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Abstract

Using an analytical model, we investigate the dynamics of a firm with market

power whose advertisements and sales contribute to its customers’ stock of good-

will. An advertising campaign precedes the firm’s sales when customers are not

familiar with its product, (e.g., movies), whereas sales of a new brand of a familiar

product may start without advertising (e.g. Crocs shoes). For constant demand

elasticity, both advertising and sales take place from the start. Two different types

of solutions then emerge: one for low demand elasticity and one for high demand

elasticity. These solutions are analyzed by phase diagrams. We also perform a

numerical sensitivity analysis.
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1 Introduction

During the 1984 Super Bowl XVIII, the Apple Macintosh personal computer was intro-

duced to the world in a TV commercial that cost 1.5 million dollars. Advertisement

campaigns had also preceded commercial marketing of Window’s 95. Some products,

however, are launched without a single advertisement but yet rapidly become well known

with fast increasing sales, e.g., Crocs shoes. Why did Apple launch an advertising cam-

paign before sales began, whereas Crocs started sales without any advertisement? Under

what circumstances are such strategies optimal? This paper addresses these questions

as well as other similar ones.

To tackle these issues, we develop a dynamic model of a firm with market power that

is engaged in production, sales and advertising. At each point in time the firm faces a

downward sloping demand curve, which shifts up and outward with an increase in the

stock of customers’ goodwill for the product. Both advertising and sales are controlled

by the firm and contribute to the rate of growth of the stock of customer goodwill. This

stock of goodwill has a finite upper limit and its rate of growth declines with proximity

of the goodwill stock to this upper limit. There is a constant depreciation rate of the

goodwill stock so that sales and/or advertising are needed to prevent the goodwill from

decaying. Such a setup characterizes a sole producer of a good (monopolist) and the sole

producer of a brand of a differentiated product that engage in monopolistic competition.

Such producers possess market power. We first solve the model in general, and afterwards

in greater detail in subsequent models with the same general specification but with more

specific functional forms.

In the literature, models view advertisement as a tool that is controlled by a firm and

enhances consumers’ demand for the firm’s differentiated product and thus increases

the firm’s sales. Dorfman and Steiner’s (1954) positive model is one of the first formal

static models of an advertising monopoly. Most of the earlier advertising static models
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belong to the ‘persuasive view’ that assumes advertising changes the utility function and

creates brand loyalty (e.g., Comanor and Wilson, 1974). Another approach, known as

the ‘informative approach’, assumes that advertisement facilitates purchases by carry-

ing information to consumers. Ozga (1960) and Stigler (1961) laid the foundations to

this methodology and Dukes (2004) elaborated on reasons for its variety of levels. A

third approach assumes advertising directly enters consumers’ preferences in a manner

complementary to the consumption of the advertised product (e.g., Stigler and Becker,

1977, Hochman and Luski, 1988). A comprehensive survey of all this literature can be

found in Bagwell (2005) and references therein.

Static models, however, cannot capture the effects that a firm’s past performances have

on its current performance, for which dynamic models have been created. One of the

earlier dynamic models is the 1957 Vidale and Wolfe model which maximizes the accu-

mulated discounted net sales while changes in current sales are caused by advertising

and depreciation. The concept of a stock of goodwill influencing sales was introduced

by Nerlove and Arrow (1962). According to their approach advertising accumulates into

goodwill the same way that investment accumulates into capital stock. For details on

the literature emanating from these two papers see, for example Feichtinger, Hartl and

Sethi (1994), and Feinberg (2001). Another branch of the dynamic marketing literature

concentrates on the process of diffusion of sales information by ‘word of mouth’ and

‘repeated sales’ and its adoption.1 In most of these dynamic models, however, the pro-

duction process and demand considerations that constitute the main issues addressed

by static models are ignored and only a single sales variable (that is actually the net

revenue) exists.2

1A comprehensive literature review, which covers these concepts among other, can be found in Sethi

(1977); Dodson and Muller (1978); Bass (1969); Feinberg (2001) and Feichtinger, Hartl and Sethi (1994).
2One of the exceptions is a paper by Hochman and Hochman (1975), which extends Nerlove and

Arrow’s model to include advertising and goodwill stock as well as investment and capital stock.
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In this paper we include the elements of both static and dynamic models. Thus, our

firm is facing a downward sloping demand curve that is shifted by a change in the stock

of goodwill and the firm’s cost is a function of the firm’s output and advertising at

each point in time. In addition, current sales as well as advertising contribute to the

stock of goodwill. We term the process of sales affecting goodwill "learning by buying".

Consequently, our model, unlike the existing literature, includes two processes affecting

consumers’ goodwill: advertising and learning by buying.3

Our results demonstrate the importance of including the demand and production processes

into our dynamic model. It turns out that two different strategies for new firms exist

in our solution: One strategy is for firms facing low demand elasticity and the other is

for firms facing high demand elasticity. The strategies differ in the investment rate in

advertising relative to sales during the initial phase of operations of the firm.

In the next section we sum up the results of the paper. The model is described in Section

2 and we derive the general solution in Section 3. The optimal path to steady state for

more specific functional forms is characterized in Section 4. Numerical solutions and

sensitivity analysis are simulated in Section 5.

1.1 The Model’s Results

In myopic equilibrium the quantity of a good produced equates the marginal cost of

production to the marginal revenue. In contrast, our results show that when sales take

place the quantity of the good sold exceeds the myopic quantity. The "loss" in current

revenue due to a reduction in myopic mark-up is balanced by the added future revenues

obtained from the rise in goodwill attributed to the increased sales. Another conclusion

3In Kalish (1985) and Horsky (1990), as in our model, prices are determined endogenously unlike

other works that either have no prices or in which prices are kept constant. However, unlike our paper,

both Kalish and Horsky have no advertising or goodwill and instead diffusion and adoption of durable

goods are captured by accumulated sales affecting current sales.
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of our model is that when both advertising and sales take place simultaneously, there is

equality between the marginal net cost of goodwill generated by either current sales or

by current advertisement. We also find that the quantity produced along the optimal

path increases when either goodwill or advertising increase while all other factors stay

constant. The price along the optimal path, however, increases only when advertising

decreases and is not affected by changes in goodwill.

By two examples satisfying our general specifications we learn that when customers

have little or no knowledge about the nature of the product, the firm may launch an

advertising campaign prior to sales, a strategy typical to the movies and publishing

industries, among others. On the other hand, when a firm decides to produce a new

brand of a familiar product, circumstances exist in which the firm should commence

sales and delay advertising to a later stage or even terminate advertising entirely, e.g.,

Crocs shoes.

We then assume, in order to obtain an interior solution, full convexity of the model’s

functions. We also assume more specific functional forms, which also include constant

demand elasticity. Then, two distinct alternative strategies emerge, one for high demand

elasticity and one for low. When the demand elasticity the firm faces is low, the firm

starts its operations with a high level of advertising and gradually reduces it to the steady

state level. During that time the stock of goodwill and the price increase continuously

to their steady state levels while sales can increase, decrease or fluctuate.

In a solution typical for high demand elasticity, a firm begins with low levels of sales and

advertising that gradually increase. This process may continue until steady state levels

are attained or, alternatively, at some point in time when the advertising level reaches

a maximum from which it descends to its steady state level. During the decline of

advertising, sales may increase or decrease. In both cases, from inception up to the time

it reaches steady state, the stock of goodwill monotonously increases. The price along
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the optimal path is affected only by advertising, increasing when advertising declines

and vice versa.

The economic intuition of the difference between the solutions of high and low demand

elasticity is as follows: A firm initially seeks a quick build-up of its stock of goodwill in

order to quickly raise the demand for its product. When the demand elasticity is low,

a massive increase in the quantity sold will cause a considerable drop in the product’s

price. Hence, in the low elasticity case, the firm prefers to build-up goodwill by using

advertising rather than excess sales. In the case of high demand elasticity, however, a

massive increase in the quantity sold reduces the price only marginally, thus learning-

by-buying becomes a relatively cheap way to build-up goodwill compared to advertising.

