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Abstract

Risk management and the thorough understanding of the relations be-
tween financial markets and the standard theory of macroeconomics
have always been among the topics most addressed by researchers,
both financial mathematicians and economists. This work aims at ex-
plaining investors’ behavior from a macroeconomic aspect (modeled
by the investors’ pricing kernel and their relative risk aversion) using
stocks and options data. Daily estimates of investors’ pricing kernel
and relative risk aversion are obtained and used to construct and an-
alyze a three-year long time-series. The first four moments of these
time-series as well as their values at the money are the starting point
of a principal component analysis. The relation between changes in
a major index level and implied volatility at the money and between
the principal components of the changes in relative risk aversion is
found to be linear. The relation of the same explanatory variables to
the principal components of the changes in pricing kernels is found
to be log-linear, although this relation is not significant for all of the
examined maturities.
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1 Introduction

Risk management has developed in the recent decades to be one of the most
fundamental issues in quantitative finance. Various models are being devel-
oped and applied by researchers as well as financial institutions. By modeling
price fluctuations of assets in a portfolio, the loss can be estimated using sta-
tistical methods. Different measures of risk, such as standard deviation of
returns or confidence interval Value at Risk, have been suggested. These mea-
sures are based on the probability distributions of assets’ returns extracted
from the data-generating process of the asset.

However, an actual one dollar loss is not always valued in practice as a one
dollar loss. Purely statistical estimation of loss has the disadvantage of ig-
noring the circumstances of the loss. Hence the notion of an investor’s utility
has been introduced. Arrow (1964) and Debreu (1959) were the first to in-
troduce elementary securities to formalize economics of uncertainty. The
so-called Arrow-Debreu securities are the starting point of all modern finan-
cial asset pricing theories. Arrow-Debreu securities entitle their holder to
a payoff of 1$ in one specific state of the world, and 0 in all other states
of the world. The price of such a security is determined by the market, on
which it is tradable, and is subsequent to a supply and demand equilibrium.
Moreover, these prices contain information about investors’ preferences due
to their dependence on the conditional probabilities of the state of the world
at maturity and due to the imposition of market-clearing and general equi-
librium conditions. The prices reflect investors’ beliefs about the future, and
the fact that they are priced differently in different states of the world im-
plies, that a one-dollar gain is not always worth the same, in fact its value is
exactly the price of the security.

A very simple security that demonstrates the concept of Arrow-Debreu secu-
rities is a European option. The payoff function of a call option at maturity
T is

ψ(ST ) = (ST −K)+ def
= max(ST −K, 0) (1)

where K is the strike price, T is maturity and ST is the asset’s price at
maturity.

Since an option is a state-dependent contingent claim, it can be valued using
the concept of Arrow-Debreu securities. Bearing in mind, that Arrow-Debreu
prices can be perceived as a distribution (when the interest rate is 0, they
are non negative and sum up to one), the option price is the discounted
expectation of random payoffs received at maturity. Since the payoff equals

2



the value of the claim at maturity time (to eliminate arbitrage opportunities),
the value process is by definition a martingale. Introducing a new probability
measure Q, such that the discounted value process is a martingale, we can
write

Ct = e−r(T−t) EQ
t [ψ(ST )]

def
= e−r(T−t)

∑
s

qsψs(ST ) (2)

where r is the interest rate and qs is the price of an Arrow-Debreu security if
r = 0, paying 1$ in state s and nothing in any other state. The superscript
Q denotes the expectation based on the risk neutral probability measure,
the subscript t means that the expectation is conditioned on the information
known at time t. The continuous counterpart of the Arrow-Debreu state con-
tingent claims will be defined in the next section as the risk-neutral density
or in its more commonly used name, the State Price Density (SPD).

Based on the relations between the actual data generating process of a major
stock index and its risk-neutral probability measure, we can derive measures
that help us learn a lot about investors’ beliefs and get an idea of the forces
which drive them. This work aims at investigating the dynamics of investors’
beliefs.

2 Black and Scholes and Macroeconomic Asset-

Pricing Models

The distinction between the actual data generating process of an asset and
the market valuations is the essence of macroeconomic dynamic equilibrium
asset-pricing models, in which market forces and investors’ beliefs are key
factors to value an asset with uncertain payoffs.

A standard dynamic exchange economy as discussed by Lucas (1978), Rubin-
stein (1976) and many others, imposes that securities markets are complete,
that they consist of one consumption good and that the investors, which have
no exogenous income other than from trading the goods, seek to maximize
their state-dependent utility function. There is one risky stock St in the
economy, corresponding to the market portfolio in a total normalized supply.
In addition, the economy is endowed by a riskless bond with a continuously
compounded rate of return r. The stock price follows the stochastic process

dSt

St

= µdt+ σdWt (3)
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where µ denotes the drift, σ is the volatility and Wt is a standard Brown-
ian motion. The drift and volatility could be functions of the asset price,
time and many other factors. However, for simplicity, they are considered
constant in this section. The conditional density of the stock price, which is
implied by equation (3), is denoted by pt(ST |St). In this setting, due to con-
tinuous dividend payments, the discounted process with cumulative dividend
reinvestments should be a martingale and is denoted by

S̃t
def
= e−(r+δ)tSt (4)

Since we are dealing with corrected data and in order to simplify the theoretic
explanations, we will consider δ = 0 from now on and omit the dividends
from the equations.

Taking the total differential yields

dS̃t = d(e−rtSt)

= −re−rtStdt+ e−rtdSt

= −re−rtStdt+ e−rt[µStdt+ σStdWt]

= (µ− r)S̃tdt+ σS̃tdWt

= σS̃tdW t (5)

where W t
def
= Wt + µ−r

σ
t can be perceived as a Brownian motion on the

probability space corresponding to the risk-neutral measure Q. The term
µ−r
σ

is called the market price of risk, it measures the excess return per unit
of risk borne by the investor and hence it vanishes under Q, justifying the
name risk-neutral pricing. Risk-neutral pricing can be understood as the
pricing done by a risk-neutral investor, an investor who is indifferent to risk
and hence not willing to pay the extra premium. The conditional risk-neutral
density of the stock price under Q, implied by equation (5) and denoted as
qt(ST |St), is the state-price density which was described as the continuous
counterpart of the Arrow-Debreu prices from equation (2). The basic theorem
of asset pricing states, that absence of arbitrage implies the existence of a
positive linear pricing rule (Cochrane (2001)), and if the market is complete
and indeed arbitrage-free, it can be shown that the risk-neutral measure Q
is unique.

