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Discounted optimal stopping for maxima
in diffusion models with finite horizon∗

PavelV. Gapeev

We present a solution to some discounted optimal stopping problem
for the maximum of a geometric Brownian motion on a finite time inter-
val. The method of proof is based on reducing the initial optimal stopping
problem with the continuation region determined by an increasing contin-
uous boundary surface to a parabolic free-boundary problem. Using the
change-of-variable formula with local time on surfaces we show that the
optimal boundary can be characterized as a unique solution of a nonlin-
ear integral equation. The result can be interpreted as pricing American
fixed-strike lookback option in a diffusion model with finite time horizon.

1. Introduction

The main aim of this paper is to develop the method proposed by Peskir [18]-[19] and apply
its extension for solving optimal stopping problems for the maximum processes in diffusion
models with finite time horizon. In order to demonstrate the action of this extension we consider
the discounted optimal stopping problem (2.3) for the maximum associated with the geometric
Brownian motion X defined in (2.1)-(2.2). This problem is related to the option pricing theory
in mathematical finance, where the process X describes the price of a risky asset (e.g., a stock)
on a financial market. In that case the value (2.3) can be formally interpreted as a fair price
of an American fixed-strike lookback option in the Black-Scholes model with finite horizon. In
the infinite horizon case the problem (2.3) was solved by Pedersen [14] and Guo and Shepp [9].

Observe that when K = 0 and T = ∞ the problem (2.3) turns into the Russian option
problem with infinite horizon introduced and explicitly solved by Shepp and Shiryaev [22] by
means of reducing the initial problem to an optimal stopping problem for a two-dimensional
Markov process and solving the latter problem using the smooth-fit and normal-reflection con-
ditions. It was further observed in [23] that the change-of-measure theorem allows to reduce the
Russian option problem to a one-dimensional optimal stopping problem that explained the sim-
plicity of the solution in [22]. Building on the optimal stopping analysis of Shepp and Shiryaev

∗This research was supported by Deutsche Forschungsgemeinschaft through the SFB 649 Economic Risk.
Mathematics Subject Classification 2000: Primary 60G40, 35R35, 45G10. Secondary 60J60, 91B28.
Journal of Economic Literature Classification: G13.
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maximum process, parabolic free-boundary problem, smooth fit, normal reflection, a nonlinear Volterra inte-
gral equation of the second kind, boundary surface, a change-of-variable formula with local time on surfaces,
American lookback option problem.
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[22]-[23], Duffie and Harrison [2] derived a rational economic value for the Russian option and
then extended their arbitrage arguments to perpetual lookback options. More recently, Shepp,
Shiryaev and Sulem [24] proposed a barrier version of the Russian option where the decision
about stopping should be taken before the price process reaches a ’dangerous’ positive level.
Peskir [19] presented a solution to the Russian option problem in the finite horizon case (see
also [3] for a numeric algorithm for solving the corresponding free-boundary problem and [5]
for a study of asymptotic behavior of the optimal stopping boundary near expiration).

It is known that optimal stopping problems for Markov processes with finite horizon are
inherently two-dimensional and thus analytically more difficult than those with infinite horizon.
A standard approach for handling such a problem is to formulate a free-boundary problem for
the (parabolic) operator associated with the (continuous) Markov process (see, e.g., [12], [8],
[27], [10], [13]). Since solutions to such free-boundary problems are rarely known explicitly, the
question often reduces to prove the existence and uniqueness of a solution to the free-boundary
problem, which then leads to the optimal stopping boundary and the value function of the
optimal stopping problem. In some cases, the optimal stopping boundary has been characterized
as a unique solution of the system of (at least) countably many nonlinear integral equations
(see, e.g., [10; Theorem 4.3]). Peskir [18] rigorously proved that only one equation from such a
system may be sufficient to characterize the optimal stopping boundary uniquely (see also [15],
[19], [7]-[6], [20] for more complicated two-dimensional optimal stopping problems).

In contrast to the finite horizon Russian option problem [19], the problem (2.3) is necessarily
three-dimensional in the sense that it cannot be reduced to a two-dimensional optimal stopping
problem. The main feature of the present paper is that we develop the method of proof
proposed in [18]-[19] in order to apply its extension for the derivation of a solution to some
three-dimensional optimal stopping problem. The proposed extension of the method should
correspondingly also work for other optimal stopping problems for the maximum processes and
in more general diffusion models with finite time horizon. The key argument in the proof will
be the application of the change-of-variable formula with local time on surfaces, which was
recently derived in [17].

The paper is organized as follows. In Section 2, for the initial problem (2.3) we construct
an equivalent optimal stopping problem for a three-dimensional Markov process and show that
the continuation region for the price process is determined by a continuous increasing boundary
surface depending on the running maximum process. In order to find analytic expressions for
the boundary, we formulate an equivalent parabolic free-boundary problem. In Section 3, we
derive a nonlinear Volterra integral equation of the second kind, which also leads to the explicit
formula for the value function in terms of the optimal stopping boundary. Using the change-
of-variable formula from [17], we show that this equation is sufficient to determine the optimal
boundary uniquely. The main result of the paper is stated in Theorem 3.1.

2. Preliminaries

In this section, we introduce the setting and notation of the three-dimensional optimal stop-
ping problem, which is related to the American fixed-strike lookback option problem with finite
time horizon, describe the structure of the continuation and stopping regions, and formulate
the corresponding free-boundary problem. For this, we follow the schema of arguments from
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[19] and [7]-[6].

