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Abstract: Systemic weather risk is a major obstacle for the formation of private (non-
subsidized) crop insurance. This paper explores the possibility of spatial diversification of
insurance by estimating the joint occurrence of unfavorable weather conditions in different
locations. For that purpose copula methods are employed that allow an adequate descrip-
tion of stochastic dependencies between multivariate random variables. The estimation
procedure is applied to weather data in Germany. Our results indicate that indemnity
payments based on temperature as well as on cumulative rainfall show strong stochastic
dependence even at a national scale. Thus the possibility to reduce risk exposure by
increasing the trading area of the insurance is limited. Irrespective of their economic
implications our results pinpoint the necessity of a proper statistical modeling of the de-
pendence structure of multivariate random variables. The usual approach of measuring
stochastic dependence with linear correlation coefficients turned out to be questionable in
the context of weather insurance as it may overestimate diversification effects considerably.
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1 Introduction

Insurance of weather related production risks is a challenge for agricultural insurers. A
well known precondition of insurability is that individual risks are independent or if the
covariance among risks is small. This requirement rules out covariate or systemic risk.
While such an assumption holds for some types of weather hazards, as for example hail
damages, it does not for other types, at least at a regional level. Drought risk is a striking
example for a peril that affects most if not all farmers in a whole region. Miranda and
Glauber (1997) argue that the existence of systemic weather risk constitutes the main
reason for the failure of private crop insurance markets unless efficient and affordable
instruments for transferring this risk are available. This conjecture is based on the obser-
vation that existing crop insurance programs including drought risk are either subsidized
(e.g. United States or Canada) or have negligible participation rates (as in Germany).
However, there several possible instruments that allow handling of systemic risks, among
them reinsurance or weather derivatives (Xu, Odening and Musshoff 2008). Alternatively,
an insurance company may try to spatially diversify systemic weather risk by increasing its
trading area. In order to identify appropriate measures for coping with systemic weather
risk, it is necessary to quantify these risks. Clearly, the systemic nature of weather risk
depends on the scale that one considers. At locations within a country or a state weather
events like drought are highly correlated whereas these dependencies vanish at a national
or global level. Thus the question arises how the dependence structure of weather events
changes as a function of space and distance. The relationship between weather events at
different locations is not only relevant when calculating joint losses from the viewpoint
of the insurer. It is also crucial for the hedging effectiveness of weather derivatives that
insurance companies may wish to sell to farmers. It has been frequently stressed in the
literature that the hedging effectiveness of weather derivatives is eroded by geographical
basis risk (e.g. Woodard and Garcia 2008).

In view of the relevance of spatial dependence of weather events for insurance issues it
is not surprising that many attempts for a quantification have been made. The usual
approach is based on simple correlation coefficients between weather variables or indices
which are measured at different locations (weather stations). With these correlation
coefficients at hand de-correlation functions can be easily estimated, depicting correlation
of weather variables as a function of the distance between weather stations. Examples of
this kind of approach can be found in Woodard and Garcia (2008) or in Odening, Musshoff
and Xu (2007). Goodwin (2001) applies the same technique to US yield data. Wang and
Zhang (2003) also address the spatial characteristics of crop insurance. Using the concept
of finite range positive dependence of spatial variables they calculate the effectiveness of
risk pooling for cropping areas in the US. Their results are likewise based on correlations
depending on lag distances.