In order to relate the subjective and risk-neutral densities to macroeconomic
factors, we first need to review some of the basic concepts and definitions of
macroeconomic theory. Under some specific assumptions, it is well known
that a representative agent exists. The original representative agent model
includes utility functions which are based on consumption (see, for example,
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Mas-Colell et al. (1995)). However, introducing labor income or intermediate
consumption do not affect the results significantly and hence, without loss of
generality, we review the concept of marginal rate of substitution with the
help of a simple consumption based asset pricing model. The fundamental
desire for more consumption is described by an intertemporal two-periods
utility function as

U(ct, cst+1) = u(ct) + β Et[u(cst+1)]
def
= u(ct) + β

∑
s

u(cst+1)pt(st+1|st) (6)

where st denotes the state of the world at time t, ct denotes the consumption
at time t, cst+1 denotes consumption at the unknown state of the world at
time t + 1, pt(st+1|st) is the probability of the state of the world at time
t + 1 conditioned on information at time t, u(c) is the one-period utility of
consumption and β is a subjective discount factor. We further assume that
an agent can buy or sell as much as he wants from an asset with payoff ψst+1

at price Pt. If Yt is the agent’s wealth (endowment) at t and ξ is the amount
of asset he chooses to buy, then the optimization problem is

max
{ξ}

{u(ct) + Et[βu(cst+1)]}

subject to

ct = Yt − Pt · ξ
cst+1 = Yst+1 + ψst+1 · ξ

The first constraint is the budget contraint at time t, the agent’s endowment
at time t is divided between his consumption and the amount of asset he
chooses to buy. The budget constraint at time t + 1 sustains the Walrasian
property, i.e. the agent consumes all of his endowment and asset’s payoff at
the last period. The first order condition of this problem yields

Pt = Et

[
β
u′(cst+1)

u′(ct)
ψst+1

]
(7)

We define MRSt
def
= β Et

[
u′(cst+1 )

u′(ct)

]
as the Marginal Rate of Substitution at t,

meaning the rate at which the investor is willing to substitute consumption
at t+ 1 for consumption at t. If consumption at t + 1 depends on the state
of the world (which is the case discussed here), the MRS is also referred to
as a stochastic discount factor.

Famous works like Lucas (1978) or Merton (1973) address the asset pricing
models in a more general manner. The utility function depends on the agent’s
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wealth Yt at time t and the payoff function depends on the underlying asset
St. According to Merton (1973), in equilibrium, the optimal solution is to
invest in the risky stock at every t < T and then consume the final value of
the stock, i.e. Yt = St for ∀t < T and YT = ST = cT . This is a multi-period
generalization of the model introduced before (equation (6)), where period
T corresponds to t+ 1 in the previous section. Defining time to maturity as

τ
def
= T − t, the date t price of an asset with a liquidating payoff of ψ(ST ) is

path independent, as the marginal utilities in the periods prior to maturity
cancel out. This price is given by

Pt = e−rτ

∫ ∞

0

ψ(ST )λ
U ′(ST )

U ′(St)
pt(ST |St)dST (8)

where λe−rτ = β to correspond to equation (7) and λ being a constant
independent of index level, for scaling purposes.

Considering the call option price under the unique risk-neutral probability
measure in equation (2) and the existence of a positive linear pricing rule in
the absence of arbitrage, we argue that the price of any asset can be expressed
as a discounted expected payoff (discounted at the risk-free rate) as long as
we calculate the expectation with respect to the risk-neutral density. Since
a risk-neutral agent always has the same marginal utility of wealth, the ratio
of marginal utilities in equation (8) vanishes under Q, and equation (8) can
be rewritten as

Pt = e−rτ

∫ ∞

0

ψ(ST )qt(ST |St)dST = e−rτ EQ
t [ψ(ST )] (9)

where qt(ST |St) is the State Price Density and the expectation EQ
t [ψ(ST )]

is taken with respect to the risk-neutral probability measure Q and not the
subjective probability measure, thus reflecting an objective belief about the
future states of the world.

Combining equations (8) and (9) we can define the pricing kernel Mt(ST ),
which relates to the the state price density qt(ST |St), the subjective proba-
bility and the utility function as

Mt(ST )
def
=

qt(ST |St)

pt(ST |St)
= λ

U ′(ST )

U ′(St)
(10)

and therefore MRSt = e−rτ Et[Mt(ST )]. Substituting out the qt(ST |St) in
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equation (9) using equation (10) yields the Lucas asset pricing equation:

Pt = e−rτ EQ
t [ψ(ST )]

= e−rτ

∫ ∞

0

Mt(ST ) · ψ(ST )pt(ST |St)dST

= e−rτ Et[Mt(ST ) · ψ(ST )] (11)

The dependence of the pricing kernel on the investor’s utility function has
urged researchers to try and estimate distributions based on various utility
functions. Arrow (1965) and Pratt (1964) showed a connection between
the pricing kernel and the representative agent’s measure of risk aversion.
The agent’s risk aversion is a measure of the curvature of the agent’s utility
function. The higher the agent’s risk aversion is, the more curved his utility
function becomes. If the agent were risk-neutral, the utility function would
be linear. In order to keep a fixed scale in measuring the risk aversion, the
curvature is multiplied by the level of the asset (the argument of the utility
function), i.e. the representative agent’s coefficient of Relative Risk Aversion
(RRA) is defined as

ρt(ST )
def
= −STu

′′(ST )

u′(ST )
(12)

According to equation (10) the pricing kernel is related to the marginal util-
ities as

Mt(ST ) = λ
U ′(ST )

U ′(St)

⇒ M ′
t(ST ) = λ

U ′′(ST )

U ′(St)
(13)

Substituting out the first and second derivatives of the utility function in
equation (12) using equation (13) yields

ρt(ST ) = −STλM
′
t(ST )U ′(St)

λMt(ST )U ′(St)
= −STM

′
t(ST )

Mt(ST )
(14)

Using equation (10) we can express the RRA as

ρt(ST ) = −ST [qt(ST |St)/pt(ST |St)]
′

qt(ST |St)/pt(ST |St)

= −ST
[q′t(ST |St)pt(ST |St)− p′t(ST |St)qt(ST |St)]/p

2
t (ST |St)

qt(ST |St)/pt(ST |St)

= −ST
q′t(ST |St)pt(ST |St)− p′t(ST |St)qt(ST |St)

qt(ST |St)pt(ST |St)

= ST

[
p′t(ST |St)

pt(ST |St)
− q′t(ST |St)

qt(ST |St)

]
(15)
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We now have a method of deriving the investor’s pricing kernel and his risk
aversion just by knowing, or being able to estimate, the subjective and the
risk-neutral densities. As an example, we consider the popular power utility
function

u(ct) =

{
1

1−γ
c1−γ
t for 0 < γ 6= 1

log(ct) for γ = 1
(16)

Rubinstein (1976) showed, that for such a utility function, aggregate con-
sumption is proportional to aggregate wealth, corresponding to the utility of
wealth or asset prices discussed above. It can be seen, that as γ → 0 the
utility is reduced to a linear function. The logarithmic utility function when
γ = 1 is obtained by applying the L’Hospital rule.

The marginal rate of substitution of an investor with a power utility function
is

MRSt = β Et

[
u′(cT )

u′(ct)

]
= β Et

[(
cT
ct

)−γ
]

(17)

which means, that it is a function of consumption growth and it is easy to
relate it to empirical data. The relative risk aversion of an investor with a
power utility can be calculated using equation (12), with consumption instead
of wealth as an argument, as the utility function is utility of consumption

ρ(cT ) = −cT
−γ(cT )−γ−1

(cT )−γ
= γ (18)

This equation shows that the RRA turns out to be a constant, and for the
logarithmic utility case, the risk aversion is 1.