2.1. For a precise formulation of the problem, let us consider a probability space (Ω,F , P )
with a standard Brownian motion B = (Bt)0≤t≤T started at zero. Suppose that there exist a
process X = (Xt)0≤t≤T given by:

Xt = x exp
((

r − σ2/2
)
t + σ Bt

)
(2.1)

and hence solving the stochastic differential equation:

dXt = rXt dt + σXt dBt (X0 = x) (2.2)

where x > 0 is given and fixed. It can be assumed that the process X describes a stock price
on a financial market, where r > 0 is the interest rate and σ > 0 is the volatility coefficient.
The main purpose of the present paper is to derive a solution to the optimal stopping problem:

V = sup
0≤τ≤T

E

[
e−λτ

(
max
0≤t≤τ

Xt −K
)+

]
(2.3)

where the supremum is taken over all stopping times of the process X whose natural filtration
coincides with the same of the Brownian motion B . The value (2.3) coincides with the arbitrage-
free price of the fixed-strike lookback option of American type with the strike (exercise) price
K > 0 and λ = r + ν ≥ r > 0 being a sum of the interest rate r > 0 and the discounting rate
ν ≥ 0 (see, e.g., [11] or [26]).

2.2. In order to solve the problem (2.3), let us consider the extended optimal stopping
problem for the Markov process (t,Xt, St)0≤t≤T given by:

V (t, x, s) = sup
0≤τ≤T−t

Et,x,s

[
e−λτG(St+τ )

]
(2.4)

where S = (St)0≤t≤T is the associated with X maximum process defined by:

St = s ∨
(

max
0≤u≤t

Xu

)
(2.5)

and Pt,x,s is a probability measure under which the (two-dimensional) process (Xt+u, St+u)0≤u≤T−t

defined in (2.1)-(2.2) and (2.5) starts at (x, s) ∈ E , the supremum in (2.4) is taken over
all stopping times τ of (Xt+u)0≤u≤T−t , and we set G(s) = (s − K)+ for s > 0. Here
by E = {(x, s) ∈ R2 | 0 < x ≤ s} we denote the state space of the Markov process
(Xt+u, St+u)0≤u≤T−t . Since G is continuous on [K,∞〉 and Et,x,s[ST ] is finite, it is possible
to apply a version of Theorem 3 in [25; page 127] for a finite time horizon and by statement
(2) of that theorem conclude that an optimal stopping time exists in (2.4).

2.3. Let us first determine the structure of the optimal stopping time in the problem (2.4).

(i) Applying the arguments from [1; Subsection 3.2] and [16; Proposition 2.1] to the optimal
stopping problem (2.4), we see that it is never optimal to stop when Xt+u = St+u for 0 ≤
u < T − t . It follows directly from the structure of (2.4) that it is never optimal to stop when
St+u ≤ K for 0 ≤ u < T − t . In other words, this shows that all points (t, x, s) from the set:

C1 = {(t, x, s) ∈ [0, T 〉 × E | 0 < x ≤ s ≤ K} (2.6)
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and from the diagonal {(t, x, s) ∈ [0, T 〉 × E | x = s} belong to the continuation region:

C = {(t, x, s) ∈ [0, T 〉 × E | V (t, x, s) > G(s)}. (2.7)

(Below we will show that V is continuous, so that C is open.)

(ii) Let us fix (t, x, s) ∈ C and let τ∗ = τ∗(t, x, s) denote the optimal stopping time in (2.4).
Then, taking some point (t, y, s) such that 0 < x < y ≤ s , by virtue of the structure of the
optimal stopping problem (2.4) and (2.5) with (2.1), we get:

V (t, y, s) ≥ Et,y,s

[
e−λτ∗G(St+τ∗)

] ≥ Et,x,s

[
e−λτ∗G(St+τ∗)

]
= V (t, x, s) > G(s). (2.8)

Moreover, we recall that in the case of infinite horizon the stopping time τ∗ = {t ≥ 0 |Xt ≤
g∗(St)} is optimal in the problem (2.3) and 0 < g∗(s) < s for s > K is uniquely determined
from the equation (2.19) in [14], and thus, we see that all points (t, x, s) for 0 ≤ t ≤ T and
s > K with 0 < x ≤ g∗(s) belong to the stopping region. These arguments together with the
comments in [1; Subsection 3.3] and [16; Subsection 3.3] as well as the fact that x 7→ V (t, x, s)
is convex on 〈0, s〉 for s > 0 (see Subsection 2.4 below) show that there exists a function g
satisfying g∗(s) ≤ g(t, s) ≤ s for 0 ≤ t ≤ T with s > K such that the continuation region
(2.7) is an open set consisting of (2.6) and of the set:

C2 = {(t, x, s) ∈ [0, T 〉 × E | g(t, s) < x ≤ s, s > K} (2.9)

while the stopping region is the closure of the set:

D = {(t, x, s) ∈ [0, T 〉 × E | 0 < x < g(t, s), s > K} (2.10)

with all points (T, x, s) for (x, s) ∈ E .

(iii) Since the problem (2.4) is time-homogeneous, in the sense that the function G does
not depend on time, it follows that t 7→ V (t, x, s) is decreasing on [0, T ] . Thus, if for given
(t, x, s) ∈ C2 we take t′ such that 0 ≤ t′ < t ≤ T , then V (t′, x, s) ≥ V (t, x, s) > G(s), so that
(t′, x, s) ∈ C2 . From this we may conclude in (2.9)-(2.10) that t 7→ g(t, s) is increasing on [0, T ]
for each s > K fixed.

(iv) Since in (2.4) the function G(s) = (s − K)+ is linear in s for s > K , by means of
standard arguments it is shown that s 7→ V (t, x, s)−G(s) is decreasing on 〈K,∞〉 . Thus, if for
given (t, x, s) ∈ C2 we take s′ such that K < s′ < s , then V (t, x, s′)−G(s′) ≥ V (t, x, s)−G(s) >
0, so that (t, x, s′) ∈ C2 . From this we may conclude in (2.9)-(2.10) that s 7→ g(t, s) is increasing
on 〈K,∞〉 for each t ∈ [0, T ] fixed.

