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Abstract

In this paper we introduce the dynamic semiparametric factor model (DSFM) for electricity
forward curves. The biggest advantage of our approach is that it not only leads to smooth,
seasonal forward curves extracted from exchange traded futures and forward electricity contracts,
but also to a parsimonious factor representation of the curve. Using closing prices from the Nordic
power market Nord Pool we provide empirical evidence that the DSFM is an efficient tool for
approximating forward curve dynamics.

Keywords: power market, forward electricity curve, dynamic semiparametric factor model
JEL: C51, G13, Q40

1. Introduction

In the last two decades dramatic changes to the structure of the electricity business have
taken place worldwide. The original monopolistic situation has been replaced by deregulated,
competitive markets where electricity can be bought and sold at market prices like any other
commodity. Everything from real-time (balancing) and spot contracts to derivatives ranging
up to a few years ahead are being traded. Successfully managing a company in today’s
electricity markets involves developing dedicated statistical techniques and managing huge
amounts of data for modeling, forecasting and pricing purposes (Bunn, 2004, Harris, 2006,
Weron, 2006).

⋆ Many thanks to Wolfgang Härdle for sharing his knowledge on semiparametric factor models. We also
gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich
649 ‘Ökonomisches Risiko’ and Komitet Badań Naukowych (KBN).
⋆⋆Forthcoming in the Journal of Energy Markets, 2008.
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There is also a regulatory issue involved. The 2002 Sarbanes Oxley (Sox) legislation in
the US created new accounting standards. In particular, it implicitly requires US-registered
energy trading companies to tighten control over the trading risk. This requires the knowl-
edge of electricity forward curves – market values that can be applied to forward positions
in the portfolio (Fielden, 2005).

However, the electricity forward curve is a non-trivial object and requires special attention.
Like the yield curve, it spans a time period of a few years. However, unlike the yield curve it
is seasonal (due to seasonal consumption patterns), weather dependent, extremely volatile at
the short end and cannot be constructed simply by interpolating between points in the price-
maturity space (because electricity forward/futures contracts concern delivery of electricity
during a given time interval – week, month, year – in the future, not a single hour or day).
Consequently, the methods developed for fixed income markets cannot be applied directly
to electricity price data.

The literature on electricity forward curve modeling is not rich. Koekebakker and Ollmar
(2005; original working paper from 2001) utilize principal components analysis (PCA) to
extract volatility factors (more precisely: factors for returns) in a Heath-Jarrow-Morton-type
term structure framework. They apply the ‘maximum smoothness’ criterion of Adams and
van Deventer (1994) to fit a smooth forward curve with a sinusoidal prior to forward/futures
prices (for a recent review of interpolation methods for curve construction see eg. Hagan
and West, 2006). Next, they discretize the curve on a weekly grid, compute daily returns
and, finally, perform PCA for a matrix of returns for 1339 days and 21 selected maturities
(roughly matching maturities of actual traded contracts). Koekebakker and Ollmar observe
that, in contrast to most other markets, more than 10 factors are needed to explain 95% of
the term structure variation.

Fleten and Lemming (2003) suggest to use market data as an a priori set of information
and then form an a posteriori information set, by combining the market prices with forecasts
from a bottom-up model (called MPS). The MPS model calculates weekly equilibrium prices
and production quantities based on fundamental factors for demand and supply, like weather
variables, fuel costs, capacities, etc. The approach of Fleten and Lemming uses bid and ask
prices to constrain the forward prices from below and above. The objective function ensures
both smoothness of the curve and that the curve follows the seasonality of the price forecast
of the MPS model.

In a recent paper, Benth et al. (2007) generalize that approach and assume that the
forward curve can be represented as a sum of a seasonality function and an adjustment
function, which measures the deviation between the seasonal component and the actual
traded futures/forward prices. Like Koekebakker and Ollmar (2005), they apply the ‘max-
imum smoothness’ criterion in the specification of the adjustment term. For the seasonal
component they try a sinusoidal function and the above mentioned MPS model. However,
their model is not limited to such specifications. In fact, any seasonality function may be
used.