Jackwerth (2000) argues that due to the risk aversion of the investor with a
power utility function, the pricing kernel is a monotonically decreasing func-
tion of aggregate wealth. He estimates q and p using data on the S&P500
index returns, as it is common to assume that this index represents the ag-
gregate wealth held by investors, and computes the pricing kernel according
to equation (10). However, he finds out that the pricing kernel is not a
monotonically decreasing function as expected. Plotted against the return
on the S&P500, the pricing kernel according to Jackwerth (2000) is locally
increasing, implying an increasing marginal utility and a convex utility func-
tion. It is referred to as the Pricing Kernel Puzzle. The shape of the pricing
kernel does not correspond to the basic assumption of asset pricing theory.
Although Jackwerth (2000) tends to rule out methodological errors, he never
proves that the ratio of two estimators equals the estimate of the ratio. He
assumes that if q and p are estimated correctly, then their ratio should yield
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a good estimator for the pricing kernel. This assumption still needs to be
proved, but dealing with it is beyond the scope of this work.

Under the assumptions of the well-known Black & Scholes (1973) model, the
price of a plain vanilla call option with a payoff function as in equation (1)
is given by the Black and Scholes formula

CBS(St, t,K, T, σ, r, δ) = e−δτStΦ(d1)− e−rτKΦ(d2) (19)

where δ is the continuous dividend rate, r is a constant riskless interest rate,
τ is time to maturity, Φ(u) is the cumulative standard normal distribution
function and

d1 =
ln(St/K) + (r − δ + 0.5σ2)τ

σ
√
τ

and d2 = d1 − σ
√
τ (20)

where we assume δ = 0 for the remaining of this work, as mentioned before.
Furthermore, the Black & Scholes (1973) implied volatility is assumed to be
constant and the corresponding risk-neutral density is log-normal with mean
(r − 0.5σ2)τ and variance σ2τ .

A famous work by Breeden & Litzenberger (1978) proved the following rela-
tion, which also holds when the assumptions of the Black & Scholes (1973)
model do not:

erτ ∂
2C(St, K, τ)

∂K2

∣∣∣∣
K=ST

= qt(ST ) = SPD (21)

Sustaining the assumptions of the Black & Scholes (1973) model and plugging
equation (19) into equation (21) yields

qBS(ST |St) =
1

ST

√
2πσ2τ

· e−
[ln(ST /St)−(r−0.5σ2)τ ]2

2σ2τ (22)

meaning that the underlying asset price follows the stochastic process

dSt

St

= r · dt+ σ · dWt (23)

i.e., the stock price in a Black & Scholes (1973) world follows a geometric
Brownian motion under both probability measures, only with different drifts.
Since the subjective probability under the Black & Scholes (1973) is also
log-normal but with drift µ, plugging the SPD from equation (22) and the
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log-normal subjective density into equation (10) yields a closed-form solution
for the investor’s pricing kernel

MBS
t (ST ) =

(
ST

St

)−µ−r

σ2

· e
(µ−r)(µ+r−σ2)τ

2σ2 (24)

The only non constant term in this expression is ST

St
, which corresponds to

consumption growth in a pure exchange economy. Since the pricing kernel
in equation (24) is also the ratio of the marginal utility functions (equation
(10)), the investor’s utility function can be derived by solving the differential
equation. If we consider the following constants

γ =
µ− r

σ2

λ = e
(µ−r)(µ+r−σ2)τ

2σ2 (25)

we can rewrite equation (24) as

MBS
t (ST ) = λ

(
ST

St

)−γ

(26)

which corresponds to a power utility function. The B&S utility function is
therefore

uBS(St) =

(
1− µ− r

σ2

)−1

· S(1−µ−r

σ2 )
t (27)

the subjective discount factor of intertemporal utility is

βBS = λe−rτ = e
(µ−r)(µ+r−σ2)τ

2σ2 −rτ (28)

and the relative risk aversion is constant

ρBS
t (ST ) = γ =

µ− r

σ2
(29)

The above equations prove that a constant RRA utility function sustains the
Black & Scholes (1973) model, as was shown by Rubinstein (1976), Breeden
& Litzenberger (1978) and many others.

Referring again to the stochastic process in equation (5), in which the Brow-
nian motion W t is defined on the probability space corresponding to the
risk-neutral measure, the Brownian motion under the assumptions of the
Black & Scholes (1973) model with a constant RRA can be expressed as

W t = Wt +
µ− r

σ
t = Wt + σγt (30)

whereas the stochastic process of the corrected stock price can be expressed
as a direct function of the investor’s relative risk aversion

dS̃t = σS̃tdW t = σS̃tdWt + σ2S̃tγdt (31)
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3 A Static Model: Daily Estimation

It is well known that the assumptions of the Black & Scholes (1973) model
do not hold in practice. Transaction costs, taxes, restrictions on short-selling
and non-continuous trading violate the model’s assumptions. Moreover, the
stochastic process does not necessarily follow a Brownian motion and the
implied volatility is not constant and experiences a smile. Consequently, the
SPD does not have a closed form solution and has to be estimated numer-
ically. Rubinstein (1994) showed, that an estimated subjective probability
together with a good estimation of the SPD enable an assessment of the rep-
resentative agent’s preferences. Hence, the model presented in this section
aims at estimating the pricing kernel using the ratio between the subjective
density and the SPD, and it disregards the issue of whether a ratio of two
estimates is a good approximation for the estimated ratio itself.

This section is divided into four parts. The first part provides a short de-
scription of the database used in this work. The static model for estimating
the pricing kernel and relative risk aversion on a daily basis is introduced in
the following parts of this section. When the densities and preferences are
known for every day, the dynamics of the time-series can be examined. The
results of this examination are reported in the next section.

3.1 The Database

The database used for this work consists of intraday DAX and options data
which has undergone a thorough preparation scheme. The data was obtained
from the MD*Base, maintained at the Center for Applied Statistics and Eco-
nomics (CASE) at the Humboldt-University of Berlin. The first trading day
in the database is January 4th 1999 and the last one is April 30th 2002, i.e.
more than three years of intraday data and 2,921,181 observations. The op-
tions data contains tick statistics on the DAX index options and is provided
by the German-Swiss Futures Exchange EUREX. Each single contract is
documented and contains the future value of the DAX (corresponding to the
maturity and corrected for dividends according to equation (4)), the strike,
the interest rate (linearly interpolated to approximate a ”riskless” interest
rate for the specific option’s time to maturity), the maturity of the contract,
the closing price, the type of the option, calculated future moneyness, cal-
culated Black and Scholes implied volatility, the exact time of the trade (in
hundredths of seconds after midnight), the number of contacts and the date.
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In order to exclude outliers at the boundaries, only observations with a ma-
turity of more than one day, implied volatility of less than 0.7 and future
moneyness between 0.74 and 1.22 are considered, remaining with 2,719,640
observations on 843 trading days. For every single trading day starting April
1999, the static model described in the following section is run and the results
are collected. The daily estimation begins three months after the first trad-
ing day in the database because part of the estimation process is conducted
on historical data, and the history ”window” is chosen to be three months,
as explained in the next section.

3.2 Subjective Density Estimation

The subjective density is estimated using a simulated GARCH model, the
parameters of which are estimated based on historical data. This method
was shown by Jackwerth (2000) and others to resemble the actual subjective
density.

The first step is to extract the data from the three months preceding the date
of the daily assessment. That is the reason for starting the daily process in
April instead of January 1999. The intraday options data from the preceding
three months are replaced by daily averages of the stock index and the interest
rate, averaged over the specific day. When we have a three months history
of daily asset prices, we can fit a GARCH (1,1) model to the data. A strong
GARCH (1,1) model is described by

εt = σtZt

σ2
t = ω + αε2

t−1 + βσ2
t−1 (32)

where Zt is an independent identically distributed innovation with a stan-
dard normal distribution. The logarithmic returns of the daily asset prices
are calculated according to εt = ∆ log(St) = log(St) − log(St−1), and this
time series together with its daily standard deviation σt are the input of the
GARCH estimation. The parameters ω, α and β are estimated using the
quasi maximum likelihood method, which is an extension of the maximum
likelihood measure, when the estimator is not efficient.

