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Abstract 

 
 A linearized version of Pinkse and Slade’s (1998) spatial probit estimator is used 
to account for the tendency of auto supplier plants to cluster together.  By reducing 
estimation to two steps – standard probit or logit followed by two-stage least squares – 
linearization produces a model that can be estimated using large datasets.  Our results 
imply significant clustering among older plants.  Supplier plants are more likely to be in 
counties that are near assembly plants, that include interstate highways, and that are near 
other counties with supplier plants.  New plants show no additional tendency toward 
clustering beyond that shown by older plants. 
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1. Introduction 

 North American auto supplier plants have been remarkably concentrated for a 

long time (Klier 2004).  However, since the mid-1970s the spatial configuration of the 

industry has been changing (Rubenstein 1992).  Whereas the industry was concentrated 

in a corridor running from Chicago to New York, it now has a north-south orientation.  

The industry continues to be very spatially concentrated (Ellison and Glaeser 1997).  

Using county level data, Woodward (1992) and Smith and Florida (1994) find evidence 

that vertical linkages as well as the presence of highway infrastructure influence plant 

location decision of Japanese plants in the United States. 

In this paper, we model the location decisions of auto supplier plants using probit 

models that take explicit account of the tendency for auto plants to cluster together.  

Despite the rapid change in the geographic configuration of the industry, we show that 

three salient features remain the same.  First, Detroit remains the hub of the auto corridor, 

which now extends southward to Kentucky and Tennessee with fingers reaching into 

Mexico and Canada.  Second, both supplier plants and assembly plants tend to cluster 

together.  Third, plant locations seldom stray far from the network of highways running 

toward Detroit. 

Spatial data increase the complexity of models of plant location decisions.  We 

use a logit model and county-level data:  what is the probability that a plant is located in a 

county given the locations of other plants and the characteristics of the county?  Spatial 

data typically exhibit both autocorrelation and heteroskedasticity.  Autocorrelation makes 

standard logit (or probit) estimates inefficient, and heteroskedasticity leads to inconsistent 

estimates.  Several estimators have been proposed that are capable of producing 
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consistent estimates when data are spatially autocorrelated and heteroskedastic – Case 

(1992), LeSage (2000), McMillen (1992), and Pinkse and Slade (1998).  However, these 

estimators become infeasible for large samples because they require the inversion of nxn 

matrices, where n is the sample size.  One objective of our paper is to propose a 

computationally feasible estimator for spatial discrete-choice models. 

Our estimator is a linearized version of the generalized methods of moments 

(GMM) estimator proposed by Pinkse and Slade (1998).  Linearization allows the model 

to be estimated in two steps.  The first step is a standard probit or logit model, in which 

spatial autocorrelation and heteroskedasticity are ignored.  The second step involves two-

stage least squares estimates of the linearized model.  The benefit of linearization is that 

no matrix needs to be inverted and estimation requires only standard probit/logit models 

and linear two-stage least squares.  Thus, the model can be estimated even with very 

large sample sizes. 

Our estimator extends the literature on spatial modeling by allowing a model with 

a spatially weighted dependent variable to be estimated in a discrete choice framework.  

For the case of continuous dependent variables, examples of this sort of model include 

Bordignon, Cerniglia, and Revelli (2003); Brett and Pinkse (2000); Brueckner (1998); 

Brueckner and Saavedra (2001); Case, Rosen, and Hines (1993); Fredriksson and 

Millimet (2002); Revelli (2003); and Saavedra (2000).  The general model is written Y = 

ρWY + Xβ + u, where Y is the dependent variable, W is the “contiguity matrix”, X is a 

matrix of explanatory variables, u is an error term, and ρ and β are parameters whose 

values are to be estimated. Spatial effects are present if ρ is not equal to zero:  values of Y 

are influenced by neighboring values of Y, where “neighbor” is defined implicitly by the 
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pre-specified entries of the contiguity matrix.  For example, Brueckner (1998) finds that 

California municipalities are more apt to have restrictive growth control measures if 

nearby municipalities are also highly restrictive.  Current estimators for this class of 

spatial models are only suitable for models with continuous dependent variables.  We 

extend these estimators to the case where the dependent variable of interest is discrete.  

Continuing with the example of growth controls, we re-interpret Y as the underlying 

latent variable showing the strength of the tendency to adopt growth controls, which then 

is translated into a discrete variable showing whether the municipality has measures to 

control growth.   

We use the spatial probit model to analyze location decisions of both old (pre-

1991) and new (1991-2003) auto supplier plants in the U.S.  To capture the notion of 

clustering, we assume that the propensity to locate a plant in a given county depends on 

the propensity to locate plants in contiguous counties.  Additional explanatory variables 

include characteristics of the county such as the presence of an interstate highway, 

distance from Detroit, population density, and crime rates.  We also include as 

explanatory variables a count of the number of auto assembly plants located within 450 

miles of the center of the county and the distance from there to the nearest assembly 

plant.  Our results imply a strong tendency toward clustering among older plants.  

Supplier plants that were opened prior to1991 are far more likely to locate near other 

supplier plants and near interstate highways.  They also are more likely to locate near 

counties with assembly plants.  New plants also tend to cluster together.  However, the 

focus of the industry has shifted southward.  Once we control for proximity to existing 

plants, new plants show no additional tendency toward concentration.  The auto region 
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has shifted from an east-west to a north-south extension. It remains highly concentrated, 

and Detroit continues to be its hub. Supplier plants cluster near assembly plants and 

amongst each other.   

 

2. Spatial Discrete Choice Models 

 The spatial model is written in matrix notation as 

εβρ ++= XWYY      (1) 

The nxn matrix W is the “weight matrix.”  In the typical specification,  and 

 for

0=iiW

1
1

=∑ =

n

ji ijW ij ≠ .  This specification implies that each value of the dependent 

variable is a function of a group of explanatory variables, X, and a weighted average the 

values of the dependent variable for nearby observations.  Counties are the unit of 

observation in our application.  We follow common practice and impose that Wij = 1/ni 

for all counties that are contiguous to county i, where ni is the number of observations 

that are contiguous to county i.   Under this specification, W is sometimes referred to as 

the “contiguity matrix.”  The coefficient ρ captures the spatial interaction effect.  If ρ > 0, 

then high values of Y for nearby observations increase the value for observation i.  In our 

formulation, ρ > 0 implies clustering:  the probability of having an auto supplier  plant in 

a county increases if there are plants in neighboring counties.  In contrast, ρ < 0 implies 

dispersion as the probability decreases when there are plants in neighboring counties. 

 When the dependent variable is continuous, equation (1) is usually estimated by 

maximum likelihood methods.   Under the assumption of normally and identically 

distributed errors, the log-likelihood function is 
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    ( ) ( )( ) ( )( ) WIXWYIXWYInn ρβρβρ
σ

σπ −+−−′−−−−− ln
2

1ln
2

2ln
2 2

2  (2) 

where WI ρ−  is the Jacobian of the transformation from ε to Y.  Common estimation 

procedures are reviewed in Anselin (1988).  Alternatively, Kelijian and Prucha (1998) 

propose a GMM estimator for the model in which the spatial autoregressive term, WY, is 

replaced by an instrumental variable, which is the predicted value from a regression of 

WY on a set of instruments, Z.  The GMM estimator has two advantages over maximum-

likelihood estimation:  (1) it does not rely on a potentially inaccurate assumption of 

normally distributed errors, and (2) by relying on two-stage least squares, estimation does 

not require calculating the determinants of nxn matrices.1  The primary advantage of 

maximum-likelihood estimation is the potential for efficiency.  However, the true 

structure of the model is rarely known.  The specification of W is arbitrary, and 

researchers often try several different specifications to figure out which one best captures 

the spatial patterns evident in the data.  GMM estimation is more robust than maximum 

likelihood to departures from the restrictive assumptions required by the maximum 

likelihood estimator. 