What all three approaches have in common is the fact that they impose some seasonality
structure (sinusoidal, MPS model-based or arbitrary) and use it to fit a smooth forward
curve. As Benth et al. (2007) conclude: ‘the shape of the smooth curve is dependent on the
specification of the seasonality function, in particular for the contracts in the long end of
the curve’. Obviously, substantial model risk is inherent in these methods. But is it really
needed to take on this risk? Our answer is no. The dynamic semiparametric factor model
(DSFM) used in this article is a data driven method for simultaneous estimation of the
smooth forward curve and the seasonality structure. Based only on historical observations
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we obtain a parsimonious and flexible factor representation. The DSFM does not assume a
seasonal pattern of the forward curve, but rather, as our empirical results confirm, yields an
automatic explanation of the seasonality in the form of estimated factors.

The remainder of the paper is structured as follows. In the next Section we briefly describe
the Nordic market and the analyzed dataset. In Section 3 we introduce the DSFM and adapt
it to the structure of the electricity market. In the following Section we calibrate the model
to empirical data and analyze its in-sample fit. Finally, in Section 5 we conclude.

2. The Market and the Dataset

2.1. The Nordic Market

The Nordic commodity market for electricity is known as Nord Pool (for history and
market statistics see www.nordpool.com). It was established in 1992 as a consequence of
the Norwegian energy act of 1991. In the years to follow Sweden (1996), Finland (1998) and
Denmark (2000) joined in. There are today over 400 market participants from 20 countries
active on Nord Pool. These include generators, suppliers/retailers, traders, large customers
and financial institutions. As of 2007, Nord Pool ranks as the biggest in terms of volume,
the most liquid and the one with the largest number of members power exchange in Europe.

To participate in the spot (physical) market, called Elspot, a grid connection enabling
to deliver or take out power from the main grid is required. Nearly 70% of the total power
consumption in the Nordic region is traded in this market and the fraction has steadily been
growing since the inception of the exchange in the 1990s. In the financial Eltermin market
power derivatives, like forwards (up to six years ahead), futures, options and contracts for
differences (CfD) are being traded. In 2007 the derivatives traded at Nord Pool accounted
for 1060 TWh, which is over 250% of the total power consumption in the Nordic region (422
TWh). In addition to its own contracts, Nord Pool offers a clearing service for OTC financial
contracts, allowing traders to avoid counterparty credit risks. This is a highly successful
business, with the volume of OTC contracts cleared through the exchange surpassing the
total power consumption three times in 2007.

2.2. The dataset

The analyzed Nord Pool dataset contains closing prices for all contracts traded in the
period January 4, 1999 – July 6, 2004 (1361 business days or roughly five and a half years).
The futures and forward contracts concern delivery of 1 MW during every hour (i.e. base
load) of the delivery period. Trading in a given contract stops when it enters the delivery
period; then it is cash settled against the realized day-ahead (spot) prices. In the studied
period daily, weekly, block/monthly, seasonal/quarterly and annual contracts were traded.
The very short end of the electricity forward curve is not analyzed here since daily contracts
exhibit volatility nearly as high as the spot and significantly greater than that of the weekly
and longer term contracts. Likewise, the very long end of the curve (more than 2 years from
today) is not analyzed since for such distant maturities only annual contracts are traded.
Inference based on one average price for the whole year is questionable at best.

Weekly futures contracts have a delivery period of 7 days (or 168 hours). The delivery
period starts Sunday at midnight and ends at midnight the following Sunday. The con-
tract with delivery the following week expires the preceding Friday. A maximum of 7 and a

3



0 200 400 600
50

100

150

200

250

300

350
19990428

P
ric

e 
[N

O
K

/M
W

h]

Maturity [Days]
0 200 400 600

50

100

150

200

250

300

350
20010129

P
ric

e 
[N

O
K

/M
W

h]

Maturity [Days]

0 200 400 600
50

100

150

200

250

300

350
20021106

P
ric

e 
[N

O
K

/M
W

h]

Maturity [Days]
0 200 400 600

50

100

150

200

250

300

350
20030905

P
ric

e 
[N

O
K

/M
W

h]

Maturity [Days]

Fig. 1. The term structure of electricity prices observed on four different days: April 28, 1999, January 29,
2001, November 6, 2002, and September 5, 2003.

minimum of 4 contracts are traded each week. New contracts are introduced every fourth
Monday. Block futures contracts are no longer traded. They had 4 week (28 day) delivery
periods. Each year was divided into 13 block contracts, 10 of which were traded simulta-
neously. This system had the advantage of all block contracts having the same number of
delivery hours, but the disadvantage of the delivery periods not matching calendar months.
To avoid this, and to offer products more similar to contracts being traded at other ex-
changes, block contracts were replaced in 2003 by monthly futures with delivery periods
corresponding to calendar months. Monthly futures are not traded in the month prior to
delivery; at that time weekly futures are available. Each month one contract expires and a
new one is introduced.

