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Abstract

The subject of the present paper is a simplified model for a symmetric bistable system with memory
or delay, the reference model, which in the presence of noise exhibits a phenomenon similar to what
is known as stochastic resonance. The reference model is given by a one dimensional parametrized
stochastic differential equation with point delay, basic properties whereof we check.

With a view to capturing the effective dynamics and, in particular, the resonance-like behaviour
of the reference model we construct a simplified or reduced model, the two state model, first in
discrete time, then in the limit of discrete time tending to continuous time. The main advantage
of the reduced model is that it enables us to explicitly calculate the distribution of residence times
which in turn can be used to characterize the phenomenon of noise-induced resonance.

Drawing on what has been proposed in the physics literature, we outline a heuristic method for
establishing the link between the two state model and the reference model. The resonance character-
istics developed for the reduced model can thus be applied to the original model.

2000 AMS subject classifications: primary 34K50, 60H10; secondary 60G17, 34K11, 34K13,
34K18, 60G10.

Key words and phrases: stochastic differential equation; delay differential equation; stochastic
resonance; effective dynamics; Markov chain; stationary process; stochastic synchronization.

1 Introduction

Stochastic resonance in a narrower sense is the random amplification of a weak periodic signal induced by
the presence of noise of low intensity such that the signal amplification is maximal at a certain optimal
non-zero level of noise. In addition to weak additive noise and a weak periodic input signal there is a
third ingredient in systems where stochastic resonance can occur, namely a threshold or a barrier that
induces several (in our case two) macroscopic states in the output signal.

Consider a basic, yet fundamental example. Let V be a symmetric one dimensional double well
potential. A common choice for V is the standard quartic potential, see Fig. 1 a). The barrier mentioned

∗This work was partially supported by the DFG research center Matheon (FZT 86) in Berlin and the DFG Sonder-
forschungsbereich 649 “Economic Risk”.
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above is in this case the potential barrier of V separating the two local minima. Assume that the periodic
input signal is sinusoidal and the noise white. The output of such a system is described by the stochastic
differential equation (SDE)

(1) dX(t) = −
(
V ′(X(t)

)
+ a · sin(

2π
T t

))
dt + σ · dW (t), t ≥ 0,

where W is a standard one dimensional Wiener process, σ ≥ 0 a noise parameter, V ′ the first order
derivative of the double well potential V , a ≥ 0 the amplitude and T > 0 the period of the input signal.

As an alternative to the system view, equation (1) can be understood as describing the overdamped
motion of a small particle in the potential landscape V in the presence of noise and under the influence
of an exterior periodic force. It was originally proposed by Benzi et al. (1981, 1982) and Nicolis (1982) as
an energy balance model designed to explain the succession of ice and warm ages in paleoclimatic records
as a phenomenon of quasi periodicity in the average global temperature on Earth.

If a = 0, i. e. in the absence of a periodic signal, equation (1) reduces to an autonomous SDE which has
two metastable states corresponding to the two local minima of V . With σ > 0 sufficiently small, the
diffusion will spend most of its time near the positions of these minima. In the presence of weak noise,
there are two distinct time scales, a short one corresponding to the quadratic variation of the Wiener
process, and a long one proportional to the average time it takes the diffusion to travel from one of the
metastable states to the other.

The fact that the time scale induced by the noise process is small in comparison with the mean
residence time as σ tends to zero should allow us to disregard small intrawell fluctuations when we are
interested in the interwell transition behaviour.

Suppose a > 0 small enough so that there are no interwell transitions in case σ = 0, i. e. in the deterministic
case. The input signal then slightly and periodically tilts the double well potential V . We now have two
different mean residence times, namely the average time the particle stays in the shallow well and the
average time of residence in the deep well. Of course, both time scales also depend on the noise intensity.

Notice that deep and shallow well change roles every half period T
2 . Given a sufficiently long period

T , the noise intensity can now be tuned in such a way as to render the occurence
of transitions from the shallow to the deep well probable within one half period, while this time span

is too short for the occurrence of transitions in the opposite direction. At a certain noise level the output
signal will exhibit quasi periodic transition behaviour, thereby inducing an amplification of the input
signal.

For a more comprehensive description of stochastic resonance and its wide field of applications in many
fields of science and engineering see Gammaitoni et al. (1998) or Anishchenko et al. (1999). Very recently it
has been used in economics related models designed for the explanation of non-linear market phenomena
such as crashes and bubbles, see Krawiecki and Holyst (2003). In their model, the external periodic
force corresponds to a weak external information carrying signal. What models that exhibit stochastic
resonance have in common is the quasi periodicity of the output at a certain non-zero noise level. More
generally, stochastic resonance is an instance of noise-induced order.

In view of the fact that the system given by equation (1) can work as a random amplifier it seems natural
to take the frequency spectrum of the output signal as basis for a measure of resonance. The most
common measure of this kind is the spectral power amplification (SPA) coefficient. Another measure of
resonance based on the frequency spectrum is the signal to noise ratio (SNR). For a detailed analysis see
Pavlyukevich (2002).

In general, when measuring stochastic resonance, it is assumed that the solution is in a “stationary
regime”. Since equation (1) is time dependent for a > 0 we cannot expect (X(t))t≥0 to be a stationary
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process. Transforming the non-autonomous SDE (1) into an autonomous SDE with state space R× S1,
one can recover the time homogeneous Markov property and a unique invariant probability measure exists,
cf. Imkeller and Pavlyukevich (2002). In section 3 we will make use of the same idea of appropriately
enlarging the state space in order to regain a time homogeneous Markov model.

A different starting point for a measure of resonance – the one that will be adopted here – is the distrib-
ution of intrawell residence times. Observe that the roles of the two potential wells are interchangeable.

A third class of measures of resonance is provided by methods of quantifying (un)certainty, in par-
ticular by the entropy of a distribution. This agrees well with the view of stochastic resonance as an
instance of noise-induced order.

The fact that with σ > 0 and a > 0 small a typical solution to (1) spends most of its time near the
positions of the two minima of the double well potential V suggests to identify the two potential wells
with their respective minima. The state space R of the non-autonomous SDE thus gets reduced to two
states, say −1 and 1, corresponding to the left and the right well, respectively.

According to an idea of McNamara and Wiesenfeld (1989) the effective dynamics of equation (1) can
be captured in the two state model by constructing a {−1, 1}-valued time inhomogeneous Markov chain
with certain (time dependent) transition rates. These rates are determined as the rates of escape from
the potential well of the tilted double well potential which corresponds to the reduced state in question.
An approximation of the rate of escape from a parabolic potential well is given in the limit of small noise
by the Kramers formula, cf. section 5.

In the physics literature, a standard ansatz for calculating the two state process given time dependent
transition rates is to solve an associated differential equation for the probabilities of occupying state ±1
at time t, a so-called master equation (cf. Gammaitoni et al., 1998).

An advantage of the reduced model is its simplicity. It should be especially useful in systems with more
than two meta-stable states. Although it is intuitively plausible to apply a two state filter, there is
possibly a problem with the measure of resonance, for it might happen that with the same notion of
tuning stochastic resonance would be detected in the two state model, while no optimal noise level, i. e.
no point of stochastic resonance, exists in the continuous case. This is, indeed, a problem for the SPA
coefficient and related measures, see Pavlyukevich (2002). The reason is that in passing to the reduced
model small intrawell fluctuations are “filtered out”, while they decisively contribute to the SPA coefficient
in the original model.