(v) Let us denote by W and a the value function and the boundary of the optimal stopping
problem related to the corresponding Russian option problem with finite horizon. It is easily
seen that under K = 0 the functions W and a coincide with V and g from (2.4) and (2.9)-
(2.10), respectively. It easily follows that a(t, s) = s/b(t) for all (t, s) ∈ [0, T 〉 × 〈K,∞〉 , where
b is characterized as a unique solution of the nonlinear integral equation (3.4) in [19]. Suppose
that g(t, s) > s/b(t) for some (t, s) ∈ [0, T 〉 × 〈K,∞〉 . Then for any x ∈ 〈s/b(t), g(t, s)〉 given
and fixed we have W (t, x, s) − K > s − K = V (t, x, s) contradicting the obvious fact that
W (t, x, s) −K ≤ V (t, x, s) for all (t, x, s) ∈ [0, T 〉 × E with s > K , as it is clearly seen from
(2.4). Thus, we may conclude that g(t, s) ≤ s/b(t) < s for all (t, s) ∈ [0, T 〉 × 〈K,∞〉 .
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(vi) Let us finally observe that the value function V from (2.4) and the boundary g from
(2.9)-(2.10) also depend on T , and let them denote here by V T and gT , respectively. Using
the fact that T 7→ V T (t, x, s) is an increasing function on [t,∞〉 and V T (t, x, s) = G(s) for all
(x, s) ∈ E such that 0 < x ≤ g(t, s), we conclude that if T < T ′ then gT ′(t, s) ≤ gT (t, s) ≤ s
for all (t, x, s) ∈ [0, T ] × E . Letting in the last expression T ′ go to ∞ , we get that g∗(s) ≤
gT (t, s) ≤ s , where g∗(s) ≡ limT→∞ gT (t, s) for all t ≥ 0, and 0 < g∗(s) < s for s > K is
uniquely determined from the equation (2.19) in [14].

2.4. Let us now show that the value function (t, x, s) 7→ V (t, x, s) is continuous on [0, T ]×E .
For this it is enough to prove that:

s 7→ V (t0, x0, s) is continuous at s0 (2.11)

x 7→ V (t0, x, s) is continuous at x0 uniformly over [s0 − δ, s0 + δ] (2.12)

t 7→ V (t, x, s) is continuous at t0 uniformly over [x0 − ε, x0 + ε]× [s0 − δ, s0 + δ] (2.13)

for each (t0, x0, s0) ∈ [0, T ] × E with some ε > 0 and δ > 0 small enough (they may depend
on (x0, s0)). Since (2.11) follows by the fact that s 7→ V (t, x, s) is convex on 〈0,∞〉 , we only
need to establish (2.12) and (2.13).

Observe that from the structure of (2.4) and (2.5) with (2.1) it immediately follows that:

x 7→ V (t, x, s) is increasing and convex on 〈0, s〉 (2.14)

for each s > 0 and 0 ≤ t ≤ T fixed. Using the fact that sup(f) − sup(g) ≤ sup(f − g) and
(y −K)+ − (x−K)+ ≤ (y − x)+ , we get:

0 ≤ V (t, y, s)− V (t, x, s) (2.15)

≤ sup
0≤τ≤T−t

E

[
e−λτ

(
s ∨

(
y max

0≤u≤τ

Xu

x

)
− s ∨

(
x max

0≤u≤τ

Xu

x

))]+

≤ (y − x) sup
0≤τ≤T−t

E

[
s

x
∨

(
max
0≤u≤τ

Xu

x

)]
≤ (y − x) E

[
s

x
∨

(
max

0≤u≤T

Xu

x

)]

for 0 < x < y ≤ s and all 0 ≤ t ≤ T . Combining (2.15) with (2.14), we see that (2.12) follows.
It remains to establish (2.13). For this, let us fix arbitrary 0 ≤ t1 < t2 ≤ T and (x, s) ∈ E ,

and let τ1 = τ∗(t1, x, s) denote the optimal stopping time for V (t1, x, s). Set τ2 = τ1 ∧ (T − t2)
and note since t 7→ V (t, x, s) is decreasing on [0, T ] and τ2 ≤ τ1 that we have:

0 ≤ V (t1, x, s)− V (t2, x, s) ≤ E
[
e−λτ1(St1+τ1 −K)+

]− E
[
e−λτ2(St2+τ2 −K)+

]
(2.16)

≤ E
[
(St1+τ1 −K)+ − (St2+τ2 −K)+

] ≤ E
[
St1+τ1 − St2+τ2

]+
= E

[
Sτ1 − Sτ2

]
.

Observe further that the explicit expression (2.5) yields:

Sτ1 − Sτ2 = s ∨
(

max
0≤u≤τ1

Xu

)
− s ∨

(
max

0≤u≤τ2
Xu

)
(2.17)

and thus, the strong Markov property together with the fact that τ1 − τ2 ≤ t2 − t1 implies:

E

[
s ∨

(
max

0≤u≤τ1
Xu

)
− s ∨

(
max

0≤u≤τ2
Xu

)]
≤ E

[
max

τ2≤u≤τ1
Xu

]
≤ E

[
Xτ2

x

]
E

[
max

0≤u≤t2−t1
Xu

]
.

(2.18)
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Hence, from (2.16)-(2.18) we get:

0 ≤ V (t1, x, s)− V (t2, x, s) ≤ E[Sτ1 − Sτ2 ] ≤ erT L(t2 − t1) (2.19)

where the function L is defined by:

L(t2 − t1) = E

[
max

0≤u≤t2−t1
Xu

]
. (2.20)

Therefore, by virtue of the fact that L(t2 − t1) → 0 in (2.20) as t2 − t1 ↓ 0, we easily conclude
that (2.13) holds. In particular, this shows that the instantaneous-stopping condition (2.39) is
satisfied.