When the model with specific functional forms is solved numerically for several sets

of parameter values, the results of these simulations support the analytical solution.

In addition, by running alternative values of some of the parameters the simulations

provide a partial sensitivity analysis of the model.

2 The Model

Consider a firm that produces and markets a unique good that no other firm is producing.

Such a good may be either a differentiated product in an industry in which other firms

produce close substitutes of the good with different brand names, or there are no close

substitutes in the market and the firm is a monopoly. In both cases, the firm has market

power and can generate customer goodwill (GW), A (t) , to increase the quantity of its

product sold at a given price. Thus,X (t),the quantity of the firm’s product demanded at

time t, is a decreasing function of P (t), the price at time t, and an increasing function of

the stock of GW prevailing at time t , A (t). Accordingly, X (t) = X (P (t) , A (t)) , where
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∂X
∂P

< 0 and ∂X
∂A
> 0. The elasticity of the current demand is defined as ε

X,P
= −∂X

∂P
P
X

and by assumption 1 < ε
X,P

<∞.4

For convenience, and without loss of generality, we choose X (t) and A (t) as the in-

dependent variables in the current demand function facing the firm so that the price

becomes a function of the two of them, i.e., P (t) = P (X (t) , A (t)) , ∂P
∂X

< 0, ∂
2P
∂X2 ≥ 0

and ∂P
∂A
> 0. The GW, A (t), is a stock variable generated by the firms advertisement I

and the quantity of its product sold, X, according to the following equation of motion:

Ȧ ≡
dA

dt
= (g(X (t)) + h (I (t))) (1− A (t))− ψA (t) . (1)

The term g(X) in the above equation of motion (1) is the current sales multiplier in the

generation of GW, where ∂g
∂X
> 0. The contribution of current sales to the stock of GW

is either due to the effect it has on the willingness of the customer to buy in the near

future more of the product (i.e., repeated sales) or by the buyer informing others about

the product he just bought and consumed, thus creating goodwill in others as well (i.e.,

word of mouth) and this increases the willingness to buy. The variable I (t) denotes

advertisement, an investment in GW independent of the firm’s sales. h (I) denotes the

advertisement multiplier in the generation of GW, where ∂h
∂I
> 0. The parameter ψ

is the constant rate of GW decay as a result of forgetfulness and entrance of newer

products. The index (1− A) measures the remaining potential of the firm’s GW and

in the equation of motion it implies decreasing returns to investment in the stock of

GW. Note that (1) implies that the maximum amount of GW is normalized to 1, and

0 ≤ A (t) < 1, since, as A approaches 1, Ȧ turns negative and A declines. Thus, A (t) is

the proportion of maximum goodwill utilized by the firm to enhance the demand for its

product. To sum up the arguments: the GW, A, is affected by advertisement, I, and by

4In an industry with many firms, each of which producies a unique good that is a close substitute

of each of the other goods produced by the firms in the industry, the demand elasticity that each firm

faces is a finite number much larger than one, i.e., 1	 ε
X,P

<∞ .

If there is a single monopoly in an industry without close substitutes, its demand elasticity is a

number higher than one but not much higher, i.e., 1 < ε
X,P

	∞.
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learning-by-buying (word of mouth and repeated sales) represented by the firm’s output

X. In addition, A is bounded between zero and one and displays decreasing returns to

investment.5

The firm bears the costs of producing output X, C1 (X) as well as the cost of adver-

tisement I, C2 (I). Both cost functions have positive first derivatives and non-negative

second derivatives. Accordingly, the current profit function, π (t), is

π (t) = P (t)X (t)− C1 (X (t))− C2 (I (t)) .

The discount rate in the economy is a given positive parameter r < 1. All variables

are functions of time t, although in what follows t is omitted unless it is essential for

understanding the equations. Accordingly, the variables of our model are A, a state

variable with λ as its co-state, and the control variables X and I. Note that both X and

I can only be non-negative. In this paper we are interested in the optimal strategy of

a firm around its inception, i.e., we are essentially interested in the solution beginning

with A (0) = 0. The firm maximizes the following inter-temporal profit function at time

t = 0 at which time the firm is founded,

L(0) = max

∫ ∞

0

e−rt [P (X,A)X − C1 (X)− C2 (I)] dt

s.t. Ȧ = (g(X) + h (I)) (1− A)− ψA;

A (0) = 0, −I ≤ 0 and −X ≤ 0. (2)

We adopt the plausible assumption of r ≤ ψ, i.e., r, now standing for the alternative

cost of aggregate consumption in terms of enhanced investment in the stock of GW, is

smaller than the decay rate of GW, ψ.

5Note that for g (X) ≡ 0 and h (I) ≡ I, we obtain an equation of motion similar to that of Gould

as well as to that of Vidale and Wolfe. Except for the term (1−A) this equation is also similar to the

equation of motion of Nerlove and Arrow.
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In what follows we specify necessary conditions for an optimal solution for the firm and

try to typify some solutions that satisfy these conditions.

3 The Model’s Solution

We first derive the overall necessary conditions for any of these three types of the model’s

solutions: a corner solution, an internal solution or a null solution. To this end, let H (t)

designate the Hamiltonian formulated from L(0) below:

H (t) = P (X (t) , A (t))X (t)− C1 (X (t))− C2 (I (t))+

+λ [(g(X (t)) + h (I (t))) (1− A (t))− ψA (t)] + δ (t) I (t) + η (t)X (t) ,

where δ (t) and η (t) are the Kunn-Tucker multipliers associated with the two inequalities.

Three conditions then follow:

1) ∂H
∂X

= PX (X,A)X + P (X,A) − C ′1 (X) + λg′ (X) (1−A) + η = 0, where η ≥

0, and ηX = 0.

2) ∂H
∂I
= −C ′2 (I) + λh

′ (I) (1− A) + δ = 0, where δ ≥ 0, and δI = 0.

3) λ̇ = rλ− ∂H
∂A
= λ (r + ψ + g(X) + h (I))− PA (X,A)X,

where an apostrophe in a superscript of a single-variable function designates the first

derivative of the function, a multi-variable function with a variable in its subscript stands

for the derivative of the function with respect to the variable and a dot above a function

denotes derivation with respect to time.

The necessary conditions specified in section 3.1 follow from the three conditions above.

Then, the necessary conditions are used to obtain two examples of corner solutions and

to characterize in detail a model with specific functional forms as described in Section

4. It should be noted that in our model there is always a maximum that satisfies the

necessary conditions, i.e., there is always either an internal solution or a corner one. The
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null solution X (t) = I (t) = A (t) = 0 is always a local optimum and if costs are higher

than benefits it is also the global optimum. In what follows, we characterize solutions

with positive-valued variables.

3.1 Necessary Conditions

The differentiation of the Hamiltonian with respect to advertising, I (condition 2 above) ,

yields the (in)equality of the shadow value of the marginal product of advertisement

I, λh′ (I) (1−A) to the marginal current cost C ′2 (I) , i.e.,

λh′ (I) (1− A) ≤ C ′
2 (I) =⇒ λ ≤

C ′
2 (I)

h′ (I) (1− A)
, (3)

where 0 ≤ A < 1 and equality holds in (3) when I > 0. When advertising is pos-

itive, equality holds between
C ′

2 (I)

h′(I)(1−A)
, the imputed cost of a unit of Ȧ generated by

advertising, and λ, the shadow price of a unit of GW.