Measures of resonance based on the distribution of intrawell residence times, however, do not have
this limitation, that is they are robust under model reduction as Herrmann et al. (2003) show.

In equation (1) replace the term that represents the periodic input signal with a term that corresponds
to a force dependent on the state of the solution path a fixed amount of time into the past, that is replace
the periodic signal with a point delay. This yields what will be our reference model, see equation (2).

The idea to study such equations with regard to noise-induced resonance seems to originate with Ohira
and Sato (1999). Their analysis, though, is of limited use, because they make too strong assumptions on
independence between the components of the reduced model which they consider in discrete time only.

A better analysis of the reduced model for an important special choice of equation (2) can be found
in Tsimring and Pikovsky (2001). The same model is the object of recent studies by Masoller (2003),
Houlihan et al. (2004) and Curtin et al. (2004), and it will be our standard example, too.

While the measure of resonance applied by Tsimring and Pikovsky (2001) is essentially the first peak
in the frequency spectrum, in the other articles focus is laid on the residence time distribution in the
reduced model, which is compared with numerical simulations of the original dynamics. Under certain
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simplifying assumptions, approximative analytical results are obtained via a master equation approach,
where the master equation is a DDE instead of an ODE.

In section 5 we follow Tsimring and Pikovsky (2001) in establishing the link between the reduced and
the reference model. Results by Masoller (2003) show that the density of the residence time distribution
has a characteristic jump. She proposes to take the height of this jump as a measure of resonance, and
we will follow her proposal, supplementing it by an alternative.

Our approach is different, though, in that we do not use any kind of master equation. Instead, we
construct a reduced model with enlarged state space, which has the Markov property and which allows
us to explicitly calculate the stationary distributions as well as the residence time distributions.

2 The reference model

Consider the one dimensional motion of a small particle in the presence of large friction and additive
white noise subject to the influence of two additional forces: one dependent on the current position of the
particle and corresponding to a symmetric double well potential V , the other dependent on the position of
the particle a certain amount of time r in the past and corresponding to a symmetric single well potential
U , where the position of the extremum of U coincides with the position of the saddle point of V .

Without loss of generality we may assume that the saddle point of the potential V is at the origin and
the extrema are located at (−1,−L) and (1,−L) respectively, where L > 0 is the height of the potential
barrier. A standard choice for V is the quartic potential x 7→ L(x4 − 2x2).

Instead of U we will consider β ·U , where β is a scalar, that serves to “adjust” explicitly the strength
of the delay force. An admissible function for U is the parabola x 7→ 1

2x2. In fact, with this choice of
U and taking as potential V the quartic potential with L = 1

4 we find ourselves in the setting that was
studied by Tsimring and Pikovsky (2001).1 Another reasonable choice for U would be a function whose
first derivative equals the sign function outside a small symmetric interval around 0 and is smoothly
continued on this interval (see Fig. 1).
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Figure 1: Graphs on the interval [−2, 2] of a) quartic double well potential V , b) quadratic delay potential
U : x 7→ 1

2
x2, c) absolute value delay potential U : x 7→ |x|, x ∈ R \ (−δ, δ), smoothly continued on (−δ, δ).

2.1 The underlying SDDE

The dynamics that govern the motion of a Brownian particle as described above can be expressed by the
following stochastic delay differential equation determining our reference model:

(2) dX(t) = − (
V ′(X(t)

)
+ β · U ′(X(t− r)

))
dt + σ · dW (t), t ≥ 0,

1Our notation is slightly different from that of equation (1) in Tsimring and Pikovsky (2001: p. 1). In particular, their
parameter ε, indicating the “strength of the feedback”, corresponds to −β, here.
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where W (.) is a standard one dimensional Wiener process on a probability space (Ω,F , P) adapted to a
filtration (Ft)t≥0 satisfying the usual conditions, r > 0 is the time delay, V ′, U ′ are the first derivatives
of V and U , respectively, β ∈ R is a parameter regulating the intensity of the delay force and σ ≥ 0 a
noise parameter. In the special case σ = 0 equation (2) becomes a DDE, while in case β = 0 we have an
ordinary SDE.

As initial condition at time zero one prescribes an F0-measurable C([−r, 0])-valued random variable
ξ such that E(‖ξ‖2∞) < ∞ and X0 = ξ P-almost surely. Here, X0 denotes the segment of X at time zero.
More generally,

Xt :=
[
s 7→ X(t + s), s ∈ [−r, 0]

]

is the segment at time t ≥ 0, and (Xt)t≥0 the segment process associated with X, provided a solution
(X(t))t≥−r to equation (2) exists. The initial segment may, of course, be deterministic, i. e. X0 = f for
some function f ∈ C([−r, 0]).

The above description of the two potentials is compatible with the following conditions on V and U :

V,U ∈ C2(R),(3a)

V (x) = V (−x) for all x ∈ R, U(x) = U(−x) for all x ∈ R,(3b)

V ′(x) = 0 iff x ∈ {−1, 0, 1}, U ′(x) = 0 iff x = 0,(3c)

V ′′(−1) = V ′′(1) > 0,(3d)

sup{V ′(x) | x ∈ (−∞,−1) ∪ (0, 1)} ≤ 0, sup{U ′(x) | x ∈ (−∞, 0)} ≤ 0.(3e)

If V ′ and U ′ are bounded or satisfy a linear growth condition, then results from the literature ensure
existence of a unique strong solution for every F0-measurable C([−r, 0])-valued square integrable random
variable and a (weakly) unique weak solution for every probability measure on B(C([−r, 0])) as initial
condition. The segment processes associated with those solutions enjoy the strong Markov property, see
Mohammed (1984, 1996).

Let R > 0 and let VR, UR be functions such that VR and UR have bounded derivatives, while agreeing
with V and U , respectively, on the interval [−R, R]. By considering equation (2) with V , U replaced by
VR, UR we see that unique solutions exist up to an explosion time.

In order to prevent explosion of solutions to equation (2) we need growth conditions on V and U . We
choose them in a way such as to give us control over the impact of the delay potential U in terms of the
potential function V . In addition to conditions (3) let us assume that for some positive constants R̂0, η̂

and δ we have

U ′(x) > 0 for all x ∈ (0,∞),(4a)

U ′′(x) ≥ 0 for all x ∈ R, V ′′(x) ≥ 0 for all x ∈ R \ [−R̂0, R̂0],(4b)

V ′(x)
U ′(3x)

≥ η̂ · |x|1+δ for all x ∈ R \ [−R̂0, R̂0].(4c)

Without loss of generality we may assume δ ∈ (0, 1]. Henceforth, whenever the reference model is
concerned, we will suppose that conditions (3) and (4) are satisfied. These conditions not only guarantee
existence and uniqueness of solutions, but also the existence of a stationary distribution as will be shown
next.

Both, non-explosion as well as stationarity, can be checked by the “one step method”. Let b : [0, r]×R→ R
be a continuous function, locally Lipschitz in the second variable (uniformly in the first) and such that
for some positive constants R0, η we have

(5) x · b(t, x) ≤ −η · |x| for all t ∈ [0, r], x ∈ R \ [−R0, R0].
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Growth condition (5) guarantees existence of a unique strong solution to the non-autonomous SDE

(6) dY (t) = b
(
t, Y (t)

)
dt + σ · dW (t), t ∈ [0, r],

for every F0-measurable real valued square integrable random variable as initial condition for Y (0), see
Durrett (1996: pp. 190-192).2 Moreover, E(|Y (0)|2) < ∞ implies E(‖Yr‖2∞) < ∞.