Seasonal and annual contracts are forward-style instruments. However, until 1999 the
former were marked-to-market like weekly and block futures contracts. Also their contract
specifications have changed from a seasonal to a quarterly structure. Previously each year
was divided into three seasons: V1 – late winter (January 1 – April 30), S0 – summer (May
1 – September 30) and V2 – early winter (October 1 – December 31). The first quarterly
seasonal contracts were listed in 2004 for each quarter of the year 2006. Finally, annual
contracts have delivery periods of one year. In the analyzed time interval (1999-2004) they
spanned a period of three years; currently they reach as far as 6 years into the future. Annual
contracts have a delivery period of 24 × 365 = 8760 hours (or 8784 hours in leap years).

Monthly futures, and all contracts introduced in 2003 and later, are denominated in
EUR (previously NOK). In order to unify the currency we recalculated all prices to NOK
using spot exchange rates from the Reuters EcoWin database. In the case when futures and
forward contracts overlapped for some delivery period we took the futures contract prices
(i.e. the contract closer to delivery) for this period.
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The term structure for four randomly selected days across the sample are displayed in
Figure 1. Although only one price is quoted per contract it corresponds to some prespecified
delivery period and, therefore, the term structure is a piecewise constant curve. The delivery
periods are shorter near expiry, which results in a more split curve and higher variation for
nearby maturities. Note that the forward curve exhibits different shapes on different days,
which suggests that the term structure of electricity prices is a highly dynamic object.
Moreover, it can be observed that the curve is seasonal or even sinusoidal with a period of
approximately one year.

3. Factor models

The object of factor analysis is to describe fluctuations over time in a set of variables
through those experienced by a small set of factors. Observed variables are assumed to be
linear combinations of the unobserved factors, with the factors being characterized up to
scale and rotation transformations. For instance, a J-dimensional vector of observations
Yt = (Yt,1, ..., Yt,J ) can be represented as an (orthogonal) L-factor model

Yt,j = m0,j + Zt,1m1,j + ...+ Zt,LmL,j + εt,j , (1)

where Zt,l are common factors, the coefficients ml,j are factor loadings and εt,j are specific
factors (or errors) which explain the residual part (Peña and Box, 1987). The index t =
1, ..., T represents the time evolution of the observed vector of variables.

The most important feature of factor models in finance is that they allow for reducing
the dimensionality of a set of assets in a portfolio, leading to much more parsimonious
and efficient risk management tools (of course, only if L ≪ J). In the context of curve
modeling, factor models have gained popularity in the 1990s with the works of Litterman and
Scheinkman (1991) and Steeley (1990). These authors used factor analysis (more precisely:
PCA) to extract common (latent) factors driving yield curves in different countries and
periods. They concluded (and this was later confirmed by other authors) that three principal
components – interpreted as level, slope and curvature – were enough to almost fully (> 95%)
explain the dynamics of the term structure of interest rates; note, that such a parsimonious
description is not as accurate in electricity markets (Koekebakker and Ollmar, 2005, Weron,
2006).

In this paper we work in a semiparametric factor model setup and, following Borak et al.
(2007), modify the basic model (1) by incorporating observable covariates Xt,j . The factor
loadings ml,j are now generalized to functions of the covariates and the model takes the
form:

Yt,j = m0(Xt,j) +

L∑

l=1

Zt,lml(Xt,j) + εt,j . (2)

The functions ml(·) are nonparametric, while the factors Zt,l represent the parametric part,
hence the name dynamic semiparametric factor model (DSFM); for a recent review of non-
and semiparametric models see Härdle et al. (2004). The model can be regarded as a re-
gression model with embedded time evolution. Additionally, the regularity of the multi-
dimensional time series may be omitted by allowing time dependent J , say Jt.

The DSFM was introduced by Fengler et al. (2007) in the context of modeling implied
volatility surfaces of DAX options. Borak et al. (2007) further refined the original algorithms
by implementing a series based estimator instead of a kernel smoother. They also showed
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asymptotic equivalence of the covariance based inference on estimated and true unobservable
factors.