The use of linear correlation of risks is computationally appealing but has some well-
known pitfalls (cf. McNeil, Frey and Embrechts 2005). First of all, linear correlation
cannot capture nonlinear dependence. Moreover, linear correlation in general does not
contain all relevant information on the dependency structure of risks. That means, joint
distributions with the same correlation coefficient may show a different behavior, partic-
ularly in their tails. This in turn may lead to an underestimation or overestimation of the
likelihood of extreme insurance losses. An exception is the multivariate normal distribu-
tion where knowledge of the marginal distributions and the correlation matrix uniquely
determines the joint distribution. However, there is much empirical evidence that weather
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indices as well as yield distributions are not normally distributed (e.g., Odening, Musshoff
and Xu 2007, Goodwin and Ker 2002). The direct modeling and estimation of joint dis-
tributions of weather variables is in theory a response to the aforementioned problems,
but it is practically affected by the shortness of available data series. Empirical data
have to provide information on both the marginal distribution of weather indices and the
dependence structure between them. A compromise between the restrictive application
of linear correlations and the estimation of multivariate distributions is the use of copulas
(Joe 1997, Nelsen 2006). Copulas avoid the direct estimation of multivariate distributions
but allow for much greater flexibility in modeling the dependence structure compared to
simple correlation coefficients. The basic idea of a copula function is to link marginal
distributions together to a joint distribution (Sklar 1959). An advantage of copulas is
that they can be determined independently from the marginal distributions of the risk
variables using either parametric or nonparametric estimation procedures. Copulas be-
came increasingly popular in the last years and have been applied to various problems in
finance (c.f. Embrechts, McNeil and Straumann 1999, Cherubini, Luciano and Vecchiato
2004). Applications in agricultural economics, however, are rare. Vedenov (2008) ana-
lyzes the relationship between individual farm yields and area yields and Zhu, Ghosh and
Goodwin (2008) investigate the dependence of prices and yields in the context of revenue
insurance. To the knowledge of the authors copulas have not been used for the estimation
of spatial dependence of weather events so far.

The objective of this paper is to model and to estimate the losses of a weather related
insurance at different regional levels and different aggregation levels. We assume that
indemnity payments directly or indirectly depend on weather indices measured at several
locations. The underlying question is to what extent weather risks exposures at different
places can be diversified by increasing the selling area of the contracts. We are particularly
interested in the tail behavior of the joint loss distribution as the probability of large
losses is crucial for the required buffer fund of the insurer and the premium loading above
the expected payoff and thus for the viability of an index-based crop insurance. For
that purpose the probability distribution of the joint losses is estimated using copulas.
Once the copula function and the marginal distributions of the weather indices have
been determined the value-at-risk (VaR) of the insurers total losses can be calculated by
means of stochastic simulation. By comparing results of different copula types with those
from simple correlations we contribute to the discussion of an appropriate modeling of
statistical dependencies in the context of weather insurance.

The remainder of the paper is organized as follows. Section 2 briefly reviews some basic
properties of copula functions and explains their specification and estimation. Next, we
describe the use of copulas in the particular context of simulating weather-dependent
insurance losses. In section 3 this procedure is then applied to weather data in Germany.
The results are presented in section 4. The paper ends with a discussion of the viability
of crop insurance in Germany and some conclusions on the usefulness of the copula-based
measurement of dependent risks.
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2 Measuring spatial weather dependence

with copulae

2.1 Identification and estimation of copulae

The rationale of using copulas if one is interested in the outcome of joint risks is given
by Sklar’s Theorem (Sklar 1959), which states that if F is a multivariate distribution
function with margins F1, . . . , Fn respectively then there exists a copula C such that

F (x1, . . . , xn) = C{F (x1), . . . , F (xn)}, ∀ x1, . . . , xn ∈ R. (1)

Thus a copula C(u1, . . . , un) can be understood as a multivariate distribution function
with all margins being uniformly distributed on [0, 1]. c(·) denotes the density function
of copula C(·) and the mathematical relation between c(·) and C(·) can be described as

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1 · · · ∂un
, ∀ u1, . . . , un ∈ [0; 1] (2)

and the multivariate density function is then given by

f(x1, . . . , xn) = C{F1(x1), . . . , Fn(xn)} · f1(x1) · · · fn(xn), (3)

where f1, . . . , fn are marginal densities.