Let y ∈ R and let Y y be a solution to equation (6) with deterministic initial condition Y (0) = y. For
R > 0 denote by τR the time of first exit of Y y from the interval (−R, R), that is we set

τR := inf
{
t ∈ [0, r]

∣∣ |Y y(t)| ≥ R
}
,

with inf ∅ = ∞ by convention. A one dimensional version of proposition 1.4 in Herrmann et al. (2005)
yields the following estimate for the probability that Y y leaves the interval (−R, R) within time r provided
R is big enough. For any λ > 1 it holds that

P
(
τR ≤ r

) ≤ 6
( r

σ2
η2 + 2

)
exp

(
−2(λ− 1)

λσ2
η R

)
for all R ≥ λ(R0 ∨ |y|).(7)

For f ∈ C([−r, 0]) define the drift coefficient bf by

bf (t, x) := −V ′(x)− β · U ′(f(t− r)
)
, (t, x) ∈ [0, r]× R.

With (t, x) ∈ [0, r]× R we have

x · bf (t, x) = − xV ′(x) − β x U ′(f(t− r)
) ∣∣ apply (3b)

= − |x|U ′(3|x|) V ′(x)
U ′(3x)

− β x U ′(f(t− r)
) ∣∣ apply (4b)

≤ − |x|U ′(3|x|) V ′(x)
U ′(3x)

+ |β| |x|U ′(‖f‖∞
)
.

Set KV := sup{−x · V ′(x) | x ∈ [−R̂0, R̂0]}. Because of (4c) we find that

x · bf (t, x) ≤




KV + |β| R̂0 U ′(‖f‖∞
)

if |x| < R̂0,

−η̂ U ′(3|x|) |x|2+δ + |β| |x|U ′(‖f‖∞
)

if |x| ≥ R̂0.

If ‖f‖∞ ≥ 3
(
R̂0 ∨ 2|β|

η̂ ∨ 1
)
, then

(8) x · bf (t, x) ≤





KV + |β| R̂0 U ′(‖f‖∞
)

if |x| < R̂0,

1
3 |β| ‖f‖∞ U ′(‖f‖∞

)
if R̂0 ≤ |x| < 1

3‖f‖∞,

− η̂
18 ‖f‖1+δ

∞ U ′(‖f‖∞) |x| if |x| ≥ 1
3‖f‖∞.

In particular, provided that ‖f‖∞ ≥ 3
(
R̂0 ∨ 2|β|

η̂ ∨ 1
)
, we have

(9) x · bf (t, x) ≤ −ηf |x| for all t ∈ [0, r], |x| ≥ 1
3‖f‖∞,

where ηf := η̂
18 ‖f‖1+δ

∞ U ′(‖f‖∞).

Clearly, inequality (9) implies growth condition (5) if we replace b with bf and R0 with 1
3‖f‖∞. Notice

that (5) is also satisfied for bf when ‖f‖∞ is small. In this case we would estimate the product x · bf (t, x)

2Alternatively, we could invoke theorem 10.2.2 in Stroock and Varadhan (1979) and the fact that pathwise uniqueness
holds.
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by applying (4c) and observing that U ′(x) is greater than some positive constant for all positive x big
enough.

Let (X(t)t∈[−r,τ̂) be a strong solution to equation (2) for some admissible initial condition ξ up to
explosion time τ̂ . We have to show that τ̂ = ∞ P-a. s.

Suppose τ̂ > n · r P-almost surely for some n ∈ N0. This will certainly be the case if we take n = 0.
Set s := n · r. By hypothesis, (X(t))t∈[−r,s] is well defined as a solution to equation (2) up to time s. Let
ω ∈ Ω, and set f := Xs(ω). Observe that Xs(ω̃) = f for almost all ω̃ ∈ Ω with respect to the probability
measure P(.|Fs)(ω).

In equation (6) replace the drift b with bf and prescribe f(0) as initial condition. Notice that bf

fulfills a growth condition like (5). The fact that there is a unique strong solution to equation (6) now
implies that, P(.|Fs)(ω)-almost surely, (X(s + t))t∈[0,r] exists and satisfies (6). Consequently, τ̂ > s + r

with probability one under P(.|Fs)(ω).
Since P(A) = E(P(A|Fs)) for any event A ∈ F , we see that τ̂ > n · r entails τ̂ > (n + 1)r. Proceeding

by induction, we conclude that solutions to our reference equation (2) cannot explode in finite time.

Stationarity is studied in Scheutzow (1983, 1984) for equations of a special form. Let F be a real valued
Borel-measurable and locally bounded functional on C([−1, 0]), where locally bounded means bounded
on bounded subsets. Consider the SDDE

(10) dX̃(t) = F (X̃t)dt + dW (t), t ≥ 0.

By appropriately scaling time and space one can bring SDDEs with delay length r 6= 1 or noise parameter
σ 6= 1, as long as both are positive, into the form of equation (10). Let us specify F as

(11) F (g) := −
√

r

σ
·
(
V ′(σ√r · g(0)

)
+ β · U ′(σ√r · g(−1)

))
, g ∈ C([−1, 0]).

Since the coordinate projections are measurable and V ′, U ′ are locally bounded continuous functions
because of (3a), F is Borel-measurable and locally bounded.

Let g ∈ C([−1, 0]) and assume that X̃ together with a Wiener process (W̃ , (F̃t)t≥0) on (Ω̃, F̃ , P̃)
is a weak solution to (10) with F as just defined and X̃0 = g P̃-almost surely. Set f(t) := σ

√
r · g( t

r ),
t ∈ [−r, 0]. Let X together with a Wiener process (W, (Ft)t≥0) on (Ω,F ,P) be a weak solution of (2) such
that P(X0 = f) = 1. Then the processes (X(t))t≥−r and (σ

√
r · X̃( t

r ))t≥−r have the same distribution
(cf. Scheutzow, 1983: p. 31). Therefore, if σ > 0, then our reference equation can be transformed into an
instance of equation (10).

Theorem 1 cites part of theorem 3 and theorem 4 from Scheutzow (1984: pp. 47-48, 54). Strong existence
and pathwise uniqueness clearly imply weak existence and uniqueness in distribution. Notice that in
order to have a weak solution for any initial distribution it is sufficient to check existence of solutions for
all deterministic initial conditions.

Theorem 1 (Scheutzow). Let F be a Borel measurable and locally bounded functional on C([−1, 0]).
Assume that weak existence and uniqueness hold for equation (10). Let L : C([−1, 0]) → [0,∞) be Borel
measurable, and set for R ≥ 0

AR := − sup
{
Ẽg

(L(X̃1)
)− L(g)

∣∣ g ∈ C([−1, 0]), ‖g‖∞ ≥ R
}
.

Here, Ẽg means expectation with respect to the probability measure of a weak solution for (10) with
deterministic initial condition g.

1. Let ((X̃, W̃ ), (Ω̃, F̃ , P̃), (F̃t)) be a weak solution to (10) with arbitrary initial distribution ν. There
is at most one invariant probability measure π for equation (10). If an invariant probability measure
π exists, then

P̃X̃t

t→∞→ π in total variation.
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2. If A0 ∨ 0 < ∞ and 0 ≤ limR→∞ A0∨0
AR

< 1, then (10) possesses an invariant probability measure.