In the context of electricity markets, Yt,j denotes the observed forward electricity price
observed on day t = 1, . . . , T for delivery in period j = 1, . . . , Jt. As the number of traded
futures and forward contracts varies throughout the year (see Section 2) Jt is not a constant,
but can take one of a few values. The corresponding maturity date or time point we denote by
Xt,j . Since delivery of electricity does not take place at some instant, but rather continuously
over a time interval, Xt,j represents the midpoint of the delivery period j.

When calibrating a factor model of the form (2) two major issues arise. First, there is the
problem of uniqueness. The signs of Zt,l and ml cannot be identified as only their product
appears in the formula, while certain linear transformations, e.g. rotation, yield the same
model for different functions. Moreover, one can add a constant c to Zt,l and subtract c·ml(·)
from m0(·) to get the same model. A possible choice for the identification procedure (and we
use it here) is to set the estimates m̂l of ml to be orthogonal and order them with respect

to the variation of
∑T

t=1 Ẑ
2
t,l, then center the estimates Ẑt,l of Zt,l to have zero mean. This

ordering makes the DSFM similar to PCA. What makes them different is the calibration
scheme. The DSFM is more flexible in this respect. It minimizes the squared residua (or
maximizes the in-sample fit with respect to some score function), while a factor model
estimated through PCA maximizes the expected variance (Ramsay and Silverman, 1997).

Second, there is the problem of irregularity. Since traded futures and forward contracts
can have delivery periods of significantly different lengths, the estimation procedure should
value individual prices differently. Certainly, the price of an annual forward contract should
impact a larger portion of the curve than the price of a weekly futures contract. One possible
solution would be to weigh the prices relative to the length of the delivery period. While for
low order (L = 3) models this procedure generally performs satisfactorily, for larger models
(L ≥ 4) the loading functions ml(·) become very volatile since the fit is penalized only if it
deviates in the midpoints Xt,j of the delivery periods. The second solution to this problem
becomes obvious if we rewrite formula (2) in a functional form:

yt(τ) =
L∑

l=0

Zt,lml(τ) + εt(τ), (3)

where Zt,0 = 1. Now, yt(·), ml(·) and εt(·) are functions of maturity τ , a continuous variable.
We can discretize τ and perform the estimation on a regular grid X1, ...,XJ , independently
of the observation time t (naturally, the grid has to be fine enough to adequately represent
all delivery periods). In this way, forward contracts with longer delivery periods will auto-
matically have more impact on the curve. Then the DSFM of order L takes the following
form:

Yt,j = m0(Xj) +

L∑

l=1

Zt,lml(Xj) + εt,j . (4)

The loading functions ml(·) need not take a specific form, however, in this study we
linearize them with B-splines (for details on B-splines we refer to the monograph of de
Boor, 2001). Namely we let

ml(Xj) =

K∑

k=1

al,kψk(Xj), (5)

whereK is the number of knots, ψk(·) are the splines and al,k are the appropriate coefficients.
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The estimation procedure searches through all loading functions ml and time series Zt,l

minimizing the following least squares (LS) criterion:

T∑

t=1

J∑

j=1

{
Yt,j −

L∑

l=0

Zt,l

K∑

k=1

al,kψk(Xj)

}2

. (6)

Note that, conditional on Zt,l, the minimizer al,k is the traditional LS estimator. Hence,
knowing al,k reduces (6) to T separate LS problems.

The calibration proceeds as follows. First, we set the initial estimate Ẑ
(0)
t,l to be equal to

a white noise sequence of appropriate length. Next, taking this initial estimate as given we

find the initial estimate â
(0)
l,k . Then we proceed iteratively switching from Ẑt,l to âl,k and vice

versa until convergence is reached. Although the algorithm is not guarantied to converge,
in this study we have not suffered major problems related to this issue. For more details on
the calibration procedure we refer to Borak et al. (2007).

4. Empirical evidence

Now we are ready to calibrate the DSFM to the dataset described in Section 2, i.e. futures
and forward contracts traded at Nord Pool in the period January 4, 1999 – July 6, 2004.
Only models of order L = 3, 4, 5, 6 are considered. By adding more factors we obtain a
(generally) better fit, at the cost of universality (robustness) and parsimony of the model
(and consequently: computational speed). We have decided not to execute this option and
consider six factor models at most. At the other end, using models with less than three
factors leads to a very poor description of the term structure.