(1) reveals that the information contained in the joint distribution F (x1, . . . , xn) can be
partitioned into the information contained the margins F (xi) and the information on
the dependence structure which is captured by the copula C(·). Note that the copula
approach is very flexible, since the individual risks Xi can be modeled with any marginal
distribution. One can show that margins together with the copula uniquely determine
the joint distribution (unlike margins and linear correlations). Vice versa, if the margins
are continuous a unique copula corresponds to any joint distribution. However, a priori
there are an infinite number of copula functions that could be used in (1) and thus the
question arises how to choose the copula function appropriately in a sense of matching
the multivariate data?

As with the estimation of any distribution function one can apply either parametric or
non-parametric (e.g. kernel) approaches (Chen and Huang 2007). Vedenov (2008) argues
that a nonparametric copula is a natural choice since there is no constructive way to
determine the optimal copula function and thus the danger of misspecifying the copula
is high. On the other hand if valuable prior information is available, parametric methods
can improve the estimation results (Charpentier, Fermanian and Scaillet 2007, Genest,
Ghoudi and Rivest 1995). In this paper we pursue a parametric approach. Important
parametric copula types, which are frequently used in the existing literature, comprise,
among others, the Gaussian copula and the family of Archimedean copulas (Haerdle,
Okhrin and Okhrin 2008). The latter class includes the Clayton copula and the Gumbel
copula.

The Gaussian copula which belongs to the class of elliptical copulas is derived from the
multivariate Gaussian distribution and Sklar’s theorem and has the form

CG(u1, . . . , un,Σ) = ΦΣ{Φ−1(u1), . . . ,Φ
−1(un)}, (4)
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where Φ(·) is the cumulative density function of the standard normal distribution, and Σ
is the Pearson Correlation Matrix. The probability density structure can be characterized
by an elliptic shape ruling out tail dependence of the random variables. To proceed further
we need a definition of the Archimedean copulae which are functions:

C(u1, . . . , un) = φ{φ[−1](u1) + . . .+ φ[−1](un)}, (5)

where φ is called the generator function and φ(0) = 1, φ(∞) = 0, φ[−1] is its pseudoinverse.

Tail dependence can be captured by the Gumbel copula which reads

CGu(u1, . . . , un, θ) = φ
{
φ−1(u1) + · · ·+ φ−1(un)

}
= exp

[
−
{

(− lnu1)
θ + · · ·+ (− lnun)θ

} 1
θ

]
, 1 ≤ θ ≤ ∞, (6)

φ (x, θ) = exp
(
−x

1
θ

)
where θ denotes a copula parameter that has to be estimated. The Gumbel copula shows
a stronger linkage between positive values, more variability and more mass in the negative
tail than the Gaussian copula (Okhrin 2007).

The Clayton copula is likewise an asymmetric Archimedean copula:

CC(u1, . . . , un) =
{
u−θ1 + · · ·+ u−θn − (n− 1)

}− 1
θ , − 1 ≤ θ ≤ ∞, θ 6= 0. (7)

In contrast to the Gumbel copula the Clayton one assigns a higher probability to joint
extreme negative events than to joint extreme positive events. It displays lower tail
dependence and is characterized by zero upper tail dependence. Because of this feature
the Clayton copula has been widely used in financial applications (e.g., Junker and May
2005, Blum, Dias and Embrechts 2002).

In general, three approaches are available to estimate the parameters of a copula. First, it
is possible to estimate the copula parameters jointly with the parameters of the marginal
distributions by means of exact maximum likelihood method (Cherubini, Luciano and
Vecchiato 2004)

θ̃ = (θ̂, α̂1, . . . , α̂n)

= arg max
θ
c{F1(x1;α1), . . . , Fn(xn;αn); θ}

n∏
i=1

fj(xij, αj). (8)

Alternatively to this one-step estimation, one can apply a two-step procedure, where the
parameters of the margins α are estimated first. Afterwards the copula parameters are
determined, e.g. by maximum likelihood, treating the parameters of the margins as given.
This procedure is called the inference for margin methods (IFM) (Joe 1997). The IFM is
less efficient than the one-step maximum likelihood but computationally more attractive.
The maximum of the log-likelihood of the copula parameter θ, l (θ), conditional on given
α is