2.5. In order to prove that the smooth-fit condition (2.40) holds, or equivalently, x 7→
V (t, x, s) is C1 at g(t, s), let us fix a point (t, x, s) ∈ [0, T 〉 × E with s > K , lying on the
boundary g so that x = g(t, s). By virtue of convexity of x 7→ V (t, x, s) on 〈0, s〉 for s > 0
fixed, the right-hand derivative V +

x (t, x, s) exists, and since it is also increasing, we have:

V +
x (t, x, s) ≥ 0. (2.21)

In order to prove the converse inequality, let us fix some ε > 0 such that x < x+ ε < s and
consider the stopping time τε = τ∗(t, x + ε, s) being optimal for V (t, x + ε, s). Note that τε is
the first exit time of the process (Xx+ε

t+u )0≤u≤T−t from the set C in (2.9). Then (2.4) implies:

V (t, x + ε, s)− V (t, x, s)

ε
(2.22)

≤ 1

ε
E

[
e−λτε

(
s ∨

(
max

0≤u≤τε

Xx+ε
t+u

)
−K

)+

− e−λτε

(
s ∨

(
max

0≤u≤τε

Xx
t+u

)
−K

)+
]

≤ 1

ε
E

[
e−λτε

(
s ∨

(
(x + ε) max

0≤u≤τε

Xx+ε
t+u

x + ε

)
− s ∨

(
x max

0≤u≤τε

Xx
t+u

x

))]+

where we write Xx
t and Xx+ε

t instead of Xt in order to indicate the dependence of the process
X on the starting points x and x + ε , respectively. Since the boundary g is increasing in both
variables, it follows that τε → 0 (P -a.s.), so that max0≤u≤τε Xt+u/x → 1 (P -a.s.) as ε ↓ 0 for
x < x + ε < s . Thus, letting ε ↓ 0 in (2.22), we get:

V +
x (t, x, s) ≤ 0 (2.23)

by the bounded convergence theorem. This combined with (2.21) above proves that V +
x (t, x, s)

equals zero.

2.6. Let us now show that the normal reflection condition (2.41) holds. For this, we first note
that since s 7→ V (t, x, s) is increasing (and convex) on 〈0,∞〉 , it follows that Vs(t, s−, s) ≥ 0
for all (t, s) ∈ [0, T 〉 × 〈0,∞〉 . Suppose that there exists (t, s) ∈ [0, T 〉 × 〈0,∞〉 such that
Vs(t, s−, s) > 0. Recalling that V is C1,2,1 in C , so that t 7→ Vs(t, s−, s) is continuous on
[0, T 〉 , we see that there exist ε > 0 and δ > 0 such that Vs(u, s−, s) ≥ ε > 0 for all u ∈ [t, t+δ]
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with t + δ < T . Setting τδ = τ∗ ∧ (t + δ), it follows by Itô’s formula, using (2.36)-(2.37) and
the optional sampling theorem (see, e.g., [21; Chapter II, Theorem 3.2]), that:

Et,s,s

[
e−λτδ V (t + τδ, Xt+τδ

, St+τδ
)
]

= V (t, s, s) (2.24)

+ Et,s,s

[∫ τδ

0

e−λu (LV − λV )(t + u,Xt+u, St+u) du

]

+ Et,s,s

[∫ τδ

0

e−λu Vs(t + u,Xt+u, St+u) dSt+u

]
.

Since, by virtue of (2.38), the process (V (t+(u∧τδ), Xt+(u∧τδ), St+(u∧τδ)))0≤u≤T−t is a martingale
under Pt,s,s , from (2.24) it directly follows that:

Et,s,s

[∫ τδ

0

e−λu Vs(t + u,Xt+u, St+u) dSt+u

]
= 0. (2.25)

On the other hand, since it is easily seen that Vs(t+u, Xt+u, St+u) dSt+u = Vs(t+u, St+u, St+u) dSt+u

and Vs(t + u, St+u, St+u) ≥ ε > 0 for all 0 ≤ u ≤ τδ , we get that (2.25) implies:

Et,s,s

[∫ τδ

0

e−λu dSt+u

]
= 0. (2.26)

Since (St+u)0≤u≤T−t is an increasing process and it is strictly increasing with a positive Pt,s,s -
probability, from (2.26) we may conclude that τδ = 0 (Pt,s,s -a.s.). As clearly this is impossible,
we see that Vs(t, s−, s) = 0 for all (t, s) ∈ [0, T 〉 × 〈0,∞〉 as claimed in (2.41).

2.7. We proceed by proving that the boundary g is continuous on [0, T ] × 〈K,∞〉 and
g(T, s) = s for all s > K . For this, we fix some (t, s) ∈ [0, T 〉×〈K,∞〉 and observe that for each
sequence (tn, sn) converging to (t, s) we have g(t, s) ≤ g(t, s), where g(t, s) ≡ limn g(tn, sn).
The latter inequality follows directly by the structure of the set D from (2.10) and the fact
that (tn, g(tn, sn), sn) ∈ D for all n ∈ N , and thus (t, g(t, s), s) ∈ D , since D is closed.