 When the dependent variable is discrete rather than continuous, maximum 

likelihood estimation is problematic because the likelihood function typically involves n 

integrals.   Several authors have proposed estimation procedures that maintain the 

structure implied by maximum likelihood estimation for the spatial probit model.  Case 

(1992) assumes a special, block diagonal structure for W, which simplifies the estimation 

                                                 
1 Maximum-likelihood estimation can be simplified somewhat by calculating the eigenvalues of W, ωi, 

since (∑ =
−=−

n

i iWI
1

1lnln ρωρ ) .   After calculating ωi, no further manipulations of large matrices are 

necessary.  However, calculating the eigenvalues of an nxn matrix is itself problematic when the sample 
size is large. 
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procedure substantially.  For example, we might assume that all observations within a 

state have a common spatial component:  Wij = 1/ns (i≠j) for all observations in state s, 

where ns is the number of observations in state s.  However, this restrictive specification 

does not allow the weights to decline with distance within a state.  McMillen (1992) and 

LeSage (2000) base their estimators directly on equations (1) and (2).  McMillen uses an 

EM algorithm to estimate the model under the assumption of normally distributed errors, 

whereas LeSage uses a Bayesian approached based on Gibbs sampling to simulate the 

probabilities.  Both approaches are limited to relatively small samples because they 

require the nxn matrix (  to be inverted in each iteration. ) 1−− WI ρ

 A variant of the Pinkse and Slade (1998) GMM estimator for a spatial probit 

model does not rely on the normality assumption.  Their estimator is designed for a 

model with spatially dependent errors: 

( )εθεθβ 1, −−=+=+= WIWeeeXy     (3) 

where ε is a vector of independently and identically distributed errors.  Equation (3) 

forms the basis for a probit model; the discrete variable, d, equals one if y > 0 and d = 0 

otherwise. The covariance matrix is .  Thus, the model 

structure implies both heteroskedasticity and autocorrelation for e unless θ = 0.  Denoting 

the ith diagonal element of this covariance matrix by , the probability that d

( ) ( ) ( )
1−

⎥⎦
⎤

⎢⎣
⎡ −′−= WIWIeV θθ

2
iσ i =1 is 

given by ( )β*
iXΦ , where .  The generalized probit residuals are  iii XX σ/* =

( )
( ) ( )( )ββ

β
**

*

1 ii

ii
i

XX

Xd
u

Φ−Φ

Φ−
=     (4) 
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The GMM estimator is the value of θ that minimizes uZZMu ′′ , where Z is a matrix of 

instruments and M is a positive-definite matrix.  An interesting application of the Pinkse 

and Slade estimator is found in Flores-Lagunes and Schnier (2005). 

If M = ( , the GMM estimator reduces to nonlinear two stage least squares.  

The iterative procedure has the following steps:   

) 1−′ZZ

1. Assume initial values for ( )′=Γ θβ , , Γ0, and calculate u0 and the 
gradient terms, Γ∂∂= /0uG . 

2. Regress G on Z.  The predicted values are . Ĝ

3. Construct the new estimates as ( ) 0

1

01
ˆˆˆ uGGG ′′−Γ=Γ

−
. 

4. Iterate to convergence. 

The covariance matrix is given by 

( ) [ ]( ) 1

1
21 ˆˆˆˆˆˆˆ)ˆvar(

−

=

−
′′′=Γ ∑ GGGGuGG i

n

i i     (5) 

Note that a logit model involves no changes to this algorithm.  The only difference is that 

we define the probability as ( ) ( )( )ββ ** exp1/exp iii XXP +=  and 
( )ii

ii
i PP

Pd
u

−

−
=

1
 . 

 This model extends readily to the spatial model.  To do so, we must reinterpret 

equation (1) as the underlying latent variable explaining the propensity to have d =1.   As 

the propensity to have d =1 increases (or decreases) for nearby observations, the 

propensity increases (or decreases) for observation i also.  This assumption is different 

from a model in which the discrete variable d depends directly on neighboring values of d 

– εβρ ++= XWdd  – or in which the value of the underlying variable depends on 

neighboring values of d – εβρ ++= XWdy .  These models are not algebraically 

consistent.   



 9

 Following this interpretation of equation (1) as the underlying latent variable for 

the discrete choice model, we have   

( ) ( ) ερβρ 11 −− −+−= WIXWIY     (6) 

As in the Pinkse and Slade (1998) model, the covariance matrix is given by 

.  The generalized probit error term is again given by equation (4), 

but we now define the transformed value of X as , where  

and σ

( ) ( )
1−

⎥⎦
⎤

⎢⎣
⎡ −′− WIWI ρρ

iii HX σ/* = ( ) XWIH 1−−= ρ

i is the square root of the ith diagonal entry of the covariance matrix.  The 

estimation algorithm is unchanged.  All that changes is the gradient terms.  As before, we 

have 

*
* i
i

ii X
X

Pu
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
∂
∂

ββ
     (7) 

The gradient term for the spatial term is now: 

⎥
⎦

⎤
⎢
⎣

⎡
Λ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
∂
∂

ii
i

i
i

i

ii X
X

X
Pu

2

*
*

* σ
β

β
βρ

    (8) 

where Λ is the nxn matrix ( ) ( ) ( ) 111 −−− −−− WIWIWWI ρρρ .  Under the probit model, 

( )β*
ii XP Φ= , whereas ( ) ( )( )ββ ** exp1/exp iii XXP +=  for the logit model.2  Note that Λii 

= 0 i for the Pinkse and Slade (1998) version of the model, in which spatial dependence 

is only present in the error terms.  However, Λ

∀

ii ≠ 0 when the autoregressive term WY is 

included as an explanatory variable.  We exploit this fact in the next section to derive a 

linearized version of the spatial autoregressive probit model. 

                                                 
2 For completeness, note that ( )ββ **/ iiiii XuuXP +=∂∂  for the probit model, and  
for the logit model. 

( )iiii PPXP −=∂∂ 1/ *β
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3. The Linearized Spatial Probit Model 

 Although GMM estimation is robust to departures from the normality assumption 

that is explicit in maximum likelihood estimation, the spatial probit and logit models 

remain computationally burdensome.  Each step of the iterative estimation procedures 

requires the inversion of the nxn matrix (I-ρW).  Yet the spatial model given by equation 

(1) is generally viewed as an approximation.  We seldom know the true structure of the 

spatial dependence; what is known is that the errors tend to be correlated over space.  The 

models implied by equations (1) and (3) were developed for the relatively small data sets 

that were common in the past.  Large data sets require less restrictive models that do not 

require inverting large matrices. 