θ̂ = arg max
θ

k∑
j=1

ln[c {F (x1j; α̂1) , . . . , F (xnj; α̂n)} ; θ]. (9)

k denotes the number of samples. An alternative semi-parametric estimation procedure is
the Canonical Maximum-Likelihood (CML) method (Haerdle, Okhrin and Okhrin 2008).
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The log likelihood function is now

θ̂ = arg max
θ

k∑
j=1

ln[c{F̂ (x1j) , . . . , F̂ (xnj) ; θ}]. (10)

The resulting estimator is also called maximum-pseudolikelihood-estimator or rank-based
maximum-likelihood estimator. The difference between (9) and (10) is that the para-
metric marginal distribution F (xij) is substituted by the empirical marginal distribution

F̂ (xij). This is an advantage if the precise estimation of parametric margins is hampered
by a limited number of observations. A detailed description of this estimation procedure
can be found in Okhrin (2007). The empirical results in section 3 are based on the CML
method.

Since different copula models imply very different dependence structures it is important to
infer the correct one from the available data. The underlying test problem is equivalent
to the goodness-of-fit tests for multivariate distributions. However, since the margins
are estimated one cannot apply the standard test procedures directly. Chen and Fan
(2005) propose a likelihood-ratio-test. Unfortunately, the test statistic does not follow a
standard distribution so that either bootstrap or other computationally intensive methods
have to be used. In this paper the choice of the copula type is therefore simply based on
a comparison of the values of the maximized likelihood functions.

2.2 Copula-based simulation of insurance losses

With the estimated margins and the copula function at hand it is a straightforward
task to assess the economic consequences of multiple risks. In the context of weather
insurance particular interest lies in quantifying the likelihood of large payoffs due to the
joint occurrence of unfavorable weather conditions at different locations. Following Wang
and Zhang (2003) we calculate the necessary size of the buffer fund that the insurer holds
as a reserve to cover indemnity payments in extreme cases and to avoid a ruin. Formally,
the buffer fund (BF) is defined as the value at risk (VaR) of the net losses of the insurer,
i.e. the total indemnity payments minus the insurance premium

BF := P

[
n∑
i=1

wi · {L (Xi)− πi} ≥ BF

]
= 1− α, (11)

where L (Xi) denotes the weather dependent indemnity payment for trading area i and πi
is the corresponding insurance premium. Here πi is defined as E [(L (Xi))]. wi denotes the
weight of the ith insurance contract and 1−α is the ruin probability. Dividing the buffer
fund by the number of contracts gives the buffer load. The buffer load is the surcharge to
the fair price of the insurance that ensures liquidity of the insurer. Other loading factors
capturing administrative costs are ignored.

For the copula-based calculation of VaR we proceed as follows (cf. Giacomini and Haer-
dle 2005). Based on marginal distributions Fn (xn) which are specified using standard
goodness of fit tests, and the estimated copula C(u1, . . . , un; θ) samples from the joint
distribution X ∼ C(u1, . . . , un; θ̂) of the weather variables can be generated using Monte
Carlo simulation. There is an conditional inverse algorithm for simulating the full dis-
tribution of x1, . . . , xn by recursively simulating the conditional distribution of xi given
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xi−1. For each realization of the n-dimensional random vector of weather indices a (one
dimensional) loss is calculated through aggregation of the indemnity payments resulting
from the n insurance contracts. The indemnities L (Xi) depend on the specification of
the insurance contract. The contract design as well as the specification of the weather
indices Xi is described in the next section.

3 Application

In what follows we apply the procedure explained in the previous section to weather
data in Germany. The application is motivated by the fact that agricultural insurance
companies in Germany are currently developing insurance products which protect farmers
against multiple perils including drought risk. Unlike in many other countries agricultural
insurance and reinsurance contracts in Germany are not subject to governmental subsidies.
Thus a careful investigation of the stochastic properties of the insured risk is in the vital
interest of potential suppliers of these contracts. Though we are aware that the trading
area of insurance companies may not be confined to Germany we focus on this country
simply for practical reasons of data availability.