As Lyapunov functional L we choose

L(g) := ‖g‖∞ + |g(0)|, g ∈ C([−1, 0]).

Notice that beside conditions (4) only properties (3a) and (3b) are needed in order to derive growth
estimates (8) and (9). For g ∈ C([−1, 0]) define the rescaled drift condition b̃g by

b̃g(t, x) :=
√

r
σ · bfg

(
r · t, σ√r · x)

, (t, x) ∈ [0, 1]× R, where fg(t) := σ
√

r · g(
t
r

)
, t ∈ [−r, 0].

In particular, ‖fg‖∞ = σ
√

r · ‖g‖∞. Set R̃0 := 3
σ
√

r

(
R̂0 ∨ 2|β|

η̂ ∨ 1
)
. If ‖g‖∞ ≥ R̃0 then inequality (9)

entails that

(12) x · b̃g(t, x) ≤ −η̃g |x| for all t ∈ [0, 1], |x| ≥ 1
3‖g‖∞,

where
η̃g :=

√
r

σ ηfg
= η̂

18 · σδ · r1+ δ
2 · ‖g‖1+δ

∞ · U ′(σ√r · ‖g‖∞
)
.

In analogy to equation (6), we consider non-autonomous SDEs of the form

(13) dỸ (t) = b̃
(
t, Ỹ (t)

)
dt + dW (t), t ∈ [0, 1].

The drift coefficient b̃ has to be chosen in accordance with the deterministic initial condition of equation
(10). For g ∈ C([−1, 0]) denote by Ỹ g the (strongly) unique solution to equation (13) with b̃g in place of
b̃ and initial condition g(0). Let τ̃R denote the time of first exit of Ỹ g from the interval (−R,R), where
R > 0, that is we set

τ̃R := inf
{
t ∈ [0, 1]

∣∣ |Ỹ g(t)| ≥ R
}
,

with inf ∅ = ∞ by convention. As a consequence of (7), provided that ‖g‖∞ ≥ R̃0, with λ > 1 we have

P
(
τ̃R ≤ 1

) ≤ 6
(
η̃2

g + 2
)
exp

(
−2(λ− 1)

λ
η̃g R

)
for all R ≥ λ

(
1
3‖g‖∞ ∨ |g(0)|).(14)

First, we turn to estimating the expected supremum of |Ỹ g|. Set yg := 1
3‖g‖∞ ∨ |g(0)|. For ‖g‖∞ ≥ R̃0

and any λ > 1 it holds that

E
(‖Ỹ g

1 ‖∞
)

=

∞∫

0

P

(
sup

t∈[0,1]

|Ỹ g(t)| > R

)
dR ≤ λ yg +

∞∫

λyg

P (τ̃R ≤ 1) dR
∣∣ apply (14)

≤ λ yg + 6
(
η̃2

g + 2
) ·

∞∫

λyg

exp
(
−2(λ− 1)

λ
η̃g R

)
dR

= λ yg +
3λ(η̃2

g + 2)
(λ− 1)η̃g

· exp
(
−2(λ− 1)

λ
η̃g yg

)

≤ λ
(

1
3‖g‖∞ ∨ |g(0)|) +

3λ

λ− 1

(
η̃g +

2
η̃g

)
· exp

(
−2(λ− 1)

3
η̃g ‖g‖∞

)
.

Therefore, given a > 1 we find R(a) > 0 such that for all g ∈ C([−1, 0]) with ‖g‖∞ ≥ R(a) it holds that

(15) E
(‖Ỹ g

1 ‖∞
) ≤





a
3 ‖g‖∞ if |g(0)| ≤ 1

3‖g‖∞,

a|g(0)| if |g(0)| > 1
3‖g‖∞.
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Second, we try to find an upper bound for the expected value of |Ỹ g|. Clearly, if |g(0)| ≤ 1
3‖g‖∞, then

inequality (15) implies E(|Y g(1)|) ≤ a
3‖g‖∞. Assume that |g(0)| > 1

3‖g‖∞. Girsanov’s theorem implies
that the stochastic equation

(16) Z(t) = x −
t∫

0

θ · sgn
(
Z(s)

)
ds + W̃ (t), t ∈ [0, 1],

where W̃ is a standard Wiener process, possesses a (weakly) unique weak solution for any choice of the
parameters x ∈ R, θ > 0.

Set x := |g(0)| − 1
3‖g‖∞, θ := η̃g, and let Zg be a solution process satisfying (16) with x, θ on an

appropriate stochastic basis. By symmetry and because of growth inequality (12), we find that

E
(|Ỹ g(t)|) ≤ 1

3‖g‖∞ + Ẽ
(|Zg(t)|) for all t ∈ [0, 1].

Notice that Zg is a Brownian motion with two-valued drift started at x = |g(0)| − 1
3‖g‖∞, and |Zg| is a

reflected Brownian motion with drift −η̃g. The transition probabilities of Zg can be computed explicitly,
see Karatzas and Shreve (1991: pp. 437-441). It holds that

Ẽ
(‖Zg(1)‖∞

)
=

∞∫

0

z√
2π

(
exp

(
−1

2
(x− z − θ)2

)
+ exp

(
2θx− 1

2
(x + z + θ)2

))
dz

+

∞∫

0

2zθ exp
(−2θz

) 1√
2π

∞∫

x+z

exp
(
−1

2
(v − θ)2

)
dv dz.

Observe that 1
3‖g‖∞ ≤ x ≤ ‖g‖∞, that is x is of order ‖g‖∞, while θ = η̃g is of order at least ‖g‖1+δ

∞ .
Therefore, Ẽ(‖Zg(1)‖∞) goes to zero as ‖g‖∞ tends to infinity. We conlude that, given a > 1, there is
R̃(a) > 0 such that for all g ∈ C([−1, 0]) with ‖g‖∞ ≥ R̃(a) it holds that

(17) E
(|Ỹ g(1)|) ≤ a

3 ‖g‖∞.

Observe that A0 as defined in theorem 1 is finite. Estimates (15) and (17) imply that AR tends to infinity
as R goes to infinity. Theorem 1 thus guarantees existence of an invariant probability measure. Let us
summarize our findings.

Proposition 1. Suppose that V , U satisfy conditions (3) and (4). Let σ ≥ 0, β ∈ R be given. Then the
following holds for equation (2):

1. For every F0-measurable C([−r, 0])-valued random variable as initial condition there is a (pathwise)
unique strong solution.

2. The segment solution processes enjoy the strong Markov property.

3. If σ > 0, then there is a unique invariant probability measure π for the segment process, which
converges in total variation to π for every initial distribution.

The additional conditions (4) are rather crude and could be varied in many ways. For example, one might
relax condition (4c) by requiring a ratio between V ′ and U ′ of order one instead of order 1+δ provided
the growth of U ′ is of polynomial order δ.

A different restriction on the geometry of V and U would be the following: Assume that a constant
Rpot greater than the positive root of V exists such that V and U are linear on R\ [−Rpot, Rpot]. Clearly,
this condition would not allow V to be a parabolic or quartic potential. In this setting, however, the
delay parameter β becomes important. By appealing to theorem 5 in Scheutzow (1984: pp. 55-56) we find
that a stationary distribution exists if σ > 0 and β > −V ′(Rpot)

U ′(Rpot)
, while no invariant measure exists in case

β < −V ′(Rpot)
U ′(Rpot)

.
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2.2 Basic parameter settings

Let us have a look at basic parameter settings for equation (2). The simplest and least interesting choice
of parameters is σ = 0 and β = 0, i. e. no noise and no delay. In this case, (2) reduces to a one dimensional
ordinary differential equation with two stable solutions, namely −1 and 1, and an instable trivial solution.