The differentiation of the Hamiltonian with respect to the outputX (see condition 1 above)

yields the (in)equality between the sum of the marginal revenue of X plus the value of

the marginal contribution of X to Ȧ, and the current marginal cost of X, MC (X),

namely

MRX (X,A) + λg
′(X) (1− A) ≤ C ′1 (X) =⇒ λ ≤

C ′1 (X)−MRX (X,A)

g′(X) (1− A)
(4)

where 0 ≤ A < 1, and for X > 0 equality holds. MRX (X,A) is the marginal revenue of

X and MRX (X,A) ≡
∂(XP (X,A))

∂X
= P (X,A) +XPX (X,A). The marginal contribution

of X to A is λg′(X) (1− A) , and MC (X) = C ′1 (X) .
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Figure 1: Investment in Goodwill of Learning by Buying

The case of positive output X and equality in (4) is depicted in Figure 1. While a

monopolistic myopic firm in a static model equates MRX to MC (X) , i.e., produces

the output Xm shown in Figure 1, in our dynamic model the firm produces an output

Xo, where Xo > Xm. The additional marginal cost above the marginal revenue at the

optimal output Xo is equal to the shadow value of the marginal contribution of sales to

the creation of future GW.

The rate of change of the shadow price, λ̇, is obtained by differentiating the Hamiltonian

with respect to the stock of GW, A, (see 3 above) and is given in (5) below, for λ > 0.

λ̇ = (r + ψ + g (X) + h (I))λ−MRA (X,A) =⇒

λ̇+MRA (X,A)

λ
= (r + ψ + g (X) + h (I)) for λ > 0, (5)

where MRA (X,A)
(
= ∂(XP (X,A))

∂A

)
= XPA (X,A), is the marginal revenue of A. In the

second line of (5) the two terms on the right-hand side of the equation are the rate of

growth of the GW price, λ̇/λ plus the current marginal revenue of GW, MRA, normal-

ized by its price λ. On the right-hand side of (5) , the first two terms, r + ψ, are the

maintenance costs per unit of GW and the last two terms measure the contribution to

Ȧ of learning by buying, g (X) and advertisement, h (I) .
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The necessary conditions (3) , (4) and (5), the equation of motion (1), the initial con-

dition and the non-negativity restrictions specified in (2), all together determine the

solution of the maximization problem specified in (2).

3.2 The Model’s Internal and Corner Solutions

From equations (3) and (4) and after eliminating λ we obtain

L (X,A) ≡
C ′1 (X)−MRX (X,A)

g′(X)
� C ′

2 (I)

h′ (I)
≡ R (I) (6)

Since the variable A fulfills 0 ≤ A < 1, the term (1− A) is positive and it therefore, was

eliminated from (6). The above equation states that the optimum can consist either of

an internal solution in which both X and I are positive or of a corner solution in which

either X or I vanish.

3.2.1 The Internal Solution

When in the optimum both I and X are positive and A fulfills 0 ≤ A < 1, then equality

holds in (6) . This is a case of an internal solution. Additional conditions on the functions

of the model, on top of the conditions assumed in section 2 are needed to ensure the

existence of an internal solution. Such additional conditions are henceforth assumed:

1) additional conditions on the demand function P (X,A), i.e., ∂P
∂X

< 0, ∂
2p

∂X2 > 0 and

∂P
∂A
> 0, 2) conditions on the advertisement multiplier h (I) , i.e., ∂h

∂I
> 0, ∂

2h
∂I2

≤ 0 and 3)

conditions on the sales multiplier g (X) , i.e., ∂g
∂X
> 0, ∂2g

∂X2 ≤ 0.

In an internal solution, the firm has two current policy instruments. The first is adver-

tisement I that increases the future stock of GW, A, and thus shifts upward the future

price for a given quantity demanded with its future revenues. The second is the quantity

sold of the product, X, with its double impact of current income generation through

sales and the increase of future stock of GW, A, and with it future revenues.
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Accordingly, in the internal solution equalities hold in (3) and (4) from which we obtain,

C ′1 (X)−MRX (X,A)

g′(X)
=
C ′
2 (I)

h′ (I)
. (7)

The equality in (7) is between the marginal net cost of GW generated either by current

sales or by current advertisement. By totally differentiating (7) we obtain,

[
C ′′1 (X)−

∂MRX(X,A)
∂X

g′(X)
−
g′′(X) (C ′1 (X)−MRX (X,A))

(g′(X))2

]

dX +

+

[
−

1

g′(X)

∂MRX (X,A)

∂A

]
dA +

[
−
h′ (I)C ′′

2 (I)− C
′
2 (I)h

′′ (I)

(h′ (I))2

]
dI = 0. (8)

From (8) we obtain the following two derivatives (Eqs. (9) and (10)):

0 <
∂X

∂I
|dA=0 = (9)

(
(g′(X))

(h′ (I))

)2
[h′ (I)C ′′

2 (I)− h
′′ (I)]

[
g′(X)

(
C ′′1 (X)−

∂MRX
∂X

)
− g′′(X) (C ′1 (X)−MRX)

] ,

where MRX is a function of X and A only. The inequality in (9) is proved as follows:

Since the first-order derivatives g′(X), h′ (I), C ′1 (X) and C ′
2 (I) are positive, the second

order derivatives of the cost functions C1 and C2 are also positive and the second order

derivatives of h and g are non-positive, it follows that the numerator of the equation

above is positive. Since C ′1 (X)−MRX (X,A) must be positive due to the non-negativity

of λ in (4) and because ∂MRX(X,A)
∂X

is negative due to the negative slope of the demand

curve, the denominator of the equation above is also positive. Positive numerator and

denominator imply that the whole expression is positive.

In a similar way we obtain (10) below,

0 <
∂X

∂A
|dI=0 . (10)

=
(g′(X))

[
∂MRX(X,A)

∂A

]

g′(X)
(
C ′′1 (X)−

∂MRX(X,A)
∂X

)
− g′′(X) (C ′1 (X)−MRX (X,A))

.
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The inequality in (10) is proved similarly to the proof of the inequality in (9).

In (3) we obtained λ as a function of I and A alone. By differentiating the expression

with respect to time we now obtain,

λ̇ =
h′C2”− C

′
2h

′′

(h′)2 (1−A)
İ +

C ′
2

h′ (1−A)2
Ȧ. (11)

Let EC ′

2
= C2”

C ′

2
I be the elasticity with respect to advertising, I, of C ′

2 − the marginal

cost of advertising. In the same way Eh′ =
h′′

h′
I is the elasticity of h′ − the marginal

advertising multiplier of GW with respect to advertising. Then by substituting λ from

(3) and the elasticities EC′2 and Eh′ defined above into (11) and rearranging terms, we

obtain
λ̇

λ
=

(
EC′2 − Eh′

) İ
I
+

Ȧ

1− A
. (12)

Equation (12) implies that the rate of change, λ̇
λ

, is decomposed into two components:

current and inter-temporal. The current component measures the net cost of the rate

of change of advertising, İ
I
, and the inter-temporal component measures the growth of

GW, Ȧ, relative to the remaining growth potential of GW, (1− A) .

By substituting (11) into (5) together with (3) and (1) we obtain the expression for the

change over time in advertising,6

İ =
1(

C,,2
C′2
− h′′

h′

)
{
r +

ψ

(1−A)
−
h′

C ′
2

(1− A)MRA

}
, (13)

for 0 ≤ A < 1 and 0 < I. Later on we will characterize the internal solution by using

the equations derived here.

6When I = 0, either there is an inequality in (3) and then İ = I = 0 or there is an equality in

(3), i.e., λ = C ′

2
(0)

h′(0)(1−A) and then λ̇ in (5) must be positive for both λ and I to grow. Only then can

we obtain (11). From λ̇ > 0 we obtain (r + ψ + g (X (0, A)) + h (0)) > h′(0)
C ′

2
(0) (1−A)MRA (X,A) and

substituting that into (13) yields İ < 1(
C
,,
2

C′
2

−h′′

h′

)
{

Aψ
(1−A) − (g (X (0, A)) + h (0))

}
. For sufficiently small

A the term in the RHS is negative, but İ cannot be negative when I = 0. Hence, in an internal solution,

I cannot be zero for small A, i.e., I is discontinuous at I = 0. Therefore, I = 0 =⇒ İ = 0. Note that it

can also be shown that İ (A = 1, I = 0) = 0.
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3.2.2 Corner Solution I: I (t = 0) = 0

The relation between the (in)equalities in the necessary conditions and corner solution

I is as follows: If in the optimum I (t) = 0 and X (t) > 0, then 0 ≤ A (t) < 1, equality

holds in (4) and (weak) inequality holds in (3) . In this case a weak inequality holds in

(6) as well and the left-hand side of the equation, L (X (t) , A (t)) and the right-hand

side of (6) , R (I (t)) fulfill L (X (t) , A (t)) ≤ R (I (t)).

