the sophisticated consumers, who pay below marginal cost. From an ex

ante point of view, the market is fully competitive, since expected profits of the firm are zero.23

Most of the other markets work in similar ways. In equilibrium, sophisticated consumers get

subsidies from the unsophisticated consumers. Since the markets are competitive, the financial

institutions themselves break even.

15.3 On the Economic Magnitude of the Effects

The effects we find are sometimes large and sometimes small. For instance, for a home-equity

line of $60,000 (the mean value, see Table A1), and a duration of 5 years, a difference in the

loan interest rate of 1 percentage point means a difference in total payments of $3000. For other

quantities, say credit card fees, the implied age differentials are much smaller — roughly $10-$20

per year for each kind of fee.24 We do not claim that each of the economic decisions that we

study is of significant economic relevance on its own, but rather that there is a U-shape pattern

of mistakes that may merit economists’ attention become it points to a phenomenon that applies

to all decision domains (large and small). We have studied credit decisions in the current paper.

An important question is whether the U-shape of mistakes translates into other decision domains,

including savings choices, asset allocation choices and health care choices.

15.4 Related Work

Other authors have studied the effects of aging on the use of financial instruments. Korniotis

and Kumar (2007) examine the performance of investors from a major U.S. discount brokerage

house. They use census data to impute education levels and data from the Survey of Health, Aging

23One may ask how such a potentially inefficient equilibrium can persist in a competitive environment. An answer
is proposed in Gabaix and Laibson (2006): the cross-subsidy from naives to sophisticates makes the market more
“sticky.” The sophisticates may not have an incentive to switch from the firms with shrouded attributes (at which
they are getting cross-subsidies). Such stickiness explains why these equilibria are robust even when the equilibria
are inefficient.
24A difference in fee probabilty of 3% per month, and and a fee amount $35, leads to a total extra yearly expense

of $12. Note, however, that some of these fees, if paid too often, can trigger “penalty pricing,” in which interest
rates ten percentage points or higher are levied on card balances, thus greatly increasing the cost of fee payment.
See Agarwal et. al. (2006) for further discussion.
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and Retirement in Europe to estimate a model of cognitive abilities. They find that investors with

cognitive declines earn annual returns between 3-5 percentage points lower on a risk adjusted basis.

In their work on financial literacy, Lusardi and Mitchell find evidence consistent with an inverse-

U shape of financial proficiency. Lusardi and Mitchell (2006) find a decline in financial knowledge

after age 50. Lusardi and Mitchell (2007) also find an inverse U-shape in the mastery of basic

financial concepts, such as the ability to calculate percentages or simple divisions.

After some of our presentations other researchers have offered to look for age patterns of financial

mistakes in their own data sets. Lucia Dunn has reported to us that the Ohio State Survey on credit

cards shows a U-shaped pattern of credit card APR terms by age (Dunn, personal communication).

Fiona Scott Morton has reported that in her data set of indirect auto loans (made by banks and

finance companies using the dealer as an intermediary; see Scott Morton et al., 2003), loan markups

show a U-shaped pattern (Scott Morton, personal communication). Luigi Guiso finds that, when

picking stocks, consumers achieve their best Sharpe ratios at about age 43, and this effect appears to

be entirely driven by the participation margin (Guiso, personal communication). Ernesto Villanueva

finds that mortgage APRs in Spanish survey data (comparable to the U.S. Survey of Consumer

Finances) are U-shaped by age (Villanueva, personal communication).

A relationship between earning and performance has been noted in many non-financial contexts.

Survey data suggests that labor earnings peak around age 50 (Gourinchas and Parker, 2002) or

after about 30 years of experience (Murphy and Welch, 1990). Shue and Luttmer (2006) find that

older and younger voters disproportionately make more errors in voting.

Aguiar and Hurst (2007, forthcoming) demonstrate that older adults find lower prices for every-

day items by spending more time shopping around. In contrast, we find that older adults seem to

make more mistakes in personal financial decision-making. We reconcile these findings by noting

that financial products require more analytic ability than everyday items (like food or clothing).

Moreover, financial products may generate a less pleasurable shopping experience.

Turning to purely noneconomic domains, there is a literature on estimating performance peaks

in professional athletics and other competitive areas. Fair (1994, 2007) estimates the effects of age

declines in baseball and chess, among other sports. Simonton (1988) is a useful survey.