 Since the model is already viewed as an approximation, a reasonable 

simplification is to make the approximation explicit and linearize the model around a 

convenient starting point (see Greene 2002). In this case, the starting point is obvious:  

when ρ=0, β is estimated consistently by standard probit or logit models.  And when ρ = 

0, no matrices need be inverted because (I-ρW)-1 = I.  The gradient terms simplify 

substantially because the error terms have constant variances and .  Recall 

that 

ββ ii XX =*

( )ii

ii
i PP

Pd
u

−

−
=

1
 for either the logit or probit model.  Linearizing this expression 

around the initial estimates ( )′=Γ 000 ,ρβ , we have .  Define 

.  Again letting 

( 00
0 Γ−Γ+≈ Guu ii )

Γ+Γ−= 000
0 GGuv ii ( ) 1−′= ZZM  , the objective function for the GMM 

estimator is .   ( ) vZZZZv ′′′
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With the linearized model, estimation involves only three steps: 

1. Estimate the model by standard probit or logit.  The estimated values are .  
Calculate u

0β̂
0 and the gradient terms, ββ ∂∂= /uG  and ρρ ∂∂= /uG , where  

i
i

ii X
X

Pu
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−=

∂
∂

0β̂β
 and 0

0

ˆ
ˆ β
βρ i

i

ii X
X

Pu
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−=

∂
∂

. 

2. Regress Gβ and Gρ on Z.  The predicted values are  and . βĜ ρĜ

3. Regress  on  and .  The coefficients are the estimated 
values of β and ρ. 

0
0 β̂β

′−Gu βĜ− ρĜ−

 
No large matrices have to be inverted in this algorithm.  All it requires is standard probit 

(or logit) and several linear regressions. 

 The algorithm is closely related to the first step of the GMM estimator for the 

non-linearized model, which is a regression of u0 on   and .  Subsequent 

iterations of the full model would require calculating  (I-ρW)

βĜ− ρĜ−

-1.  The spatial error model 

approach of Pinkse and Slade (1998) is not identified under the linearization approach 

because Λii in equation (8) is equal to zero when ρ = 0.  However, the first term in 

equation (8) allows ρ to be estimated under the spatial model.   If the true structure of the 

model is given by equation (1), linearization will provide accurate estimates as long as ρ 

is small, and in general, the linearized model will provide a good approximation to an 

underlying unknown spatial model. 
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4. Data 

 We base our analysis on data acquired from ELM International, a Michigan-based 

vendor.  Though not designed with research applications in mind, the intention behind the 

ELM database is to cover the entire North American auto industry.  Data are available at 

the plant and company level.  However, plants producing primarily for the aftermarket 

are not part of the database; nor are plants that produce machine tools or raw materials, 

such as steel and paint.3

 The ELM database, which provides 3,542 plant-level records, was purchased at 

the end of 2003.  The database includes information on a plant’s address, products, 

employment, parts produced, customer(s), union status, as well as square footage.  

Several operations were necessary to clean up the data.  First, records were crosschecked 

with state manufacturing directories to obtain information on the plant’s age.4  

Information on captive plants was obtained from Harbour (2003).  We also appended 

information on the nationality of the company to the record of each plant from the ELM 

company-level data.  For the 150 largest supplier companies, the accuracy and 

completeness of ELM’s plant listings – both the number of plants and their locations – 

was crosschecked with the individual company’s website when possible.5  The 

crosschecking resulted in a net addition of 335 records.  Finally, the accuracy of the 

employment for the largest plants (more than 2,000 employees) was also checked with 

company websites or phone calls.  After this preparation, the data set comprises 4,478 

observations of auto supplier plants located in North America, of which 3,416 are located 

                                                 
3 The data include information on “captive” supplier plants, which are parts operations that assemblers own 
and operate themselves, such as engine and stamping facilities. 
4 Plants for which no matching records were found were contacted by phone. 
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in the U.S., 461 in Canada, and 601 in Mexico.  To our knowledge, this data set contains 

the most accurate description of the North American auto supplier industry currently 

available. The formal analysis draws only on the U.S. data. 

 One of our objectives in the empirical analysis is to determine whether recent 

plant location decisions differ from those of the past.  Our definition of “new” is any 

plant that has opened since 1991.  We refer to plants that began operations before 1991 as 

“existing” plants.  The data is cross-sectional in nature.  Hence, the age variable applies 

only to surviving establishments. This focus on survivors may lead us to understate the 

extent to which “old” plants are concentrated at the upper end of the auto corridor.  

Within the North American auto industry, we distinguish assembly and supplier plants. 

We focus on supplier plants as they represent by far the largest number of establishments 

in this industry. In so doing, we are able to capture the spatial extension of this industry 

quite well. Within the industry, the location of assembly plants matters as they often 

represent the delivery point for a supplier’s output. 

 Figure 1 shows the location of existing (pre-1991) supplier plants in North 

America in 2003, along with the sites of assembler plants.  The dominance of the East 

North Central region is striking.  Detroit remains the core of the industry, with large 

numbers of counties occupied by supplier plants in Ohio and Indiana, also.6  The locus of 

the industry has been moving southward over time.  Though many plants are still evident 

in New England and the Middle Atlantic states, the East South Central and South Atlantic 

states have been adding plants recently.  Very few plants are located in the western states.   

Figure 2 shows the location of supplier plants that have opened since 1991.  Most of the 

                                                                                                                                                 
5 We thank Jim Rubenstein for sharing his plant-level data for the 150 largest supplier companies.  The 150 
largest supplier companies are listed annually in the industry weekly Automotive News.  
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new plants are located along a path running south from Detroit, although a respectable 

number of plants have opened in New England and the Middle Atlantic states.  The 

tendency of supplier plants to locate near assemblers is clear in both Figure 1 and 2.   

 Table 1 presents descriptive statistics for the variables used in our analysis.  Of 

the 3107 counties in the 48 contiguous states for which all data are available, 866 

(27.87%) have plants that opened before 1990 and 245 (7.89%) have new plants.  Most 

new plants are located in counties that already have an existing plant:  only 37 counties 

have only a new plant.  As shown in Figure 1 and 2, both new and existing plants are 

concentrated in the East North Central, South Atlantic, and East South Central census 

regions; these three regions account for more than two thirds (32.45%, 20.16%, and 

16.06%, respectively) of the counties with auto supplier plants in 2003.  The rotation of 

the auto corridor toward a north-south corridor running from Detroit is evident in the 

tendency for new plants to open up in the East North Central and East South Central 

regions.  In fact, counties with new plants tend to be closer to Detroit on average than 

counties with existing plants – 407 miles compared to 494 miles.  New supplier plants are 

also closer to assembler plants on average than are the existing suppliers:  the centers of 

the counties in which new plants are located are 69.3 miles from the nearest assembler on 

average, compared with 104.5 miles for existing plants.  The number of assembler plants 

within 450 miles of county centers is also higher for new plants than for existing plants – 

36.547 versus 30.671.  Overall, Table 1 suggests that the auto industry is re-trenching by 

drawing closer to Detroit along a north-south corridor. 

 Our empirical strategy involves estimating separate logit models explaining 

whether a county has an existing plant or a new plant.  For the subset of counties that 

                                                                                                                                                 
6 For a map of plant density see Klier et al (2004) 



 15

have plants, we also estimate logit models explaining whether the county has a new plant.  