Suppose that at some point (t∗, s∗) ∈ 〈0, T 〉 × 〈K,∞〉 the function g is not continuous,
so that there is a sequence (t′n, s

′
n) converging to (t∗, s∗) such that g′(t∗, s∗) < g(t∗, s∗),

where g′(t∗, s∗) ≡ limn g(t′n, s′n). Let us then fix a point (t′n, s
′
n) close to (t∗, s∗) and

consider the half-open region Rn ⊂ C2 being a curved trapezoid formed by the vertexes
(t′n, g(t′n, s′n), s′n), (t∗, g′(t∗, s∗), s∗), (t∗, x′, s∗) and (t′n, x

′, s′n) with any x′ fixed arbitrarily in
the interval 〈g′(t∗, s∗), g(t∗, s∗)〉 . Observe that the strong Markov property implies that the
value function V from (2.4) is C1,2,1 on C2 . So that, by straightforward calculations, using
(2.39) and (2.40), and taking into account the fact that Gxx = 0, it follows that:

V (t, x, s)−G(s) =

∫ x

g(t,s)

∫ y

g(t,s)

Vxx(t, z, s) dz dy (2.27)

for all (t, x, s) ∈ Rn and each n ∈ N fixed. Since t 7→ V (t, x, s) is decreasing, we have:

Vt(t, x, s) ≤ 0 (2.28)

for each (t, x, s) ∈ C2 . Finally, since the strong Markov property implies that the value function
V from (2.4) solves the equation (2.38), using (2.28) and (2.36) as well as the fact that λ ≥ r ,
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we obtain:

Vxx(t, x, s) =
2

σ2x2

(
λV − Vt − rxVx

)
(t, x, s) ≥ 2r

σ2

∂

∂x

(
−V (t, x, s)

x

)
(2.29)

for all (t, x, s) ∈ Rn and each n ∈ N fixed. Hence, by (2.27) we get:

V (t′n, x
′, s′n)−G(s′n) ≥ 2r

σ2

∫ x′

g(t′n,s′n)

∫ y

g(t′n,s′n)

∂

∂x

(
−V (t′n, z, s′n)

z

)
dz dy (2.30)

=
2r

σ2

∫ x′

g(t′n,s′n)

(
V (t′n, g(t′n, s

′
n), s′n)

g(t′n, s′n)
− V (t′n, y, s′n)

y

)
dy

→ 2r

σ2
V (t∗, g′(t∗, s∗), s∗)

(
x′

g′(t∗, s∗)
− log

x′

g′(t∗, s∗)
− 1

)
> 0

as n → ∞ . This implies that V (t∗, x′, s∗) > G(s∗), which contradicts the fact that (t∗, x′, s∗)
belongs to the stopping region D . Thus g′(t∗, s∗) = g(t∗, s∗) showing that g is continuous at
(t∗, s∗) and thus on [0, T ]× 〈K,∞〉 as well. We also note that the same arguments with t = T
show that g(T−, s) = s for all s > K .

2.8. Summarizing the facts proved in Subsections 2.3-2.7 above, we may conclude that the
following exit time is optimal in the extended problem (2.4):

τ∗ = inf{0 ≤ u ≤ T − t | Xt+u ≤ g(t + u, St+u)} (2.31)

(the infimum of an empty set being equal T − t) where the boundary g satisfies the following
properties (see Figures 1 and 2 below):

g : [0, T ]× 〈K,∞〉 → R is continuous and increasing on [0, T ] and on 〈K,∞〉 (2.32)

g∗(s) ≤ g(t, s) ≤ s/b(t) < s for all 0 ≤ t < T and s > K (2.33)

g(t,K+) = 0 for all 0 ≤ t < T (2.34)

g(T, s) = s for all s > K. (2.35)

Here g∗ satisfying 0 < g∗(s) < s for all s > K is the optimal stopping boundary for the
corresponding infinite horizon problem uniquely determined from the first-order nonlinear dif-
ferential equation (2.19) in [14], and b is the optimal stopping boundary for the finite horizon
Russian option problem uniquely characterized as a unique solution of the nonlinear integral
equation (3.4) in [19]. We also note that (2.34) follows from the right continuity of the bound-
ary g at s = K , that can be proved by the arguments in Subsection 2.7 above together with
the fact that the set C1 defined in (2.6) belongs to the continuation region C given by (2.7).

We now recall that the Markov process (t, Xt, St)0≤t≤T is a three-dimensional Markov pro-
cess with the state space [0, T ] × E and can change (increase) in the third coordinate only
after hitting the diagonal {(t, x, s) ∈ [0, T 〉 × E | x = s} . Outside the diagonal the process
(t,Xt, St)0≤t≤T changes only in the first and second coordinates and may be identified with
(t,Xt)0≤t≤T .

8



-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

HHHHHHY

XXXXXXXXXXXXy
K

s

x

g∗(s) g(t1, s) g(t2, s) x = s

s/b(t1)

s/b(t2)

C1
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s 7→ g∗(s), s 7→ g(t1, s) and s 7→ g(t2, s) for 0 < t1 < t2 < T .

-

6

0

g∗(s1)

g∗(s2)

s1

s2

T

x

t

g(t, s1)

g(t, s2)

s1/b(t)

s2/b(t)

Figure 2. A computer drawing of the optimal stopping boundaries
t 7→ g(t, s1) and t 7→ g(t, s2) for K < s1 < s2 .
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Standard arguments then imply that the infinitesimal operator of (t,Xt, St)0≤t≤T acts on a
function F ∈ C1,2,1([0, T 〉 × E) according to the rule:

(LF )(t, x, s) =
(
Ft + rxFx +

σ2x2

2
Fxx

)
(t, x, s) in 0 < x < s (2.36)

Fs(t, x, s) = 0 at x = s (2.37)

for all (t, x, s) ∈ [0, T 〉×E (the latter can be shown by the same arguments as in [1; pages 238-
239] or [16; pages 1619-1620]). In view of the facts proved above, we are thus naturally led
to formulate the following free-boundary problem for the unknown value function V from (2.4)
and the unknown boundary g from (2.9)-(2.10):

(LV − λV )(t, x, s) = 0 for (t, x, s) ∈ C2 (2.38)

V (t, x, s)
∣∣
x=g(t,s)+

= G(s) (instantaneous stopping) (2.39)

Vx(t, x, s)
∣∣
x=g(t,s)+

= 0 (smooth fit) (2.40)

Vs(t, x, s)
∣∣
x=s− = 0 (normal reflection) (2.41)

V (t, x, s) > G(s) for (t, x, s) ∈ C2 (2.42)

V (t, x, s) = G(s) for (t, x, s) ∈ D (2.43)

where C2 and D are given by (2.9) and (2.10), the condition (2.39) is satisfied for all (t, s) ∈
[0, T ]× 〈K,∞〉 , and the conditions (2.40)-(2.41) are satisfied for all (t, s) ∈ [0, T 〉 × 〈K,∞〉 .