The data set consists of daily observations of precipitation and (average) temperature
covering the period from January 1, 1973 until December 31, 2006, i.e. 34 years. These
time series are available for 25 weather stations which are equally spread over Germany
(see Figure 1). The choice of these particular weather stations was made with regard to
maximizing the length of the time series.

Based on these daily observations three weather indices are derived that are used as
underlyings for weather insurance. The first index is the cumulative rainfall index (CRI).
It measures the rainfall within the main vegetation period of most crops, which lasts from
April 1 until June 30:

CRIi,t =

τJ,t∑
j=τA,t

Pj,i, t = 1, . . . , 34, (12)

where Pj,i symbolizes the daily precipitation at day j in year t and region i, i = 1, . . . , n.
τA,t and τJ,t denote the begin (April 1) and the end (June 30) of the vegetation period,
respectively. This index addresses drought risk (Martin, Barnett and Coble 2001). In-
demnities are paid if CRI falls below a predetermined trigger level KCRI

i

LCRIi,t = max
{

0, KCRI
i − CRIi,t

}
· V. (13)

Herein V denotes the tick size which converts physical units into monetary terms. As
we do not strive for an optimal contract design in the sense of maximizing the hedging
effectiveness we set V = 1. Moreover, it is assumed that no policy limits apply.

The second index is a potential flood indicator PFI (Frich et al. 2002). It is also related
to precipitation, however, it measures excessive rainfall rather than drought, which is also
a serious source of yield shortfalls.

PFIi,t = max
τ∈{1,...,365−s+1}+(t−1)·365

(
s+τ−1∑
j=τ

Pj,i

)
, τ = 1, . . . , 365− s. (14)
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The PFI equals the rainfall sum of the wettest s-day-period within a year. Here we
choose s = 5. The insurance payoff for the PFI has the structure of a call option, i.e.

LPFIi,t = max
{

0, PFIi,t −KPFI
i

}
· V (15)

The third index that we suggest is the “Growing Degree Days” (GDDs). The GDD index
is intended to measure impact of temperature on the growth and the development of
plants during a growing season (World Bank 2005)

GDDi,t =

τO,t∑
j=τM,t

max
(

0, Tj,i − T̂
)
, (16)

where Tj,i denotes daily temperature in degrees Celsius. τM,t and τO,t stand for the
begin (March 1) and the end (October 31) of the growing season, respectively. The base
temperature T̂ is the minimum temperature that has to be exceeded before plant growth
is stimulated. Though this threshold is plant specific we assume a constant value of 5◦C.
Indemnities are calculated according to

LGDDi,t = max
{

0, KGDD
i −GDDi,t

}
· V (17)

For all three indices we assume two alternative trigger levels, namely the 50% quantile
and the 15% quantile of the respective index distribution.

The analysis of the spatial dependence of the aforementioned weather indices is carried out
within three scenarios. The first scenario refers to only one state, Brandenburg (including
Berlin). Brandenburg is located in North East Germany and thus affected by a dry
continental climate. Four weather stations of our sample are located in this state (Berlin-
Tempelhof, Neuruppin, Potsdam, and Lindenberg) and we expect significant dependence
of the respective indices at this regional level. In the second and third scenario we consider
the entire German state. In order to limit the dimension of the estimation problem the
country is divided into four regions (A-D) of comparable size. These regions represent
the Eastern (A), the North-Western (B), the Western (C) and the Southern (D) part
of Germany. The number of weather stations varies between 5 (regions C and D) and 9
(region A). Figure 1 depicts the number and the location of the available weather stations.
Scenario 2 and 3 differ in the aggregation level of the weather indices. While in scenario 2
each region is represented by only one weather station (Potsdam, Hamburg, Duesseldorf,
and Stuttgart, respectively) an average of all weather stations situated in the respective
region underlies scenario 3.

