
 

 

 
 
 
 
 
 
 

DIVIDENDS AND WEIGHTED 

VALUES IN GAMES WITH 

EXTERNALITIES 

 
Ines Macho-Stadler, David Perez-

Castrillo and David Wettstein 

Discussion Paper No. 09-06 

 

July 2009 

 

 

 

Monaster Center for  

Economic Research  

Ben-Gurion University of the Negev  

P.O. Box 653 
Beer Sheva, Israel 

 

 
Fax:  972-8-6472941 
Tel:  972-8-6472286 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6970159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dividends and Weighted Values in Games with

Externalities∗

Inés Macho-Stadler† David Pérez-Castrillo‡ David Wettstein§

July 19, 2009

Abstract

We consider cooperative environments with externalities (games in partition

function form) and provide a recursive definition of dividends for each coalition and

any partition of the players it belongs to. We show that with this definition and equal

sharing of these dividends the averaged sum of dividends for each player, over all the

coalitions that contain the player, coincides with the corresponding average value

of the player. We then construct weighted Shapley values by departing from equal

division of dividends and finally, for each such value, provide a bidding mechanism

implementing it.
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1 Introduction

In recent years there has been increasing interest in the construction and implementation

of sharing rules for environments with externalities. Such environments encompass a large

array of economic scenarios and arise whenever the benefits or costs to a group of agents

depend on the coalitions formed by agents outside the group. Prominent examples are

a market with several competing firms, countries negotiating on trade agreements and

union-firm bargaining in a given industry.

One fruitful approach has been to proceed axiomatically and propose sharing methods

(known as values) based on a collection of desirable properties. Some of the proposals

extend the Shapley value (Shapley, 1953b), which is defined for games with no externali-

ties.1 This is the direction taken in the papers by Myerson (1977), Bolger (1989), Feldman

(1996), Albizuri, Arin and Rubio (2005), Pham Do and Norde (2007), and Macho-Stadler,

Pérez-Castrillo and Wettstein (2007) (that we will refer to as MPW ). These proposals

satisfy the properties (axioms) of efficiency, anonymity (symmetry), linearity, and the

“null” player property that states that players which have no effect on the outcome should

neither receive nor pay anything. The particular definitions of these properties, at times

together with some additional axioms, lead to different extensions of the Shapley value.

In MPW we strengthen the symmetry property by proposing the “strong symmetry

axiom” capturing the idea that players with “identical power” should receive the same

outcome. We show that this axiom is equivalent to adopting an “average approach” to the

problem of sharing. This approach is quite intuitive: it yields to a player in a game with

externalities the Shapley value of an average game with no externalities. The average

game is obtained from the original game by assigning to each coalition its (weighted)

average payoff. The average approach generates an attractive family of sharing methods

(see Section 2 for further details). For example, by including an additional propertyMPW

(2007) derived a unique sharing method belonging to the family of averaging methods.

This value corresponds to the one proposed, but not axiomatized, by Feldman (1996).

1Similarly, de Clippel and Serrano (forthcoming), rather than extend the Shapley value, focus on

the implications of the marginality axiom underlying the Shapley value, for games with externalities.

McQuillin (2006) also uses axioms to characterize a value that simultaneously extends the Shapley value

to games with externalities and to situations where there is a prior coalition structure.
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In games without externalities, another useful approach to find sharing methods has

been to take a constructive point of view. Hart and Mas-Colell (1989) showed how the

Shapley value can be derived through the potential approach.2 Harsanyi (1959) used the

notion of dividends accruing to a player from the various coalitions he could participate

in and showed that their sum yields the Shapley value. Maschler (1982) generalized this

approach to a procedure through which the payoffs accruing to agents are still given by

the Shapley value.

In this paper we adopt the constructive approach both to justify the family of average

values and to generate new sharing methods. We first define the dividends for all possible

partition-coalition pairs (in contrast to the no-externalities case the dividends of a coalition

may depend on the partition it belongs to) and then proceed to allocate them among the

players. We show that the sum of dividends a player gets yields the average value defined

in MPW .

