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The uniqueness of extremum estimation

Volker Krätschmer ∗

Institute of Mathematics, Berlin University of Technology,

Germany

Abstract

Let W denote a family of probability distributions with parameter space Γ, and WG be a subfamily of W

depending on a mapping G : Θ → Γ. Extremum estimations of the parameter vector ϑ ∈ Θ are considered.

Some sufficient conditions are presented to ensure the uniqueness with probability one. As important

applications, the maximum likelihood estimation in curved exponential families and nonlinear regression

models with independent disturbances as well as the maximum likelihood estimation of the location and

scale parameters of Gumbel distributions are treated.

Keywords: Extremum estimation, Sard’s theorem, nonlinear regression, curved exponential families,

Gumbel distributions.

AMS classification 62F10, 62F11
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1 Introduction

Extremum estimation designates a principle often used for estimating unknown parameters: Starting from

data those parameter vectors are selected which maximize or minimize a certain function defined over

∗This research was supported by Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.
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the parameter space. Some estimation methods currently applied in practical situations of estimation are

subsumed under the principle of extremum estimation, for example the maximum likelihood and least

squares estimation. Employing the extremum estimation in practice causes the problem to choose some

parameter vector if the related maximation (or minimation) problem has more than one solution. Under

general conditions the question of the uniqueness of extremum estimation seems to be still open. A known

result of some special cases was presented by Pazman (cf. [8]). He showed that in some curved exponential

families the maximum likelihood method has at most one solution with probability one.

The present paper is an attempt to generalize the result of Pazman to a greater variety of applications,

with respect to the extremum estimation.

Since there is no essential difference between maximation and minimization, we shall restrict ourselves to

estimation that maximizes a certain function which is dependent on the parameters. After introducing

some general notations we shall present in section 3 our main result. We shall deal with the estimation

of parameter vectors of distributions which are dominated by Lebesgue measures. The fundamental

idea is to employ Sard’s theorem to ensure that almost surely the estimation has at most one solution,

adapting the line of reasoning that Pazman followed in the above mentioned paper. It may be simplified

when considering uniqueness of nonlinear least squares estimation. So the reader is referred to Pazman’s

monograph on nonlinear regression (cf. [9]) to get a first idea.

The main result of the paper relies on the assumption that for almost every observation from the sample

space the respective objective function has only non degenerated critical points. In section 4 this as-

sumption will be replaced by some conditions to restate the main result. The obtained criteria to ensure

uniqueness of extremum estimation almost surely will be applied to the maximum likelihood estimation

in nonlinear regression models with independent disturbances (section 5) as well as curved exponential

families (section 6), and also to maximum likelihood estimation of the location and scale parameter of a

Gumbel distribution (section 7). Appendix A provides a crucial auxiliary result, whereas appendix B deals

with the proof of the main theorem. Finally appendix C reviews Lindelöf’s theorem and useful special

versions of Sard’s theorem.

2



2 Notations and preliminaries

For a differentiable mapping f : H → Rt defined on an open subset H of Rs, the Jacobian of f at x will

be denoted by Jx(f), its rank will be symbolized by rank(Jx(f)). As usual f will be called a Cr−mapping

(r ∈ N) if it is r times continuously differentiable. f is said to be a Cr−immersion/Cr−submersion

(r ∈ N) if it is a Cr−mapping with rank(Jx(f)) = s/rank(Jx(f)) = t for all x ∈ H. If t = n, and if

f is an homeomorphism from H onto the open subset f(H) such that f : H → f(H) and its inverse

f−1 : f(H) → H are Cr−immersions, then f is called a Cr−diffeomorphism onto f(H). The Jacobians of

a Cr−diffeomorphism are nonsingular. In the case of t = 1 ∇xf stands for the gradient of f at x, whereas

∇∇xf will be used for the Hessian of f at x if f is twice differentiable. If ∇xf = 0, then we shall speak

of x as a critical point, which will be called degenerated provided that ∇∇xf is singular.

For m ∈ N0 and r ∈ N a subset A ⊆ Rs is called a m−dimensional Cr−submanifold of Rs if for any x ∈ A

there exists a Cr−diffeomorphism f from an open neighbourhood U of x in Rs onto the open subset f(U)

of Rs such that f(U ∩A) = f(U)∩{(x1, ..., xs) ∈ Rs | xm+1 = ... = xs = 0} (cf. [1], Definition 2.1.1). Note

that in view of Lindelöf’s theorem (cf. appendix C, Proposition C.2) a 0−dimensional Cr−submanifold of

Rs is an at most countable set. If g : U → Rt denotes a Cr−submersion from an open subset U of Rs into

Rt, then we know by the regular value theorem (cf. [4], p.14 or p.22, Theorem 3.2) that for each y ∈ Rt

the fibre g−1({y}) is empty or a (s− t)−dimensional Cr−submanifold of Rs.

The transpose of a vector x in a standard euclidean space or a matrix M will be indicated by x′ and M ′

respectively.

Furthermore the notation λt will be employed for the Lebesgue measure on Rt.

Throughout the paper we shall consider the following setting of extremum estimation: Let Y be a random

vector with measurable space (X ,B(X )), where X is an open subset of Rn, and B(X ) denotes the σ−algebra

of Borel subsets of X . We suppose that the distribution QY of Y may be parameterized by a mapping

G : Θ → Rm, i.e. it belongs to a familiy WG = {PG(ϑ) | ϑ ∈ Θ} of probability distributions, which in

addition we assume to be dominated by λn | Borel(X ). Of course the parameter ϑ should be identified,

which implies
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(2.1) G is injective.

Starting from a realisation y of the random vector Y, we are interested in estimating the (unknown) vector

ϑ by maximizing the mapping l(y; ·) ◦G =: lG(y; ·) defined by a given mapping l(·; ·) : X × Γ → R, where

Γ stands for an open subset of Rm enclosing G(Θ). Additionally, it will be assumed

(2.2) G(Θ) =
∞⋃

j=1
Gj(Θj), where Gj denotes a C2−mapping defined on an open subset Θj of Rrj ,

(2.3) l(·; ·) is a C2−mapping.