After the parameters of the GARCH process have been estimated, a simu-
lation of a new GARCH process is conducted, starting on the date of the
daily assessment. Equations (32) are used for the simulation, but this time
the unknown variables are the time series σt and εt, while the parameters
ω, α and β are the ones estimated from the historical data. The simulation
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creates a T days long time series, and is run N times. The simulated DAX
is calculated as

St = St−1e
εt ∀t ∈ {1, . . . , T} (33)

where S0 is the present level of the index on the day of the daily assessment.

Our aim is to estimate the subjective density in some fixed time points,
which correspond to specific maturities used for the SPD estimation discussed
next. Therefore, after the simulation has been completed, the simulated data
on the dates, which correspond to the desired maturities, is extracted, and
the daily subjective density is estimated using a kernel regression on the
desired moneyness grid, which corresponds to the asset’s gross return. The
transformation from the simulated St to the moneyness grid is achieved using
e−rT ST

S0
for each desired horizon T , where r is the daily average risk-free rate

on the present day. The subjective density is estimated for every trading
day included in the database. In figure 1 we plot the simulated subjective
densities on four different trading days for four different maturities.

It can be seen in figure 1, that the distribution resembles a log normal distri-
bution, which is more spread the longer the maturity is. A well known feature
of financial data is that equity index return volatility is stochastic, mean-
reverting and responds asymmetrically to positive and negative returns, due
to the leverage effect. Therefore, this GARCH (1,1) model estimation, which
experiences a slight positive skewness, is an adequate measure for the index
returns, and it resembles the nonparametric subjective densities, which were
estimated by Aı̈t Sahalia & Lo (2000) and Brown & Jackwerth (2004).

3.3 State-Price Density Estimation

There is a vast literature on estimating the SPD using nonparametric and
semiparametric methods. Aı̈t Sahalia & Lo (2000), for example, suggest a
semiparametric approach using the nonparametric kernel regression discussed
in Härdle (1990). They propose a call pricing function according to Black
& Scholes (1973), but with a nonparametric function for the volatility. The
volatility is estimated using a two dimensional kernel estimator

σ̂(κ, τ) =

∑n
i=1 kκ(

κ−κi

hκ
)kτ (

τ−τi

hτ
)σi∑n

i=1 kκ(
κ−κi

hκ
)kτ (

τ−τi

hτ
)

(34)

where κ
def
= K

erτ St
is future moneyness, τ is time to maturity and σi is the

implied volatility. The kernel functions kκ and kτ together with the appro-
priate bandwidths hκ and hτ are chosen such that the asymptotic properties
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Figure 1: Subjective density for different maturities (30,60,90,120 days) on
different trading days.

EPKdailyprocess.xpl

of the second derivative of the call price are optimized. The kernel function
measures the drop of likelihood, that the true density function goes through
a certain point, when it does not coincide with a certain observation. The
price of the call is then calculated using the Black & Scholes (1973) formula
but with the estimated volatility, and the SPD is estimated using equation
(21).

A major advantage of such a method comparing to nonparametric ones is that
only the volatility needs to be estimated using a nonparametric regression.
The other variables are parametric, thus reducing the size of the problem
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significantly. Other important qualities of kernel estimators are a well devel-
oped and tractable statistical inference and the fact that kernel estimators
take advantage of past data, as well as future data, when estimating the cur-
rent distribution. The problem of kernel based SPDs is that they could, for
certain dates, yield a poor fit to the cross-section of option prices, although
for other dates the fit could be quite good.

The state-price density in this work is estimated using a local polynomial re-
gression as proposed by Rookley (1997) and described thoroughly in Huynh
et al. (2002). The choice of Nadaraya-Watson type smoothers, used by
Aı̈t Sahalia & Lo (2000), is inferior to local polynomial kernel smoothing.
More accurately, the Nadaraya-Watson estimator is actually a local poly-
nomial kernel smoother of degree 0. If we use higher order polynomial
smoothing methods, we can obtain better estimates of the functions. Local
polynomial kernel smoothing also provides a convenient and effective way
to estimate the partial derivatives of a function of interest, which is exactly
what we look for when estimating SPDs.

The first step is to calculate the implied volatility for each given maturity and
moneyness in the daily data (based on the B&S formula when prices are given
and σ is the unknown). Then a local polynomial regression is used to smooth
the implied volatility points and to create the implied volatility surface from
which the SPD can be derived. The basic idea of local polynomial regression
is based on a locally weighted least squares regression, where the weights are
determined by the choice of a kernel function, the distance of an observation
from a certain estimated point defining the surface/line at this coordinate and
the chosen bandwidth vector. The use of the moneyness measure and time
to maturity reduces the regression to two dimensions and enables freedom in
estimating the surface in fictional points that do not exist in the database.

The concept of local polynomial estimation is quite straightforward. The
input data at this stage is a trivariate data, a given grid of moneyness (κ),
time to maturity (τ) and the implied volatility (σBS(κ, τ)). We now consider
the following process for the implied volatility surface

σ̂ = φ(κ, τ) + σBS(κ, τ) ∗ ε (35)

where φ(κ, τ) is an unknown function, which is three times continuously
differentiable, and ε is a Gaussian white noise. Then a Taylor expansion for
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the function φ(κ, τ) in the neighborhood of (κ0, τ0) is

φ(κ, τ) ≈ φ(κ0, τ0) +
∂φ

∂κ

∣∣∣∣
κ0,τ0

(κ− κ0) +
1

2

∂2φ

∂κ2

∣∣∣∣
κ0,τ0

(κ− κ0)
2

+
∂φ

∂τ

∣∣∣∣
κ0,τ0

(τ − τ0) +
1

2

∂2φ

∂τ 2

∣∣∣∣
κ0,τ0

(τ − τ0)
2

+
1

2

∂2φ

∂κ∂τ

∣∣∣∣
κ0,τ0

(κ− κ0)(τ − τ0) (36)

Minimizing the expression

n∑
j=1

{
σBS(κj, τj)− [β0 + β1(κj − κ0) + β2(κj − κ0)

2 + β3(τj − τ0)

+β4(τj − τ0)
2 + β5(κj − κ0)(τj − τ0)]

}2
Kh(κ− κ0)(τ − τ0) (37)

yields the estimated implied volatility surface and its first two derivatives at

the same time, as ∂̂φ
∂κ

∣∣∣
κ0,τ0

= β̂1 and ∂̂2φ
∂κ2

∣∣∣∣
κ0,τ0

= 2β̂2. This is a very useful

feature, as the second derivative is used to calculate the SPD for a certain
fixed maturity. A detailed derivation of ∂2C

∂K2 (used for the SPD according

to Breeden & Litzenberger (1978)) as a function of ∂σ
∂κ

and ∂2σ
∂κ2 (which are

obtained from the implied volatility surface estimation) is given, for example,
by Huynh et al. (2002).

The estimated risk neutral densities for the same dates and the same ma-
turities as in figure 1 are depicted in figure 2. The SPD is estimated on a
future moneyness scale, thus reducing the number of parameters that need
to be estimated.