This approach can be easily adopted to generate non-symmetric values, possibly cap-

turing players’s characteristics external to the environment. Hence we provide a new

family of weighted Shapley value for games with externalities and show that each one

coincides with the weighted Shapley value of the average game.

We then augment the cooperative approach by implementing the weighted values

for games with externalities via a bidding mechanism that is based on the mechanisms

appearing in Pérez-Castrillo and Wettstein (2001) and Macho-Stadler, Pérez-Castrillo and

Wettstein (2006) (we will refer to this paper as MPWb).

In the next section, we present the environment and the average value. In Section 3,

we analyze the case of dividends and in Section 4 we define the weighted Shapley value.

In Section 5, we propose a mechanism to implement the weighted Shapley value.

2 The environment and the average approach

Environments with externalities are best described as games in partition function form

that were first introduced by Thrall and Lucas (1963). We denote by N = {1, ..., n} the

2Dutta, Ehlers and Kar (2008) adopted the potential approach to study and provide values for games

with externalities.
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set of players. An embedded coalition is a pair (S, P ), where S ⊆ N is a coalition and

P � S is a partition of N . An embedded coalition specifies the coalition as well as the

organization of the rest of players. Also, we denote by P the set of all partitions of N

and by ECL = {(S, P ) | S ∈ P, P ∈ P} the set of embedded coalitions.

Let (N, v) be a game in partition function form, where the characteristic function

v : ECL→ R associates a real number with each embedded coalition. For each (S,P ) ∈

ECL, we interpret v(S,P ) as the worth of coalition S when the players are organized

according to the partition P. The partition P is always taken to include the empty set ∅

and, for notational convenience, when describing a partition we only list the non-empty

coalitions. The characteristic function satisfies v(∅, P ) = 0.

A sharing method, or a value, is a mapping ϕ which associates with every game (N, v)

a vector in Rn that satisfies
∑

i∈N ϕi(N, v) = v(N, {N}). A value determines the payoffs

for every player in the game and, by definition, it is always efficient since the value of the

grand coalition is shared among the players. In all the paper, it is assumed that forming

the grand coalition is the most efficient way of organizing the society and thus all the

players end up together. Formally, v(N, {N}) ≥
∑

S∈P v(S, P ) for every partition P ∈ P.

To introduce the family of values proposed in MPW using the average approach we

present first the axioms that characterize it.

We say that player i ∈ N is a null player in the game (N, v) if v(S, P ) = v(S ′, P ′) for

every (S, P ) ∈ ECL and for any embedded coalition (S ′, P ′) that can be obtained from

(S, P ) by changing the affiliation of player i.

The addition of two games (N, v) and (N, v′) is defined as the game (N, v+ v′) where

(v + v′)(S, P ) ≡ v(S, P ) + v′(S, P ) for all (S,P ) ∈ ECL. Similarly, given the game

(N, v) and the scalar λ ∈ R, the game (N, λv) is defined by (λv)(S, P ) ≡ λv(S,P ) for all

(S, P ) ∈ ECL.

For any permutation σ of N, the σ permutation of the game (N, v), denoted by (N, σv)

is defined by (σv)(S, P ) ≡ v(σS, σP ) for all (S,P ) ∈ ECL.

The extension of Shapley (1953b)’s basic axioms proposed in MPW for values in

environments with externalities are:

1. Linearity: A value ϕ satisfies the linearity axiom if:
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1.1. For any two games (N, v) and (N, v′), ϕ(N, v + v′) = ϕ(N, v) + ϕ(N, v′).

1.2. For any game (N, v) and any scalar λ ∈ R, ϕ(N,λv) = λϕ(N, v).

2. Symmetry: A value ϕ satisfies the symmetry axiom if for any permutation σ of N ,

ϕ(N, σv) = σϕ(N, v).

3. Null player : A value ϕ satisfies the null player axiom if for any player i which is a

null player in the game (N, v), ϕi(N, v) = 0.