The dynamics of the general deterministic delay equation, i. e. σ = 0, β 6= 0, is not obvious for all
combinations β ∈ R, r > 0. In Redmonda et al. (2002) stabilization of the trivial solution and the
corresponding bifurcation points are studied. The parameter region such that the zero solution is stable
is contained in β ≥ 1, r ∈ [0, 1].3 This is not the parameter region we are interested in, here. Recall from
section 1 that stochastic resonance is a phenomenon concerned with an increase of order in the presence
of weak non-zero noise. For large |β| the delay force would be predominant. Similarly, with r small the
noise would not have enough time to influence the dynamics.

Indeed, we must be careful in our choice of β lest we end up with a randomly perturbed deterministic
oscillator. Solutions to equation (2) exhibit periodic behaviour even for β > 0 comparatively small.

If β = 0 and σ > 0, then our SDDE (2) reduces to an ordinary SDE. Of interest is again the case of
small noise. A Brownian particle moving along a solution trajectory spends most of its time fluctuating
near the position of the minimum of one or the other potential well, while interwell transitions only
occasionally occur.

Now, let σ > 0 and |β| be small enough so that the corresponding deterministic system does not exhibit
oscillations. Let us suppose first that β is positive. Then the effect of the delay force should be that of
favouring interwell transitions whenever the Brownian particle is currently in the same potential well it
was in r units of time in the past, while transitions should become less likely whenever the particle is
currently in the well opposite to the one it was in before. Notice that the influence of the delay force
alone is insufficient to trigger interwell transitions. In fact, with σ > 0 not too big, transitions are rare
and a typical solution trajectory will still be found near the position of one or the other minimum of V

with high probability.
Consider what happens if the noise intensity increases. Of course, interwell transitions become more

frequent, while at the same time the intrawell fluctuations increase in strength. But there is an additional
effect: As we let the noise grow stronger interwell transitions occur at time intervals of approximately
the same length, namely at intervals between r and 2r, with high probability. The solution trajectories
exhibit quasi-periodic switching behaviour at a non-zero noise level. This is what we may call an instance
of stochastic resonance.

Further increasing the noise intensity leads to ever growing intrawell fluctuations which eventually
destroy the quasi-periodicity of the interwell transitions. When the noise is too strong, the potential
barrier of V has no substantial impact anymore and random fluctuations easily crossing the barrier are
predominant.

Suppose β is negative. The effect of the delay force, now, is that of pushing the Brownian particle out of
the potential well it is currently in whenever the particle’s current position is on the side of the potential
barrier opposite to the one remembered in the past. Sojourns of duration longer than r, on the other
hand, become prolonged due to the influence of the delay which in this case renders transitions less likely.

In order to obtain some kind of regular transition behaviour a higher noise level as compared to the
case of positive β is necessary. Of course, one could change time scales by increasing the delay time
r, thereby allowing for lower noise intensities. In section 5 we will state more precisely what regular

3Equation (1.3) in Redmonda et al. (2002) is our standard example with V the quartic potential, where −α corresponds
to our parameter β.

10



transition behaviour means in case β < 0, yet we will not subsume it under the heading of stochastic
resonance.

3 The two state model in discrete time

Applying the ideas sketched in section 1, we develop a reduced model with the aim of capturing the
effective dynamics of the reference model. To simplify things further we start with discrete time. As
the segment process associated with the unique solution to (2), the reference model equation, enjoys the
strong Markov property, it is reasonable to approximate the transition behaviour of that solution by a
sequence of Markov chains. One unit of time in the discrete case corresponds to r/M time units in the
original model, where the delay interval [−r, 0] is divided into M ∈ N equally spaced subintervals.

After defining the approximating Markov chains we obtain an explicit formula for their stationary
distributions which will be useful in calculating, for each M ∈ N, the residence time distribution in the
stationary regime and deriving its density function in the limit of discrete time tending to continuous
time. Finally, based on the residence time distributions, we introduce two simple measures of resonance.

The results on Markov chains we need are elementary and can be found, for example, in Brémaud
(1999), which will be our standard reference.

3.1 A sequence of Markov chains and stationary distributions

Let M ∈ N be the discretization degree, that is the number of subintervals of [−r, 0]. The current state of
the process we have to construct can attain only two values, say −1 and 1, corresponding to the positions
of the two minima of the double-well potential V . Now, there are M + 1 lattice points in [−r, 0] that
delimit the M equally spaced subintervals, giving rise to 2M+1 possible states in the enlarged state space.

Let SM := {−1, 1}M+1 denote the state space of the Markov chain with time unit r/M . Elements of
SM will be written as (M+1)-tuples having {−1, 1}-valued entries indexed (from left to right) from −M

to 0. This choice of the index range serves as a mnemonic device to recall how we have discretized the
delay interval [−r, 0]. Thus, l ∈ {−M, . . . , 0} corresponds to the point l · r/M in continuous time.

To embed the discrete into the time continuous model, let α, γ be positive real numbers. If X(.) is the
unique solution to (2) in the case of “interesting” noise parameter σ and delay parameter β, one may think
of α as the escape rate of X(.) from one of the two potential wells under the condition X(t) ≈ X(t− r)
and of γ as the escape rate of X(.) under the condition X(t) ≈ −X(t− r). All of the parameters of the
reference model, including the delay length and the geometry of the potentials U and V , will enter the
discrete model through the transition rates α and γ, cf. section 5.

In the discrete model of degree M , instead of two different transition rates we have two different
transition probabilities αM and γM with αM = Rsc(α, M), γM = Rsc(γ, M), where Rsc is an appropriate
scaling function. In analogy to the time discretization of a Markov process we set

(18) Rsc : {α, γ} × N 3 (η, N) 7→ η
α+γ · (1− e−

α+γ
N ) ∈ (0, 1).

Let Z = (Z(−M), . . . , Z(0)), Z̃ = (Z̃(−M), . . . , Z̃(0)) be elements of SM . A transition from Z to Z̃ shall
have positive probability only if the following shift condition holds:

(19) ∀ l ∈ {−M, . . . ,−1} : Z̃(l) = Z(l+1).

Example. Take the element (−1, 1,−1) ∈ S2. According to the shift condition, starting from (−1,1,−1)
there are at most two transitions with positive probability, namely to the elements (1,−1, 1) and
(1,−1,−1). ♦
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If (19) holds for Z and Z̃ then there are two cases to distinguish which correspond to the conditions
X(t) ≈ X(t− r) and X(t) ≈ −X(t− r), respectively. Denote by pM

ZZ̃
the probability to get from state Z

to state Z̃. Under condition (19) we must have

Z(0) = Z(−M) then pM
ZZ̃

=





αM if Z̃(0) 6= Z(0),

1− αM if Z̃(0) = Z(0),

Z(0) 6= Z(−M) then pM
ZZ̃

=





γM if Z̃(0) 6= Z(0),

1− γM if Z̃(0) = Z(0).