One of the trading days plotted in figure 2 is September 11th 2001. It is
interesting to see that the options data on this trading day reflects some
increased investors’ beliefs, that the market will go down in the long run.
Similar behavior is found in the trading days following that particular day as
well as in other days of crisis. The highly volatile SPD for negative returns,
which could be explained, for example, by the leverage effect or the correla-
tion effect, could reflect a dynamic demand for insurance against a market
crash. This phenomenon is more apparent in days of crisis and was reported
by Jackwerth (2000) as well.
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Figure 2: State-Price density for different maturities (30,60,90,120 days) on
different trading days.

EPKdailyprocess.xpl

3.4 Deriving the Pricing Kernel and Risk Aversion

At this stage, we have the estimated subjective and state-price densities for
the same maturities and spread over the same grid. The next step is to
calculate the daily estimates for the pricing kernel and risk aversion.

The pricing kernel is calculated using equation (10), where the estimated
subjective density and the estimated SPD replace p(ST |St) and q(ST |St) in
the equation respectively. Since the grid is a moneyness grid, and the p
and q are estimated on the moneyness grid, the estimated pricing kernel is
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actually Mt(κT ). The coefficient of relative risk aversion is then computed
by numerically estimating the derivative of the estimated pricing kernel with
respect to the moneyness and then according to equation (14).

The estimated pricing kernels depicted in figure 3 for different trading days
and different maturities bear similar characteristics to those reported by
Aı̈t Sahalia & Lo (2000), Jackwerth (2000), Rosenberg & Engle (2002) and
others, who conducted a similar process on the S&P500 index. The pric-
ing kernel is not a monotonically decreasing function, as suggested in clas-
sic macroeconomic theory. It is more volatile and steeply upward sloping
for large negative return states, and moderately downward sloping for large
positive return states. Moreover, the pricing kernel contains a region of in-
creasing marginal utility at the money (around κ = 1), implying a negative
risk aversion. This feature can clearly be seen in figure 4, which depicts the
coefficient of relative risk aversion and shows clearly, that the minimal risk
aversion is obtained around the ATM region and the relative risk aversion
is negative. The negative risk aversion around the ATM region implies the
possible existence of risk seeking investors, whose utility functions are locally
convex.

Jackwerth (2000) named this phenomenon the pricing kernel puzzle and sug-
gested some possible explanations to it. One possible explanation is that, a
broad index (DAX in this work, S&P500 in his work) might not be a good
proxy for the market portfolio and as such, the results are significantly differ-
ent than those implied in the standard macroeconomic theory. In addition to
the poor fit of the index, the assumptions for the existence of a representative
agent might not hold, meaning that markets are not complete or the utility
function is not strictly state-independent or time-separable.

Another possibility is that historically realized returns are not reliable indi-
cators for subjective probabilities, or that the subjective distribution is not
well approximated by the actual one. This deviation stems from the fact that
investors first observe historical returns without considering crash possibil-
ities, and only afterwards incorporate crash possibilities, which make their
subjective distribution look quite different than the one estimated here. The
historical estimation or the log-normal distribution assumptions ignore the
well known volatility clustering of financial data.

Looking from another interesting point of view, investors might make mis-
takes in deriving their own subjective distributions from the actual objective
one, thus leading to mispricing of options. Jackwerth (2000) claims, that
mispricing of options in the market is the most plausible explanation to the
negative risk aversion and increasing marginal utility function.
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Figure 3: Estimated Pricing Kernel for different maturities (30,60,90,120
days) on different trading days.

EPKdailyprocess.xpl

This work does not aim, however, at finding a solution to the pricing kernel
puzzle. The implicit assumption in this work is that some frictions in the
market lead to the contradicting of standard macroeconomic theory, resulting
in a region of increasing marginal utility. In the following section, a dynamic
analysis of the pricing kernel and relative risk aversion is conducted along
the three-year time frame.
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Figure 4: Estimated relative risk aversion for different maturities
(30,60,90,120 days) on different trading days.

EPKdailyprocess.xpl

4 A Dynamic Model: Time-Series Analysis

Since the process described above is conducted on a daily basis and in most
of the trading days, the GARCH and local polynomial estimations produce
a good fit to the data, three-year long time-series data of pricing kernel and
relative risk aversion are obtained. In this section we will analyze these
time-series and show their moments. A principal component analysis will
be conducted on the stationary series and the principal components will be
tested as response variables in a GLS regression.

20

http://www.quantlet.org/mdstat/codes/talks/EPK/EPKdailyprocess.html


4.1 Moments of the Pricing Kernel and Relative Risk
Aversion

In order to explore the characteristics of the pricing kernel and the relative
risk aversion, their first four moments at any trading day have to be com-
puted, i.e. the mean (µt), standard deviation (σt), skewness (Skewt) and
kurtosis (Kurtt) of the functions across the moneyness grid. In addition, the
daily values of the estimated functions at the money (ATM) are calculated
and analyzed. Including this additional moment could prove essential as it
was shown before that the functions behave quite differently at the money
than in other regions. Each of the estimates (pricing kernel and relative risk
aversion) is a function of moneyness and time to maturity, which was cho-
sen to be a vector of four predetermined maturities, and as in the previous
section we concentrate on τ = (30, 60, 90, 120)> days.

The figures in the following pages depict the time-series of the ATM values
and mean values of the pricing kernel and the relative risk aversion, each
estimated for four different maturities on 589 trading days between April
1999 and April 2002. The trading days, on which the GARCH model does
not fit the data, or the local polynomial estimation experiences some nega-
tive volatilities, were dropped. Time-series of the daily standard deviation,
skewness and kurtosis, as well as the differences time-series, were collected
but not included in this paper.

The plots in the next pages show, that the pricing kernel at the money (figure
5) behaves similarly across different maturities and bears similar character-
istics to its general mean (figure 6). This result implies, that characterizing
the pricing kernel using the four first moments of its distribution is adequate.
Contrary to the pricing kernel, the relative risk aversion at the money (figure
7) looks quite different than its general mean (figure 8). The ATM relative
risk aversion is mostly negative, as detected already in the daily estimated
relative risk aversion. The mean relative risk aversion, however, is mostly
positive. Another feature of the relative risk aversion is that it becomes less
volatile the longer the maturity is, implying the existence of more nervous
investors for assets with short maturities. The main conclusion we can draw
from the relative risk aversion plots is that the four first moments of the
distribution do not necessarily represent all the features of the relative risk
aversion correctly, and the collection of the extra details regarding the ATM
behavior is justified, as it will be shown by the principal component analysis.
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Figure 5: ATM Pricing Kernel for different maturities (30,60,90,120 days).

EPKtimeseries.xpl

Figure 6: Mean of Pricing Kernel for different maturities (30,60,90,120 days).

EPKtimeseries.xpl
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Figure 7: ATM Relative Risk Aversion for different maturities (30,60,90,120
days).

EPKtimeseries.xpl

Figure 8: Mean of Relative Risk Aversion for different maturities
(30,60,90,120 days).

EPKtimeseries.xpl
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After describing the characteristics of the different time-series, and before
we concentrate on specific time-series for further analysis, it is essential to
determine which of the time-series are stationary. The test chosen to check
for stationarity is the KPSS test, originally suggested by Kwiatkowski et al.
(1992).