The calibration is performed in the moving window spirit, with the window length being
equal to T = 500 business days (or roughly two years). In each step we shift our sample by
one day, discarding the oldest observation and including a new day. The first window starts
on January 4, 1999 and ends on December 29, 2000, the last covers the period July 2, 2002
– July 6, 2004. In this way, we obtain 862 (= 1361 − 499) DSFM fits for each of the model
sizes (L = 3, 4, 5, 6). Note, that the term structure on some days can have several DSFM
representations, in particular all days in the period December 29, 2000 – July 2, 2002 have
500 different fits (as each of them falls into 500 windows). The differences for neighboring
windows are negligible, but windows that are far apart can lead to visually different fits.

The time grid used consists of J = 1432 equidistant points, Xj = 15, 15.5, 16, ..., 730,
representing time to maturity in days. The first two weeks are omitted due to very high
volatility at the short end of the forward curve. The very long end of the curve (more than
2 years from today) is not analyzed since for such distant maturities only annual contracts
are traded.

For the basis functions ψk(·), 19 cubic B-splines evaluated on equidistant knots are used.
The number of spline functions is related to the mean number of observations per day and
as long as the splines are of degree 1 or more (i.e. at least linear) we find the placement of
the knots and the selection of K of minor importance to the accuracy of the fit.

Calibration results for L = 3 and prices covering the period June 3rd, 1999 – June 17th,
2003 are displayed in Figure 2. The period is divided into two adjacent time intervals (500
day windows): until June 11th, 2001 and after (and including) June 12th, 2001. The structure
of the loading functions seems to be stable throughout the sample, however, the time series
Ẑt,l vary considerably between the periods. The functions m̂1 are relatively flat and could
be interpreted as overall level changes. Their absolute values decrease with maturity, which
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Fig. 2. Estimated time series Ẑt,l (upper panels) and loadings m̂l(Xj) (lower panels) for the DSFM of order
L = 3 and Xj = 15, 15.5, 16, ..., 730 days (the functions m̂0 are not displayed). The data sample covering

the period June 3rd, 1999 – June 17th, 2003 is divided into two adjacent time intervals: until June 11th,
2001 (left panels) and after (and including) June 12th, 2001 (right panels). The structure of the loading

functions seems to be stable throughout the sample, however, the time series Ẑt,l vary considerably between

the periods.

coincides with the highest volatility at the short end of the curve and the lowest at the
long end. The factor Ẑt,1 reflects then the trend of the entire term structure. The second
and third elements of the model exhibit periodic behavior, both in spacial loading functions
and time dependent factors. The period is approximately one year and the factors can be
interpreted as seasonal adjustments of the curve, required for adequate representation of
the curve throughout the whole year. There are some deviations from this behavior but
the presented pattern, namely one trend factor and two seasonal factors, dominates in the
analyzed dataset.

In Figures 3 and 4 we present DSFM fits to the term structure of electricity prices observed
on the same four days as in Figure 1. The fit for L = 6 in not necessarily better than for L =
3, but certainly more closely follows the quoted prices. Compared to fits obtained within the
‘maximum smoothness’ principle (Koekebakker and Ollmar, 2005, Benth et al., 2007), the
DSFM approach yields less pronounced seasonality in the far end of the curve. Compared
to the results of Fleten and Lemming (2003), the obtained curves are smoother and less
closely follow the quoted prices (at least for L = 3, see Fig. 3).

As far as the goodness-of-fit is concerned, there are two standard loss functions to be
considered – one based on the L1 norm, the other on the L2 norm. The former tends to
disclose more details, hence we use it here. It is defined by:

ǫL1
=

T∑

t=1

J∑

j=1

|Yt,j −Model(Xj)|. (7)
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Fig. 3. The term structure of electricity prices and the estimated forward curves (for L = 3) observed on
the same four days as in Figure 1.
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Fig. 4. The term structure of electricity prices and the estimated forward curves (for L = 6) observed on

the same four days as in Figure 1. The fit in not necessarily better than for L = 3 (see Fig. 3), but certainly
more closely follows the quoted prices.
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(#862) to a window covering the period July 2, 2002 – July 6, 2004.