3 Statement of the main result

The main result relies on the following additional assumptions.

(3.1) Under (2.2), (2.3) the set Lj , consisting of all y ∈ X such that l(y, ·) ◦ Gj has degenerated critical

points, is a λn−null set for each j ∈ N.

(3.2) Under (2.2), (2.3) every set Lij (i, j ∈ N) of all y ∈ X with ∇ϑi l(y, ·) ◦ Gi = 0,∇ϑj l(y, ·) ◦ Gj = 0

and ∇yl(·, Gi(ϑi)) = ∇yl(·, Gj(ϑj)) for some (ϑi, ϑj) ∈ Θi ×Θj , Gi(ϑi) 6= Gj(ϑj), is a λn−null set.

Later on we shall replace (3.1) by some sufficient conditions.

Theorem 3.1 Let the assumptions (2.1) - (2.3) be fulfilled. If the mappings Gj (j ∈ N) are C2− immer-

sions, and if the conditions (3.1), (3.2) are valid, then

K := {y ∈ X | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} ∈ B(X )

with QY (K) = 0.

The proof is delegated to appendix B.

In the following we try to substitute condition (3.1). Our main tool will be provided by Lemma A.1 (cf.

appendix A). Unfortunately, it can be applied directly only in the case that the dimension n of the sample
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space X coincides with the dimension m of the parameter space Γ. But if we are in the position to modify

the maximization problem in a suitable way we would be able to draw on Lemma A.1. We shall treat the

cases n ≥ m and m ≥ n separately.

4 Specializations

In the case of n ≥ m we can use Lemma A.1 if we may reduce the dimension of the sample space by the

following condition:

(4.1) There exist a C2−submersion T : X → Rm and a real-valued C2−mapping l∗ on T (X ) × Γ such

that l(y; ·) = l∗(T (y); ·) holds for arbitrary y ∈ X .

Since T is a C1−submersion, T (X ) is an open subset of Rm, and moreover, λn(T−1(B)) = 0 if λm(B) = 0

(cf. [8], Proposition A3). Then a direct application of Theorem 3.1 with Lemma A.1 leads to the following

result concerning the uniqueness of the extremum estimation of ϑ.

Theorem 4.1 Let the condition (4.1) as well as the assumptions (2.1) - (2.3) be valid, let the mappings

Gj (j ∈ N) be C2−immersions, and let condition (3.2) be fulfilled. If there exist some C1−diffeomorphism

g from an open subset U of Rm onto an open subset g(U) of Rm and a C1−mapping φ : Γ → Rm such

that t− φ(γ) ∈ U and ∇γl
∗(t; ·) = g(t− φ(γ)) hold for (t, γ) ∈ T (X )× Γ, then

K := {y ∈ X | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} ∈ B(X )

with QY (K) = 0.

Remark 4.2 If n = m, condition (4.1) is satisfied, choosing for T the restriction of the identity mapping

on Rn to X . Therefore we may restate in this case Theorem 4.1 without condition (4.1).

Now let m ≥ n. For reduction of the dimension of Γ we want to assume:

(4.2) Under (2.2), (2.3) there exist an open subset H of X ×Rn with nonvoid Hy := {x ∈ Rn | (y, x) ∈ H}

(y ∈ X ), a C2−mapping l∗ : H → R and a sequence (F j)j of mappings F j : Aj → Rn such that the

following properties are satisfied
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a) F j is a C2−immersion on an open subset of Rpj for every j ∈ N.

b) If for y ∈ X and arbitrary j ∈ N the mapping l(y, ·) ◦Gj has a degenerated critical point, then

the mapping l∗(y, ·) ◦ F j |(F j)−1(Hy) has a degenerated critical point too.

Under condition (4.2) the combination of Theorem 3.1 and Lemma A.1 (cf. appendix A) reads as follows.

Theorem 4.3 Let the condition (4.2) as well as the assumptions (2.1) - (2.3) be valid, let the mappings

Gj (j ∈ N) be C2−immersions, and let condition (3.2) be fulfilled. If there exist some C1−diffeomorphism

g from an open subset U of Rn onto an open subset g(U) of Rn, an open subset V of Rn with V ⊇
⋃

y∈X
Hy,

and a C1−mapping φ : V → Rn such that y − φ(γ) ∈ U and ∇γl
∗(y; ·) = g(y − φ(γ)) hold for (y, γ) ∈ H,

then

K := {y ∈ X | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} ∈ B(X )

with QY (K) = 0.

Proof: Due to Lindelöf’s theorem (cf. appendix C, Proposition C.2) we may find a sequence (Ul × Vl)l of

open subsets of Rn × Rn with
∞⋃
l=1

Ul × Vl = H. In view of Lemma A.1 (cf. appendix A) the set Blj of all

y ∈ Ul with l∗(y, ·) ◦ F j |(F j)−1(Vl) having a degenerated critical point is a λn−null set for l, j ∈ N. Then,

condition (4.2) implies condition (3.1), and the statement of Theorem 4.1 follows from Theorem 3.1.

5 Maximum likelihood estimation in nonlinear regression

models

Let Y = F (α) + U be a nonlinear regression model with nonstochastic regressors, where

(6.1) Y denotes the random vector of the endogenous variables,

(6.2) F : A→ Rn stands for the regression function defined on a subset A of Rr, r ≤ n,
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(6.3) U =: (U1, ..., Un)′ symbolizes the random vector of the disturbances Ui which are supposed to be

independently and normally distributed with

EU = 0, (V ar(U1), ..., V ar(Un)) =: F̃ (β), F̃ : (]0,∞[)q → Rn, β 7→ (βi1 , ..., βin)

(i1, ..., in fixed values with {i1, ..., in} = {1, ..., q}).

It is easy to see that the parameter vector (α, β) is identified if and only if

(6.4) the injectivity of the regression function F is supposed.

Moreover, we assume that

(6.5) a sequence (pj)j of positive integers pj ≤ n, a sequence (Aj)j of open subsets Aj of Rpj and a

sequence (F j)j of mappings F j : Aj → Rn exist with

F (A) =
∞⋃

j=1

F j(Aj).