A new literature in psychology and economics reports systematic differences in “rationality”

between groups of people. Benjamin, Brown and Shapiro (2006) find that subjects with higher test

scores, or less cognitive load, display fewer behavioral biases. Frederick (2005) identifies a measure

of “analytical IQ”: people with higher scores on cognitive ability tasks tend to exhibit fewer/weaker

psychological biases. While this literature is motivated by experimental data (where it is easier to

control for unobservables), we rely on field data in our paper. Similarly, Massoud, Saunders and

Schnolnick (2006) find that more educated people make fewer mistakes on their credit cards, and

Stango and Zinman (2007) find evidence that more naive consumers make mistakes across a range

of financial decisions.
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Several researchers have looked at the response of consumers to low, introductory credit card

rates (‘teaser’ rates) and at the persistence of otherwise high interest rates. Shui and Ausubel

(2004) show that consumers prefer credit card contracts with low initial rates for a short period

of time to ones with somewhat higher rates for a longer period of time, even when the latter is

ex post more beneficial. Consumers also appear ‘reluctant’ to switch contracts. DellaVigna and

Malmendier (2004) theorize that financial institutions set the terms of credit card contracts to

reflect consumers’ poor forecasting ability over their future consumption.

Many of those effects are discussed in “behavioral industrial organization,” a literature that

documents and studies markets with behavioral consumers and rational firms: DellaVigna and

Malmendier (2004), Gabaix and Laibson (2006), Heidhues and Koszegi (2006), Malmendier and

Devin Shanthikumar (2005), Mullainathan and Shleifer (2005), Oster and Scott Morton (2005),

Spiegler (2006). In some of those papers, it is important to have both naive and sophisticated

consumers (Campbell 2006). The present paper suggests than those naive consumers will dispro-

portionately be younger or older adults.

Bertrand et al. (2006) find that randomized changes in the “psychological features” of consumer

credit offers affect adoption rates as much as variation in the interest rate terms. Ausubel (1991)

hypothesizes that consumers may be over-optimistic, repeatedly underestimating the probability

that they will borrow, thus possibly explaining the stickiness of credit card interest rates. Calem

and Mester (1995) use the 1989 Survey of Consumer Finances (SCF) to argue that information

barriers create high switching costs for high-balance credit card customers, leading to persistence

of credit card interest rates, and Calem, Gordy, and Mester (2005) use the 1998 and 2001 SCFs to

argue that such costs continue to be important. Kerr and Dunn (2002) use data from the 1998 SCF

to argue that having large credit card balances raises consumers’ propensity to search for lower

credit card interest rates. Kerr, Cosslett and Dunn (2004) use SCF data to argue that banks offer

better lending terms to consumers who are also bank depositors and about whom the bank would

thus have more information.

A literature analyzes heuristics and biases in financial decision making. For instance, Benartzi

and Thaler (2002) show that investors prefer the portfolios chosen by other people rather than

the ones chosen by themselves, a pattern which suggests that task difficulty prevents people from

reaching an optimal decision. Benartzi and Thaler (forthcoming) also document the use of a number

of sometimes inappropriate heuristics. Our findings imply that the U-shape pattern of financial

mistakes should also be found in the examples that Bernatzi and Thaler document.

A number of researchers have written about consumer credit card use. Our work most closely

overlaps with that of Agarwal et al. (2005), who use another large random sample of credit card

accounts to show that, on average, borrowers choose credit card contracts that minimize their total

interest costs net of fees paid. About 40 percent of borrowers initially choose suboptimal contracts.

While some borrowers incur hundreds of dollars of such costs, most borrowers subsequently switch
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to cost-minimizing contracts. The results of our paper complement those of Agarwal et al. (2007),

since we find evidence of learning to avoid fees and interest costs given a particular card contract.

Other authors have used credit card data to evaluate more general hypotheses about consumption.

Agarwal, Liu, and Souleles (2004) use credit card data to examine the response of consumers to

the 2001 tax rebates. Gross and Souleles (2002a) use credit card data to argue that default

rates rose in the mid-1990s due to declining default costs, rather than a deterioration in the credit-

worthiness of borrowers. Gross and Souleles (2002b) find that increases in credit limits and declines

in interest rates lead to large increases in consumer debt. Ravina (2005) estimates consumption

Euler equations for credit card holders and finds evidence for habit persistence.