Our explanatory variables include the regional dummy variables and distance from 

Detroit.  We include a dummy variable indicating whether an interstate highway runs 

through the county.  Auto suppliers have increasingly been using just in time inventory 

systems, placing a premium on locations near highways running to assembler plants and 

to Detroit.  To account for the tendency to locate near assembler plants, our explanatory 

variables include the distance to the nearest assembler and the count of the number of 

assemblers within 450 miles (an approximate one day’s drive) from the center of the 

county.  We also include some characteristics of the counties – population density, the 

proportion of the residents who are white, the proportion who have graduated from high 

school, the proportion of the employment in the county that is in manufacturing, and 

measures of the rates of violent and property crime. 

 We account for the tendency of supplier plants to cluster together in two ways.  

First, we include the spatial lag variable WY, which is a weighted average of the 

propensity for neighboring counties to have a supplier plant.  The weight matrix, W, is a 

contiguity matrix.  We construct the matrix by setting Wij = 1/ni for counties that share a 

common border, where ni is the number of observations that are contiguous to county i. 

Wij = 0 for all other observations (including Wii).  A positive value for this variable’s 

coefficient implies a county’s probability of having a plant increases with the propensity 

for neighboring counties to have plants.  Our second measure of the tendency to cluster is 

relevant only for new plants.  For logit models explaining the probability that a county 

has a new plant, we include as explanatory variables the number of existing suppliers 

within 100 miles and between 100 and 450 miles of the center of the county.  The results 
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for these variables will help determine whether the location decisions for new plants 

simply mimic those of existing plants.   

 

5. Logit Results 

 Our base model for counties with plants built prior to 1990 is shown in the first 

column of results in Table 2.  The estimated logit model indicates that the presence of an 

interstate highway significantly increases the probability that a county will have an auto 

supplier plant.  The probability of having an existing plant also increases if the center of 

the county is close to an assembly plant and if it is within a day’s drive from  a large 

number of assemblers.  Not surprisingly, the probability of having an existing supplier 

plant is higher if the county has a high proportion of high school graduates and if it 

already has a high concentration of manufacturing employment.   A somewhat surprising 

result is our finding that the probability of having a plant is higher in counties with high 

crime rates.  This result holds even though we have controlled for the population density 

in the counties.  A possible explanation is that high crime rates reduce land values in a 

county, and that auto plants substitute toward private security provision.  Another 

possibility is that crime rates are correlated with urban locations in a way that is not 

captured by the population density variable.  At any rate, the positive effect of crime on 

plant location is a robust result that holds up in subsequent models. 

 The tendency for auto supplier plants to cluster is evident in Table 2.  Other 

regions of the country tend to have much lower probabilities of having a plant than the 

base location, the East North Central region, with significantly negative effects in the 

Middle Atlantic, West North Central, South Atlantic, West South Central, and Pacific 
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regions.  Although distance from Detroit is not a significant determinant of plant 

locations once other variables are taken into account, plants are much more likely to be 

located near assembly plants and in counties containing interstate highways.  Since 

assembly plants are clustered in the auto corridor around Detroit, supplier plants tend to 

cluster together also. 

 The results for the linearized spatial logit model are presented in the last column 

of Table 2.  Instruments for the GMM estimation procedure include all of the exogenous 

variables shown in Table 2.  In addition, we include the weighted average of nearby 

values (WX) of those variables that vary significantly over space – the presence of an 

interstate highway, population density, crime rates, the proportion of employment that is 

in manufacturing, and the proportions of the county’s residents that are white and who 

have high school degrees.  Most of the results for the spatial version of the model are 

quite similar to those for the standard model.  The significant changes are (1) the spatial 

lag variable (WY) is highly significant, and (2) distance to the nearest assembler is no 

longer a statistically significantly determinant of plant location.  The positive coefficient 

for WY implies that the probability that a county has an existing supplier plant increases 

when neighboring counties have a high propensity to have plants also.  These results 

suggest that existing plants cluster together closely, even beyond the extent indicated by 

the controls for regions, the presence of nearby assembly plants, highways, and other 

manufacturing establishments. 

 Table 3 shows the estimated results for two sets of models explaining the 

probability that a county has a supplier plant that has opened since 1991.  The first set 

omits controls for the number of existing suppliers within 100 miles and between 100 and 



 18

450 miles of the center of a county, while the second set includes these two variables.  

Both models are estimated by standard logit and the linearized GMM spatial estimator.  

We use the same instruments for the new plants models as for existing plants.  

 The first two columns of results in Table 3 are directly comparable to the models 

estimated for existing plants.  As was the case for existing plants, new supplier plants are 

more likely to be located in counties that contain a stretch of interstate highway, that have 

high proportion of high school graduates, that have a high proportion of their employ-

ment in manufacturing, and that have high property crime rates.  In the base model, the 

coefficient for distance from Detroit is significantly negative, implying that new plants 

are more likely to be located closer to Detroit.  However, this result disappears once we 

control for the spatial autoregressive term, WY.  Table 3 suggests that new plants are 

somewhat less likely to be in the East North Central region, however.  Controlling for 

distance from Detroit, new plants are significantly more likely to be located in the East 

South Central Region than in the base region surrounding Detroit.  Thus, the auto 

industry is rotating toward the area south of Detroit. 

 The models presented in the first two columns of Table 3 suggest that the 

tendency toward clustering is somewhat less pronounced for new plants than was 

indicated for existing plants.  Although distance from the nearest assembler has a 

significantly negative effect on the probability of having a new plants, neither this 

variable nor the number of assemblers within 450 has a statistically significant effect 

once we control for the spatial autoregressive term.  The coefficient for the spatial 

autoregressive term, WY, is statistically different from zero at the 10% level but not at the 

5% level, and its value is lower than was the case for existing plants (0.355 v. 0.542).  
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However, it is possible that part of the reason for this apparent lack of explanatory power 

of the variables that indicate clustering is due to the relatively small number of counties 

that have new plants.  Overall, the results for the first two columns of results in Table 3 

suggest that the location decisions of new plants are broadly similar to those of existing 

plants.  New plants are more likely to locate south of Detroit, and exhibit a somewhat 

smaller tendency toward clustering, but otherwise the factors that influenced the locations 

of existing plants also affect new plants locations. 

 The last two columns of Table 3 add two variables to the models, the number of 

existing suppliers within 100 miles and between 100 and 450 miles of the county.  The 

probability of having a new plant in a county rises significantly when older plants already 

exist in the area, with a pronounced effect if there already are plants within 100 miles of 

the county center.  That effect diminishes in size for plants located within the larger 

radius. It is, however, statistically significant.  The spatial autoregressive term is no 

longer statistically significant once these variables are added to the models.  Though new 

plants have a tendency to cluster together, the tendency simply mimics the location 

pattern of existing plants.  There is no increment to the clustering tendency among new 

plants. 

 Table 4 presents logit results for the subset of counties that have either an existing 

or a new plant.  The dependent variable equals one if the county has a plant that has 

opened since 1990.  The results directly capture the difference in location patterns 

between new and old plants.  New plants are more likely than old plants to be in counties 

with a stretch of interstate highway.  They are more likely to be in counties that are close 

to assemblers.  New plants are also more likely to be in counties with high property crime 
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rates, and in counties located in the East South Central, West South Central, Mountain, 

and Pacific Regions.  They are less likely to be in counties in the Middle Atlantic States.  