Conducting stationarity tests for the various functions has shown, that the
moments of the time-series themselves are in most of the cases not stationary,
and the logarithmic differences of the moments are not always defined, due to
the existence of negative values. Contrary to that, the absolute differences of
all moments and across all maturities were found to be stationary. Therefore,
we concentrate from now on only on the absolute differences of the moments.

4.2 Principal Component Analysis

In the following, we will focus on a principal component analysis (PCA) of the
time-series in order to try and explain the variation of the time-series using
a small number of influential factors. As stated before, the only time-series
to be considered are the differences of the moments, found to be stationary.
The PCA process starts with the definition of the following data matrix for
pricing kernel differences

X =


∆PKATM

2 ∆µ2 ∆σ2 ∆Skew2 ∆Kurt2
∆PKATM

3 ∆µ3 ∆σ3 ∆Skew3 ∆Kurt3
...

...
...

...
...

∆PKATM
n ∆µn ∆σn ∆Skewn ∆Kurtn

 (38)

for each maturity 30, 60 and 90 days, where the differences are defined e.g.

as ∆µt
def
= µt − µt−1 and similarly for the other columns of the matrix X . A

similar matrix is defined for the differences of the relative risk aversion. PCA
can be conducted either on the covariance matrix of the variables or on their
correlation matrix. If the variation were of the same scale, the covariance
matrix could be used for the PCA. However, the data is not scale-invariant,
hence a standardized PCA must be applied, i.e. conducting the PCA on the
correlation matrix.

The principal components can explain the variability of the data. The pro-
portion of variance explained by a certain principal component is the ratio
of the corresponding eigenvalue of the correlation matrix to the sum of all
eigenvalues, whereas the proportion of variance explained by the first few
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principal components is the sum of the proportions of variance explained by
each of them.

The principal component analysis shows, that three principal components
could explain about 85% of the total variability. Nevertheless, the second
and third principal components were found to be correlated, and in order to
perform a univariate analysis on the principal components, they have to be
orthogonal to each other. Therefore, only the first two principal components
of the pricing kernel and relative risk aversion differences are considered from
now on. The first two principal components explain approximately 80% of
the variability of the pricing kernel differences (the first factor explains 60%
and the second explains 20%), and approximately 70% of the variability of
the relative risk aversion differences (divided equally among the two factors).

The jth eigenvector expresses the weights used in the linear combination of
the original data in the jth principal component. Since we are considering
only two principal components, the first two eigenvectors are of interest.
More specifically, we can construct the first principal components for each
of the examined time-series. The following demonstrates the weights of the
moments in the principal components of the differences of the pricing kernel
with a maturity of 60 days

y1,t(τ = 60) = 0.06∆PKAT
t + 0.92∆µt + 0.38∆σt + 0.05∆Skewt

−0.03∆Kurtt

y2,t(τ = 60) = 0.47∆PKATM
t + 0.24∆µt − 0.58∆σt − 0.54∆Skewt

+0.29∆Kurtt

It can clearly be seen, that the dominant factors in the first principal compo-
nent are the changes in mean and standard deviation, whereas the dominant
factors in the second principal component are the changes in skewness and
standard deviation. The equations do not change much when other maturi-
ties are considered. As for the moments of the relative risk aversion, the first
principal component is dominated solely by the changes in standard devia-
tion and the second principal component is mainly dominated by the change
in relative risk aversion at the money.

We conclude therefore, that the variation of the pricing kernel and relative
risk aversion differences can be explained by two factors. The first factor of
pricing kernel differences explains 60% of the variability and can be perceived
as a central mass movement factor, consisting of the changes in expectation
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and standard deviation. The second factor explains additional 20% of the
variability and can be perceived as a change of tendency factor, consisting
of changes in skewness and standard deviation. The principal components of
the relative risk aversion are a little different. The first one explains approx-
imately 35% of the variability and can be perceived as a dispersion change
factor, dominated by the change in standard deviation. The contribution of
the second principal component to the total variability is 35% as well and it
is dominated by the change in relative risk aversion of the investors at the
money. The mean of relative risk aversion differences seems to play no role
in examining the variability of the relative risk aversion.

The correlation between the ith moment and the jth principal component is
calculated as

rXi,Yj
= gij

√
lj

sXiXi

(39)

where gij is the ith element of the jth eigenvector, lj is the corresponding
eigenvalue and sXiXi

is the standard deviation of the ith moment Xi.

Descriptive statistics of the principal components time-series and their cor-
relations with the moments are given in tables 1 and 2 for the pricing kernel
and relative risk aversion respectively. The means of the principal compo-
nents are very close to zero, as they are linear combinations of the differences
of the moments, which are themselves approximately zero mean.

Principal Mean Standard Correlation with
Component ×104 Deviation ∆PKATM

t ∆µt ∆σt ∆Skewt ∆Kurtt

τ = 30
y1,t -2.46 0.76 -0.02 0.42 0.62 0.02 -0.02
y2,t -4.39 4.15 0.21 0.25 -0.16 0.29 0.08
τ = 60
y1,t 4.34 0.44 0.06 0.74 0.30 0.04 -0.03
y2,t 8.53 4.06 0.22 0.11 -0.27 -0.25 0.13
τ = 90
y1,t 2.80 0.55 0.09 -0.61 0.46 0.11 -0.05
y2,t 9.20 2.04 0.23 -0.19 -0.21 -0.32 0.11

Table 1: Descriptive statistics, principal components of the pricing kernel
differences.

The moments highly correlated with the principal components are, not sur-
prisingly, the ones which were reported to be dominant when constructing the
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Principal Mean Standard Correlation with
Component ×103 Deviation ∆RRAATM

t ∆µt ∆σt ∆Skewt ∆Kurtt

τ = 30
y1,t 11.5 14.75 0.03 0.04 0.61 0.00 0.01
y2,t 0.55 9.36 0.33 -0.22 -0.02 -0.32 0.26
τ = 60
y1,t -2.57 26.90 0.10 0.04 0.60 -0.02 0.03
y2,t 1.60 13.75 0.36 0.20 -0.06 -0.24 -0.35
τ = 90
y1,t 1.72 28.60 -0.08 0.15 0.63 0.05 0.04
y2,t 3.71 9.22 0.18 0.36 -0.05 -0.27 0.20

Table 2: Descriptive statistics, principal components of the relative risk aver-
sion differences.

principal components. Nevertheless, table 1 implies an inconsistent behavior
of the different moments across maturities. The first principal components
of the pricing kernel differences (the first rows for each of the maturities in
table 1) are positively correlated with the changes in mean and standard de-
viation (the dominating moments) for short term maturities, but negatively
correlated with the mean differences of 90 days maturity pricing kernels.
The second principal components of pricing kernel differences (the second
rows for each of the maturities in table 1) are negatively correlated with the
change of standard deviation for all maturities, but their correlations with
the change of skewness are not consistent across maturities, implying a bad
fit. Since the first principal component of the pricing kernel differences could
explain approximately 60% of the variability, whereas the second factor can
explain only 20%, the inconsistent behavior could be justified by the poor
contribution of the second principal component to the total variability.