In games with no externalities where the worth of any coalition S does not depend

on the organization of the other players, i.e., v(S, P ) = v(S, P ′) for every S ⊆ N and

(S, P ), (S, P ′) ∈ ECL, these three basic axioms characterize a unique value (Shapley,

1953b). For expositional clarity, we denote by (N, v̂) a game with no externalities, where

v̂ : 2N → R is a function that gives the worth of each coalition. The Shapley value φ can

be written as:

φi(N, v̂) =
∑

S⊆N

βi(S, n)v̂(S) for all i ∈ N , (1)

where we have denoted by βi(S, n) the following numbers:

βi(S, n) =





(|S|−1)!(n−|S|)!
n!

for all S ⊆ N, if i ∈ S

− |S|!(n−|S|−1)!
n!

for all S ⊆ N, if i ∈ N\S.

In games with externalities, the previous axioms are satisfied by a large set of values.

In MPW we propose an extension of the notion of symmetry also to the externalities

created. As required by the symmetry axiom, symmetry is a property of anonymity: the

payoff of a player is only derived from his influence on the worth of the coalitions, it does

not depend on his “name”. The strong symmetry axiom strengthens the symmetry axiom

by requiring that exchanging the names of the players inducing the same externality should

also not affect the payoff of any player. To formally state the axiom, we denote by σS,PP ,

with P � S, a new partition with S ∈ σS,PP resulting from a permutation of the set N\S.

Given an embedded coalition (S, P ), the σS,P permutation of the game (N, v) denoted by

(N, σS,Pv) is defined by (σS,Pv)(S, P ) = v(S, σS,PP ), (σS,Pv)(S, σS,PP ) = v(S, P ), and

(σS,Pv)(R,Q) = v(R,Q) for all (R,Q) ∈ ECL\ {(S, P ), (S, σS,PP )} .
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2’. A value ϕ satisfies the strong symmetry axiom if:

2′.1. for any permutation σ of N , ϕ(N, σv) = σϕ(N, v),

2′.2. for any (S, P ) ∈ ECL and for any permutation σS,P , ϕ(N, σS,Pv) = ϕ(N, v).

As proven inMPW any value ϕ satisfying linearity and null player axioms also satisfies

the strong symmetry axiom if and only if it can be constructed through the “average

approach”.

The average approach consists of, first constructing an average game (N, v̂α) associated

with the partition function game (N, v), by assigning to each coalition S ⊆ N the average

worth v̂α(S) ≡
∑

P�S,P∈P α(S,P )v(S,P ), with
∑

P�S,P∈P α(S, P ) = 1.We refer to α(S, P )

as the “coefficient” of the partition P in the computation of the value of coalition S ∈ P .3

Second, the average approach constructs a value ϕ for the Partition Function Game (N, v)

by taking the Shapley value of the game with no externalities (N, v̂α). Therefore, if a value

ϕ is obtained through the average approach then, for all i ∈ N ,

ϕi(N, v) =
∑

S⊆N

βi(S, n)v̂
α(S) =

∑

(S,P )∈ECL

α(S,P )βi(S, n)v(S,P ). (2)

Moreover, due to the symmetry and null player axioms the coefficients must be symmetric

(i.e., α(S, P ) only depends on the sizes of the coalitions in P ) and satisfy the following

condition:

α(S, P ) =
∑

R∈P\S

α(S\{i}, (P\(R, S)) ∪ (R ∪ {i}, S\{i})), (3)

for all i ∈ S and for all (S, P ) ∈ ECL with |S| > 1.

There are still a variety of values satisfying the requirements of linearity, strong

symmetry, and null player, each value corresponding to a different averaging method.

In MPW we add a “similar influence axiom” to characterize a value with coefficients

α(S, P ) =

∏
T∈P\S

(|T |−1)!