Controlling for these regional fixed effects, new plants are likely to be closer to Detroit 

than existing plants.  With the exception of the Middle Atlantic and Mountain regional 

effects, these results hold up once we control for the spatial autoregressive term.7  The 

insignificant coefficient for WY suggests again that new plants have no additional 

tendency toward clustering once we control for the location of existing plants. 

 

6. Conclusion 

 The spatial autoregression model is useful when individual decisions are mutually 

dependent and are influenced by proximity.  Do tax rates in one jurisdiction depend on 

tax rates in nearby jurisdictions?  Does the presence of growth controls depend on 

whether neighboring municipalities have growth controls?  Does the sales price of a 

house depend on the prices paid for nearby homes?  We show that the same class of 

model is useful for identifying clustering in the location decisions of auto supplier plants 

in the U.S.  Does the presence of supplier plants in neighboring counties increase the 

probability that a county will also have a plant?  We find strong evidence of clustering 

among plants that opened prior to 1991.  Supplier plants are more likely to be located in 

counties that are near assembly plants, in counties that contain a stretch of interstate 

highway, and in counties that are near other counties with supplier plants.  New plants 

also tend to cluster, but there is no additional tendency toward clustering beyond that 

shown by older plants. 

                                                 
7 The set of instruments is the same as used in previous models. 
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 We extend the literature on spatial modeling in two ways.  First, we extend the 

standard spatial autoregression model to the case of a discrete continuous variable.  Our 

model is appropriate if the propensity to have a value of one for the dependent variable 

depends on the propensity for nearby observations.  Thus, the probability that an auto 

supplier plant is located in a county depends on the underlying latent variable 

determining the probability that nearby counties have assembly and/or supplier plants.  

The model can be estimated using a straightforward extension of the GMM estimator 

proposed by Pinkse and Slade (1998) for a spatial probit model.  Our second contribution 

to the literature on spatial modeling is to show how a linearized version of the GMM 

approach can be used to estimate the spatial probit model when the sample size is large.  

Our approach involves only three steps.  The first stage is a standard probit or logit 

estimator, while the second step is a standard two stage least squares estimation 

procedure.  The linearized model can be estimated even for very large data sets.   
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Table 1 
Descriptive Statistics 

 
 All 

Counties
Counties 

with 
Existing 
Plants 

Counties 
with New 

Plants 

New or 
Existing 
Plants 

Existing plant located in county (%) 27.87 100.00 84.90 95.90 
New plant located in county (%) 7.89 24.02 100.00 27.13 
Interstate highway (%) 44.09 63.51 73.47 63.34 
Distance to nearest assembler (100 miles) 1.880 

(1.799) 
1.045 

(1.068) 
0.693 

(0.788) 
1.041 

(1.053) 
Number of assemblers within 450 miles 19.467 

(17.791) 
30.671 

(17.064) 
36.547 

(16.439) 
30.573 

(17.076) 
Existing suppliers within 100 miles 0.487 

(0.911) 
1.129 

(1.420) 
1.815 

(1.890) 
1.110 

(1.405) 
Existing suppliers,  
100-450 miles 

7.811 
(7.329) 

12.129 
(6.920) 

14.303 
(6.341) 

12.120 
(6.948) 

Population density 
(1000s per sq. mile) 

0.218 
(1.434) 

0.357 
(1.315) 

0.418 
(0.782) 

0.347 
(1.289) 

Proportion white 0.875 
(0.153) 

0.884 
(0.133) 

0.886 
(0.118) 

0.884 
(0.133) 

Proportion high school graduates 0.695 
(0.103) 

0.711 
(0.096) 

0.714 
(0.091) 

0.709 
(0.096) 

Proportion manuf. employment  0.186 
(0.106) 

0.245 
(0.093) 

0.256 
(0.085) 

0.245 
(0.093) 

Violent crime rate 
(1000s) 

0.278 
(0.320) 

0.364 
(0.394) 

0.409 
(0.378) 

0.362 
(0.389) 

Property crime rate 
(1000s) 

2.631 
(1.983) 

3.283 
(2.111) 

3.488 
(2.078) 

3.260 
(2.094) 

East North Central (%) 14.06 33.03 43.27 32.45 
New England (%) 2.16 3.35 1.63 3.32 
Middle Atlantic (%) 4.83 7.04 3.67 7.09 
West North Central (%) 19.89 10.62 6.12 10.63 
South Atlantic (%) 18.93 20.09 15.92 20.16 
East South Central (%) 11.72 15.82 23.27 16.06 
West South Central (%) 15.13 6.58 3.67 6.76 
Mountain (%) 9.01 1.85 0.41 1.77 
Pacific (%) 4.28 1.62 2.04 1.77 
Distance from Detroit 
(100 miles) 

7.395 
(4.365) 

4.942 
(3.338) 

4.073 
(3.412) 

4.978 
(3.380) 

Number of observations 3107 866 245 903 
 
Note.  Standard deviations are in parentheses for continuous variables. 
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Table 2 
Logit Models:  Existing Supplier Plants 

 
Variable Standard Logit Spatial Logit 
Constant -8.333** 

(0.910) 
-6.166** 
(1.059) 

Interstate highway  0.725** 
(0.110) 

0.584** 
(0.113) 

Distance to nearest assembler (100 miles) -0.183** 
(0.066) 

-0.010 
(0.072) 

Number of assemblers within 450 miles 0.035** 
(0.008) 

0.028** 
(0.008) 

Population density 
(1000s per sq. mile) 

-0.059 
(0.036) 

-0.061 
(0.038) 

Proportion white 0.095 
(0.494) 

0.113 
(0.518) 

Proportion high school graduates 5.330** 
(0.819) 

2.990** 
(0.973) 

Proportion manuf. employment  9.670** 
(0.698) 

6.599** 
(0.931) 

Violent crime rate 
(1000s) 

0.582** 
(0.245) 

0.472* 
(0.261) 

Property crime rate 
(1000s) 

0.323** 
(0.041) 

0.302** 
(0.047) 

New England  0.236 
(0.346) 

0.036 
(0.329) 

Middle Atlantic  -0.830** 
(0.225) 

-0.426* 
(0.233) 

West North Central  -0.546** 
(0.227) 

0.049 
(0.268) 

South Atlantic  -0.787** 
(0.194) 

-0.484** 
(0.205) 

East South Central  -0.192 
(0.215) 

0.005 
(0.220) 

West South Central  -0.853** 
(0.303) 

-0.354 
(0.331) 

Mountain  -0.851 
(0.555) 

-1.174** 
(0.590) 

Pacific  -1.403* 
(0.788) 

-1.961** 
(0.806) 

Distance from Detroit 
(100 miles) 

0.014 
(0.058) 

0.094 
(0.059) 

WY  0.542** 
(0.101) 

 
Notes.  Standard errors are in parentheses.  Significance at the 5% and 10% level is 
indicated by “**” and “*”.   
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Table 3 
Logit Models:  New Supplier Plants 

 
Variable Standard 

Logit 
Spatial 
Logit 

Standard 
Logit 

Spatial 
Logit 

Constant -6.964** 
(1.576) 

-6.029** 
(1.586) 

-9.474** 
(1.647) 

-9.207** 
(1.980) 

Interstate highway  0.888** 
(0.179) 

0.835** 
(0.186) 