Note, that the forward curve resulting from the DSFM is a smooth function, while the
original prices have a piecewise constant shape. Obviously, the error will be non-negligible
no matter what period is analyzed.

The in-sample error as function of time is presented in Figure 5. Clearly the models with
more factors give a better fit, although for models calibrated to price quotations in the
beginning of the dataset this feature is less pronounced. For all L we observe an upward
trend, which implies that models with the same number of factors yield a much better fit
in the first part of the sample than in the second. In particular, this is visible for L = 3.
A significant loss of accuracy can be observed roughly in the middle of the sample, ca. for
window number 450 covering the period October 18, 2000 – October 31, 2002. The reason for
this were the weather conditions. A dry autumn and an early and severe winter 2002/2003
resulted in extremely low hydropower reservoir levels – lowest since the commencement of
exchange trading at Nord Pool in 1993. With more than 50% of all power generation in the
Nordic countries from hydropower, this gave rise to price levels never seen before in this
market, see Figure 6. The average system price for 2003 was 291 NOK/MWh, compared with
an average of 158 NOK/MWh for the 1996-2002 period. The highest average daily system
price recorded between 1993 and 2007 was set on January 6, 2003: 831 NOK/MWh (see
www.nordpool.com). High prices were accompanied by an unprecedented market volatility.
Futures contracts reached prices that, for a brief time, exceeded prices at the spot market.
These abnormal market conditions persisted throughout 2004, resulting in very volatile and
less predictable spot and forward prices. In fact, looking at Figure 6, we can observe that the
deviations from the ‘normal’, seasonal spot price behavior of the years 1999-2000 increase
over time. Obviously this leads to a steady increase of the in-sample error ǫL1

over time

10



2000 2001 2002 2003 2004

100

200

300

400

500

600

700

800

900

P
ric

e 
[N

O
K

/M
W

h]

2000 2001 2002 2003 2004

−20

0

20

Le
ve

l d
iff

er
en

ce
 [%

]

Spot price

Actual − median reservoir level

Fig. 6. Top panel : Daily average spot system prices in the period January 4, 1999 – July 6, 2004. Bottom

panel : The difference (in percent) between the actual and median (for 1990-2003) reservoir levels in Norway.
As long as the actual level is above the median, the spot prices behave ‘normally’. When the actual level

substantially drops below the median the prices increase, as in spring 2001 and autumn 2002.

(Fig. 5), independent of the model size L.

5. Conclusions

In this paper we have introduced the dynamic semiparametric factor model (DSFM) for
modeling electricity forward curves. The model utilizes a parsimonious factor representation
– a linear combination of nonparametric loading functions (linearized with B-splines) and
parametrized common factors. It is calibrated within a least squares iterative scheme. The
biggest advantage of the DSFM approach is that it not only leads to smooth, seasonal
electricity forward curves, but also to a parsimonious factor representation of the curve.

Using a database of financial contracts traded at the Nordic power exchange Nord Pool
in the years 1999-2004, we have provided empirical evidence that the DSFM is an efficient
modeling tool. It turns out that a parsimonious 3-factor representation yields reasonable
fits throughout the whole sample. More complex models (with more factors) lead to more
accurate in-sample fits (e.g. a 6-factor model is better by roughly 30%) at the cost of
universality (robustness) and computational speed. Compared to fits obtained within the
‘maximum smoothness’ principle (Koekebakker and Ollmar, 2005, Benth et al., 2007), the
DSFM approach yields less pronounced seasonality in the far end of the curve. Compared
to the results of Fleten and Lemming (2003), the obtained curves are smoother and less
closely follow the quoted prices.

The structure of the loading functions has been found to be stable throughout the sample.
This result shows that incorrect specification of the loading functions is moderately harmful,
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as long as they resemble the functions in Figure 2. We believe that this can be an insightful
guidance for parametric factor representations of electricity forward curves. The functions
m̂1 are relatively flat and could be interpreted as overall level changes. Their absolute values
decrease with maturity, which coincides with the highest volatility at the short end of the
curve and the lowest at the long end. The first factor Ẑt,1 reflects then the trend of the entire
term structure. The second and third elements of the model exhibit periodic behavior, both
in spacial loading functions and time dependent factors. The period is approximately one
year and the factors can be interpreted as seasonal adjustments of the curve, required for
adequate representation of the curve throughout the whole year.
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