Finally, from a methodological perspective our work is related to recent research that studies

age variation along other dimensions. For example, Blanchflower and Oswald (2007) report that

well-being is U-shaped over the lifecycle controlling for observable demographic characteristics.

The trough occurs in the 40s.

15.5 Some Open Questions for Future Research

Our findings suggest several directions for future research.

First, it would be useful to study age effects in other decision domains. We have described a

simple procedure for this: (1) identify the general shape of age effects, as in (1), using controls and

age splines; (2) estimate a linear-quadratic form to localize the peak of performance, as in (2)-(3).

Second, it may be possible to develop models that predict the location of peak performance.

There is a growing consensus that analytically intensive problems — like mathematics — are asso-

ciated with younger peak ages (see Simonton, 1988, Galenson, 2005, and Weinberg and Galenson,

2005). Analogously, problems that require more experiential training have older peak ages. For

instance, Jones (2006) finds that the peak age for scientists has drifted higher in the twentieth

century. More knowledge now needs to be accumulated to reach the cutting edge of the field.

In our last case study, we found that what is arguably the most analytically demanding task —

deducing the best way to exploit “interest-free” balance transfers — is associated with the youngest

age of peak performance. It would be useful to assess the generality of this association between

analytically demanding problems and young peak ages.

Third, it would be desirable to identify cost-effective regulations that would help improve finan-

cial decisions. Forced disclosure is not itself sufficient, since disclosing costs in the fine print will

have little impact on distracted and boundedly rational consumers.25 Good disclosure rules will

need to be effective even for consumers who do not take the time to read the fine print or who have

limited financial education. We conjecture that effective regulations would produce comparable

25See Gabaix, Laibson, Moloche, and Weinberg (2006) and Kamenica (2007) for recent models of economic behavior
under information overload.
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and transparent products. On the other hand, such homogenization has the dynamic cost that it

may create a hurdle to innovation.

Fourth, studying cognitive lifecycle patterns should encourage economists to pay more attention

to the market for advice. Advice markets may not function efficiently because of information

asymmetries between the recipients and the providers of advice (Dulleck and Kerschbamer, 2006).

It is particularly important to study the advice market for older adults who are now required to

make their own financial decisions.

16 Conclusion

We find that middle-age adults borrow at lower interest rates and pay lower fees in ten financial

markets. Our analysis suggests that this fact is not explained by age-dependent risk factors. For

example, FICO scores show no pattern of age variation. Moreover, age variation in default actually

predicts the opposite pattern from the one that we measure.

Age effects parsimoniously explain the patterns that we observe, but, other effects may also

play a role — for instance, cohort effects or endogenous human capital accumulation. Whatever

the mechanism, there appears to be a robust relationship between age and financial sophistication

in cross-sectional data. Future research should untangle the different forces that give rise to these

effects. If age effects are important, economists should analyze the efficiency of modern financial

institutions — like defined contribution pension plans — that require retirees to make most of their

own saving, dissaving, and asset allocation decisions.
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Appendix: Data Summary Statistics

Table A1: Home Equity Loans and Credit Lines

Loans Credit Lines

Description (Units) Mean Std. Dev. Mean Std. Dev.

APR(%) 7.96 1.16 4.60 0.88

Borrower Age (Years) 43 14 46 12

Income ($, Annual) 78,791 99,761 90,293 215,057

Debt/Income (%) 40 18 41 19

FICO (Credit Bureau Risk) Score 713 55 733 49

Customer LTV (%) 66 26 62 24

Appraisal LTV (%) 69 29 64 23

Borrower Home Value Estimate ($) 196,467 144,085 346,065 250,355

Bank Home Value Estimate ($) 186,509 123,031 335,797 214,766

Loan Requested by Borrower ($) 43,981 35,161 61,347 50,025

Loan Approved by Bank ($) 42,871 33,188 60,725 51,230

First Mortgage Balance ($) 79,496 83,560 154,444 112,991

Months at Address 92 122 99 129

No First Mortgage (%) 29 45 15 42

Second Home (%) 3 14 3 12

Condo (%) 8 18 6 17

Refinancing (%) 66 47 39 49

Home Improvement (%) 18 39 25 44

Consumption (%) 16 39 35 35

Self Employed (%) 7.9 27 7.8 27

Retired (%) 9.5 29 7.7 27

Homemaker (%) 1.4 12 1.3 11

Years on the Last Job 6.3 8.1 7.6 9.1
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Table A2: Credit Cards

Account Characteristics Frequency Mean Std. Dev.