W denotes the family of normal distributions with independent marginal distributions. Γ := Rn×(]0,∞[)n

is a parameter space ofW.We can now apply our results of extremum estimation to the maximum likelihood

estimation of (α, β).

Theorem 5.1 Let us retake assumptions (6.1)-(6.5), let l(y, ·) denote the log likelihood function w.r.t. W

and the realization y of Y. Furthermore let G : A× (]0,∞[)q → Γ be defined by G(α, β) := (F (α), F̃ (β)).

If the mappings F j are C2−immersions, then

K := {y ∈ Rn | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} is a Borel subset of Rn

with QY (K) = 0.

Proof:

Let for a positive integer j the mapping Gj : Aj × (]0,∞[)q → Γ be defined by Gj(ϑj , β) = (F j(ϑj), F̃ (β)).

Then by assumption G fulfills the conditions (2.1), (2.2).
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Next let us introduce the open subset H := {(y, µ) ∈ Rn × Rn |
∑
t∈Ti

(yt − µt)2 6= 0 for all i ∈ {1, ..., q}}

of Rn × Rn, where Ti := {t ∈ {1, ..., n} | F̃t(β) = βi} for i ∈ {1, ..., q}. Furthermore let us consider the

mappings h : H → (]0,∞[)q, defined by h(y, µ) = ( 1
]T1

∑
t∈T1

[yt−µt]2, ..., 1
]Tq

∑
t∈Tq

[yt−µt]2), and the mapping

l∗ : H → R, defined by

l∗(y, µ) := l(y, µ, F̃ ◦ h(y, µ)) = −1
2

(
n(ln(2π) + 1) +

q∑
i=1

]Ti[ln(
∑
t∈Ti

(yt − µt)2)− ln(]Ti)]
)
.

By routine procedures it can be shown that l∗ and (F j)j satisfy condition (4.2). Note that we have

∇βl(y;µ, ·) ◦ F̃ = 0 ⇔ β = (
1
]T1

∑
t∈T1

[yt − µt]2, ...,
1
]Tq

∑
t∈Tq

[yt − µt]2), for all (y, µ) ∈ H.

Moreover we can define on U := {x ∈ Rn |
∑
t∈Ti

x2
t 6= 0 for all i ∈ {1, ..., q}} the mapping g : U → Rn by

g(x) =
q∑

i=1

∑
t∈Ti

]TixtP
s∈Ti

x2
s
et, where {e1, ..., en} denotes the standard basis of Rn. We get for arbitrary (y, µ) ∈ H

y − µ ∈ U, ∇µl
∗(y; ·) = g(y − µ), ∇yl

∗(·;µ) = −g(y − µ),

g is a bijective indefinitely differentiable function from U onto U with g−1 = g. Thus ∇yl
∗(·;µ) 6= ∇yl

∗(·; µ̃)

for arbitrary µ 6= µ̃, which means that condition (3.2) is fulfilled. The statement of the theorem follows

from Theorem 4.3.

6 Maximum likelihood estimation in curved exponential

families

Let ν be a σ-finite measure on the σ−algebra B(Rn) of Borel subsets of Rn which is dominated by the

Lebesgue measure on Rn. Additionally, let N := {γ ∈ Rn | 0 <
∫

Rn exp(γ′y)ν(dy) < ∞} and Γ be an

open subset of Rn enclosed in N . Introducing ψ : N → [−∞,∞], γ 7→ ln(
∫

Rn exp(γ′y)ν(dy)) we consider a

minimal exponential family W := {Pγ | γ ∈ Γ} of probability distributions having densities

fγ : Rn → R, y 7→ exp(γ′y − ψ(γ)) (γ ∈ Γ)
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with respect to ν. The parameter vector γ is identified since W is a minimal exponential family with

parameter space Γ ⊆ N (cf. [2],Theorem 1.13). G : Θ → Γ denotes an injective mapping which induces

the subfamily WG := {PG(ϑ) ∈ W | ϑ ∈ Θ} of W. Now we may consult Theorem 4.1 concerning the

uniqueness of the maximum likelihood estimation of the parameter vector ϑ.

Theorem 6.1 Let the mapping G satify the conditions (2.1), (2.2), let Y be a random vector with distri-

bution QY ∈ WG, and let l(y; ·) : Γ → R denote the log likelihood function with respect to W and y ∈ Rn.

If the mappings Gj (j ∈ N) are C2−immersions, then

K := {y ∈ Rn | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} is a Borel subset of Rn

with QY (K) = 0.

Proof:

ψ|Γ is indefinitely differentiable (cf. [11], Satz 1.164), which implies that φ : Γ → Rn, γ 7→ ∇γψ, and

l(·; ·) | X × Γ : X × int(Γ) → R, defined by l(y; γ) = γ′y − ψ(γ), are indefinitely differentiable. Moreover,

for arbitrary y ∈ X and different γ, γ̃ ∈ Γ we may observe ∇yl(·; γ) = γ 6= γ̃ = ∇yl(·; γ̃), and furthermore

∇γl(y; ·) = y −∇γψ. Thus the statement is a direct consequence of Theorem 4.1.

Remark:

Theorem 6.1 retains the result of Pazman (cf. [8], Theorem) mentioned in the introduction, which in turn

also encompasses Pazman’s criterion concerning the uniqueness of nonlinear least squares estimation in

nonlinear regression models with nonstochastic regressors and i.i.d. disturbances (cf. [7], Theorem 3 and

[9], Corollary 4.4.6).

7 Maximum likelihood estimation of location and scale pa-

rameter of a Gumbel distribution

Gumbel distributions build a subfamily of the so called extreme value distributions which play an important

role in extreme value theory. The Gumbel distribution with location parameter µ ∈ R and scale parameter
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σ > 0 is defined by the Lebesgue density

fµ,σ : R → R, z 7→ 1
σ

exp(−z − µ

σ
− exp(−z − µ

σ
))

(cf. [5], p. 76). We want to investigate the uniqueness of the maximum likelihood estimation of (µ, σ)

based on a random sample Y := (Y1, ..., Yn) (n ≥ 2) from a Gumbel distribution.