If at time t the left-hand side of (6), L (X,A (t)), is for all non-negative pairs (I,X)

less than R (I), the equation’s right-hand side, then the optimal solution at time t is a

corner solution with I (t) = 0 and X (t) > 0, i.e., at time t the firm produces a positive

quantity of good X and does not advertise.

To demonstrate such a solution consider the following example:

First, let h (I) = I2 + 2I and C2 (I) = I2 + I. Then, for I > 0, the right-hand side of

(6), R (I) = 1+1/2I
1+1/I

. R (I) is monotonic increasing with I in the domain 0 < I <∞, and

obtains its values in the interval 1/2 < R (I) < 1.

Second, we designate C1 (X) = 2X, g(X) = X and

P (X) =





1.75 + 10A−AX, for 0 ≤ X < 1.75+10A

A

0, otherwise.
. (14)

Then, the left-hand side of (6) is L (X,A) = 1
4
−A (10− 2X).

When A = 0, the price function is P (X) = 1.75, i.e., the firm is facing then a demand

curve of infinite elasticity and is therefore a price-taker. The left-hand side of (6),

L (X, 0) = 0.25 < R (I) ,the right-hand side of (6) for all I. Therefore at A = 0 the

solution is a corner solution with X (t = 0) > 0 and I (t = 0) = 0. Due to learning-by-

buying, the initial sale creates a positive GW, A. Once A is positive, there are sufficiently

large X ′s so that L (X,A) is larger than R (I = 0) =0.5. Thus, when A is positive there
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may be an internal solution where bothX and I are positive. Initially, however, I (0) = 0

and X (0) > 0, which is a corner solution.

Such a pattern can be traced in markets of differentiated products with many brands and

high demand elasticity for each brand. A start-up firm in such a market will first have to

distinguish its product through learning by buying and commence with advertising at a

later stage. Examples of such firms include start-up restaurants, small stores, confection

manufacturers and other small producers of a differentiated product (Crocs shoes).

3.2.3 Corner Solution II: X (t = 0) = 0

If in the optimum at time t there is a corner solution in which I (t) > 0, X (t) = 0 and

0 ≤ A (t) < 1, then L (0, A (t)), the left-hand side of equation (6) , is larger or equal to

the equation’s right hand side, R (I (t)). Equality must hold in (3) and (weak) inequality

hold in (4) .

If in the optimum at time t the left-hand side of (6), L (X,A (t)) where 0 ≤ A (t) < 1, is

larger than the equation’s right-hand side, R (I) for all non-negative pairs (I,X), then

the optimal solution is a corner solution with I (t) > 0 and X (t) = 0. Namely, at time

t the firm advertises but does not produce.

To demonstrate such a corner solution, consider the example in corner solution I but

with the inverse demand function replaced by

P (X) =





A (100−X) , for 0 ≤ X ≤ 100

0, otherwise.
.

In this case, at time t = 0 since A (0) = 0 there is no demand for the firm’s product

and R (I) < L (X, 0) for all X and I. Therefore, at time t = 0 the firm advertises

but does not sell. It may begin to sell as well only when the GW exceeds the level

of A = 0.01, which is the level at which the demand price may justify sales. Indeed,
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when A ≥ 0.01 there are positive pairs (X, I) for which equality prevails in (6) . Such a

pattern is typical to the movies industry, sport events, publishing of celebrities’ books,

among others. Note that in such cases the beginning of sales is preceded by a promotion

campaign.

In the next section we introduce specific functional forms into our model in order to gain

more insight into the behavior of the firm along the optimal path in an internal solution.

4 The Model with Specific Functional Forms

In this section we assume specific functional forms that satisfy the conditions for an

internal solution. These functional forms are sufficiently general to typify the industry,

yet they are sufficiently specific to allow full characterization of the model’s solution.

4.1 The Functional Forms

First, we assume that the inverted demand function, P (X,A) , is the constant elasticity

function P = P0 (1 + sA)X
−γ , where P0, γ, and s are given parameters, P0 > 0 ,

0 < γ < 1 and 1 ≤ s < 10. The parameter s measures the maximum capacity of

goodwill. Note that the demand elasticity, εX,p =
1
γ

, fulfills 1 < 1
γ
<∞.7

Next we assume that g (X) = βX and h (I) = αI where α and β are positive given

parameters. The cost functions are C1 (X) = bX and C2 (I) =
c
2
I2 where c is a given

positive parameter. Thus, the revenue function is R (X,A) = P0 (1 + sA)X
1−γ , with

7Such a demand function is, for example, the demand of a community of N households, all of

which have the same quasi-linear utility function u (xi,A, zi) = Ko (1 + sA)x
(1−γ)
i + zi, where xi is the

quantity of the firm’s product consumed by household i and zi stands for all other goods consumed by

the household. Then, the inverted demand function, P0 (1 + sA)X−γ , is the inverted aggregate demand

function of the community of N, where Po = Ko (1− γ)N
γ and X =

∑
xi.
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marginal revenue functions, MRX = P0 (1− γ) (1 + sA)X
−γ = (1− γ)P (X,A) and

MRA = P0sX
1−γ. Substituting the above in (2) we obtain the Lagrangian Ls(0) in

(15) , for the specific functional forms model.

Ls(0) = max

∫ ∞

0

e−rt
[
P0 (1 + sA)X

1−γ − bX −
c

2
I2

]
dt

s.t. Ȧ = (βX + αI) (1−A)− ψA;

A (0) = 0, −I ≤ 0 and −X ≤ 0. (15)

The solutions to the maximization of Ls(0) in (15) is internal and has no corner solutions

(see Appendix A).

4.2 The Solution of the Model with the Specific Functional

Forms

We first compute the current quantity and price of the product by substituting the

specific functional forms specified in section 4.1 into (7) . We obtain,

X =



P0 (1− γ) (1 + sA)

β
(
b
β
− c

α
I
)





1
γ

. (16)

Since I cannot be negative, the lower bound of the quantity sold isXmin (A) =
[
P0(1−γ)(1+sA)

b

] 1
γ

and since X must be finite there is an upper bound of advertising Imax =
bα
βc

. It should

be noted that Imax is independent of γ, and has the same value for all γ. Therefore,

X =

[
P0 (1− γ) (1 + sA)

βc
α
(Imax − I)

] 1
γ

. (17)

From (17) we obtain,

∂X

∂I
=

X

γ (Imax − I)
> 0

∂X

∂A
=

sX

γ (1 + sA)
> 0 (18)
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Note that by substituting X into P = P0 (1 + sA)X
−γ we obtain the price along the

optimal path as a function of I alone as follows:

P =
β

(
b
β
− c

α
I
)

(1− γ)
, (19)

where ∂P
∂A
= 0 and ∂P

∂I
< 0. Hence, a change in the stock of GW does not affect the

equilibrium price, whereas an increase of advertisement along the optimal path reduces

the price.

4.2.1 The Singular Curves

The characterization of the model’s solution is done by the technique of phase diagrams:

in the (A, I) plane we plot the singular curves İ = 0 and Ȧ = 0 and their intersection,

the steady state point. We will then determine the direction of movement over time on

the (A, I) plane and use this information to find the optimal path to the steady state.

At first we calculate the equations of the singular curves.