(n−|S|)!
(see also Feldman, 1996). Other recent proposals also satisfy the

average approach. The externality-free value studied and characterized by Pham Do and

3In MPW we refer to α(S,P ) as the “weight” of the partition P in the computation of the value of

coalition S ∈ P. For the sake of clarity when presenting the weighted Shapley values, we will use here the

term “coefficient” instead of “weight”.
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Norde (2007) and de Clippel and Serrano (forthcoming) corresponds to the vector of co-

efficients α(S,P ) = 1 if P =
{
S, {j}j∈N\S

}
and α(S, P ) = 0 otherwise; that is, only the

partition where players outside S form singleton coalitions is taken into account.4 On the

other extreme, in his extension of the Shapley value McQuillin (2006) ends up proposing

a value that corresponds to α(S,P ) = 1 if P = {S,N\S} and α(S,P ) = 0 otherwise; that

is, the only important partition is the one where players outside S form a single coalition.

Finally, the proposal by Albizuri et al. (2005) corresponds to the Shapley value associated

with the simple average: α(S, P ) = 1
P (S)

where P (S) = |{(S,Q)/(S,Q) ∈ ECL}|.5

We denote by ϕα the value constructed through the average approach with a vector

of coefficients α. The analysis developed in the next sections can be applied to any value

ϕα, in particular to those previously discussed.

3 Dividends in games with externalities

In this section we interpret any value ϕα in terms of sharing of dividends, in the spirit of

the Harsanyi (1959) dividends for games in characteristic function form.

In games with no externalities, the Shapley value can be characterized as the value that

distributes the so-called Harsanyi dividends of the game equally among the players in the

corresponding coalitions. Harsanyi (1959) assumed that every coalition would negotiate

a vector of “dividends” such that the sum of all coalitions’s dividends vectors would be

a feasible allocation for the grand coalition. Therefore, the dividends of a coalition S are

what is left after all proper subcoalitions of S have received their corresponding dividends.

More formally, the dividends ∆v̂(S) of a game in characteristic form (N, v̂) are defined

recursively: ∆v̂(∅) = 0 and ∆v̂(S) = v̂(S) −
∑

R�S∆v̂(R) if S �= ∅. Harsanyi (1959)

showed that all the equal shares of the dividends a player is entitled to sum up to his

4The main contribution of de Clippel and Serrano (forthcoming) is the analysis of the marginality

principle in games with externalities.
5The values proposed by Myerson (1977) and Bolger (1989) can not be constructed through the average

approach. Some of the values proposed by Dutta, Ehlers and Kar (2008) can also be constructed to the

average approach while others can not.
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Shapley value:

φi(N, v̂) =
∑

S�i

1

|S|
∆v̂(S) for all i ∈ N.

In a similar spirit, consider a game with externalities (N, v) and a system of coefficients

α. We can obtain the dividends of a coalition S when it is part of the partition P taking

into account that the dividends of subcoalitions of S should matter only in proportion to

its corresponding coefficients. Formally, we can also define the dividends inductively as

follows:

∆αv (∅, P ) = 0

∆αv (S, P ) = v(S, P )−
∑

(R,Q)∈ECL
R�S

α(R,Q)∆α
v (R,Q) if S �= ∅.

Theorem 1 provides an interpretation of any value ϕα in terms of dividends. Therefore,

it is a result that can be applied, in particular, to the values studied by Feldman (1996)

andMPW (2007); Albizuri et al. (2005); Pham Do and Norde (2007) and de Clippel and

Serrano (forthcoming); and McQuillin (2006).

Theorem 1 The value ϕα can be written as follows:

ϕαi (N, v) =
∑

(S,P )∈ECL
S�i

1

|S|
α(S,P )∆αv (S,P ).

Proof. We denote by ∆v̂α(S) the dividends of the average game (N, v̂α) associated

with the (N, v). We prove by induction over the number of elements of S that

∆v̂α(S) =
∑

P�S
P∈P

α(S, P )∆α
v (S, P ).