Note that the superharmonic characterization of the value function (see [4] and [25]) implies
that V from (2.4) is the smallest function satisfying (2.38)-(2.39) and (2.42)-(2.43).

2.9. Observe that the arguments above show that if we start at the point (t, x, s) ∈ C1 ,
then we can stop optimally only after the process (Xt, St)0≤t≤T pass through the point (K, K).
Thus, using the strong Markov property, we obtain:

V (t, x, s) = Et,x,s

[
e−λσ∗ V (t + σ∗, K,K) I(σ∗ ≤ T − t)

]
(2.44)

for all (t, x, s) ∈ C1 , where we set:

σ∗ = inf{t ≥ 0 | Xt ≥ K} (2.45)

and V (t,K,K) = lims↓K V (t,K, s).
By means of standard arguments (see, e.g., [21; Chapter II, Proposition 3.7]) it can be

shown that (2.44) admits the representation:

V (t, x, s) =

∫ T−t

0

e−λu V (t + u,K, K)
log(K/x)

σ
√

2πu3
exp

(
− 1

2u

( log(K/x)

σ
− 2r − σ2

2σ2
u
)2

)
du

(2.46)
for all (t, x, s) ∈ C1 . Therefore, it remains us to find the function V in the region C2 and to
determine the optimal stopping boundary g .
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3. Main result and proof

In this section, using the facts proved above, we formulate and prove the main result of the
paper. For proof we apply the change-of-variable formula from [17].

Theorem 3.1. In the problem (2.3) the optimal stopping time τ∗ is explicitly given by:

τ∗ = inf
{

0 ≤ t ≤ T
∣∣∣ Xt ≤ g

(
t, max

0≤u≤t
Xu

)}
(3.1)

where the process X is defined in (2.1)-(2.2) with X0 = x ≥ K , and the boundary g can be
characterized as a unique solution of the nonlinear integral equation:

s−K = e−λ(T−t)Et,g(t,s),s[ST −K] (3.2)

+ λ

∫ T−t

0

e−λvEt,g(t,s),s[(St+v −K)I(Xt+v < g(t + v, St+v))] dv

for 0 ≤ t ≤ T and s > K satisfying (2.32)-(2.35) [see Figures 1 and 2 above].
More explicitly, the two terms in the equation (3.2) read as follows:

Et,g(t,s),s[ST −K] =

∫ ∞

1

∫ z

0

(
g(t, s)z ∨ s−K

)
p(T − t, y, z) dy dz (3.3)

Et,g(t,s),s[(St+v −K)I(Xt+v < g(t + v, St+v))] (3.4)

=

∫ ∞

1

∫ z

0

(
g(t, s)z ∨ s−K

)
I
(
g(t, s)y < g(t + v, g(t, s)z ∨ s)

)
p(v, y, z) dy dz

for s > K and 0 ≤ v ≤ T − t with 0 ≤ t ≤ T . The transition density function of the process
(Xt, St)t≥0 with X0 = S0 = 1 under P is given by:

p(t, x, s) =
2

σ3
√

2πt3
log(s2/x)

xs
exp

(
− log2(s2/x)

2σ2t
+

β

σ
log x− β2

2
t

)
(3.5)

for 0 < x ≤ s and s ≥ 1 with β = r/σ + σ/2, and equals zero otherwise.

Proof. (i) The existence of the boundary g satisfying (2.32)-(2.35) such that τ∗ from (3.1)
is optimal in (2.4) was proved in Subsections 2.3-2.8 above. Since the boundary g is continuous
and monotone, by the change-of-variable formula from [17], it follows that the boundary g solves
the equation (3.2) (cf. (3.12)-(3.14) below). Thus, it remains us to show that the equation (3.2)
has no other solution in the class of functions h satisfying (2.32)-(2.35).

Let us thus assume that a function h satisfying (2.32)-(2.35) solves the equation (3.2), and
let us show that this function h must then coincide with the optimal boundary g . For this, let
us introduce the function:

V h(t, x, s) =

{
Uh(t, x, s), if h(t, s) < x ≤ s

G(s), if 0 < x ≤ h(t, s)
(3.6)

where the function Uh is defined by:

Uh(t, x, s) = e−λ(T−t) Et,x,s[G(ST )] (3.7)

+ λ

∫ T−t

0

e−λvEt,x,s[(St+v −K)I(Xt+v < h(t + v, St+v))] dv

11



for all (t, x, s) ∈ [0, T 〉 × E with s > K . Note that (3.7) with s−K instead of Uh(t, x, s) on
the left-hand side coincides with (3.2) when x = g(t, s) and h = g . Since h solves (3.2) this
shows that V h is continuous on [0, T 〉 ×E \C1 , where C1 is given by (2.6). We need to verify
that V h coincides with the value function V from (2.4) and that h equals g . For this, we show
that the change-of-variable formula from [17] can be applied for V h and h , and then present
the rest of verification arguments following the lines of [18]-[19] and [7]-[6] for completeness.