By substituting from section 4.1 the specific functional forms into (13) and equating the

result to zero, we obtain the singular curve İ = 0.

İ ≡ I

(
r +

ψ

(1− A)

)
−
αs

c
(1−A)P0 (X)

1−γ = 0, (20)

where 0 < I < Imax. By substituting the specific functional forms into (1) and equating

the result to zero we obtain the singular curve Ȧ = 0,

Ȧ ≡ (βX + αI) (1− A)− ψA = 0, (21)

from which we obtain the following expression for A as a function of I and X along the

curve Ȧ = 0,

A|Ȧ=0 =
βX + αI

βX + αI + ψ
. (22)

Consequently, 0 ≤ A|Ȧ=0 < 1.
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4.3 Phase Diagrams Analysis

In this section we characterize and analyze the solution of the functional forms model

introduced in the previous section by using the phase diagrams technique. In the previous

section we calculate the singular curves and in Appendix B we calculate the layouts and

slopes of the two singular curves İ = 0 and Ȧ = 0 in the [A, I] plane. The two curves are

displayed in figures 2 and 3. The directions of growth of A and I in various locations on

the [A, I] plane are depicted by arrows in figures 2 and 3 and are calculated in Appendix

B.

There are two typical solutions to our model with specific functional forms, which are

described by cases I and case II below. In Case I are included models whose demand elas-

ticities are relatively low, i.e., 1 < εXp ≤
(

ψ
s(r+ψ)

+
(
1
s
+ 1

))
, where εXp

(
= −∂X(P,A)

∂P
P
X

)

is the demand elasticity and in the model with specific functional forms εXp = 1/γ. Case

II includes models with higher demand elasticities, i.e.,
(

ψ
s(r+ψ)

+
(
1
s
+ 1

))
< εXp <∞.

Below we present the two cases.

4.3.1 Case I: s

( ψ
(r+ψ)

+(1+s))
≤ γ < 1.

Case I is depicted in Figure 2. The domain of γ in case I can be divided into two

consecutive intervals, s
1+s

≤ γ < 1, and s

( ψ
(r+ψ)

+(1+s))
≤ γ < s

1+s
. The price elasticities of

the inverted demand function P (X,A) are: µ
P,X

(
= − ∂P

∂X
X
P
= 1/εX,P

)
= γ and µ

P,A
=

∂P
∂A

A
P
= sA

1+sA
. Because s

1+s
≥ sA

1+sA
= µp,A, for all A (since 0 ≤ A ≤ 1), in the first interval

γ = µp,X > s
1+s

> µp,A. Thus, in the first interval of case I, the price elasticity with

respect to quantity is larger than the price elasticity with respect to GW. The second

interval in Case I extends the validity of the results depicted in Figure 2 to slightly lower

γ′s. Note that for firms with ψ much larger than r, the optimal path depicted in Figure

2 still prevails, even if γ is considerably smaller than s
1+s

.
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Figure 2: The Optimal Path in Case I.

The singular curve İ = 0 in Figure 2 has two branches that connect at point (γImax, A (γImax))

where its slope is infinite. The slope of the lower branch of the curve is negative while

the upper branch has a positive slope. Both branches of İ = 0 terminate at A = 1, the

upper branch at I = Imax and the lower at I = 0. The singular curve Ȧ = 0 in Figure

2 starts from the A-axis at A = A > 0 and ends at (Imax, 1) at the upper right hand

corner and its slope is always positive.

The intersection of the two singular curves, İ = 0 and Ȧ = 0 yields the steady state

point (I∗, A∗) . The optimal path of a new firm depicted in Figure 2 is characterized by

initial high advertising expenditure and sizable sales. As the stock of GW increases due

to advertisement and learning by buying, advertising declines. The quantity sold may,

however, increase or decrease while the GW increases. The reason for this ambiguity

is that while A increases along the optimal path and contributes to an increase of X

(see (18)), I declines along the path and therefore has the opposite effect on X thus

leaving the end result of X ambiguous. The price P (X,A) however increases along the

optimal path, as indicated by (19) . When the firm starts with an initial stock of GW

A0, A0 > A
∗ , advertisement increases while GW decreases and the price decreases. The

quantity sold, X, is ambiguous along the optimal path, as it is for the case of A0 < A
∗.

The rationale behind the ambiguity of the change in sales along the optimal path is that
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two opposite effects are influencing the sale process. The first causes an increase of X

by an upward shift of the demand curve, generated by an increase of GW. The second

effect is due to a movement on the demand curve which cause a decline of sales and a

price raise.

Low demand elasticity products are often essential goods produced by a few firms in

markets that are difficult to enter.8

4.3.2 Case II: 0 < γ < s

( ψ
(r+ψ)

+(1+s))
.

The solution of this case is depicted in Figures 3a and 3b, where γ is relatively low.

0=I&

max
Iγ

max
I

0=I&

I

A

nA0
1

0=A&

⋅

⋅
⋅⋅ ⋅

( )**
, AIpo.

A

po.

Figure 3a: The Optimal Path of Case II- Steady State to the Right of An.

In Figures 3a and 3b the two branches of the singular curve İ = 0 are separated. The

lower branch is bell-shaped with a peak at An and the upper branch is U-shaped with

its bottom also at An . As in case I, the singular curve Ȧ = 0 intersects the lower branch

8An example to a low demand elasticity product is Lipitor, which is a drug taken by patients for

cholesterol reduction. Lipitor is an essential drug protected by a patent. Another example to Case I

product is aeroplanes. Note that potential buyers to which these firms’ advertisement aims are not the

general public but a specific part of it. In the case of a new drug the targeted population are medical

doctors and in the case of new aeroplanes the target population are aviators and aviation corporations.
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of İ = 0 at the steady state point (I∗, A∗) . In Figure 3a the steady state is to the left of

An and in Figure 3b it is to the right.

maxIγ

max
I

I

0=I&

A

nA0
1

0=A&

0=I&

A A*

I* O.P.

O.P.

Figure 3b: The Optimal Path of Case II- Steady State to the Left of An.

In both figures, the optimal path of a firm with initial zero GW starts from low levels of

advertising and sales that increase as the GW increases. In Figure 3b, where the steady

state is to the left of An, advertising and sales increase monotonously towards steady

state. In Figure 3a, on the other hand, the steady state is to the right of An; advertising,

I, overshoots its steady state level I∗ and approaches it from above. Nevertheless, cases

I and II do not differ significantly. Note that the optimal path on the right-hand side of

the steady state point in 3a (3b) is the mirror image of the optimal path on the left-hand

side of the steady state point in 3b (3a).

High demand elasticity that prevails in case II is typical of differentiated products, where

all brands of a differentiated product are close substitutes of each other and each brand

is produced by a different firm. Consequently, each firm is facing a demand curve of

high elasticity and has limited monopoly power.9

9Examples of markets of perishable goods with high demand elasticity are markets of prepared

food items, confections, clothing and flights of commercial airlines. Flats in condominiums, cars and

inexpensive watches are examples of high demand elasticity of durable goods.
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This situation raises the question of why the optimal paths in Case I and Case II differ?

When answering this question we should first note that a massive build-up of GW

through learning-by-buying requires sales beyond the myopic equilibrium level of sales.

In Case I, since the demand elasticity is higher than one but close to it, the shape of

the demand curve is such that a sizeable increase in sales entails a considerable price

reduction. Therefore, a build-up of GW in Case I by learning-by-buying will drive the

price level far below the price of maximum current profits, thus rendering learning-

by-buying far more expensive than advertising. Accordingly, in our model, the initial

build-up of a GW stock in Case I is done by advertising and as sales and GW stock grow,

advertising gradually declines. In Case II, in which demand elasticity is high, the reverse

is true and a massive expansion of sales causes only a slight reduction of price, rendering

the learning-by-buying process the preferred engine for building up initial GW.