0.858** 
(0.183) 

0.837** 
(0.193) 

Distance to nearest assembler (100 
miles) 

-0.543** 
(0.140) 

-0.203 
(0.231) 

-0.371** 
(0.135) 

-0.182 
(0.196) 

Number of assemblers within 450 miles 0.016 
(0.013) 

0.013 
(0.015) 

-0.049* 
(0.029) 

-0.046 
(0.031) 

Existing suppliers within 100 miles   0.709** 
(0.129) 

0.675** 
(0.198) 

Existing suppliers, 100-450 miles   0.229** 
(0.067) 

0.214** 
(0.078) 

Population density 
(1000s per sq. mile) 

-0.058 
(0.076) 

-0.140** 
(0.055) 

-0.021 
(0.063) 

-0.036 
(0.039) 

Proportion white 0.013 
(0.856) 

0.107 
(0.742) 

-0.765 
(0.892) 

-0.612 
(0.784) 

Proportion high school graduates 3.910** 
(1.259) 

3.176** 
(1.319) 

3.576** 
(1.298) 

3.475** 
(1.347) 

Proportion manuf. employment  6.681** 
(1.043) 

5.605** 
(1.205) 

5.628** 
(1.103) 

5.073** 
(1.199) 

Violent crime rate 
(1000s) 

0.309 
(0.332) 

0.190 
(0.289) 

-0.063 
(0.343) 

-0.045 
(0.308) 

Property crime rate 
(1000s) 

0.296** 
(0.059) 

0.323** 
(0.052) 

0.317** 
(0.059) 

0.304** 
(0.053) 

New England  0.514 
(0.650) 

0.222 
(0.687) 

1.561** 
(0.697) 

1.122 
(0.771) 

Middle Atlantic  -0.998** 
(0.397) 

-0.645 
(0.425) 

0.242 
(0.462) 

0.219 
(0.468) 

West North Central  -0.031 
(0.408) 

0.172 
(0.435) 

0.372 
(0.418) 

0.306 
(0.425) 

South Atlantic  -0.077 
(0.296) 

-0.023 
(0.298) 

0.296 
(0.323) 

0.218 
(0.328) 

East South Central  1.172** 
(0.305) 

1.095** 
(0.366) 

1.247** 
(0.306) 

1.155** 
(0.354) 

West South Central  0.505 
(0.581) 

0.540 
(0.506) 

0.346 
(0.629) 

0.109 
(0.569) 

Mountain  1.889 
(1.475) 

-1.545 
(1.977) 

-0.730 
(1.519) 

-2.152 
(1.954) 

Pacific  4.519** 
(1.552) 

3.263 
(2.320) 

-0.125 
(1.684) 

-0.928 
(2.016) 

Distance from Detroit 
(100 miles) 

-0.274** 
(0.108) 

-0.194 
(0.159) 

0.114 
(0.126) 

0.149 
(0.152) 

WY  0.355* 
(0.181) 

 0.104 
(0.195) 

 
Notes.  Standard errors are in parentheses.  Significance at the 5% and 10% level is indicated by 
“**” and “*”.   
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Table 4 

Logit Models:  New Versus Existing Plants 
 

Variable Standard Logit Spatial Logit 
Constant -2.078 

(1.761) 
-1.880 
(1.740) 

Interstate highway  0.595** 
(0.193) 

0.586** 
(0.192) 

Distance to nearest assembler (100 miles) -0.443** 
(0.152) 

-0.408** 
(0.201) 

Number of assemblers within 450 miles 0.008 
(0.014) 

0.008 
(0.016) 

Population density 
(1000s per sq. mile) 

0.022 
(0.068) 

0.010 
(0.048) 

Proportion white -0.280 
(1.026) 

-0.353 
(0.923) 

Proportion high school graduates 1.155 
(1.401) 

1.044 
(1.386) 

Proportion manuf. employment  1.927 
(1.199) 

1.895 
(1.205) 

Violent crime rate 
(1000s) 

-0.123 
(0.383) 

-0.131 
(0.361) 

Property crime rate 
(1000s) 

0.196** 
(0.073) 

0.196** 
(0.070) 

New England  0.337 
(0.682) 

0.448 
(0.686) 

Middle Atlantic  -0.860** 
(0.418) 

-0.739 
(0.456) 

West North Central  0.440 
(0.437) 

0.461 
(0.454) 

South Atlantic  0.429 
(0.342) 

0.426 
(0.379) 

East South Central  1.351** 
(0.338) 

1.264** 
(0.414) 

West South Central  1.196* 
(0.616) 

1.134** 
(0.570) 

Mountain  3.156** 
(1.484) 

2.947 
(1.880) 

Pacific  5.740** 
(1.661) 

5.405** 
(2.262) 

Distance from Detroit 
(100 miles) 

-0.296** 
(0.114) 

-0.282* 
(0.145) 

WY  0.132 
(0.193) 

 
Notes.  The dependent variable equals one if the county has a new plant.  The data set 
includes the 903 counties that contain either a new or an existing plant.  Standard errors 
are in parentheses.  Significance at the 5% and 10% level is indicated by “**” and “*”.   
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Figure 1 
Counties with Existing Plants 
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Figure 2 
Counties with New Plants 

 

 



1 

Working Paper Series 
 

A series of research studies on regional economic issues relating to the Seventh Federal 
Reserve District, and on financial and economic topics. 

 
Outsourcing Business Services and the Role of Central Administrative Offices  WP-02-01 
Yukako Ono 
 
Strategic Responses to Regulatory Threat in the Credit Card Market* WP-02-02 
Victor Stango 
 
The Optimal Mix of Taxes on Money, Consumption and Income WP-02-03 
Fiorella De Fiore and Pedro Teles 
 
Expectation Traps and Monetary Policy WP-02-04 
Stefania Albanesi, V. V. Chari and Lawrence J. Christiano 
 
Monetary Policy in a Financial Crisis WP-02-05 
Lawrence J. Christiano, Christopher Gust and Jorge Roldos 
 
Regulatory Incentives and Consolidation: The Case of Commercial Bank Mergers 
and the Community Reinvestment Act WP-02-06 
Raphael Bostic, Hamid Mehran, Anna Paulson and Marc Saidenberg 
 
Technological Progress and the Geographic Expansion of the Banking Industry WP-02-07 
Allen N. Berger and Robert DeYoung 
 
Choosing the Right Parents:  Changes in the Intergenerational Transmission  WP-02-08 
of Inequality  Between 1980 and the Early 1990s 
David I. Levine and Bhashkar Mazumder 
 
The Immediacy Implications of Exchange Organization WP-02-09 
James T. Moser 
 
Maternal Employment and Overweight Children  WP-02-10 
Patricia M. Anderson, Kristin F. Butcher and Phillip B. Levine 
 
The Costs and Benefits of Moral Suasion:  Evidence from the Rescue of  WP-02-11 
Long-Term Capital Management 
Craig Furfine 
 
On the Cyclical Behavior of Employment, Unemployment and Labor Force Participation WP-02-12 
Marcelo Veracierto 
 
Do Safeguard Tariffs and Antidumping Duties Open or Close Technology Gaps? WP-02-13 
Meredith A. Crowley 
 
Technology Shocks Matter WP-02-14 
Jonas D. M. Fisher 
 
Money as a Mechanism in a Bewley Economy WP-02-15 
Edward J. Green and Ruilin Zhou 
 