The proof is immediate when S = ∅ (and it is also immediate when |S| = 1). Assuming

that the expression holds for any coalition R with |R| < |S|, we can write

∑

P�S
P∈P

α(S, P )∆αv (S, P ) =
∑

P�S
P∈P

α(S, P )


v(S,P )−

∑

(R,Q)∈ECL
R�S

α(R,Q)∆αv (R,Q)




=
∑

P�S
P∈P

α(S, P )v(S, P )−
∑

P�S
P∈P

α(S, P )
∑

R�S

∆v̂α(R) = v̂
α(S)−

∑

R�S

∆v̂α(R) = ∆v̂α(S).
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Since φ is the Shapley value of the (characteristic form game ) v̂α, we can write φi(N, v)

in terms of sum of dividends:

φi(N, v̂
α) =

∑

S�i

1

|S|
∆v̂α(S),

therefore,

ϕαi (N, v) = φi(N, v̂
α) =

∑

S�i

1

|S|

∑

P�S
P∈P

α(S,P )∆αv (S,P ) =
∑

(S,P )∈ECL
S�i

1

|S|
α(S, P )∆αv (S, P ).

Maschler (1982) showed that the sharing method based on dividends was a special case

of a procedure where a given sequence of coalitions sequentially claim their worth. At

each step the worth of one coalition is equally shared by its members. The process then

generates a new game where the worth of each coalition containing the sharing coalition is

reduced by the worth of the sharing coalition, whereas the worth of other coalitions is not

altered. The next coalition in the sequence then proceeds to share its worth. This process

ends when all coalitions arrive at zero worth. It was then shown that this process must

end, and the sum of payoffs accruing to each player is his Shapley value. The value ϕα can

be arrived at via these more general procedures as well if the proportion α(S,P ) of the

dividend associated with each embedded coalition (S, P ) is assigned to each player i ∈ S

and the coefficient α(S,P ) is also used to reduce the worth of each coalition containing

S.

4 Weighted Shapley values in games with externali-

ties

In some economic applications, the symmetry axiom can be challenged. Players may

have different bargaining powers or may have invested different levels of capital or effort

essential to the generation of the surplus to be shared. These differences which are not

reflected in the characteristic function should possibly play a role in the sharing of the

surplus, thus leading to a violation of the symmetry property. Shapley (1953a) addressed

this issue by proposing a family of weighted (Shapley) values. The weights are used
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to determine the proportions in which the players share the surplus in (characteristic

function) unanimity games. Adopting the dividends approach these weighted Shapley

values correspond to allocations where the dividends of a coalition are distributed among

players according to the proportions implied by the weights.

Formally, for a given vector of weights w ∈ Rn, with wi > 0 for i ∈ N , the corre-

sponding weighted Shapley value (Shapley, 1953a) φw associates with every game (N, v̂)

a vector in Rn that satisfies:

φwi (N, v̂) =
∑

S⊆N
S�i

wi
wS
∆v̂(S) for all i ∈ N ,

where wS ≡
∑

i∈S wi. The Shapley value φi(N, v̂) is arrived at when all the weights wi

are equal.

We can proceed in a similar way to obtain non-symmetric values for games with

externalities. We define, for a given vector of weights w ∈ Rn, with wi > 0 for i ∈ N,

(and for each vector of factors α) a weighted Shapley value for games with externalities:

ϕαwi (N, v) =
∑

(S,P )∈ECL
S�i

wi
wS
α(S, P )∆αv (S,P ).

It follows easily that there is a relationship between the weighted Shapley value for

games with externalities that we have defined through the dividends and the weighted

Shapley value of the corresponding average game (N, v̂α). We state this result in the next

proposition:

Proposition 1 The value ϕαw can be written as follows:

ϕαwi (N, v) = φ
w
i (N, v̂

α).

Proof. We write the value φw:

φwi (N, v̂
α) =

∑

S⊆N
S�i

wi
wS
∆v̂α(S) =

∑

S⊆N
S�i

wi
wS

∑

P�S
P∈P

α(S, P )∆αv (S,P ),

following the proof of Theorem 1. Therefore,

φwi (N, v̂
α) =

∑

S⊆N
S�i

∑

P�S
P∈P

wi
wS
α(S, P )∆α

v (S, P ) =
∑

(S,P )∈ECL
S�i

wi
wS
α(S, P )∆αv (S, P ) = ϕ

αw
i (N, v)
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As Owen (1968) has shown it might be the case that increasing a player’s weight may

decrease the value of the player. Haeringer (2006) addressed this issue and suggested a

different family of weighted Shapley values, where the weights satisfy the property that an

increase in the player’s weight does not decrease the player’s value (hence might justifiably

reflect a measure of power). To that effect he used two systems of weights. One system

was used to allocate the dividend of a coalition among its members in the case where

the dividend was positive and another (derived from the first one by a strictly decreasing

function, for instance taking the reciprocals of the weights) for the case of a negative

dividend. Taking the same route for games with externalities we can use two systems of

weights, to share ∆αv (S, P ), for any (S, P ) in ECL, depending on its sign.

5 Implementation of weighted Shapley values in games

with externalities

The value ϕαw(N, v) can be implemented via bidding mechanisms in the same spirit

as the ones that appear in Pérez-Castrillo and Wettstein (2001) and MPWb), for any

system of non-negative coefficients, i.e., a(S, P ) ≥ 0 for all (S,P ) ∈ ECL that satisfy (3).

The implementation is carried out for environments that can be characterized either via

negative or via positive externalities, and slightly different mechanisms are used for each

environment. Positive and negative externalities are defined as follows.

Definition 1 The game (N, v) has negative externalities if v(S, P ) ≥ v(S,P ′) for every

P,P ′, when each element in P ′ is given by a union of elements in P .

Definition 2 The game (N, v) has positive externalities if v(S, P ) ≤ v(S,P ′) for every

P,P ′, when each element in P ′ is given by a union of elements in P .

In both types of environments it must be the case that the departure of a single player

from a coalition results in efficiency losses. This is a mild requirement usually referred to

as zero-monotonicity in games without externalities. It can be extended in several ways to
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games with externalities, one extension appropriate for the case of negative externalities

is given by:

Definition 3 The game (N, v) strictly zero-monotonic-A if

v(S, P ) > v(S\{i}, (P\S) ∪ (S\{i}, {i})) + v({i}, (P\S) ∪ (S\{i}, {i}))}

for every (S,P ) ∈ ECL and every i ∈ S .

Zero-monotonicity-A requires that the addition of a singleton player to a coalition is

always beneficial, considering that the organization of the other players does not change.

For environments with negative externalities, we implement the value ϕαw(N, v) via

the mechanism M−(α,w) which modifies the M−(α) mechanism appearing in MPWb.

Environments with positive externalities can be similarly analyzed by modifying the mech-

anism M+(α) in the same way.

The mechanism M−(α,w) can be informally described as follows:

At each round, there is a set of “insiders” S and a set of “outsiders” N\S. At the

first round, the set of insiders is N . Each round is composed of two stages; the first stage

is played among the insiders, the second one, if reached, is played among the outsiders.

In the insiders stage, the players in S select a proposer among themselves through a

multibidding procedure. Each player’s bid is weighted according to the vector w so that

the influence of a player’s bid in the multibidding procedure is proportional to the player’s

weight. Once a proposer is chosen, he pays the bids he made and then makes a proposal

to the other members in S on the sharing of the (expected) benefits if they stay together

(i.e., if they form the coalition S). If the proposal is rejected, the proposer joins the set

of outsiders and the remaining insiders go to the next round. If the proposal is accepted,

S forms and the organization of the outsiders is determined in the outsiders stage. Note

that in the case where S = N the outsiders’ stage is redundant.

At the outsiders stage, the set of players is N\S, those agents whose proposals have

been rejected at previous rounds of the mechanism. First, a “candidate partition” of

N , including S, is randomly selected, where the probability of selecting a particular

partition is the coefficient α(S, P ) associated with this partition by the averaging system

α. Second, the members of each coalition in such a partition, other than S, play a game
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that determines whether the candidate partition (or some finer partition) is the final

organization. This phase is constructed to encourage the proposer in the insiders stage to

make acceptable proposals. The formal description of the mechanism M−(α,w) follows.