Figure 1 about here

4 Results and Discussion

Marginal distributions and copulas have been estimated for the CRI, the PFI and the
GDD index using the statistical procedures described in section 2. First of all, 36 marginal
distributions (3 indices, 4 locations, 3 regional levels) have been selected in accordance
with standard goodness of fit tests, i.e., Kolmogorov-Smirnoff test, χ2 and Anderson-
Darling test. The Lognormal, the Gamma and Beta distribution show the best fit for the
rainfall-based indices (CRI and PFI), whereas the Weibull distribution fits the obser-
vations of the temperature-based index (GDD). Next, two different parametric copulas
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have been estimated, namely the Clayton copula and the Gumbel copula. The results are
presented in table 1. The values of the maximized likelihood functions support the choice
of the Clayton copula. In what follows we only discuss the results for this copula type.

Table 1 and table 2 about here

The main results of the simulations are summarized in table 2 and table 3. Table 2
displays the expected insurance payoffs for the regions under consideration. Obviously
considerable differences exist between locations. This finding should be kept in mind
when interpreting the effects of aggregating trading areas for weather insurance which
are presented in table 3. As explained above the buffer load is derived from the buffer
fund which is defined as the 99% quantile of loss distribution for the insurer minus the
fair premium. The loss distribution is the outcome of 10.000 random draws from the
estimated margins and the estimated copula. Dividing the buffer fund by the number of
trading areas (n = 1, 2, 3, or 4, respectively) yields the buffer load. The buffer load is
depicted for trading areas of growing size (A, A+B, A+B+C, and A+B+C+D) and for
insurance contracts with two different trigger levels (15% and 50% quantile). Moreover,
table 3 allows a comparison of the copula based approach that we propagate here and
the traditional method of using Pearsons linear correlation coefficients2. Both methods
use the same marginal distributions and differ only in the estimation of the dependence
structure of the weather indices at different locations.

Table 3 about here

First of all, the size of the buffer load may appear surprisingly high in relation to the ex-
pected insurance payoff. Loosely speaking this finding indicates that the loss distribution
is wide and shows fat tails. Of course the buffer load depends on the trigger level. The
values increase by a factor between 1,3 and 2,3 if the insurance contracts refer to the 50%
quantile instead of the 15% quantile of the index distributions.

From a methodological viewpoint it is interesting to realize that the two methods of
considering stochastic dependence between trading areas show considerable differences.
In case of the drought insurance (CRI) the assumption of linear correlations tends to
underestimate the risk of large joint indemnity payments for all three scenarios compared
with the copula method. For the largest trading area (A+B+C+D) this underestimation
varies between 11% and 21% in case of the 50% trigger value and lies between 18% and
31% in case of the 15% trigger. For the other two insurance contracts the differences of
the buffer load are less pronounced. There are also cases in which the Clayton copula
results in a lower buffer load than the linear correlation.

Table 3 also depicts spatial diversification effects of weather insurance. It can be seen
that the decline of the buffer load is rather small if the trading area becomes larger. In
some cases the buffer load even increases. This finding, which contradicts the intuitive
expectation of diversification effects, can be explained by the heterogeneity of the weather
indices in the trading areas that are pooled. As mentioned before, the index distributions
are neither independent nor identically distributed. In order to assess the diversification
effect more accurately we calculate the relative difference of the buffer load of a joint
insurance of all four regions A-D compared to the sum of buffer loads associated with
separate insurance for each region (last column in table 3). Recall that the buffer load

2The generation of multivariate random variables with arbitrary marginals following a given linear
correlation matrix is carried out with the method of Iman and Conover (1982).
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in the i.i.d. case declines with 1/
√
n , which means that we could expect a reduction by