The correlations of the first and second principal components of the relative
risk aversion differences with their dominant factors (table 2) are found to
be consistent across maturities. The first principal component is positively
correlated with its most dominant moment, the changes in the relative risk
aversion standard deviation. This correlation means essentially, that the less
homoscedastic the relative risk aversion is, i.e. the larger the changes in stan-
dard deviation are, the larger the first principal component of the relative
risk aversion differences becomes. The second principal component of the
relative risk aversion differences is positively correlated with its most domi-
nant moment, the behavior at the money. The more volatile the relative risk
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Figure 9: Autocorrelation function (left panel) and partial autocorrelation
function (right panel) of the principal components of pricing kernel differences
(τ = 60 days). The autocorrelation functions of the principal components of
relative risk aversion differences behave similarly exhibiting a MA(1) process.

EPKtimeseries.xpl

aversion at the money is, the higher the second principal component is. Both
principal components of the relative risk aversion differences contribute more
than 30% of the variability and imply a good fit of the principal components
to the data.
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After constructing principal components, which explain the variability of the
time-series, it is essential to check the autocorrelation and the partial auto-
correlation functions of the time-dependent principal components. This is
illustrated in figure 9 for the pricing kernel differences. The same functions
for the principal components of the relative risk aversion differences have
similar characteristics and hence not reported here. Since the principal com-
ponents have similar autocorrelation and partial autocorrelation functions for
all different maturities, a maturity of 60 days was arbitrarily chosen to be pre-
sented. It can be seen, that the autocorrelation function drops abruptly after
the first order autocorrelation whereas the partial autocorrelation function
decays gradually. These characteristics imply a MA(1) behavior (Chapter 11
in Franke et al. (2004)) and we therefore concentrate on fitting a model with
a moving average component to the principal components. A calculation of
the Akaike and Schwarz information criteria confirms, that the best-fitted
models for the first principal components are ARMA (1,1), whereas the sec-
ond principal components follow a MA(1) process. As expected, all principal
components have an autocorrelated error term.

4.3 GLS Regression Model for the Principal Compo-
nents

The last test conducted in this work is to detect a possible relation between
the principal components and easily observed data, such as changes in the
DAX level and in implied volatility at the money. It is well known, that the
simplest relation between an explanatory variable and a response variable
can be described and examined using a simple linear regression model

y = Xβ + ε (40)

where y is a n × 1 response vector, X is a n × p explanatory matrix, β is a
p × 1 vector of parameters to estimate and ε is a n × 1 vector of errors. If
the errors were normally distributed and uncorrelated, i.e. ε ∼ Nn(0, σ2In)
then the regression would result in the familiar ordinary least squares (OLS)
estimator

β̂OLS = (X ′X)−1X ′y (41)

with a covariance matrix

Cov(β̂OLS) = σ2(X ′X)−1 (42)

Introducing autocorrelated errors as described above, the relation between
the explanatory variable and the response variable can be modeled using the
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generalized least squares (GLS) estimator. In the previous section, we found
evidence of autocorrelated errors of order 1, meaning that the error process
could be modeled using the following AR(1) process

εt = ρεt−1 + ut (43)

for all t ∈ {1, . . . , n} with ut ∼ Nn(0, σ2
uIn) as i.i.d. white noise and |ρ| < 1

for stability. We could choose autoregressive processes of higher order, but
since most principal components were found to have an autocorrelated error
term of order 1, we concentrate here on AR(1) processes.
Iterating equation (43) from time 0 onwards yields

εt = lim
n→∞

(ρn+1εt−n−1 +
n∑

s=0

ρsut−s) =
∞∑

s=0

ρsut−s (44)

and hence E[εt] = 0 and the covariance matrix of the error term is

Cov(ε) = σ2
uΩ =

σ2
u

1− ρ2


1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 . . . 1

 (45)

However, in a real application like the model discussed in this work, the
error-covariance matrix is not known and must be estimated from the data
along with the regression coefficients β̂. If the generating process is sta-
tionary, which is the case in the model discussed here, a commonly used
algorithm for estimating these errors is normally referred to as the Prais &
Winsten (1954) procedure. This algorithm begins with running a standard
OLS regression and examining the residuals. The errors vector of the OLS
regression is obtained simply by plugging β̂ in equation (40). Considering
the residuals’ first order autocorrelations from the preliminary OLS regres-
sion can suggest a reasonable form for the error-generating process. These
first order autocorrelations can be estimated as

ρ̂ =

∑n
t=2 εtεt−1∑n

t=1 ε
2
t

(46)

Replacing the ρ’s in equation (45) with the ρ̂’s from equation (46) results

in the estimated matrix Ω̂. The best linear unbiased estimator in that case
would be the estimated generalized least squares estimator

β̂GLS = (X ′Ω̂−1X)−1X ′Ω̂−1y (47)
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The Prais & Winsten (1954) algorithm may seem to be a simple model,

but it involves a computationally challenging estimation of Ω̂. Therefore,
an alternative algorithm, suggested by Sen & Srivastava (1990) is presented
here. We define the following matrix as

Ψ̂ =



√
1− ρ̂2 0 0 . . . 0 0 0
−ρ̂ 1 0 . . . 0 0 0
0 −ρ̂ 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −ρ̂ 1 0
0 0 0 . . . 0 −ρ̂ 1


(48)

It can be shown, that this matrix, multiplied by its transpose and the matrix
Ω̂ (which is defined by equation (45)) is proportional to the unit matrix

1

1− ρ̂2
Ψ̂′Ψ̂Ω̂ = In

and hence the matrix Ψ̂ has the following property

Ψ̂′Ψ̂ = (1− ρ̂2)Ω̂−1 (49)

Since least squares estimation is not affected by scalar multiplication, we
multiply the regression model by

√
1− ρ̂2. Expressing Ω̂−1 in equation (47)

using equation (49) leads to the the following GLS estimator

β̂GLS = (X ′Ψ̂′Ψ̂X)−1X ′Ψ̂′Ψ̂y = [(Ψ̂X)′(Ψ̂X)]−1[(Ψ̂X)]′(Ψ̂y) (50)

which is actually an OLS estimator of the original variables multiplied by a
scalar. The transformed model can be described as

yt − ρ̂yt−1 =

p∑
j=0

(xtj − ρ̂xt−1,j)β̂j + ut (51)

for t ∈ {2, . . . , n}, ut being a Gaussian noise. For t = 1 it is simply

√
1− ρ̂2y1 =

√
1− ρ̂2

p∑
j=0

β̂jx1j +
√

1− ρ̂2ε1 (52)

As stated in the beginning of the current section, the changes in the DAX
level (St) and the changes of ATM implied volatility (IV ATM

t ) were chosen
to be tested as explanatory variables (X), whereas the first two principal
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components of the pricing kernel and relative risk aversion differences for
different maturities were the dependent variables for the different models
(y). Since the dependency on the explanatory variable does not have to
be linear, different functions of the explanatory variables were tested. For
each of the explanatory variables the differences, the squared differences, the
logarithmic differences and the squared logarithmic differences were tested.
The examined models consisted of all possible combinations between the
functions stated above, as well as checking for interactions in each of the
proposed models. Since no interaction was ever found to be significant, they
were dropped from the model. The criterion for choosing the best model was
a maximal value of the F-statistic.

Table 3 describes the best fitted models for each of the principal components
(based on equation (51)). For this analysis, we consider a confidence level
of 95%, i.e. any regression or regression coefficient yielding a Pvalue > 5%
is regarded as non significant. The Pvalues for the regressions’ coefficients
appear in brackets.