For this purposes let us introduce the mapping

l(·; ·) : Rn × (R×]0,∞[) → R, ((y1, ..., yn); (γ1, γ2)) 7→ n ln(γ2) +
n∑

i=1

ln ◦f(0,1)(γ2yi − γ1)

Since φ : R×]0,∞[→ R×]0,∞[, (µ, σ) 7→ (µ
σ ,

1
σ ) is bijective, we may check easily that for every realization

(y1, .., yn) of (Y1, ..., Y1) the maximum likelihood estimation of (µ, σ) has at most one solution if and only if

the mapping l((y1, ..., yn); ·) has at most one maximizing point. Therefore we might try to apply Theorem

3.1 to l(·; ·) and the identity mapping G on R×]0,∞[. Obviously, both mappings together satisfy the

assumptions (2.1) - (2.3), and G is a C2−immersion.

Observing that
df(0,1)

dz
(z) = f(0,1)(z)(exp(−z)−1) holds for z ∈ R, routine calculations lead to the following

partial derivatives of first and second order for l((y1, ..., yn); ·) ◦G ((y1, ..., yn) ∈ Rn)

∂l((y1, ..., yn); ·) ◦G
∂γ1

(γ1, γ2) = n− exp(γ1)
n∑

i=1

exp(−γ2yi)

∂l((y1, ..., yn); ·) ◦G
∂γ2

(γ1, γ2) =
n

γ2
−

n∑
i=1

yi + exp(γ1)
n∑

i=1

yi exp(−γ2yi)

∂2l((y1, ..., yn); ·) ◦G
∂γ2

1

(γ1, γ2) = − exp(γ1)
n∑

i=1

exp(−γ2yi)

∂2l((y1, ..., yn); ·) ◦G
∂γ1∂γ2

(γ1, γ2) = exp(γ1)
n∑

i=1

yi exp(−γ2yi)

∂2l((y1, ..., yn); ·) ◦G
∂γ2

2

(γ1, γ2) = − n

γ2
2

− exp(γ1)
n∑

i=1

y2
i exp(−γ2yi)

Now let (γ̂1, γ̂2) be a critical point of the function l((y1, ..., yn; ·) ◦ G. Then exp(γ̂1) =
n

n∑
i=1

exp(−γ̂2yi)
as
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well as
n

γ̂2
=

n∑
i=1

yi − exp(γ̂1)
n∑

i=1
yi exp(−γ̂2yi), and hence

det∇∇(γ̂1,γ̂2)l((y1, ..., yn); ·) ◦G =

n∑
i=1

exp(−γ̂2yi)
(
nyi −

n∑
j=1

yj

)2

n∑
i=1

exp(−γ̂2yi)

Thus the set L of all (y1, ..., yn) ∈ Rn with l((y1, ..., yn); ·) ◦G having a degenerated critical point coincides

with the subvector space of all (y1, ..., yn) ∈ Rn with nyi =
n∑

j=1
yj for i = 1, ..., n. In particular L is a

λn−null set.

Let us now consider for (y1, ..., yn) ∈ Rn different critical points (γ̂1, γ̂2) and (γ̃1, γ̂2) of l((y1, ..., y1); ·) ◦

G satisfying ∇(y1,...,yn)l(·; (γ̂1, γ̂2)) = ∇(y1,...,yn)l(·; (γ̃1, γ̃2)). This means that for each i ∈ {1, ..., n} the

equation γ̂2(exp(γ̂1) exp(−γ̂2yi) − 1) = γ̃2(exp(γ̃1) exp(−γ̃2yi) − 1) is valid. Hence γ̂2 6= γ̃2, say γ̂2 > γ̃2,

and additionally γ̂2 exp(γ̂1) = (γ̂2− γ̃2) exp(γ̂2yi)+ γ̃2 exp(γ̃1) exp((γ̂2− γ̃2)yi) for i = 1, ..., n, which in turn

implies (γ̂2− γ̃2) exp(γ̂2yi)+ γ̃2 exp(γ̃1) exp((γ̂2− γ̃2)yi) = (γ̂2− γ̃2) exp(γ̂2y1)+ γ̃2 exp(γ̃1) exp((γ̂2− γ̃2)y1)

for i = 1, ..., n.

The mapping g : R → R, x 7→ (γ̂2 − γ̃2) exp(γ̂2x) + γ̃2 exp(γ̃1) exp((γ̂2 − γ̃2)x), is differentiable, and its

derivatives satisfy

dg

dx
(x) = (γ̂2 − γ̃2)[γ̂2 exp(γ̂2x) + γ̃2 exp(γ̃1) exp((γ̂2 − γ̃2)x)] > 0 (x ∈ R)

Therefore g is injective, and we may conclude y1 = ... = yn. Then we know that the set L̂ of all (y1, ..., yn)

such that ∇(y1,...,yn)l(·; (γ̂1, γ̂2)) = ∇(y1,...,yn)l(·; (γ̃1, γ̃2)) holds for some couple (γ̂1, γ̂2) and (γ̃1, γ̂2) of dif-

ferent critical points of l((y1, ..., y1); ·) ◦ G is enclosed in the subvector space of all (y1, ..., yn) ∈ Rn with

y1 = ... = yn. In particular L̂ is a λn−null set.

Altogether we have shown that l(·; ·) and G fulfill the conditions (3.1), (3.2), and this yields the following

result concerning the uniqueness of the maximum likelihood estimation of (µ, σ) due to Theorem 3.1.

Theorem 7.1 Let Y := (Y1, ..., Yn) (n ≥ 2) be a random sample from the Gumbel distribution with the

location parameter µ ∈ R and scale parameter σ > 0, and let L(y1, ..., yn; ·) denote the likelihood function
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w.r.t. the family of Gumbel distributions and the realization (y1, ..., yn). Furthermore let the distribution

of Y be symbolized by QY .

Then

K := {(y1, ..., yn) ∈ Rn | L((y1, ..., yn); ·) has at least two maximizing points}

is a Borel subset of Rn with QY (K) = 0.