(20)

The fact that – because of (18) – we always have αM , γM ∈ (0, 1), implies

pM
ZZ̃

6= 0 iff shift condition (19) is satisfied.(21)

Set PM := (pM
ZZ̃

)Z,Z̃∈SM
. Clearly, PM is a 2M+1 × 2M+1 transition matrix. For every M ∈ N choose

an SM -valued discrete process (XM
n )n∈N0 on some measurable space (ΩM ,FM ) and probability measures

PM
Z , Z ∈ SM , on FM such that under PM

Z the process XM is a homogeneous Markov chain with transition
matrix PM and initial condition PM

Z (XM
0 = Z) = 1.

If ν is a probability measure on the power set ℘(SM ) then, as usual, let PM
ν denote the probability

measure on FM such that XM is a Markov chain with transition matrix PM and initial distribution ν

with respect to PM
ν . Write Pν instead of PM

ν , when there is no ambiguity about the measure PM .

From relation (21), characterizing the non-zero entries of PM , it follows that PM and the associ-
ated Markov chains are irreducible. They are also aperiodic, because the time of residence in state
(−1, . . . ,−1), for example, has positive probability for any finite number of steps. Since the state space
SM is finite, irreducibility implies positive recurrence, and these two properties together are equiva-
lent to the existence of a uniquely determined stationary distribution on the state space, cf. Brémaud
(1999: pp. 104-105). Therefore, for every M ∈ N, we have a uniquely determined probability measure πM

on ℘(SM ) such that4

(22) πM (Z̃) =
∑

Z∈SM

πM (Z) pM
ZZ̃

for all Z̃ ∈ SM .

There is a simple characterization of the stationary distribution πM in terms of the number of “jumps” of
the elements of SM .5 Let Z = (Z(−M), . . . , Z(0)) be an element of SM , and define the number of jumps
of Z as

J (Z) := #
{

j ∈ {−M+1, . . . , 0} ∣∣ Z(j) 6= Z(j−1)
}

.

The global balance equations (22) then lead to

Proposition 2 (Number of jumps formula). Let M ∈ N. Set α̃M := αM

(1−γM ) , γ̃M := γM

(1−αM ) , η̃M :=
α̃M · γ̃M . Then for all Z ∈ SM the following formula holds

(23) πM (Z) =
1

cM
α̃
bJ (Z)+1

2 c
M γ̃

bJ (Z)
2 c

M =
1

cM
α̃
J (Z) mod 2
M η̃

bJ (Z)
2 c

M ,

where cM := 2 ·
M∑

j=0

(
M
j

)
α̃ j mod 2

M η̃
b j

2 c
M .

4For the probability of a singleton {Z} under a discrete measure ν we just write ν(Z).
5At the moment, “number of changes of sign” would be a label more precise for J (Z), but cf. section 4.
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Proof. The right-hand part of equation (23) is just a rearrangement of the middle part. For Z ∈ SM

define
ψM (Z) := α̃

bJ (Z)+1
2 c

M γ̃
bJ (Z)

2 c
M .

We then have cM =
∑

Z∈SM
ψM (Z), because J (Z) ∈ {0, . . . , M} for every Z ∈ SM , and with j ∈

{0, . . . ,M} there are exactly 2 · (M
j

)
elements in SM having j jumps.

Let Z = (Z(−M), . . . , Z(0)) be an element of SM . Define elements Z̃, Ẑ of SM as

Z̃ :=
(
Z(−1), Z(−M), . . . , Z(−1)

)
, Ẑ :=

(−Z(−1), Z(−M), . . . , Z(−1)
)
.

Because of (20) and (21) the global balance equations (22) reduce to

(24) πM (Z) =





(1− αM ) · πM (Z̃) + (1− γM ) · πM (Ẑ) if Z(−1) = Z(0),

αM · πM (Z̃) + γM · πM (Ẑ) if Z(−1) = −Z(0).

Equations (24) determine πM up to a multiplicative constant. Of course,
∑

Z∈SM
πM (Z) = 1, and we

have already seen that 1
cM

∑
Z∈SM

ψM (Z) = 1. It is therefore sufficient to show that ψM (Z), Z ∈ SM ,
satisfy (24). Let Z, Z̃,Ẑ be elements of SM as above. Then

J (Z̃) =





J (Z) if Z(−M) = Z(0),

J (Z) + 1 if Z(−M) = −Z(−1) = −Z(0),

J (Z)− 1 if Z(−M) = Z(−1) = −Z(0),

J (Ẑ) =





J (Z) if Z(−M) = −Z(0),

J (Z) + 1 if Z(−M) = Z(−1) = Z(0),

J (Z)− 1 if Z(−M) = Z(0) = −Z(−1),

and ψM (Z̃), ψM (Ẑ) can now be calculated. This yields the assertion.

Let cM be the normalizing constant from proposition 2. By splitting up the sum in the binomial formula
we see that

(25) cM =
(
1 +

√
α̃M

γ̃M

)(
1 +

√
η̃M

)M +
(
1−

√
α̃M

γ̃M

)(
1−

√
η̃M

)M
.

3.2 Residence time distributions

Let Y M be the {−1, 1}-valued sequence of current states of XM , that is 6

Y M
n :=





(XM
n )(0) if n ∈ N,

(XM
0 )(n) if n ∈ {−M, . . . , 0}.

Denote by LM (k) the probability to remain exactly k units of time in the same state conditional on the
occurrence of a jump, that is

(26) LM (k) = PπM
(Y M

n = 1, . . . , Y M
n+k−1 = 1, Y M

n+k = −1 | Y M
n−1 = −1, Y M

n = 1), k ∈ N,

where n ∈ N is arbitrary. The above conditional probability is well defined, because

PπM

(
Y M
−1 = −1, Y M

0 = 1
)

= πM

({(∗, . . . , ∗,−1, 1)}) > 0.

6Recall the tuple notation for elements of SM .
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Here, {(∗, . . . , ∗,−1, 1)} denotes the set {Z ∈ SM | Z(−1) = −1, Z(0) = 1}. By symmetry the roles of −1
and 1 in (26) are interchangeable. Under PπM

not only XM is a stationary process, but – as a coordinate
projection – Y M is stationary, too, although it does not, in general, enjoy the Markov property. We note
that LM (k), k ∈ N, gives the residence time distribution of the sequence of current states of XM in the
stationary regime.

Observe that LM (.) has a “geometric tail”. To make this statement precise set

(27) KM := PπM

(
Y M

0 = −1, Y M
1 = 1, . . . , Y M

M = 1
∣∣ Y M

0 = −1, Y M
1 = 1

)
.

In view of the “extended Markov property” of Y M , that is the Markov property of the segment chain
XM , we have

(28) LM (k) = (1− γM ) ·KM · αM · (1− αM )k−M−1, k ≥ M + 1,

where (1− γM ) ·KM is the probability mass of the geometric tail. Stationarity of PπM
implies

KM =
πM

(
(−1, 1, . . . , 1)

)

πM

({(∗, . . . , ∗,−1, 1)}) .

From proposition 2 we see that

πM

(
(−1, 1, . . . , 1)

)
=

α̃M

cM
,

and arranging the elements of {(∗, . . . , ∗,−1, 1)} according to their number of jumps we obtain

πM

({(∗, . . . , ∗,−1, 1)}) =
α̃M

2cM
·
((

1 +
√

γ̃M

α̃M

)(
1 +

√
η̃M

)M−1 +
(
1−

√
γ̃M

α̃M

)(
1−

√
η̃M

)M−1
)
.