2 

Working Paper Series (continued)  
 
Optimal Fiscal and Monetary Policy:  Equivalence Results WP-02-16 
Isabel Correia, Juan Pablo Nicolini and Pedro Teles 
 
Real Exchange Rate Fluctuations and the Dynamics of Retail Trade Industries WP-02-17 
on the U.S.-Canada Border 
Jeffrey R. Campbell and Beverly Lapham 
 
Bank Procyclicality, Credit Crunches, and Asymmetric Monetary Policy Effects:   WP-02-18 
A Unifying Model 
Robert R. Bliss and George G. Kaufman 
 
Location of Headquarter Growth During the 90s WP-02-19 
Thomas H. Klier 
 
The Value of Banking Relationships During a Financial Crisis:  WP-02-20 
Evidence from Failures of Japanese Banks 
Elijah Brewer III, Hesna Genay, William Curt Hunter and George G. Kaufman 
 
On the Distribution and Dynamics of Health Costs WP-02-21 
Eric French and John Bailey Jones 
 
The Effects of Progressive Taxation on Labor Supply when Hours and Wages are  WP-02-22 
Jointly Determined  
Daniel Aaronson and Eric French 
 
Inter-industry Contagion and the Competitive Effects of Financial Distress Announcements:  WP-02-23 
Evidence from Commercial Banks and Life Insurance Companies  
Elijah Brewer III and William E. Jackson III 
 
State-Contingent Bank Regulation With Unobserved Action and WP-02-24 
Unobserved Characteristics 
David A. Marshall and Edward Simpson Prescott 
 
Local Market Consolidation and Bank Productive Efficiency WP-02-25 
Douglas D. Evanoff and Evren Örs 
 
Life-Cycle Dynamics in Industrial Sectors. The Role of Banking Market Structure WP-02-26 
Nicola Cetorelli 
 
Private School Location and Neighborhood Characteristics WP-02-27 
Lisa Barrow 
 
Teachers and Student Achievement in the Chicago Public High Schools WP-02-28 
Daniel Aaronson, Lisa Barrow and William Sander 
 
The Crime of 1873: Back to the Scene WP-02-29 
François R. Velde 
 
Trade Structure, Industrial Structure, and International Business Cycles WP-02-30 
Marianne Baxter and Michael A. Kouparitsas 
 
Estimating the Returns to Community College Schooling for Displaced Workers WP-02-31 
Louis Jacobson, Robert LaLonde and Daniel G. Sullivan 



3 

Working Paper Series (continued)  
 
A Proposal for Efficiently Resolving Out-of-the-Money Swap Positions  WP-03-01 
at Large Insolvent Banks 
George G. Kaufman 
 
Depositor Liquidity and Loss-Sharing in Bank Failure Resolutions WP-03-02 
George G. Kaufman 
 
Subordinated Debt and Prompt Corrective Regulatory Action WP-03-03 
Douglas D. Evanoff and Larry D. Wall 
 
When is Inter-Transaction Time Informative? WP-03-04 
Craig Furfine 
 
Tenure Choice with Location Selection: The Case of Hispanic Neighborhoods WP-03-05 
in Chicago  
Maude Toussaint-Comeau and Sherrie L.W. Rhine 
 
Distinguishing Limited Commitment from Moral Hazard in Models of WP-03-06 
Growth with Inequality* 
Anna L. Paulson and Robert Townsend 
 
Resolving Large Complex Financial Organizations WP-03-07 
Robert R. Bliss 
 
The Case of the Missing Productivity Growth: WP-03-08 
Or, Does information technology explain why productivity accelerated in the United States 
but not the United Kingdom? 
Susanto Basu, John G. Fernald, Nicholas Oulton and Sylaja Srinivasan 
 
Inside-Outside Money Competition WP-03-09 
Ramon Marimon, Juan Pablo Nicolini and Pedro Teles 
 
The Importance of Check-Cashing Businesses to the Unbanked: Racial/Ethnic Differences WP-03-10 
William H. Greene, Sherrie L.W. Rhine and Maude Toussaint-Comeau 
 
A Firm’s First Year WP-03-11 
Jaap H. Abbring and Jeffrey R. Campbell 
 
Market Size Matters WP-03-12 
Jeffrey R. Campbell and Hugo A. Hopenhayn 
 
The Cost of Business Cycles under Endogenous Growth WP-03-13 
Gadi Barlevy 
 
The Past, Present, and Probable Future for Community Banks WP-03-14 
Robert DeYoung, William C. Hunter and Gregory F. Udell 
 
Measuring Productivity Growth in Asia: Do Market Imperfections Matter? WP-03-15 
John Fernald and Brent Neiman 
 
Revised Estimates of Intergenerational Income Mobility in the United States WP-03-16 
Bhashkar Mazumder 



4 

Working Paper Series (continued)  
 
Product Market Evidence on the Employment Effects of the Minimum Wage WP-03-17 
Daniel Aaronson and Eric French 
 
Estimating Models of On-the-Job Search using Record Statistics WP-03-18 
Gadi Barlevy 
 
Banking Market Conditions and Deposit Interest Rates  WP-03-19 
Richard J. Rosen 
 
Creating a National State Rainy Day Fund: A Modest Proposal to Improve Future  WP-03-20 
State Fiscal Performance  
Richard Mattoon 
 
Managerial Incentive and Financial Contagion  WP-03-21 
Sujit Chakravorti, Anna Llyina and Subir Lall 
 
Women and the Phillips Curve: Do Women’s and Men’s Labor Market Outcomes  WP-03-22 
Differentially Affect Real Wage Growth and Inflation? 
Katharine Anderson, Lisa Barrow and Kristin F. Butcher 
 
Evaluating the Calvo Model of Sticky Prices WP-03-23 
Martin Eichenbaum and Jonas D.M. Fisher 
 
The Growing Importance of Family and Community: An Analysis of Changes in the WP-03-24 
Sibling Correlation in Earnings 
Bhashkar Mazumder and David I. Levine 
 
Should We Teach Old Dogs New Tricks? The Impact of Community College Retraining WP-03-25 
on Older Displaced Workers 
Louis Jacobson, Robert J. LaLonde and Daniel Sullivan 
 
Trade Deflection and Trade Depression  WP-03-26 
Chad P. Brown and Meredith A. Crowley 
 
China and Emerging Asia: Comrades or Competitors?  WP-03-27 
Alan G. Ahearne, John G. Fernald, Prakash Loungani and John W. Schindler 
 
International Business Cycles Under Fixed and Flexible Exchange Rate Regimes  WP-03-28 
Michael A. Kouparitsas 
 
Firing Costs and Business Cycle Fluctuations  WP-03-29 
Marcelo Veracierto 
 
Spatial Organization of Firms  WP-03-30 
Yukako Ono 
 
Government Equity and Money: John Law’s System in 1720 France  WP-03-31 
François R. Velde 
 
Deregulation and the Relationship Between Bank CEO  WP-03-32 
Compensation and Risk-Taking 
Elijah Brewer III, William Curt Hunter and William E. Jackson III 
 



5 

Working Paper Series (continued)  
 
Compatibility and Pricing with Indirect Network Effects: Evidence from ATMs  WP-03-33 
Christopher R. Knittel and Victor Stango 
 