A Appendix

Lemma A.1 Let H1,H2 be open subsets of Rk, and let f : H1 ×H2 → R be a C2−mapping. Moreover

there exist some C1−diffeomorphism g from an open subset U of Rk onto an open subset g(U) of Rk and

a C1−mapping φ : H2 → Rk such that t− φ(γ) ∈ U and ∇γf(t; ·) = g(t− φ(γ)) hold for (t, γ) ∈ H1 ×H2.

If F denotes a C2−immersion from an open subset A of Rp into H2, then λk(BF ) = 0, where BF is defined

to consist of all t ∈ H1 such that ∇αf(t, ·) ◦ F = 0 and det∇∇αf(t, ·) ◦ F = 0 for some α ∈ H2.

Proof:

For p = k we have

∇αf(t; ·) ◦ F = 0, det∇∇αf(t; ·) ◦ F = 0 ⇔ ∇F (α)f(t; ·) = 0, det∇∇F (α)f(t; ·) = 0.

Thus, defining, φ̃ : Ũ → Rk, t 7→ φ(t) + g−1(0), we may conclude BF ⊆ φ̃({t ∈ Ũ | det Jt(φ̃) = 0}). Note

that g is a diffeomorphism with

∇F (α)f(t; ·) = g(t− φ ◦ F (α)).

Sard’s theorem (cf. appendix C, Proposition C.1) leads to λk(BF ) = 0.

Now let p < k.

Since F is a C2−immersion, we may conclude from the rank theorem together with standard orthonormal-

ization that for an arbitrary α ∈ A there are C1− mappings h1
α, ..., h

k−p
α defined on an open neigbourhood

Uα of α in A satisfying

hi
α(α̃)′Jα̃(F ) = 0, hi

α(α̃)′hi
α(α̃) = 1, hi

α(α̃)′hq
ϑj (α̃) = 0 (i 6= q)
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for every α̃ ∈ Uα and arbitrary i, q ∈ {1, ..., k − p}.

By Lindelöf’s theorem (cf. appendix C, Proposition C.2) we may select a sequence (α(s))s in A such that

(Uα(s))s is a cover of A. For abbreviation we set Us := Uα(s), h
i
s := hi

α(s) (i = 1, ..., k − p). Furthermore

xν : Rk → R denotes the projection on the ν−th component (ν ∈ {1, ..., k}).

We observe for (t, α) ∈ H1 ×A

∇αf(t; ·) ◦ F = Jα(F )′∇F (α)f(t; ·)

and

∇∇αf(t; ·) ◦ F =
k∑

ν=1

∂f(t; ·)
∂xν

(F (α))∇∇αxν ◦ F + Jα(F )′∇∇F (α)f(t; ·)Jα(F )

=
k∑

ν=1

xν ◦ g(t− φ ◦ F (α))∇∇αxν ◦ F − Jα(F )′Jt−φ◦F (α)(g)Jα(φ ◦ F ).

Let for s ∈ N the mappings gs, φs : Ws → Rk be defined by gs(α, b) :=
k−p∑
i=1

bih
i
s(α) and φs(α, b) :=

φ ◦ F (α) + g−1 ◦ gs(α, b), where Ws consists of all (α, b) ∈ Us ×Rk−p with
k−p∑
i=1

bih
i
s(α) ∈ g(U). Notice that

Ws is an open subset of Rk, and that gs is a C1−mapping, which implies that φs is a C1−mapping.

Now let (t̂, α̂) ∈ H1×A with ∇α̂f(t̂; ·)◦F = 0. Then there exist some s ∈ N and a vector b̂ := (b̂1, ..., b̂k−p)

from Rk−p with

g(t̂− φ ◦ F (α̂)) = ∇F (α̂)f(t̂; ·) =
k−p∑
i=1

b̂ih
i
s(α̂).

In particular (α̂, b̂) ∈WS , and g(t̂− φ ◦ F (α̂)) = gs(α̂, b̂). Hence t̂ = φs(α̂, b̂).

As a consequence of Jα(F )′hi
s(α) = 0 for α ∈ Us as well as i = 1, ..., k − p we obtain

k∑
ν=1

xν ◦ hi
s(α)∇∇αxν ◦ F = −Jα(F )′Jα(hi

s),

and therefore

∇∇α̂f(t̂; ·) ◦ F = −Jα̂(F )′Jt̂−φ◦F (α̂)(g)Jα̂(φs(·; b̂)).
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Following the rules for determinants of partioned matrices ( cf. [3], p.43, equation (II)), we get

|det[Jα̂(F ), h1
s(α̂), ..., hk−p

s (α̂)]′Jt̂−φ◦F (α̂)(g)J(α̂,b̂)(φ
s)| = |det Jα̂(F )′Jt̂−φ◦F (α̂)(g)Jα̂(φs(·; b̂))|

= |det∇∇α̂f(t̂; ·) ◦ F |

[Jα̂(F ), h1
s(α̂), ..., hk−p

s (α̂)]′Jt̂−φ◦F (α̂)(g) has rank k since F is an immersion. Therefore we can conclude

det∇∇α̂jf(t̂; ·) ◦ F j = 0 ⇔ det J(α̂,b̂)(φ
s) = 0

Thus BF ⊆ N :=
∞⋃

s=1
φs({(α, b) ∈ Ws | det J(α,b)(φs) = 0}). Applying Sard’s theorem (cf. appendix C,

Proposition C.1), we get N as a set of Lebesgue-measure zero, which completes the proof.

B Appendix

Proof of Theorem 3.1:

Let us retake notations and assumptions from Theorem 3.1. Furthermore let us introduce for positive

integer i, j the set Mij consisting of all y ∈ X with ∇ϑi l(y, ·)◦Gi = 0,∇ϑj l(y, ·)◦Gj = 0 and l(y,Gi(ϑi)) =

l(y,Gj(ϑj)) for some ϑi, ϑj with Gi(ϑi) 6= Gj(ϑj). Obviously, K ⊆
⋃

(i,j)∈N×N
Mij . Therefore it remains to

show

(1) Mij is a λn−null set for arbitrary i, j ∈ N.