We therefore have

(29) KM =
2(

1 +
√

γ̃M

α̃M

)(
1 +

√
η̃M

)M−1 +
(
1−

√
γ̃M

α̃M

)(
1−√η̃M

)M−1
.

In a similar fashion we can calculate LM (k) for k ∈ {1, . . . , M}. We obtain

LM (M) =
PπM

(
Y M

0 = −1, Y M
1 = 1, . . . , Y M

M = 1, Y M
M+1 = −1

)

πM

({(∗, . . . , ∗,−1, 1)}) = γM ·KM ,(30a)

and for k ∈ {1, . . . , M − 1}

LM (k) =
√

γ̃M

2
·KM ·

(√
γ̃M

(
(1 +

√
η̃M )M−1−k + (1−

√
η̃M )M−1−k

)

+
√

α̃M

(
(1 +

√
η̃M )M−1−k − (1−

√
η̃M )M−1−k

))
.

(30b)

More interesting than the residence time distribution in the case of discrete time is to know the behaviour
of this distribution in the limit of discretization degree M tending to infinity.

Recall the definition of scaling function Rsc according to equation (18) for some numbers α, γ > 0. If
αM = Rsc(α,M) and γM = Rsc(γ, M) for all M ∈ N, then – with the usual notation O(.) for the order
of convergence – we have

αM =
α

M
+O(

1
M2

), γM =
γ

M
+O(

1
M2

).(31)

Indeed, if condition (31) holds between the transition probabilities αM , γM , M ∈ N, and some positive
transition rates α, γ, then we can calculate the normalizing constant cM , the “tail constant” KM and the
density function of the residence time distribution in the limit M →∞.
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Proposition 3. Let αM , γM ∈ (0, 1), M ∈ N. Suppose that the sequences (αM )M∈N, (γM )M∈N satisfy
relation (31) for some positive real numbers α, γ. Then cM and KM converge to c∞ and K∞, respectively,
as M →∞, where

c∞ := lim
M→∞

cM =
(
1 +

√
α
γ

)
e
√

αγ +
(
1−

√
α
γ

)
e−
√

αγ = 2 ·
∞∑

k=0

1
k!

αk mod 2 (αγ)b
k
2 c,(32)

K∞ := lim
M→∞

KM =
2(

1 +
√

γ
α

)
e
√

αγ +
(
1−√

γ
α

)
e−
√

αγ
=

√
α√

α cosh(
√

αγ) +
√

γ sinh(
√

αγ)
.(33)

Define a function fL : (0,∞) 7→ R by q 7→ fL(q) := lim
M→∞

M · LM

(bqMc). Then

(34) fL(q) =





√
γ ·K∞ ·

(√
γ cosh

(√
αγ(1− q)

)
+
√

α sinh
(√

αγ(1− q)
))

if q ∈ (0, 1],

K∞ · α · exp
(−α(q − 1)

)
if q > 1.

Proof. If relation (31) holds, then in order to derive (32) and (33) from (25) and (29), respectively, it is
sufficient to observe that (1 + a

N +O( 1
N2 ))N N→∞→ ea for every a ∈ R. The last part of (32) is obtained

by series expansion. Similarly, expression (34) for fL follows from equations (30a), (30b) and (28).

Observe that fL as defined in proposition 3 is indeed the density of a probability measure on (0,∞). In
case α = γ this probability measure is just an exponential distribution with parameter α (= γ). If α 6= γ

then fL has a discontinuity at position 1, where the height of the jump is

(35) fL(1+)− fL(1−) = K∞ · (α− γ).

Clearly, the restrictions of fL to (0, 1] and (1,∞), respectively, are still strictly decreasing functions,
and fL(q), q ∈ (1,∞), is again the density of an exponential distribution, this time with parameter α

(6= γ) and total probability mass K∞. The function fL(q), q ∈ (0, 1), is the density of a mixture of two
“hyperbolic” distributions with the geometric mean √αγ of α and γ as parameter and total probability
mass 1−K∞. The ratio between the hyperbolic cosine and the hyperbolic sine density is √γ to

√
α.

Recall how at the beginning of this section we interpreted the discretization degree M as the number of
subintervals of [−r, 0], where r > 0 is the length of the delay that appears in equation (2). Let us assume
that the numbers α, γ are functions of the parameters of our reference model, in particular of the noise
parameter σ and the length of the delay r. Then we should interpret the density fL as being defined
on normalized time, that is one unit of time corresponds to r units of time in the reference model. The
density of the residence time distribution for the two state model in continuous time should therefore
read

(36) f̃L(t) := 1
r fL

(
t
r

)
, t ∈ (0,∞).

Before we may call f̃L the density of a residence time distribution, we have to justify the passage to the
limit M → ∞ at the level of distributions of the Markov chains XM , which underlie the definition of
LM . We return to this issue in section 4.

3.3 Two measures of resonance

Drawing on the residence time distribution of the Markov chain XM we introduce simple characteristics
that provide us with a notion of quality of tuning for the reduced model in discrete time.
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We consider XM and the resonance characteristics to be defined in the stationary regime only, be-
cause by doing so we can guarantee that an eventual resonance behaviour of the trajectories of XM is
independent of transitory behaviour. We know that PM is a positive recurrent, irreducible and aperiodic
transition matrix and, therefore, the distribution of XM

n converges to πM in total variation as n → ∞
for every initial distribution of X0 (Brémaud, 1999: p. 130). In section 2 we saw an analogous result for
the segment process of a solution to equation (2).

Assume that the transition probabilities αM , γM are related to some transition rates α, γ by means
of a smooth scaling function like (18), for example, such that condition (31) is satisfied. Under this
assumption we let the discretization degree M tend to infinity. Assume further that α, γ are functions
of the parameters of the reference model, in particular, that α = α(σ), γ = γ(σ) are C2-functions of the
noise parameter σ ∈ (0,∞). The resonance characteristics can then be understood as functions of σ.

Recall that the residence time distribution LM has a geometric tail in the sense that LM (k), k ≥ M+1,
renormalized by the factor (1−γM ) ·KM is equivalent to a geometric distribution on N\{1, . . . , M} with
KM as defined by (27). The distribution which LM induces on {1, . . . ,M} is given – up to a renormalizing
factor – by equations (30b) and (30a). A natural characteristic seems to be the jump in the density of the
residence time distribution fL obtained above. In discrete time, i. e. with discretization degree M ∈ N,
we set

(37) υM := M ·(LM (M+1)− LM (M)
)
.

Because of (28), (30a) and (35) we have

υM = M ·KM · ((1− γM ) · αM − γM

)
, υ∞ := lim

M→∞
υM = K∞ · (α− γ).(38)

To consider the height of the discontinuity of fL as a measure of resonance has already been proposed
by Masoller (2003). Following her proposal we define what stochastic resonance means according to the
jump characteristic.

Definition 1. Let M ∈ N ∪ {∞}, and suppose that the following conditions hold:

(i) υM as a function of the noise parameter σ is twice continuously differentiable,

(ii) lim
σ↓0

υM (σ) = 0,

(iii) υ′M has a smallest root σopt ∈ (0,∞).

If υM has a global maximum at σopt, then let us say that the Markov chain XM or, in case M = ∞, the
reduced model defined by the family (XN )N∈N exhibits stochastic resonance and call σopt the resonance
point. If υM has a global minimum at σopt, then let us say that the Markov chain XM (or, in case
M = ∞, the reduced model) exhibits pseudo-resonance and call σopt the pseudo-resonance point.