5 Simulations of the Model

In the present section, specific numerical values are chosen for the parameters of the

model with specific functional forms discussed in section 4 and numerical solutions are

calculated by simulations. The simulation design is based on the set of necessary condi-

tions for the optimal solution of the specific functional forms model.

In the following analysis we focus on two values of γ, the demand price elasticity, namely

γ = 0.7 of Case I and γ = 0.3 of Case II. For each of these γ’s we assign a Base Model

with the same set of parameters other than γ, as follows:

Table 1: The Base Model

α = 0.0007 β = 0.0007 ψ = 0.2 s = 1.5

r = 0.1 b = 2.0 c = 0.0005 T = 50
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where T is the number of years simulated. Figures 4 and 5 describe the optimal path of

the Base Models for γ=0.7 and γ=0.3, respectively, where variables I, A,X and P are

each depicted as a function of time. Figure 4 corresponds to Case I as depicted by the

phase diagram in Figure 2, and Figure 5 corresponds to Case II as depicted by the phase

diagram in Figure 3a. Note that while the endogenous variables in the phase diagrams

are implicit functions of time, in the simulation results time appears as an independent

variable.

Another feature that distinguishes the simulation solution from the analytic is that

the former portrays a numerical solution to a numerical problem, whereas the analytic

solution covers the entire range of the problem parameters.

The following table presents the initial, final, maximum and minimum values of the

resulting variables of the two base cases.

Table 2: Results of The Base Models

\ γ′s

variables\

γ = 0.7

initial final

γ = 0.3

initial final

I 29.72 27.89 174.42 174.09 @

A 0 0.09 0 0.43

X 0.67 0.80 7.49 39.03

P 6.62 6.62 2.73 2.73

π∗ § 3.52 21.03

@ The maximum value of I(t) is I(t=3.5)=182.85, see also Figure 5.

Thus, Table 2 presents an example of Case II as depicted in Figure 3a.

§ In annual current values at the steady state.
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Figure 4a: Optimal path of I and A 

Along the Temporal Axis for    =0.7.γ
Figure 4b: Optimal path of X and P 

Along the Temporal Axis for    =0.7.

Figures 4 and 5 and Table 2 teach us about the optimal behavioral patterns over time

of a firm with market power in two distinct cases: one, of a firm with a low demand

elasticity of 1.43 (γ=0.7) and the second of a firm facing a higher demand elasticity

of 3.33 (γ=0.3). In the first case, the firm faces low marginal revenues (of X and A)

relative to the marginal costs (of X and I). Consequently, the firm rapidly approaches

steady state levels typified by low levels of sales, advertising and GW. Thus, case I is

characterized by practically a myopic behavior of the firm (see the first column in Table

2.). In the second case of higher demand elasticity, the firm increases its sales over

time, creating through the learning-by-buying effect an increasing stock of GW. The

resulting demand creation (a shift of the demand curve to the right) is strengthened by

relatively high levels of advertising expenditure that further increase the stock of GW.

Consequently, the convergence to steady state is relatively long. Thus, the second case

is characterized by the firm’s dynamic behavior (see the second column in Table 2).
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Table 3 below presents results of a sensitivity analysis we performed on the base case of

γ = 0.3. In each run, represented by a row in Table 3, we changed one of the base case

parameters while keeping the rest of the parameters unchanged . We do not present

results of the sensitivity analysis based on the case of γ = 0.7 because these results are

similar to those of the case of γ = 0.3 and since the dynamics in the case of γ = 0.7

are less significant. The Base Model with all its variations is characterized by the phase

diagram depicted in Figure 3a, except for the variation (raw) of b = 2.5 (see Table 3)

that is typified by the phase diagram in Figure 3b. In all these cases, the firm adopts a

dynamic policy with aggressive sales and advertising that result in increasing GW and

with it demand creation. Indeed, the higher the initial advertising (column 2) and sales

(column 4), which, in turn are associated with lower initial current profits (which are

sometimes even negative, see column 6), the higher are the discounted profits,
∫ T
0
e−rtπdt

(column 6). In general, as listed in Table 3, an increase in a cost parameter (such as

ψ and b) reduces total output, profits, advertising and GW stock, while an increase in

beneficial parameters (such as s, α and β) has the opposite effect.

27



Table 3: Sensitivity Analysis of the Base Case for γ = 0.3

Initial and Steady State Values

\variables

parameters\
A
1

I
2

Î @

3
X
4

P
5

π �
6

∫ T
0
e−rtπdt

Base

Case





initial

final

0

0.427

174.4

174.1
183.8

7.49

39.05
2.7

-2.12

21.03
138.5

s = 1





initial

final

0

0.275

94.48

92.83
95.33

6.89

15.70
2.8

3.29

10.26
81.2

s = 2





initial

final

0

0.569

304.9

273.7
324.7

8.41

103.0
2.7

-17.9

49.39
807.6

ψ = .25





initial

final

0

0.337

143.5

153.3
154.7

7.29

28.8
2.7

0.35

15.66
112.4

b = 2.5





initial

final

0

0.287

94.33

104.5
104.5

3.27

10.9
3.5

1.08

8.12
56.8

α=.001

β=.001





initial

final

0

0.422

249.2

202.4
252.8

8.00

59.8
2.7

-10.1

32.33
225.0

@The optimal path of I in the case of γ = 0.3 corresponds to Figure 3a, and has a maximum

designated by Î . This is true for all cases other than b =2.5, which is described in Figure 3b.

� π is the value of the current profit and
∫ T
0
e−rtπdt is the sum of the discounted profits.

Another feature worth noting in the simulation runs is the lack of price variations, not

only within each run where variations are less than one percent of the price, but also

between the different runs. Except for the case of b = 2.5, in which the price is 3.5, the

price in all the other cases is about 2.7. It stands to reason that the marginal cost of X,

b, is the essential factor in the price determination. It is interesting to note that most

of the literature cited in this paper assumes the price is constant over time, whereas in

our case, this is an endogenous result.

Below are additional features about the sensitivity analysis:
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• Changes in s, the effectiveness coefficient of A: Initially, the quantity ofX is deter-

mined mostly by the elasticity of demand that is a static consideration. Therefore,

the spread of the initial quantities sold for the different levels of s is relatively

small. Final sales, however, are determined mainly by the firm’s policy along the

optimal path and therefore the spread of final sales is greater. The impact of the

dynamic behavioral patterns of the firm is further demonstrated by the different

advertisement expenditures for the various levels of s and the corresponding GW

stocks.

• Changes in ψ, the coefficient of GW’s decay: An increase in the decay coefficient

hinders the growth of stock A and reduces its dynamic impact. Since in this case

of γ = 0.3 the dynamic impact is considerable, changes in ψ are significant.

• An increase in b, the marginal cost of production of X, to 2.5: The build-up of

X, I, and A is gradual and steady, maintaining a high and constant price level.

Of all runs depicted in Table 3, this is the only one typified by Figure 3b whereas

all the other runs are typified by Figure 3a.

• An increase to .001 of α and β, the coefficients of advertisement and sales in

the equation of motion, respectively: The result is similar to the result from an

increase in s. The result is an increase in I, X and A along the optimal path.
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6 Appendices

6.1 Appendix A: Nonexistence of Corner Solutions in theModel

with Specific Functional Forms

In this appendix, we argue that the two conditions in the general case for Corner So-

lutions 1 and 2 in section 3.2, are not fulfilled in the solution to our specific functional

forms model.

To show this we substitute the parameters of the specific functional forms model for

A = 0 into (6) to obtain (23),

L (X) =
b− P0 (1− γ) (X)

−γ

β
� cI

α
= R (I) . (23)

In Corner Solution 2 initially advertising I (0) > 0 and X (0) = 0. For this outcome to

occur L (0) in (23) must be greater than R (I) . However, since in (23) L (X = 0) = −∞,

there is no non-negative I, for which R (I) < −∞. This means that in our specific

example, advertising without production is never optimal.