(2) K is a Borel subset of X .

proof of (1):

Let us define for i, j ∈ N the open subset U :=
{
(ϑi, ϑj , y) ∈ Θi×Θj×X | Gi(ϑi) 6= Gj(ϑj)

}
of Θi×Θj×X ,

and the set Z := h−1({0}) ∩Θi ×Θj × (Rn \ (Li ∪ Lj ∪ Lij)), where

h : U → Rri+rj+1, (ϑi, ϑj , y) 7→
(
∇ϑi l(y; ·) ◦Gi,∇ϑj l(y; ·) ◦Gj , l(y;Gi(ϑi))− l(y;Gj(ϑj))

)
.
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Let (ϑ̂i, ϑ̂j , y) be an element of Z and s ∈ {1, ..., n} with ∂l(·;Gi(ϑ̂i))
∂ys

(y) 6= ∂l(·;Gj(ϑ̂j))
∂ys

(y). Using the Laplace-

expansion of determinants and the rules of partioned matrices (cf. [3], p.43, equation (I)), we obtain

det[J(ϑ̂i,ϑ̂j)(h(·, ·, y)),
∂h

∂ys
(ϑ̂i, ϑ̂j , y)]

= det(∇∇ϑ̂i l(y; ·) ◦Gi) det(∇∇ϑ̂j l(y; ·) ◦Gj)
[ ∂l(·;Gi(ϑ̂i))

∂ys
(y)− ∂l(·;Gj(ϑ̂j))

∂ys
(y)

]
6= 0,

noticing y 6∈ Li∪Lj . Thus Z is a subset of Ũ := {(ϑi, ϑj , y) ∈ U | rank of J(ϑi,ϑj ,y)(h) = ri +rj +1}, which

is an open subset of Rri+rj+n. Therefore h | Ũ is a C1−submersion and Z̃ := (h | Ũ)−1({0}) is empty or

a (n− 1)−dim. C1−submanifold of Rri+rj+n. We have

Mij \ (Li ∪ Lj ∪ Lij) = Pr(Z) ⊆ Pr(Z̃),

where Pr denotes the canonical projection from Rri+rj+n onto Rn. By Sard’s theorem (cf. appendix C,

Proposition C.1) we get λn(Pr(Z̃)) = 0 and, due to assumptions (3.1), (3.2),

λn(Mij) = λn
(
Mij \ (Li ∪ Lj ∪ Lij)

)
+ λn

(
Li ∪ Lj ∪ Lij

)
= 0.

proof of (2):

For positive integers i,j we define the open subset Nij := {(ϑi, ϑj) ∈ Θi×Θj | Gi(ϑi) 6= Gj(ϑj)} of Θi×Θj

respectively Rri+rj . Applying Lindelöf’s Theorem (cf. appendix C, Proposition C.2) and using the local

compactness of Nij we get a sequence (Uν × Vν)ν of compact sets Uν × Vν satisfying Nij =
∞⋃

ν=1
Uν × Vν .

Since each set Uν × Vν is sequentially compact, every y ∈ X being an accumulation point of the set

Gij
ν :=

{
y ∈ X | l(y;Gi(ϑi)) = l(y;Gj(ϑj)) = max

ϑ∈ϑ
lG(y;ϑ) for some (ϑi, ϑj) ∈ Uν × Vν

}
is also an element of Gij

ν , i.e. the sets Gij
ν are closed in X and therefore Borel subsets. Then K is a Borel

subset because

K =
∞⋃
i=1

∞⋃
j=1

∞⋃
ν=1

Gij
ν

Therefore (2) is shown, which completes the proof.
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C Appendix

Proposition C.1 (Special versions of Sard’s theorem) Let f : U → Rt denote a Cr−mapping (r ∈

N) from an open subset U of Rs into Rt. Then we can state:

.1 If s = t, then f({x ∈ U | det Jx(f) = 0}) is a λt−null set.

.2 If A ⊆ U is a m−dimensional Cr−submanifold of Rs with 0 ≤ m < t, then f(A) is a λt−null set.

These versions of Sard’s theorem may be found in [1] (Corollary 3.3.17.4 and Theorem 4.3.1) or in [4] (p.

69) or in [10] (remark on Definition 3.3 and Theorem 3.1).

Proposition C.2 (Lindelöf ’s theorem) Let (Ω, τ) denote a topological Hausdorff space such that τ has

a countable base. Then every open cover of a subset A ⊆ Ω has a countable subcover.

For a proof cf. e.g. [6] (p.49).

References

[1] Berger, M. and Gostiaux, B., Differential Geometry: Manifolds, Curves and Surfaces, Springer, New

York, 1988.

[2] Brown, L., Fundamentals of Statistical Exponential Families, IMS Monograph Series, Hayward, Cali-

fornia, 1986.

[3] Gantmacher, F.R., Matrizenrechnung I, Deutscher Verlag der Wissenschaften, Berlin (Ost) (1958).

[4] Hirsch, M.W., Differential Topology, Springer, New York, 1976.

[5] Johnson, N.L., Kotz, S. and Balakrishnan, N., Continuous Univariate Distributions Volume 2, Wiley,

New York, 1995.

[6] Kelley, J.F., General Topology, van Nostrand, New York, 1955.

16



[7] Pazman, A., Nonlinear Least Squares - Uniqueness versus Ambiguity, Mathematische Operations-

forschung, series Statistics, 15 (1984), 323-336.

[8] Pazman, A., On the Uniqueness of the M.L. Estimates in Curved Exponential Families, Kybernetika

22 (1986), 124-132.

[9] Pazman, A., Nonlinear Statistical Models, Kluwer, Dordrecht, 1993.

[10] Sternberg, S. Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, 1964.

[11] Witting, H., Mathematische Statistik I, Teubner, Stuttgart, 1985.

17



 

SFB 649 Discussion Paper Series 2006 

 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

001 "Calibration Risk for Exotic Options" by Kai Detlefsen and Wolfgang K. 
Härdle, January 2006. 

002 "Calibration Design of Implied Volatility Surfaces" by Kai Detlefsen and 
Wolfgang K. Härdle, January 2006. 

003 "On the Appropriateness of Inappropriate VaR Models" by Wolfgang 
Härdle, Zdeněk Hlávka and Gerhard Stahl, January 2006. 