50% for n = 4 in that case. Apparently, the possibility of spatial diversification heavily
depends on the insured weather event. For example, the buffer load for the contract based
on the potential flood indicator (PFI) decreases considerably, particularly for scenario
2, irrespective of the trigger level and how the joint distribution has been computed.
Opposed to that the decline of the buffer load is negligible for the insurance against low
temperature. This result reflects the high stochastic dependence of the GDD at different
locations. This holds for the state level as well as for the national level. Diversification is
also modest for the drought insurance based on the CRI index. It is worth mentioning that
the spatial diversification potential is not much higher in the whole country (Germany)
than in a single state (Brandenburg). This is particularly true if the weather indices are
calculated as an average value out of several weather stations (scenario S3). Finally, we
emphasize again the difference between copulas and linear correlations: On the one hand
the use of linear correlations underestimates the effect of spatial diversification for the
insurance against excessive rain, on the other hand this effect is overestimated in case of
the drought insurance and the GDD based insurance.

5 Conclusions

In this paper we have explored the risk that insurer will face when selling contracts with
weather-based payoffs in Germany. Our results indicate that indemnity payments based
on temperature as well as on cumulative rainfall show strong stochastic dependence at
different regions in Germany. Thus the possibility to reduce risk exposure by increasing
the trading area of the insurance is limited. Though the results are specific to Germany we
conjecture that the situation in other EU countries of similar size and climate conditions
does not differ in principle. At the first glance our results contradict those of Wang and
Zhang (2003) who found that the distance for the positive dependence of crop yields in the
US is at most 570 miles and hence the required buffer load for national crop insurance is
rather small. However, our results are not directly comparable. We analyze weather data
whereas Wang and Zhang (2003) investigate regional crop yields. Regional differences
in soil quality, for example, may lead to differences in yields even if weather conditions
are similar. Moreover, our results rely on several assumptions that have an influence
on the buffer load. Firstly, we did not take into account product diversification of the
insurer. Secondly, only a single period has been considered and equity reserves that
are built in years with premium surpluses have been ignored. Thirdly, the buffer load
can be controlled by choice of the trigger value for the indemnity payments. It can be
expected that the dependence of insurance payoffs at different locations becomes smaller
if the trigger level is reduced. Defining absolute trigger values instead of relative ones
(i.e. quantiles of the regional distributions) will effect the dependence structure of the
payments, too. Fourthly, in our application the definition of trading areas took place on
an ad-hoc basis. This procedure leaves room for a thorough identification of smaller and
more homogenous climatic zones showing less dependence. Considering all these points
our results must be interpreted with care. We do not state that private (unsubsidized) crop
insurance is impossible in view of systemic weather risk at all. Anyhow, we believe that our
finding may explain the reluctance of insurance companies to enter this market segment
in Germany. Global reinsurance or transferring weather risk to the capital markets by
means of weather bonds could of course alleviate this problem.
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Irrespective of their economic implications our results pinpoint the necessity of a proper
statistical modeling of the dependence structure of multivariate random variables. The
usual approach of measuring stochastic dependence with linear correlation coefficients
turned out to be questionable in the context of weather insurance. Considerable differences
with regard to the weather risk assessment occurred in comparison with the more general
copula method. Unfortunately, our empirical results are weakened by a rather small data
base. The estimation of 4-dimensional distributions with only 34 observations is inevitably
accompanied by large estimation errors. A solution to this problem could be the use of
daily weather data. We suggest this as a direction for further research.
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Table 1: Maximum-Likelihood Estimation of Copulas

Index/
Scenario

Gumbel Clayton

θ ML θ ML

I1: Cumulative Rainfall Index (CRI)
S1 2.16 40.24 1.95 50.94
S2 1.47 12.38 0.65 12.27
S3 1.48 13.60 1.10 22.96
I2: Potential Flood Indicator (PFI)
S1 1.43 12.46 0.85 18.13
S2 1.01 0.01 0.10 0.24
S3 1.14 1.29 0.35 3.69
I3: Temperature Index (GDD)
S1 7.09 160.27 10.55 163.45
S2 2.87 64.88 2.45 64.47
S3 3.11 71.02 3.25 78.97
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Table 2: Expected values of insurance payoffs for different indices and regions