Purchase APR Monthly 14.40 2.44

Interest Rate on Cash Advances (%) Monthly 16.16 2.22

Credit Limit ($) Monthly 8,205 3,385

Current Cash Advance ($) Monthly 148 648

Payment ($) Monthly 317 952

New Purchases ($) Monthly 303 531

Debt on Last Statement ($) Monthly 1,735 1,978

Minimum Payment Due ($) Monthly 35 52

Debt/Limit (%) Monthly 29 36

Fee Payment

Total Fees ($) Monthly 10.10 14.82

Cash Advance Fee ($) Monthly 5.09 11.29

Late Payment Fee ($) Monthly 4.07 3.22

Over Limit Fee ($) Monthly 1.23 1.57

Extra Interest Due to Over Limit or Late Fee ($) Monthly 15.58 23.66

Extra Interest Due to Cash Advances ($) Monthly 3.25 3.92

Cash Advance Fee Payments/Month Monthly 0.38 0.28

Late Fee Payments/Month Monthly 0.14 0.21

Over Limit Fee Payments/Month Monthly 0.08 0.10

Borrower Characteristics

FICO (Credit Bureau Risk) Score Quarterly 731 76

Behavior Score Quarterly 727 81

Number of Credit Cards At Origination 4.84 3.56

Number of Active Cards At Origination 2.69 2.34

Total Credit Card Balance ($) At Origination 15,110 13,043

Mortgage Balance ($) At Origination 47,968 84,617

Age (Years) At Origination 42.40 15.04

Income ($) At Origination 57,121 114,375

Notes: The “Credit Bureau Risk Score” is provided by Fair, Isaac and Company. The greater the score,

the less risky the consumer is. The “Behavior Score” is a proprietary score based on the consumer’s past

payment history and debt burden, among other variables, created by the bank to capture consumer payment

behavior not accounted for by the FICO score.
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Table A3: Auto Loan APRs

Description (Units) Mean Std. Dev.

APR(%) 8.99 0.90

Borrower Age (Years) 40 21

Income ($, Monthly) 3416 772

LTV(%) 44 10

FICO (Credit Bureau Risk) Score 723 64

Monthly Loan Payment ($) 229 95

Blue Book Car Value ($) 11,875 4,625

Loan Amount ($) 4172 1427

Car Age (Years) 2 1

Loan Age (Months) 12 8

Table A4: Mortgage Loans

Loans

Description (Units) Mean Std. Dev.

APR(%) 12.64 2.17

Borrower Age (Years) 40.54 9.98

Income ($) 2,624 2,102

Monthly Mortgage Payment/Income (%) 22.84 12.12

Veraz (Credit Bureau Risk) Score 686 253

LTV (%) 61 17

Loan Amount ($) 44,711 27,048

Years at Current Job 9.43 8.01

Second House (%) 15.54 5.18

Car Ownership (%) 73.56 44.11

Car Value ($) 5,664 13,959

Gender (Female=1) 30.96 46.24

Second Income (%) 20.44 40.33

Married (%) 71.32 45.23

Married with Two Incomes (%) 16.75 37.34

Self Employed (%) 13.87 34.57

Professional Employment (%) 15.78 36.46

Nonprofessional Employment (%) 52.78 49.93

Relationship with Bank (%) 10.40 30.52
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Table A5: Small Business Credit Cards APRs

Description (Units) Mean Std. Dev.

APR(%) 13.03 5.36

Borrower Age (Years) 47.24 13.35

Line Amount ($) 9,623.95 6,057.66

Total Unsecured Debt 12,627.45 17,760.24

FICO (Credit Bureau Risk) Score 715.86 55.03

Mortgage Debt ($) 102,684.70 160,799.57

Table A6: Age Distribution by Product

Product Age Percentile

10% 25% 50% 75% 90%

Home Equity Loans 34 40 48 59 71

Home Equity Lines 32 40 47 58 70

“Eureka” 24 34 44 53 63

Credit Card 25 34 44 57 68

Auto Loans 27 35 45 57 67

Mortgage 34 42 49 60 69

Small Business Credit Card 37 43 53 62 72

Credit Card Late Fee 25 35 45 58 67

Credit Card Over Limit Fee 26 34 43 56 65

Credit Card Cash Advance Fee 25 36 46 58 68
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