004 "Regional Labor Markets, Network Externalities and Migration: The Case 
of German Reunification" by Harald Uhlig, January/February 2006. 

005 "British Interest Rate Convergence between the US and Europe: A 
Recursive Cointegration Analysis" by Enzo Weber, January 2006. 

006 "A Combined Approach for Segment-Specific Analysis of Market Basket 
Data" by Yasemin Boztuğ and Thomas Reutterer, January 2006. 

007 "Robust utility maximization in a stochastic factor model" by Daniel 
Hernández–Hernández and Alexander Schied, January 2006. 

008 "Economic Growth of Agglomerations and Geographic Concentration of 
Industries - Evidence for Germany" by Kurt Geppert, Martin Gornig and 
Axel Werwatz, January 2006. 

009 "Institutions, Bargaining Power and Labor Shares" by Benjamin Bental 
and Dominique Demougin, January 2006. 

010 "Common Functional Principal Components" by Michal Benko, Wolfgang 
Härdle and Alois Kneip, Jauary 2006. 

011 "VAR Modeling for Dynamic Semiparametric Factors of Volatility Strings" 
by Ralf Brüggemann, Wolfgang Härdle, Julius Mungo and Carsten 
Trenkler, February 2006. 

012 "Bootstrapping Systems Cointegration Tests with a Prior Adjustment for 
Deterministic Terms" by Carsten Trenkler, February 2006. 

013 "Penalties and Optimality in Financial Contracts: Taking Stock" by 
Michel A. Robe, Eva-Maria Steiger and Pierre-Armand Michel, February 
2006. 

014 "Core Labour Standards and FDI: Friends or Foes? The Case of Child 
Labour" by Sebastian Braun, February 2006. 

015 "Graphical Data Representation in Bankruptcy Analysis" by Wolfgang 
Härdle, Rouslan Moro and Dorothea Schäfer, February 2006. 

016 "Fiscal Policy Effects in the European Union" by Andreas Thams, 
February 2006. 

017 "Estimation with the Nested Logit Model: Specifications and Software 
Particularities" by Nadja Silberhorn, Yasemin Boztuğ and Lutz 
Hildebrandt, March 2006. 

018 "The Bologna Process: How student mobility affects multi-cultural skills 
and educational quality" by Lydia Mechtenberg and Roland Strausz, 
March 2006. 

019 "Cheap Talk in the Classroom" by Lydia Mechtenberg, March 2006. 
020 "Time Dependent Relative Risk Aversion" by Enzo Giacomini, Michael 

Handel and Wolfgang Härdle, March 2006. 
021 "Finite Sample Properties of Impulse Response Intervals in SVECMs with 

Long-Run Identifying Restrictions" by Ralf Brüggemann, March 2006. 
022 "Barrier Option Hedging under Constraints: A Viscosity Approach" by 

Imen Bentahar and Bruno Bouchard, March 2006. 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 



 
 
 
 

023 "How Far Are We From The Slippery Slope? The Laffer Curve Revisited" 
by Mathias Trabandt and Harald Uhlig, April 2006. 

024 "e-Learning Statistics – A Selective Review" by Wolfgang Härdle, Sigbert 
Klinke and Uwe Ziegenhagen, April 2006. 

025 "Macroeconomic Regime Switches and Speculative Attacks" by Bartosz 
Maćkowiak, April 2006. 

026 "External Shocks, U.S. Monetary Policy and Macroeconomic Fluctuations 
in Emerging Markets" by Bartosz Maćkowiak, April 2006. 

027 "Institutional Competition, Political Process and Holdup" by Bruno 
Deffains and Dominique Demougin, April 2006. 

028 "Technological Choice under Organizational Diseconomies of Scale" by 
Dominique Demougin and Anja Schöttner, April 2006. 

029 "Tail Conditional Expectation for vector-valued Risks" by Imen Bentahar, 
April 2006. 

030 "Approximate Solutions to Dynamic Models – Linear Methods" by Harald 
Uhlig, April 2006. 

031 "Exploratory Graphics of a Financial Dataset" by Antony Unwin, Martin 
Theus and Wolfgang Härdle, April 2006. 

032 "When did the 2001 recession really start?" by Jörg Polzehl, Vladimir 
Spokoiny and Cătălin Stărică, April 2006. 

033 "Varying coefficient GARCH versus local constant volatility modeling. 
Comparison of the predictive power" by Jörg Polzehl and Vladimir 
Spokoiny, April 2006. 

034 "Spectral calibration of exponential Lévy Models [1]" by Denis 
Belomestny and Markus Reiß, April 2006. 

035 "Spectral calibration of exponential Lévy Models [2]" by Denis 
Belomestny and Markus Reiß, April 2006. 

036 "Spatial aggregation of local likelihood estimates with applications to 
classification" by Denis Belomestny and Vladimir Spokoiny, April 2006. 

037 "A jump-diffusion Libor model and its robust calibration" by Denis 
Belomestny and John Schoenmakers, April 2006. 

038 "Adaptive Simulation Algorithms for Pricing American and Bermudan 
Options by Local Analysis of Financial Market" by Denis Belomestny and 
Grigori N. Milstein, April 2006. 

039 "Macroeconomic Integration in Asia Pacific: Common Stochastic Trends 
and Business Cycle Coherence" by Enzo Weber, May 2006. 

040 "In Search of Non-Gaussian Components of a High-Dimensional 
Distribution" by Gilles Blanchard, Motoaki Kawanabe, Masashi Sugiyama, 
Vladimir Spokoiny and Klaus-Robert Müller, May 2006. 

041 "Forward and reverse representations for Markov chains" by Grigori N. 
Milstein, John G. M. Schoenmakers and Vladimir Spokoiny, May 2006. 

042 "Discussion of 'The Source of Historical Economic Fluctuations: An 
Analysis using Long-Run Restrictions' by Neville Francis and Valerie A. 
Ramey" by Harald Uhlig, May 2006. 

043 "An Iteration Procedure for Solving Integral Equations Related to Optimal 
Stopping Problems" by Denis Belomestny and Pavel V. Gapeev, May 
2006. 