Initially, i.e., when A(0) = 0, Corner Solution 1 has only production and no advertising;

hence, the initial advertising must be I (0) = 0. Substituting this initial investment into

(23) yields

L (X (0)) =
b− Po (1− γ)X (0)

−γ

β
= λ (0) ≤ R (I (0)) = 0.

Since L(X = 0) = −∞ and L (X =∞) = b
β
> 0, a positive constant x must exist

such that L (x) = 0. Since λ (t = 0) is non-negative, the triplet X (t = 0) = Xmin ,

I (t = 0) = 0 and λ (t = 0) = 0, is the only possible corner solution.10 However, with

positive parameters in(23), a whole range of X > Xmin and positive I and λ exist, which

10Note that x must be equal to xmin(0), and this solution is technically not a corner solution since

equality holds in (23).
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constitutes feasible interior solutions. The optimal solution is, therefore, an interior

solution, possibly with positive X and I.11

6.2 Appendix B: The Phase Diagrams

6.2.1 Calculating the Singular Curve İ = 0.

To determine the slope of İ |I>0 = 0, we differentiate totally the equation in (20) to

obtain TD below,

TD
[
İ |I>0 = 0

]
≡ dI

[(
r +

ψ

(1−A)

)
−
αs

c
(1− γ) (1− A)P0X

−γ ∂X

∂I

]
+

+dA

[
Iψ

(1−A)2
+
αs

c
P0X

1−γ −
αs

c
(1− γ) (1−A)P0X

−γ ∂X

∂A

]
= 0.

By substituting the first term that multiplies dI above, which is also the first term in

(20) , with the second term in (20) and then substituting forX and its partial differentials

with respect to I and A from (18) and (16) while keeping in mind that Imax =
bα
βc
, we

obtain,

TD
[
İ |I>0 = 0

]
≡ dI

[
αs

c
(1−A)P0 (X)

1−γ

(
γImax − I

γI (Imax − I)

)]

+dA

[
Iψ

(1− A)2
+
αs

c
P0X

1−γ

(
1−

(1− γ)

γ

s (1− A)

(1 + sA)

)]
= 0

The above equation implies,

11However, if b, for example, is sufficiently small, x is sufficiently large and x, I = 0 and λ = 0, can

constitute the optimal solution. Note that in this case, I = 0 and λ = 0 for all t, and the solution is

entirely myopic. Yet, this solution is not a typical corner solution since for all t equality holds in (23) .
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dI

dA
|İ=0
I>0

=





−

Iψ

(1−A)2
+ αs

c
P0X

(1−γ)
(
1− (1−γ)

γ
s(1−A)
(1+sA)

)

αs
c
(1−A)P0X(1−γ)

(
γImax−I
γI(Imax−I)

)





(24)

= −

Iψ

(1−A)2
+ αs

c
P0X

(1−γ) γ+s(A+γ−1)
γ(1+sA)

αs
c
(1− A)P0X(1−γ)

(
γImax−I
γI(Imax−I)

)

Consider the denominator in (24), which is a multiplication of two terms of which the

first is always positive. The second term in the multiplication is negative when γImax <

I < Imax and positive when I fulfills 0 < I < γImax. At I = γImax the last term of the

multiplication in the denominator vanishes and with it the whole denominator.

Since X (I = 0) > 0, it follows that A (I = 0) |İ=0 must be equal to 1 for equation (20)

to be fulfilled. To see this note that when I = 0 the first term in (20) vanishes; hence,

the second term must disappear as well and this holds if and only if lim
I→0
A|
{İ=0I>0

→ 1. In

addition, note that since X( Imax) =∞, it must be that lim
I→Imax

A|
{İ=0I>0

→ 1 for İ in (20)

to vanish. Otherwise, if A|
{İ=0I>0

is less than one, it is clear that in equation (20) İ does

not disappear. Therefore, the only way that equation (20) holds is for lim
I→Imax

A|{İ=0I>0

→ 1.

Suppose the numerator in (24) is positive for all I, 0 ≤ I ≤ Imax and A (I), 0 ≤ A(I) ≤ 1

(e.g., when γ ≥ s
1+s

) and let A (γImax) |İ=0 be the value of A in İ = 0 when I = γImax.

Then, for each A such that A (γImax) |İ=0 < A ≤ 1 there are two I ′s which satisfy (20).

For A′s such that A < A (γImax) |İ=0, there are no I ′s that belong to İ = 0 and the

curve does not exist there. In other words, for A, A (γImax) |İ=0 < A ≤ 1, the curve

İ = 0 has two branches: in the upper branch I and A are both increasing, and in the

lower branch, when I is decreasing, A is increasing. These two branches of İ = 0 are

depicted in Figures 2a and 2b (in 2a A (γImax) |İ=0 > 0 and in 2b A (γImax) |İ=0 < 0).
12

12To find out when the curve İ = 0 intersects the I axis we do the following.We substitute A = 0

into (20) to obtain I = αs
c(r+ψ)

[
P0(1−γ)
(b−β c

α
I)

] 1−γ
γ

. Next, we change the variable I into a variable θ so that
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We now extend the investigation of the curve İ = 0 to include cases in which the

numerator of dI
dA
|İ=0 in (24) is negative. First we find out when the numerator of (20) is

positive or negative. The first term in the numerator is always positive and the second

term is non-negative if γ
1−γ

≥ s 1−A
1+sA

. The right-hand side of the inequality above is a

function of A and s, and is bounded between zero and s. The left-hand side is determined

by γ alone and for γ ≥ s/ (1 + s) =⇒ γ
1−γ

≥ s ≥ s 1−A
1+sA

. In this case both terms in the

numerator are positive and so is the numerator. In Figure 2a the curve İ = 0 is depicted

as discussed above.

From here on we adopt the plausible assumption r ≤ ψ. The numerator of dI
dA
|İ=0 in

(24) is given by Num = Iψ

(1−A)2
+ αs

c
P0X

(1−γ) γ+s(A+γ−1)
γ(1+sA)

. We now replace in Num the

term αs
c
P0 (X)

1−γ with the term I
(1−A)2

(r (1−A) + ψ) by using (20) to obtain,

Num =
I

γ (1 + sA) (1− A)2
{(ψγ + ψγsA) + (r (1−A) + ψ) (γ + sA+ sγ − s)} .

The sign of Num is characterized by the following cases in which we make the plausible

assumption r ≤ ψ.

Case I 1 : γ ≥ s
1+s

. In this case all the terms in the numerator are positive for all

feasible A as we already showed above (see Figure 2). Note also that in this case
∣∣ηp,X

∣∣ = γ ≥ ηp,A =
sA
1+sA

≤ s
1+s
, for all 0 < A < 1, where

∣∣ηp,X
∣∣ is the price elasticity

I = θImax = θ bα
βc
. The resulting equation in θ is: s

(r+ψ)

[
P0(1−γ)
b(1−θ)

] 1−γ
γ

= b
β
θ. For γ = 1/2 the equation

can be solved, i.e., m− θ + θ2 = 0 where the parameter m is,

m =
P0βs

2b2 (r + ψ)
.

There are two real solutions to θ if 0 < m < 0.25: 0 ≤ θ1,2 =
1±
√
1−4m
2 ≤ 1, which means that the

curve İ = 0 intersects the I axis twice when m < 0.25. If m > 0.25 there is no real solution to θ which

means that İ = 0 does not intersect the I axis and the line İ = 0 is not defined over small A and never

reaches the I axis. When γ �= 1/2 the situation is essentially the same. In other words we may have

two or more intersection points of İ = 0 with A = 0, one intersection point or none at all.
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with respect to the quantity demanded, and ηp,A is the price elasticity with respect to

the GW.