The first principal component of the pricing kernel differences, which was de-
scribed before as a central mass movement factor, dominated by the changes
in the mean pricing kernel and the pricing kernel’s standard deviation, is
found to depend significantly on the logarithmic differences of ATM implied
volatility. This regression is only significant for short term maturities, and
the impact of the explanatory variables is positive and log-linear. The impact
of the DAX log return is not significant for a short term maturity, meaning
the first principal component of the pricing kernel differences is mainly in-
fluenced by the logarithmic changes in the implied volatility at the money.
Therefore, we can deduce the following: The larger the changes in ATM
implied volatility are and the higher the DAX log returns are (only for ma-
turities of 60 days), the more volatile the pricing kernel becomes, with bigger
daily changes in its mean and standard deviation.

We can not find a significant relationship between the second principal com-
ponent of the pricing kernel differences and the explanatory variables (other
than for very short maturities), a result that supports the second principal
component’s smaller contribution to the variability of pricing kernel differ-
ences. The pricing kernel differences have one dominant factor which explains
approximately 60% of their variance and depends mainly on the logarithmic
changes of the ATM implied volatility. The regression coefficients are posi-
tive, as are the correlations of the first principal component with ∆µt(PK)
and ∆σt(PK) for the respective maturities.
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Pricing Kernel Differences

PC Maturity ρ̂ β̂1 xt,1 β̂2 xt,2 F

1 30 -0.426 -1.80 log St

St−1
1.76 log

IV ATM
t

IV ATM
t−1

18.958

(0.289) (0.000) (0.000)

1 60 -0.468 2.71 log St

St−1
0.98 log

IV ATM
t

IV ATM
t−1

10.784

(0.005) (0.001) (0.000)
1 90 N o t S i g n i f i c a n t

2 30 -0.473 30.21 log St

St−1
12.77 log

IV ATM
t

IV ATM
t−1

20.718

(0.001) (0.000) (0.000)
2 60 N o t S i g n i f i c a n t
2 90 N o t S i g n i f i c a n t

Relative Risk Aversion Differences

PC Maturity ρ̂ β̂1 xt,1 β̂2 xt,2 F

1 30 -0.544 0.03 ∆St 145.34 ∆IV ATM
t 11.562

(0.000) (0.000) (0.000)
60 -0.457 0.03 ∆St 286.43 ∆IV ATM

t 18.048
(0.001) (0.000) (0.000)

90 -0.510 0.02 ∆St 224.27 ∆IV ATM
t 10.666

(0.028) (0.000) (0.000)

2 30 N o t S i g n i f i c a n t

60 -0.460 -0.01 ∆St -92.15 ∆IV ATM
t 7.217

(0.042) (0.000) (0.000)
90 -0.497 0.01 ∆St 35.72 ∆IV ATM

t 4.026
(0.020) (0.011) (0.018)

Table 3: The estimated parameters of the suggested regression model in
equation (51): yt − ρ̂yt−1 = β̂0 + β̂1(xt,1 − ρ̂xt−1,1) + β̂2(xt,2 − ρ̂xt−1,2) + ut

where ∆IV ATM
t

def
= IV ATM

t −IV ATM
t−1 , ∆St

def
= St−St−1 and β̂0 = 0 because the

constant is never significant due to the zero mean property of the principal
components.
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The results regarding the principal components of the relative risk aversion
differences are quite different. These principal components are related to
the absolute changes in the DAX level and in ATM implied volatility. The
dependence is not log-linear, but strictly linear.

According to table 2 in the previous section, the correlations of the first prin-
cipal components of the relative risk aversion differences with their dominant
moments are positive. The first principal component is a dispersion factor,
dominated by the change in the relative risk aversion standard deviation.
According to the regression, large changes in the DAX level and the ATM
implied volatility yield a larger principal component, which is associated with
a larger change in risk aversion standard deviation. This result implies the
existence of more uncertain investors with a more heteroscedastic risk aver-
sion, when the DAX level and ATM implied volatility are more time-varying.
This relation could be explained by the dispersion of information sets among
investors. Veldkamp (2005) examines the impact of information markets on
assets prices. She basically claims, that information markets, not assets mar-
kets, are the source of frenzies and herds in assets prices. However, the price
fluctuations on the market affect these information sets and determine the
information prices, which are incorporated in the investors’ subjective beliefs.
More volatile markets lead necessarily to a higher risk and to less information,
which increases the demand for information in a competitive market. Hence,
more volatile markets cause more information to be provided at a lower price.
When less information is involved, individual agents are willing to pay for
information, and the information sets of the individual agents become more
dispersed. More dispersed information sets could increase heteroscedasticity
of the aggregate relative risk aversion as a function of assets’ returns.

The results regarding the second principal component of the relative risk
aversion differences are slightly different. The second principal components
are positively correlated to the change of relative risk aversion at the money.
Nevertheless, the linear regression is not significant for a very short term
maturity of 30 days. For long term maturities the coefficients of the regression
are positive, whereas for medium term maturities, they are negative. That
could be interpreted as follows: When the changes in DAX level and ATM
implied volatility are larger, the relative risk aversion at the money is more
volatile for long term maturities, but is less volatile for the medium term
maturities.

From this section we can conclude, that the principal components model fits
the relative risk aversion differences better than it fits the pricing kernel dif-
ferences. We were able to fit an autocorrelated regression model to the first
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principal component of pricing kernel differences for short and medium term
maturities, and to both principal components of relative risk aversion differ-
ences. The autocorrelation is indeed found to be quite large (approximately
-0.5) for all of the above models, implying the existence of an autocorrelated
error as detected already.

5 Final Statements

This work focused on estimating the subjective density and the state-price
density of the stochastic process associated with the DAX. Based on the work
of Rubinstein (1994), a good estimation of those two measures is sufficient for
deriving the investors’ preferences. However, this work did not include a di-
rect approximation of the utility function based on empirical data, but rather
an estimation of the pricing kernel and the relative risk aversion as functions
of the return states. The utility function could be approximated numerically
by solving the differential equations discussed in section 2, after the pricing
kernel and relative risk aversion function have been estimated. Nevertheless,
this work aimed at examining the dynamics of these two measures, char-
acterizing the investors’ behavior, rather than deriving their implied utility
function.

The daily estimated pricing kernel and relative risk aversion were found to
have similar characteristics to those reported by Jackwerth (2000) and Aı̈t Sa-
halia & Lo (2000). The pricing kernel was shown not to be a strictly decreas-
ing function as suggested by classical macroeconomic theory, and the relative
risk aversion experienced some negative values at the money. These findings
were apparent throughout the three year long database, implying existence
of risk seeking investors with a locally convex utility function, possibly due
to some frictions in the representative agent’s model.

The variability of the stationary daily changes in pricing kernel and relative
risk aversion was found to be well explained by two factors. Since the factors
experienced some evident autocorrelation, the principal components were
tested as the response variable in a GLS regression model, which regressed
each of the principal components on the daily changes in the DAX and in
ATM implied volatility.

We found that large changes in ATM implied volatility lead to a more volatile
and time-varying pricing kernel. The absence of a significant fitted regression
model for the second principal component of the pricing kernel differences
was in accordance with its smaller contribution to the explained variability.
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In addition, we found evidence for the existence of more uncertain investors
with a more heteroscedastic risk aversion, when the daily changes in the DAX
and the ATM implied volatility were larger. This result was explained by
possibly more dispersed information sets among investors.
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