(ii) Using standard arguments based on the strong Markov property (or verifying directly),
it follows that V h , that is Uh , is C1,2,1 on Ch and that:

(LV h − λV h)(t, x, s) = 0 for (t, x, s) ∈ Ch (3.8)

where Ch is defined as C2 in (2.9) with h instead of g . It is also clear that V h , that is G , is
C1,2,1 on Dh and that:

(LV h − λV h)(t, x, s) = −λG(s) for (t, x, s) ∈ Dh (3.9)

where Dh is defined as in (2.10) with h instead of g . Then from (3.8) and (3.9) it follows that
LV h is locally bounded on Ch and Dh . Moreover, since Uh

x is continuous on [0, T 〉 × E \ C1

(which is readily verified using the explicit expressions (3.3)-(3.4) above with x instead of g(t, s)
and h instead of g ) and so is h(t, s) by assumption, we see that V h

x is continuous on Ch , so
that t 7→ V h

x (t, h(t, s)+, s) is continuous on [0, T ] . Finally, we observe that (3.8) together with
(2.36) directly imply:

V h
xx(t, x, s) =

(
2(λ− r)V h

σ2x2
− 2V h

t

σ2x2
− 2r

σ2

∂

∂x

V h

x

)
(t, x, s) for (t, x, s) ∈ Ch (3.10)

and
V h

xx(t, x, s) = 0 for (t, x, s) ∈ Dh. (3.11)

Then from the arguments above it follows that for each s > K given and fixed, on the union
of the sets {(t, x) | (t, x, s) ∈ Ch} and {(t, x) | (t, x, s) ∈ Dh} , the function (t, x) 7→ V h

xx(t, x, s)
can be represented as a sum of two functions, where the first one is nonnegative and the
second one is continuous on the closures of these sets. Therefore, by the obvious continuity of
t 7→ V h

x (t, h(t, s)−, s) on [0, T ] , the change-of-variable formula from Section 4 in [17] can be
applied, and in this way we get:

e−λu V h(t + u,Xt+u, St+u) = V h(t, x, s) (3.12)

+

∫ u

0

e−λv (LV h − λV h)(t + v, Xt+v, St+v)I(Xt+v 6= h(t + v, St+v)) dv

+

∫ u

0

e−λv V h
s (t + v,Xt+v, St+v)I(Xt+v 6= h(t + v, St+v), Xt+v = St+v) dSt+v

+ Mh
u +

1

2

∫ u

0

e−λv ∆xV
h
x (t + v,Xt+v, St+v)I(Xt+v = h(t + v, St+v)) d`h

v

for 0 ≤ u ≤ T − t where ∆xV
h
x (t+ v, h(t+ v, s), s) = V h

x (t+ v, h(t+ v, s)+, s)−V h
x (t+ v, h(t+

v, s)−, s), the process (`h
u)0≤u≤T−t is the local time of (Xt+u)0≤u≤T−t at the (surface) boundary

h (which is increasing in both variables) given by:

`h
u = Pt,x,s−lim

ε↓0
1

2ε

∫ u

0

I(h(t + v, St+v)− ε < Xt+v < h(t + v, St+v) + ε) σ2X2
t+v dv (3.13)
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and (Mh
u )0≤u≤T−t defined by Mh

u =
∫ u

0
e−λvV h

x (t+v, Xt+v, St+v)I(Xt+v 6= h(t+v, St+v))σXt+vdBt+v

is a continuous martingale under Pt,x,s . We also note that in (3.12) the integral with re-
spect to dSt+v is equal to zero, since the increment ∆St+v outside the diagonal {(t, x, s) ∈
[0, T 〉 × E | x = s} equals zero, while at the diagonal we have (2.41).

Setting u = T − t in (3.12) and taking the Pt,x,s -expectation, using that V h satisfies (2.38)
in Ch and (2.43) in Dh , where the set Dh is defined as in (2.10) with h in place of g , we get:

e−λ(T−t) Et,x,s[G(ST )] = V h(t, x, s) (3.14)

− λ

∫ T−t

0

e−λv Et,x,s[(St+v −K)I(Xt+v < h(t + v, St+v))] dv +
1

2
F (t, x, s)

where (by the continuity of the integrand) the function F is given by:

F (t, x, s) = Et,x,s

[∫ T−t

0

e−λv ∆xV
h
x (t + v, h(t + v, St+v), St+v) d`h

v

]
(3.15)

for all (t, x, s) ∈ [0, T 〉 × E with s > K . Thus, from (3.14) and (3.6) we see that:

F (t, x, s) =

{
0, if h(t, s) < x ≤ s

2 (Uh(t, x, s)−G(s)), if 0 < x ≤ h(t, s)
(3.16)

where the function Uh is given by (3.7).

(iii) From (3.16) we see that if we are to prove that:

x 7→ V h(t, x, s) is C1 at h(t, s) (3.17)

for each (t, s) ∈ [0, T 〉 × 〈K,∞〉 given and fixed, then it will follow that:

Uh(t, x, s) = G(s) for all x ≤ h(t, s). (3.18)

On the other hand, if we know that (3.18) holds, then using the general fact obtained directly
from the definition (3.6) above:

∂

∂x
(Uh(t, x, s)−G(s))

∣∣∣
x=h(t,s)

= V h
x (t, h(t, s)+, s)− V h

x (t, h(t, s)−, s) (3.19)

= ∆xV
h
x (t, h(t, s), s)

for all (t, s) ∈ [0, T 〉 × 〈K,∞〉 , we see that (3.17) holds too. The equivalence of (3.17) and
(3.18) suggests that instead of dealing with the equation (3.16) in order to derive (3.17) above
we may rather concentrate on establishing (3.18) directly.