The mechanism M−(α,w)

The mechanism M−(α,w) proceeds in rounds. Each round is characterized by a

coalition S ⊆ N,S �= ∅. At the first round of the mechanism, S = N . For each round, in

the case where s = |S| > 1, we move to I(S), the insiders’ stage, otherwise we move to

O(S), the outsiders’ stage.

I(S): Insiders’ stage

I(S).1: Each agent i ∈ S makes bids bij ∈ R, for every j ∈ S\{i}. Agents’ bids are

simultaneous.

Define the aggregate net bid to each player i ∈ S byBi =
∑

j∈S\{i}wib
i
j−
∑

j∈S\{i}wjb
j
i .

Let γs = argmaxi(Bi) where an arbitrary tie-breaking rule is used in the case of a non-

unique maximizer. The proposer is then taken to be γs and prior to moving to the next

stage pays every player i ∈ S\{γs} the amount b
γs
i .

I(S).2: The proposer γs makes a proposal x
γs
i ∈ R to every i ∈ S\{γs}.

I(S).3: The agents in S\{γs}, sequentially, either accept or reject the offer. If an agent

rejects it, then the offer is rejected and the game moves to the next round of the insider’s

stage characterized by the coalition S\{γs} (hence, γs becomes an ousider). Otherwise,

the offer is accepted, agent γs pays x
γs
i to each agent i ∈ S\{γs}, and then the final

outcome is given after O(S).

O(S) : Outsiders stage

A partition P , with S ∈ P , is chosen with probability α(S, P ). Denote by Ts+1 the

coalition in P containing the last rejected proposer, γs+1.
6 A proposer β(T ) is randomly

chosen for every T ∈ P\S with |T | > 1, the only restriction is that β(Ts+1) �= γs+1, when

|Ts+1| > 1. The agents in each such coalition T play the game G(T ), described below.

G(T ).1: Player β(T ) makes a proposal x
β(T )
i ∈ R to every i ∈ T\β(T ).

G(T ).2: The agents in T\β(T ), sequentially, either accept or reject the proposal.

When an agent δ(T ) rejects it, then the proposal is rejected. In this case, all the players

in T\δ(T ) play the game G(T\δ(T )) with β(T ) as the proposer and player δ(T ) stays as a

6If S = N , then there is no γs+1, and the grand coalition N is chosen with probability 1.
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singleton. Otherwise, the proposal is accepted, the coalition T is formed, and β(T ) pays

x
β(T )
i to every i ∈ T\β(T ).

Following these games we obtain a partition P (S) consisting of S, the coalitions re-

sulting from the G(T ) games, and the singleton coalitions in P .

Outcome.

We denote by S∗ the coalition of insiders which is formed and P ∗ ≡ P (S∗) the final

partition formed. Agent i ∈ S∗\{γs∗} obtains x
γs∗
i +

∑n

k=s∗ b
γk
i . Agent γs∗ gets v(S

∗, P ∗)−
∑

i∈S∗\{γs∗}
x
γs∗
i +

∑n

k=s∗+1 b
γk
γs∗ −

∑
i∈S∗\{γs∗}

b
γs∗
i .7

The outcomes for the set of outsiders, N\S∗ = {γm}m=s∗+1,...,n, are given as follows:

The final outcome of player γm, for m = s∗ + 1, ..., n, is v({γm}, P
∗) +

∑n

k=m+1 b
γk
γm −∑

i∈Sm
b
γm
i if {γm} ∈ P ∗, where Sm = N\ {γm, ..., γn} . Otherwise, denote by Tm the

coalition in P ∗ containing agent γm and by β(Tm) the proposer in that coalition. The

final payoff of player γm is x
β(Tm)
γm +

∑n

k=m+1 b
γk
γm−

∑
i∈Sm

b
γm
i if γm �= β(Tm) and v(Tm, P

∗)−
∑

i∈Tm\γm
x
γm
i +

∑n

k=m+1 b
γk
γm −

∑
i∈Sm

b
γm
i if γm = β(Tm).

Theorem 2 characterizes the equilibrium outcome of this mechanism:

Theorem 2 If the game (N, v) has negative externalities and it is strictly zero-monotonic-

A, then the mechanism M−(α,w) implements in SPE the value ϕαw(N, v).