Self-Employment as an Alternative to Unemployment  WP-03-34 
Ellen R. Rissman 
 
Where the Headquarters are – Evidence from Large Public Companies 1990-2000  WP-03-35 
Tyler Diacon and Thomas H. Klier 
 
Standing Facilities and Interbank Borrowing: Evidence from the Federal Reserve’s  WP-04-01 
New Discount Window  
Craig Furfine 
 
Netting, Financial Contracts, and Banks: The Economic Implications  WP-04-02 
William J. Bergman, Robert R. Bliss, Christian A. Johnson and George G. Kaufman 
 
Real Effects of Bank Competition  WP-04-03 
Nicola Cetorelli 
 
Finance as a Barrier To Entry: Bank Competition and Industry Structure in  WP-04-04 
Local U.S. Markets? 
Nicola Cetorelli and Philip E. Strahan 
 
The Dynamics of Work and Debt  WP-04-05 
Jeffrey R. Campbell and Zvi Hercowitz 
 
Fiscal Policy in the Aftermath of 9/11  WP-04-06 
Jonas Fisher and Martin Eichenbaum 
 
Merger Momentum and Investor Sentiment: The Stock Market Reaction 
To Merger Announcements  WP-04-07 
Richard J. Rosen 
 
Earnings Inequality and the Business Cycle  WP-04-08 
Gadi Barlevy and Daniel Tsiddon 
 
Platform Competition in Two-Sided Markets:  The Case of Payment Networks WP-04-09 
Sujit Chakravorti and Roberto Roson 
 
Nominal Debt as a Burden on Monetary Policy  WP-04-10 
Javier Díaz-Giménez, Giorgia Giovannetti, Ramon Marimon, and Pedro Teles 
 
On the Timing of Innovation in Stochastic Schumpeterian Growth Models  WP-04-11 
Gadi Barlevy 
 
Policy Externalities: How US Antidumping Affects Japanese Exports to the EU WP-04-12 
Chad P. Bown and Meredith A. Crowley 
 
Sibling Similarities, Differences and Economic Inequality WP-04-13 
Bhashkar Mazumder 
 
Determinants of Business Cycle Comovement: A Robust Analysis WP-04-14 
Marianne Baxter and Michael A. Kouparitsas 



6 

Working Paper Series (continued)  
 
The Occupational Assimilation of Hispanics in the U.S.: Evidence from Panel Data WP-04-15 
Maude Toussaint-Comeau  
 
Reading, Writing, and Raisinets1: Are School Finances Contributing to Children’s Obesity? WP-04-16 
Patricia M. Anderson and Kristin F. Butcher  
 
Learning by Observing: Information Spillovers in the Execution and Valuation WP-04-17 
of Commercial Bank M&As 
Gayle DeLong and Robert DeYoung 
 
Prospects for Immigrant-Native Wealth Assimilation: WP-04-18 
Evidence from Financial Market Participation 
Una Okonkwo Osili and Anna Paulson 
 
Individuals and Institutions:  Evidence from International Migrants in the U.S. WP-04-19 
Una Okonkwo Osili and Anna Paulson 
 
Are Technology Improvements Contractionary? WP-04-20 
Susanto Basu, John Fernald and Miles Kimball 
 
The Minimum Wage, Restaurant Prices and Labor Market Structure WP-04-21 
Daniel Aaronson, Eric French and James MacDonald 
 
Betcha can’t acquire just one: merger programs and compensation WP-04-22 
Richard J. Rosen 
 
Not Working: Demographic Changes, Policy Changes, WP-04-23 
and the Distribution of Weeks (Not) Worked 
Lisa Barrow and Kristin F. Butcher 
 
The Role of Collateralized Household Debt in Macroeconomic Stabilization WP-04-24 
Jeffrey R. Campbell and Zvi Hercowitz 
 
Advertising and Pricing at Multiple-Output Firms: Evidence from U.S. Thrift Institutions WP-04-25 
Robert DeYoung and Evren Örs 
 
Monetary Policy with State Contingent Interest Rates WP-04-26 
Bernardino Adão, Isabel Correia and Pedro Teles 
 
Comparing location decisions of domestic and foreign auto supplier plants WP-04-27 
Thomas Klier, Paul Ma and Daniel P. McMillen 
 
China’s export growth and US trade policy WP-04-28 
Chad P. Bown and Meredith A. Crowley 
 
Where do manufacturing firms locate their Headquarters? WP-04-29 
J. Vernon Henderson and Yukako Ono 
 
Monetary Policy with Single Instrument Feedback Rules WP-04-30 
Bernardino Adão, Isabel Correia and Pedro Teles 



7 

Working Paper Series (continued)  
 
Firm-Specific Capital, Nominal Rigidities and the Business Cycle WP-05-01 
David Altig, Lawrence J. Christiano, Martin Eichenbaum and Jesper Linde 
 
Do Returns to Schooling Differ by Race and Ethnicity? WP-05-02 
Lisa Barrow and Cecilia Elena Rouse 
 
Derivatives and Systemic Risk: Netting, Collateral, and Closeout WP-05-03 
Robert R. Bliss and George G. Kaufman 
 
Risk Overhang and Loan Portfolio Decisions WP-05-04 
Robert DeYoung, Anne Gron and Andrew Winton 
 
Characterizations in a random record model with a non-identically distributed initial record WP-05-05 
Gadi Barlevy and H. N. Nagaraja 
 
Price discovery in a market under stress: the U.S. Treasury market in fall 1998 WP-05-06 
Craig H. Furfine and Eli M. Remolona 
 
Politics and Efficiency of Separating Capital and Ordinary Government Budgets WP-05-07 
Marco Bassetto with Thomas J. Sargent 
 
Rigid Prices: Evidence from U.S. Scanner Data WP-05-08 
Jeffrey R. Campbell and Benjamin Eden 
 
Entrepreneurship, Frictions, and Wealth WP-05-09 
Marco Cagetti and Mariacristina De Nardi 
 
Wealth inequality: data and models WP-05-10 
Marco Cagetti and Mariacristina De Nardi 
 
What Determines Bilateral Trade Flows? WP-05-11 
Marianne Baxter and Michael A. Kouparitsas 
 
Intergenerational Economic Mobility in the U.S., 1940 to 2000 WP-05-12 
Daniel Aaronson and Bhashkar Mazumder  
 
Differential Mortality, Uncertain Medical Expenses, and the Saving of Elderly Singles WP-05-13 
Mariacristina De Nardi, Eric French, and John Bailey Jones 
 
Fixed Term Employment Contracts in an Equilibrium Search Model WP-05-14 
Fernando Alvarez and Marcelo Veracierto 
 
Causality, Causality, Causality: The View of Education Inputs and Outputs from Economics WP-05-15 
Lisa Barrow and Cecilia Elena Rouse 
 
 



8 

Working Paper Series (continued)  
 
Competition in Large Markets WP-05-16 
Jeffrey R. Campbell 
 
Why Do Firms Go Public?  Evidence from the Banking Industry WP-05-17 
Richard J. Rosen, Scott B. Smart and Chad J. Zutter 
 
Clustering of Auto Supplier Plants in the U.S.: GMM Spatial Logit for Large Samples WP-05-18 
Thomas Klier and Daniel P. McMillen 
 
 
 