In order to derive (3.18), let us first note that using standard arguments based on the strong
Markov property (or verifying directly) it follows that Uh is C1,2,1 in Dh and that:

(LUh − λUh)(t, x, s) = −λG(s) for (t, x, s) ∈ Dh. (3.20)

It follows that (3.12) can be applied with Uh instead of V h , and this yields:

e−λu Uh(t + u,Xt+u, St+u) = Uh(t, x, s) (3.21)

− λ

∫ u

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv + Nh
u

13



using (3.8) and (3.20) as well as that ∆xU
h
x (t + v, h(t + v, s), s) = 0 for all 0 ≤ v ≤ u

since Uh
x is continuous. In (3.21) we have Nh

u =
∫ u

0
e−λvUh

x (t + v, Xt+v, St+v)I(Xt+v 6= h(t +
v, St+v))σXt+vdBt+v and (Nh

u )0≤u≤T−t is a continuous martingale under Pt,x,s .
Next, note that (3.12) applied to G instead of V h yields:

e−λu G(St+u) = G(s)− λ

∫ u

0

e−λv (St+v −K) dv +

∫ u

0

e−λv I(Xt+v = St+v) dSt+v (3.22)

for s > K using (3.9) and the fact that the process S may increase only at the diagonal
{(t, x, s) ∈ [0, T 〉 × E | x = s} .

For 0 < x ≤ h(t, s) with 0 < t < T and s > K let us consider the stopping time:

σh = inf{0 ≤ u ≤ T − t | Xt+u ≥ h(t + u, St+u)}. (3.23)

Then, using that Uh(t, h(t, s), s) = G(s) for all (t, s) ∈ [0, T 〉×〈K,∞〉 since h solves (3.2), and
that Uh(T, x, s) = G(s) for all (x, s) ∈ E with s > K , we see that Uh(t + σh, Xt+σh

, St+σh
) =

G(St+σh
). Hence, from (3.21) and (3.22), using the optional sampling theorem, we find:

Uh(t, x, s) = Et,x,s

[
e−λσh Uh(t + σh, Xt+σh

, St+σh
)
]

(3.24)

+ λEt,x,s

[∫ σh

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv

]

= Et,x,s

[
e−λσhG(St+σh

)
]
+ λEt,x,s

[∫ σh

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv

]

= G(s)− λEt,x,s

[∫ σh

0

e−λv (St+v −K) dv

]
+ Et,x,s

[∫ σh

0

e−λv I(Xt+v = St+v) dSt+v

]

+ λEt,x,s

[∫ σh

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv

]
= G(s)

since Xt+v < h(t + v, St+v) < St+v for all 0 ≤ v < σh . This establishes (3.18), so that (3.17)
also holds.

(iv) Let us consider the stopping time:

τh = inf{0 ≤ u ≤ T − t |Xt+u ≤ h(t + u, St+u)}. (3.25)

Observe that, by virtue of (3.17), the identity (3.12) can be written as:

e−λu V h(t + u,Xt+u, St+u) = V h(t, x, s) (3.26)

− λ

∫ u

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv + Mh
u

with (Mh
u )0≤u≤T−t being a martingale under Pt,x,s . Thus, inserting τh into (3.26) in place of u

and taking the Pt,x,s -expectation, by means of the optional sampling theorem, we get:

V h(t, x, s) = Et,x,s

[
e−λτh G(St+τh

)
]

(3.27)

for all (t, x, s) ∈ [0, T 〉 × E with s > K . Then, comparing (3.27) with (2.4), we see that:

V h(t, x, s) ≤ V (t, x, s) (3.28)
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for all (t, x, s) ∈ [0, T 〉 × E with s > K .

(v) Let us now show that h ≥ g on [0, T ]× 〈K,∞〉 . Using the same arguments as for V h ,
we have:

e−λu V (t + u,Xt+u, St+u) = V (t, x, s) (3.29)

− λ

∫ u

0

e−λv (St+v −K)I(Xt+v < g(t + v, St+v)) dv + M g
u

where (M g
u)0≤u≤T−t is a martingale under Pt,x,s . Fix some (t, x, s) such that x < g(t, s)∧h(t, s)

and consider the stopping time:

σg = inf{0 ≤ u ≤ T − t | Xt+u ≥ g(t + u, St+u)}. (3.30)

Inserting σg into (3.26) and (3.29) in place of u and taking the Pt,x,s -expectation, by means of
the optional sampling theorem, we get:

Et,x,s

[
e−λσg V h(t + σg, Xt+σg , St+σg)

]
= G(s) (3.31)

− λEt,x,s

[∫ σg

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv

]

Et,x,s

[
e−λσg V (t + σg, Xt+σg , St+σg)

]
= G(s) (3.32)

− λEt,x,s

[∫ σg

0

e−λv (St+v −K) dv

]
.

Hence, by means of (3.28), we see that:

Et,x,s

[∫ σg

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv

]
(3.33)

≥ Et,x,s

[∫ σg

0

e−λv (St+v −K) dv

]

from where, by virtue of the continuity of h and g on 〈0, T 〉 × 〈K,∞〉 , it readily follows that
h(t, s) ≥ g(t, s) for all (t, s) ∈ [0, T ]× 〈K,∞〉 .

(vi) Finally, we show that h coincides with g . For this, let us assume that there exists some
(t, s) ∈ 〈0, T 〉×〈K,∞〉 such that h(t, s) > g(t, s) and take an arbitrary x from 〈g(t, s), h(t, s)〉 .
Then, inserting τ∗ = τ∗(t, x, s) from (2.31) into (3.26) and (3.29) in place of u and taking the
Pt,x,s -expectation, by means of the optional sampling theorem, we get:

Et,x,s

[
e−λτ∗ G(St+τ∗)

]
= V h(t, x, s) (3.34)

− λEt,x,s

[∫ τ∗

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv

]

Et,x,s

[
e−λτ∗ G(St+τ∗)

]
= V (t, x, s). (3.35)
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Hence, by means of (3.28), we see that:

Et,x,s

[∫ τ∗

0

e−λv (St+v −K)I(Xt+v < h(t + v, St+v)) dv

]
≤ 0 (3.36)

which is clearly impossible by the continuity of h and g . We may therefore conclude that V h

defined in (3.6) coincides with V from (2.4) and h is equal to g . This completes the proof of
the theorem. ¤
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