Contract/
Scenario

Trading area
A B C D A B C D

Indemnity trigger
50% Quantile 15% Quantile

Contract based on CRI
S1 15.52 12.81 13.62 17.62 1.54 0.77 2.42 2.39
S2 13.62 14.69 21.11 19.16 2.42 2.45 3.35 1.19
S3 13.47 11.78 16.11 13.66 1.79 0.82 3.53 1.55
Contract based on PFI
S1 7.91 9.18 8.72 11.59 3.04 2.15 2.84 3.69
S2 8.72 6.44 5.22 8.60 2.84 0.90 1.08 1.47
S3 7.15 4.31 5.89 4.71 1.22 0.95 0.72 0.92
Contract based on GDD
S1 73.89 59.81 78.89 72.76 8.06 4.11 3.24 4.56
S2 78.89 70.20 61.78 63.46 3.24 3.52 7.58 14.68
S3 65.08 70.75 73.44 72.06 4.40 2.46 11.21 13.17
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Table 3: Buffer load for weather insurance in different trading areas

Trading Area Effect of
Diversification
(%)

Contract/
Scenario

Method A A+B A+B+C A+B+C+D

a) Trigger = 50% Quantile
Contract based on CRI

S1
Linear correlation 56.01 53.01 55.14 60.63 88.87
Clayton copula 56.01 59.20 61.06 68.65 98.58

S2
Linear correlation 64.79 65.83 60.84 54.46 69.85
Clayton copula 64.79 69.88 69.44 69.43 88.31

S3
Linear correlation 69.66 53.56 60.25 55.90 79.37
Clayton copula 69.66 58.52 70.49 65.88 93.41

Contract based on PFI

S1
Linear correlation 57.32 39.50 38.26 40.98 73.62
Clayton copula 57.32 39.08 32.69 31.26 53.41

S2
Linear correlation 54.30 37.84 26.16 21.42 52.25
Clayton copula 54.30 32.88 23.10 18.87 44.39

S3
Linear correlation 35.33 24.40 20.11 18.05 71.67
Clayton copula 35.33 21.35 15.82 13.40 51.08

Contract based on GDD

S1
Linear correlation 500.87 352.71 402.48 425.30 99.21
Clayton copula 500.87 351.14 400.14 423.17 99.58

S2
Linear correlation 503.37 375.26 380.90 351.43 95.05
Clayton copula 503.37 367.09 376.19 349.90 97.85

S3
Linear correlation 446.08 442.63 451.33 447.77 96.25
Clayton copula 446.08 458.71 469.42 470.76 98.94

b) Trigger = 15% Quantile
Contract based on CRI

S1
Linear correlation 31.66 27.80 27.97 31.12 81.45
Clayton copula 31.66 32.96 32.86 37.89 97.45

S2
Linear correlation 33.34 30.68 27.97 24.52 56.07
Clayton copula 33.34 34.65 34.37 35.57 80.10

S3
Linear correlation 44.16 27.22 33.42 29.93 69.72
Clayton copula 44.16 31.64 41.97 39.34 91.14

Contract based on PFI

S1
Linear correlation 39.58 26.39 24.96 27.08 68.25
Clayton copula 39.58 26.05 21.04 19.40 46.27

S2
Linear correlation 37.91 24.87 17.34 13.83 48.59
Clayton copula 37.91 21.93 15.20 12.45 41.66

S3
Linear correlation 25.22 15.76 11.70 9.70 61.94
Clayton copula 25.22 15.10 10.23 7.75 46.54

Contract based on GDD

S1
Linear correlation 346.20 220.30 264.27 283.54 98.90
Clayton copula 346.20 221.23 265.40 285.55 99.37

S2
Linear correlation 358.43 261.64 261.82 233.46 92.91
Clayton copula 358.43 250.37 255.50 229.85 96.76

S3
Linear correlation 317.26 314.88 315.60 309.99 94.87
Clayton copula 317.26 330.46 333.54 334.64 98.52
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Figure 1: Distribution of Weather Stations and definition of Scenarios
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