044 "East Germany’s Wage Gap: A non-parametric decomposition based on 
establishment characteristics" by Bernd Görzig, Martin Gornig and Axel 
Werwatz, May 2006. 

045 "Firm Specific Wage Spread in Germany - Decomposition of regional 
differences in inter firm wage dispersion" by Bernd Görzig, Martin Gornig 
and Axel Werwatz, May 2006. 

 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 



 

046 "Produktdiversifizierung: Haben die ostdeutschen Unternehmen den 
 Anschluss an den Westen geschafft? – Eine vergleichende Analyse mit 
 Mikrodaten der amtlichen Statistik" by Bernd Görzig, Martin Gornig and 
 Axel Werwatz, May 2006. 
047 "The Division of Ownership in New Ventures" by Dominique Demougin 
 and Oliver Fabel, June 2006. 
048 "The Anglo-German Industrial Productivity Paradox, 1895-1938: A 
 Restatement and a Possible Resolution" by Albrecht Ritschl, May 2006. 
049 "The Influence of Information Costs on the Integration of Financial 
 Markets: Northern Europe, 1350-1560" by Oliver Volckart, May 2006. 
050 "Robust Econometrics" by Pavel Čížek and Wolfgang Härdle, June 2006. 
051 "Regression methods in pricing American and Bermudan options using 
 consumption processes" by Denis Belomestny, Grigori N. Milstein and 
 Vladimir Spokoiny, July 2006. 
052 "Forecasting the Term Structure of Variance Swaps" by Kai Detlefsen 
 and Wolfgang Härdle, July 2006. 
053 "Governance: Who Controls Matters" by Bruno Deffains and Dominique 
 Demougin, July 2006. 
054 "On the Coexistence of Banks and Markets" by Hans Gersbach and 
 Harald Uhlig, August 2006. 
055 "Reassessing Intergenerational Mobility in Germany and the United 
 States: The Impact of Differences in Lifecycle Earnings Patterns" by 
 Thorsten Vogel, September 2006. 
056 "The Euro and the Transatlantic Capital Market Leadership: A Recursive 
 Cointegration Analysis" by Enzo Weber, September 2006. 
057 "Discounted Optimal Stopping for Maxima in Diffusion Models with Finite 
 Horizon" by Pavel V. Gapeev, September 2006. 
058 "Perpetual Barrier Options in Jump-Diffusion Models" by Pavel V. 
 Gapeev, September 2006. 
059 "Discounted Optimal Stopping for Maxima of some Jump-Diffusion 
 Processes" by Pavel V. Gapeev, September 2006. 
060 "On Maximal Inequalities for some Jump Processes" by Pavel V. Gapeev, 
 September 2006. 
061 "A Control Approach to Robust Utility Maximization with Logarithmic 
 Utility and Time-Consistent Penalties" by Daniel Hernández–Hernández 
 and Alexander Schied, September 2006. 
062 "On the Difficulty to Design Arabic E-learning System in Statistics" by 
 Taleb Ahmad, Wolfgang Härdle and Julius Mungo, September 2006. 
063 "Robust Optimization of Consumption with Random Endowment" by 
 Wiebke Wittmüß, September 2006. 
064 "Common and Uncommon Sources of Growth in Asia Pacific" by Enzo 
 Weber, September 2006. 
065 "Forecasting Euro-Area Variables with German Pre-EMU Data" by Ralf 
 Brüggemann, Helmut Lütkepohl and Massimiliano Marcellino, September 
 2006. 
066 "Pension Systems and the Allocation of Macroeconomic Risk" by Lans 
 Bovenberg and Harald Uhlig, September 2006. 
067 "Testing for the Cointegrating Rank of a VAR Process with Level Shift 
 and Trend Break" by Carsten Trenkler, Pentti Saikkonen and Helmut 
 Lütkepohl, September 2006. 
068 "Integral Options in Models with Jumps" by Pavel V. Gapeev, September 
 2006. 
069 "Constrained General Regression in Pseudo-Sobolev Spaces with 
 Application to Option Pricing" by Zdeněk Hlávka and Michal Pešta, 
 September 2006. 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 



 

070 "The Welfare Enhancing Effects of a Selfish Government in the  Presence 
 of Uninsurable, Idiosyncratic Risk" by R. Anton Braun and Harald 
 Uhlig, September 2006. 
071 "Color Harmonization in Car Manufacturing Process" by Anton 
 Andriyashin, Michal Benko, Wolfgang Härdle, Roman Timofeev and Uwe 
 Ziegenhagen, October 2006. 
072 "Optimal Interest Rate Stabilization in a Basic Sticky-Price Model" by 
 Matthias Paustian and Christian Stoltenberg, October 2006. 
073 "Real Balance Effects, Timing and Equilibrium Determination" by 
 Christian Stoltenberg, October 2006. 
074 "Multiple Disorder Problems for Wiener and Compound Poisson Processes 
 With Exponential Jumps" by Pavel V. Gapeev, October 2006. 
075 "Inhomogeneous Dependency Modelling with Time Varying Copulae" by 
 Enzo Giacomini, Wolfgang K. Härdle, Ekaterina Ignatieva and Vladimir 
 Spokoiny, November 2006. 
076 "Convenience Yields for CO2 Emission Allowance Futures Contracts" by 
 Szymon Borak, Wolfgang Härdle, Stefan Trück and Rafal Weron, 
 November 2006. 
077 "Estimation of Default Probabilities with Support Vector Machines" by 
 Shiyi Chen, Wolfgang Härdle and Rouslan Moro, November 2006. 
078 "GHICA - Risk Analysis with GH Distributions and Independent 
 Components" by Ying Chen, Wolfgang Härdle and Vladimir Spokoiny, 
 November 2006. 
079 "Do Individuals Recognize Cascade Behavior of Others? - An 
 Experimental Study –" by Tim Grebe, Julia Schmid and Andreas Stiehler, 
 November 2006. 
080 "The Uniqueness of Extremum Estimation" by Volker Krätschmer, 
 December 2006. 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 


	Frontpage 080.pdf
	SFB649DP2006-080_ges.pdf
	SFB649DP2006-080.pdf
	Endpage 080.pdf