Case I 2 :
s

( ψ
(r+ψ)

+(1+s))
≤ γ < s

1+s
. Like case I1, Num in this case is positive for

0 < A ≤ 1. To see that, first note that Num is positive for A = 1 for all γ, because then

sA and (−s) cancel each other out and the remaining terms are positive. Furthermore,

continuity implies that for each γ there are feasible A′s sufficiently close to 1 for which

Num is positive. Next, we find out if and when Num changes sign when γ < s
1+s

. Since

the numerator is continuous in A, to change signs it must vanish at some feasible A, say

0 < Ān (γ) < 1, so that for A > Ān (γ) the numerator is positive and for A < Ān (γ) the

numerator is negative. We solve Ān (γ) from the second order equation in A below, in

which the numerator of Num is equated to zero,

−A2 (rs) +A (ψs (γ + 1) + r (s (2− γ)− γ)) + [ψγ + (r + ψ) (γ (1 + s)− s)] = 0.

The above is an equation in A2 and therefore may have zero, one or two solutions of A

in the relevant range (0, 1). If there is no solution in the relevant segment (0, 1), Num

does not change sign. If there is a single solution in the relevant range the sign changes

once and if there are two solutions the sign changes twice. The solution of the above

equation is given below in (25),

Ān (γ) = rd± re =
[ψs (γ + 1) + r (s (2− γ)− γ)]

2rs︸ ︷︷ ︸
rd

± (25)

√
(ψs (γ + 1) + r (s (2− γ)− γ))2 + 4 (rs) [ψγ + (γ (1 + s)− s)]

2rs︸ ︷︷ ︸
re

Dividing the first term (in the square brackets) in the numerator of (25) by the denom-

inator, (2rs), yields, rd = 1
2

{
ψ
r
(γ + 1) +

[
2 − γ

(
1 + 1

s

)]}
> 1.5 − γ

2
> 1. The above

inequalities follow for ψ/r ≥ 1, s ≥ 1 and 0 < γ < 1. The fact that rd is larger than 1

implies that the solution with the + sign before re in (25) is always larger than 1 and

therefore it is not in the relevant range (0, 1).
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Next, note that because

[
s

( ψ
(r+ψ)

+(1+s))
< γ < s

1+s

]
, the second term in the root in re is

positive. Therefore, the root of the sum of the two terms is larger than the root of the

first term alone. Hence, in (25) re > rd and the difference between them is negative and

therefore Ān (γ) = re − rd < 0 is not in the relevant range. In conclusion, as in case

I1, Num does not change its sign. Case I in the text is Case I1+Case I2.

Case II: 0 < γ < s

( ψ
(r+ψ)

+(1+s))
. In this case, the second term in the root in (25) is

negative and its absolute value is smaller than the first term. Accordingly, contrary to

case I2, the whole root is smaller than the root of only the first term. Thus, in (25) , for

γ smaller than s

( ψ
(r+ψ)

+(1+s))
, re is less then rd; hence Ān (γ) = rd−re > 0. Note that for

γ smaller than but close to s

( ψ
(r+ψ)

+(1+s))
, re is smaller but close to rd. Therefore, Ān (γ)

is positive and close to zero. This means that for small Ān (γ), the following inequality

holds A (γImax) > Ān (γ) > 0. On the other hand, for γ << s

( ψ
(r+ψ)

+(1+s))
there is no

A (γImax) in İ = 0.

We now return to the determination of the slope of İ = 0. In cases I1 and I2 the

numerator of ∂I
∂A
/İ=0, Num, is positive; hence İ = 0 is as depicted in Figure 2. In case

II, the numerator, Num, changes sign at a single point Ān. When this happens, a

change in the sign of the slope of İ = 0 may occur at Ān as depicted in Figures 3.13

Next we characterize the curve Ȧ = 0.

6.2.2 Calculating the Singular Curve Ȧ = 0

By differentiating (21) we obtain,

dI

dA
|Ȧ=0 = −

β ∂X
∂A
(1−A)− (βX + αI + ψ)
[
β ∂X
∂I
+ α

]
(1−A)

> 0 (26)

13If Ān < A (γImax) there is no change of sign and the curve İ = 0 is as depicted in Figure 2. The

curve İ = 0 changes signs only if there is no A (γImax) .
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From (1) it can be verified that Ȧ vanishes at A = 0 for I negative, i.e., the intercept

of the curve Ȧ = 0 is negative. On the other hand, when A is close to, but less than 1,

Ȧ vanishes for 0 < I < Imax .. To prove this, consider (21) from which we obtain

(βX + αI) = ψ
A

(1− A)
. (27)

The right-hand side of (27) can obtain any value in the interval (0,∞) and is a monotonic

increasing function of A. The expression βXmin (A0) is a positive number equal to the

value of X when I = 0. Thus, I solved from (27) for an A that fulfills βXmin (A = 1) <

ψ A
(1−A)

, is positive. The above analysis implies that the curve Ȧ = 0 must intersect the

A-axis at a point A, 0 < A < 1.

When A approaches 1 from below, the expression, (βX + αI) in Ȧ = 0 must approach

infinity to offset the effect of the decreasing (1− A). Note that for the expression

(βX + αI) to approach infinity I must approach Imax, since then X approaches infinity.

Thus, the curve Ȧ = 0 ends in (I = Imax, A = 1).

Consider now the slope of Ȧ = 0 in the interval (A, 1). First, replace ∂X
∂A

in the numerator

in (26) with the term sX
γ(1+sA)

from (18) and then substitute (βX + αI) in (26) with ψA
(1−A)

from (21) . After some manipulations the numerator of dI
dA
|Ȧ=0 becomes,

βs X
γ(1+sA)

(1−A)− ψA
(1−A)

− ψ.

The first term in the expression above is positive while the next two terms are negative.

The first term is dominant when A is close to zero, the second term becomes dominant

when A is close to 1. Since the denominator of dI
dA
|Ȧ=0 is always positive, when the

numerator is negative the slope dI
dA
|Ȧ=0 is positive.

For small A′s, the values of I in the curve Ȧ = 0 is negative. Therefore, for the curve

Ȧ = 0 to intersect the A-axis its slope must become positive already for negative I ′s.

Once the slope becomes positive for a given A it remains positive for all larger A′s.
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Thus in Figures 2 and 3a the curve Ȧ = 0 intersects İ = 0 at the lower branch with a

negative slope. In Figure 3b, the two curves intersect where both have a positive slope.

6.2.3 Determining the Direction of Growth

Next we proceed with the evaluation of the directions of growth in time of A and I. We

first differentiate Ȧ in (15) with respect to I to obtain ∂Ȧ
∂I
|dA=0 below,

∂Ȧ

∂I
|dA=0 =

(
β
∂X

∂I
+ α

)
(1− A) > 0. (28)

This implies that in Figures 2 and 3, above the curve Ȧ = 0, Ȧ is positive and below

the curve Ȧ is negative, as indicated by the horizontal arrows.

Next we substitute the values of the specific example into (13) and differentiate the

resulting İ with respect to A, to obtain,

∂İ

∂A
|dI=0 =

Iψ

(1−A)2
+
αs

c
P0X

(1−γ) −
αs

c
(1− γ) (1−A)P0X

−γ ∂X

∂A
, for I > 0.

Then, by substituting ∂X
∂A

from (18) into ∂İ
∂A
|dI=0 above, we obtain,

∂İ

∂A
|dI=0 =

Iψ

(1− A)2
+
αs

c
P0X

(1−γ)

(
1−

(1− γ) (1−A)

γ (1 + sA)

)

If 1− ε < A < 1

for ε sufficiently small
> 0.

(29)

Equation (29) implies that for values of A sufficiently close to but still smaller than 1,

İ is positive to the right of the curve İ = 0 and negative to the left. Note that the

sign of İ reverses itself, if and only if it crosses the singular curve İ = 0. These two
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characteristics are reflected in the direction of the vertical arrows as depicted in Figures

2 and 3.

The intersection (I∗, A∗) of the two curves, İ = 0 in (20) and Ȧ = 0 in (21), yields the

steady states depicted in Figures 2 and 3. The optimal path that leads to the steady

state is determined by the directions of the arrows.
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