Proof. We first prove that every SPE ofM−(α,w) leads to a payoff vector coinciding

with ϕαw(N, v).

Denote by φwj (S, v̂
α) the weighted Shapley value of player j ∈ S in the game with no

externalities (S, v̂α).

We fix the size n of the set of players N and proceed by induction over the number s

of insiders, for s = 1, ..., n. The induction property is the following: for any set of insiders

S of size s, if the game reaches the insiders stage I(S), then at any SPE of M−(α,w)

the coalition S indeed forms and any player j in S receives from this stage onwards (i.e.,

without taking into account the payments made or received before the stage I(S)) the

payoff φwj (S, v̂
α).

(s = 1) If there is one player in S, S = {j}, the rules of the mechanism M−(α,w)

imply that the game directly goes to the outsiders stage O({j}), hence the coalition S

7If |S∗| = 1, then there are no payments x
γ
s∗

i since S∗\{γs∗} = ∅.
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indeed forms. Since the outsiders stage here is the same as inMPWb, we can use Lemma

1 in that paper that states that any chosen partition selected at stage O(S) actually forms.

Given that the probability that partition P � {j} is chosen, is α({j}, P ), the expected

payoff for j from this stage (I({j})) on is given by:

∑

P�{j}

α({j}, P )v({j}, P ) = v̂({j}) = φwj ({j}, v̂
α).

We now assume the induction property holds for any set R with a number of players

smaller than k and prove it also holds for any set S with k players.

(s = k) We can follow similar steps as in MPWb to prove Claims 1 and 2:

Claim 1. In any SPE, the proposer γs makes an offer x
γs
j = φwj (S\{γs}, v̂

α) to every

player j ∈ S\{γs} and these players accept the offer.

Claim 2. In any SPE the aggregate bids are all zero, i.e., Bi = 0 for all i ∈ S.

Moreover, any player i ∈ S is indifferent with respect to the identity of the proposer.

Now, by Claims 1 and 2 (and Lemma 1 inMPWb), if player i is the proposer his final

payoff from this stage onwards is v̂α(S)−v̂α(S\{i})−
∑

j∈S\{i} b
i
j; while if player j ∈ S\{i}

is the proposer, the final payoff from this stage onwards of player i is φwi (S\{j}, v̂
α) + bji .

Given that player i is indifferent between all s possible proposers, we can denote what

player i gets for any of the proposers by ui. Thus we have:

(
∑

k∈S

wk

)
ui = wi


v̂α(S)− v̂α(S\{i})−

∑

j∈S\{i}

bij


+

∑

j∈S\{i}

wj
[
φwi (S\{j}, v̂

α) + bji
]

= wi [v̂
α(S)− v̂α(S\{i})] +

∑

j∈S\{i}

wjφ
w
i (S\{j}, v̂

α)

since Bi =
∑

j∈S\{i}wib
i
j −

∑
j∈S\{i}wjb

j
i = 0.

Hence

ui =
1∑

k∈S wk


wi [v̂α(S)− v̂α(S\{i})] +

∑

j∈S\{i}

wjφ
w
i (S\{j}, v̂

α)


 = φwi (S, v̂α).8

Hence, the induction property holds for S.

This (taking the case where S = N) shows that every SPE payoff of M−(α,w) is

ϕαw(N, v). Indeed, the induction property implies that, at the SPE of the mechanism

8See Lemma 1 in Perez-Castrillo and Wettstein (2001).
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M−(α,w), the agents accept the offer made by the proposer at the first round, and their

final equilibrium payoff is given by φwj (S, v̂
α), which corresponds to the value ϕαw(N, v).

Similar toMPWb we can explicitly construct an SPE strategy profile that yields the

value as an outcome.

We note that the weighted Shapley value for the case of positive externalities can be

implemented as well by modifying the outsiders’ stage in M−(α,w). The basic feature

of the modification is that a rejection in that stage leads to a partition composing of

singletons.
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