Alternatively, we may take the probability of transitions in a certain time window as characteristic of the
resonance effect. For M ∈ N and q ∈ (0, 1] define

κ̂M :=
M∑

k=1

LM (k), κ
(q)
M :=

b(q+1)Mc∑

k=M+1

LM (k).(39)

By summation over k we see from (28) that

κ̂M = 1− (1− γM ) ·KM , κ
(q)
M = (1− γM ) ·KM · (1− (1− αM )bqMc),
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and letting M tend to infinity we get

κ̂∞ := lim
M→∞

κ̂M = 1−K∞, κ(q)
∞ := lim

M→∞
κ

(q)
M = K∞ · (1− e−q·α).(40)

Recall that M steps in time of the chain XM or the {−1, 1}-valued process Y M correspond to an amount
of time r in the reference model. Thus, κ̂M corresponds to the probability of remaining at most time r

in one and the same state, while κ
(q)
M approximates the probability of state transitions occuring in a time

window corresponding to (r, (q+1)r] of length q · r given a transition at time zero.
In (39) we could have allowed for a “window width” q > 1. The interesting case, however, is a small

time window, because then κ
(q)
M measures the probability of transitions within the second delay interval.

For q = 1 the two components of our resonance measure correspond to time windows of equal length,
that is κ̂M gives the probability of transitions within the first delay interval, while κ

(1)
M is the probability

of hopping events occurring in the second delay interval. Since LM is geometrically distributed on
N \ {1, . . . , M}, κ

(1)
M majorizes the transition probability for all time windows of the same length starting

after the end of the first delay interval. Let us write κM for κ
(1)
M .

The idea of the following definition is to maximize quasi-periodicity by finding a noise level such that
sojourns in the same state become neither too long nor too short. Here, short sojourns are those that
last less than the length of one delay interval, long sojourns those that last longer than the length of
two delay intervals. Observe that if the current state of XM remains the same for more than M steps in
discrete time, then the influence of the delay will be constant until a transition occurs.

Definition 2. Let M ∈ N ∪ {∞}, and suppose that the following conditions hold:

(i) κM as a function of the noise parameter σ is twice continuously differentiable with values in the
unit interval,

(ii) lim
σ↓0

(κ̂M + κM )(σ) = 0,

(iii) κM has a unique global maximum at σopt ∈ (0,∞).

If κM (σopt) > κ̂M , then let us say that the Markov chain XM or, in case M = ∞, the reduced model
defined by the family (XN )N∈N exhibits stochastic resonance of strength κM (σopt), and call σopt the
resonance point, else let us speak of pseudo-resonance and call σopt the pseudo-resonance point.

In the above definition we might have taken a shorter time window than the second delay interval. A
natural choice would have been the probability of transitions occuring in a time window corresponding
to (r, (1 + q)r] normalized by the window width. In the limit M →∞ we obtain

(41) lim
q↓0

1
q
· κ(q)
∞ = K∞ · α = fL(1+).

Here, fL is the density of the residence time distribution from proposition 3 and fL(1+) is the right-hand
limit appearing in equation (35), which gives the height of the discontinuity of fL.

Of course, definition 2 could be modified in other ways, most importantly by allowing the time window
that corresponds to κM to float. This would be necessary for a distributed delay. Suppose that in the
reference model instead of the point delay we had a delay supported on [−r,−δ] for some δ > 0. Then
a reasonable starting point for a measure of resonance could be a time window of length r with its left
boundary floating from δ to r. Notice that a distributed delay (in the reference or in the reduced model)
can be chosen in such a way as to render continuous the density fL.
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4 The two state model in continuous time

Our aim in this chapter is to justify the passage from time discretization degree M to the limit M →∞
as undertaken in sections 3.2 and 3.3. To this end we will look for a process in continuous time that is the
limit in distribution of the Markov chains XM , M ∈ N, in the stationary regime. We can then consider
the distribution of residence times for this new process and show that it coincides with the limit of the
residence time distributions in discrete time which was calculated in section 3.2. Since the measures of
resonance introduced in section 3.3 were defined over the (discrete) residence time distributions, we may
conclude that in this case, too, the passage to the limit M →∞ is admissible.

For M ∈ N the Markov chain XM takes its values in the finite space SM with cardinality 2M+1.
The first thing to be done, therefore, is to choose a common state space for the Markov chains. This
will be D0 := D{−1,1}([−r, 0]), the space of all {−1, 1}-valued cadlag functions, i. e. right-continuous
functions with left limits, on the interval [−r, 0], endowed with the Skorokhod topology. This simplest of
all Skorokhod spaces is introduced in detail in appendix A.3, while in appendix A.5 we present D∞ :=
D{−1,1}([−r,∞)), the space of all {−1, 1}-valued cadlag functions on the infinite interval [−r,∞).

Recall how in section 3.1 we partitioned the delay interval [−r, 0]. Time step n ∈ {−M,−M +1, . . .}
with respect to the chain XM was said to correspond to point n · r

M in continuous time. Keeping in mind
this correspondence, in section 4.1 we embed the spaces SM , M ∈ N, into D0, which allows us to look
upon the stationary distributions πM as being probability measures on B(D0) and to view the random
sequences XM as being D0-valued Markov chains.

Now, because of shift condition (19) from section 3.1 one may regard XM as being a process with
trajectories in D∞. If the discretization of time is taken into account, then the chain XM induces a
probability measure on B(D∞) for every initial distribution over SM ⊂ D0.

Weak convergence of the stationary distributions or, equivalently, convergence of the πM with respect
to the Prohorov metric induced by the Skorokhod topology on D0 will be established in section 4.2. Weak
convergence of the distributions on B(D∞) is the object of section 4.3.

Finally, in section 4.4, we return to the question of identity between the residence time distribution
for the limit process and the one we obtained above as the limit of discrete distributions.

4.1 Embedding of the discrete-time chains

First we interpret the finite enlarged state space SM as a subset of D0. After that, we change philosophy
and regard a chain XM as being equivalent to a {−1, 1}-valued cadlag process.

The embedding of SM , the state space of the Markov chain XM , into D0 is in a sense the reverse of
what one does when approximating solutions to stochastic delay differential equations by Markov chains
in discrete time.7 Approximation results of this kind were obtained for the multi-dimensional version
of equation (10) by Scheutzow (1983, 1984). The method is more powerful, though, as Lorenz (2003)
shows, where weak convergence of the approximating processes to solutions of multi-dimensional SDDEs
is related to a martingale problem that can be associated with the coefficients of the target equation.

Of course, D0 is a toy space compared to C([−r, 0],Rd). Notice, however, that linear interpolation as
in the case of C([−r, 0],Rd) is excluded, because the only continuous functions in D0 are the two constant
functions −1 and 1.

Let M ∈ N, Z ∈ SM , and associate with Z = (Z(−M), . . . , Z(0)) a function fZ : [−r, 0] → {−1, 1} defined

7Under suitable conditions the approximating time series converge in distribution to the (weakly unique) solution of the
SDDE.
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by

fZ(t) := Z(0) · 1{0}(t) +
−1∑

i=−M

Z(i) · 1[i r
M ,(i+1) r

M )(t), t ∈ [−r, 0].

Clearly, fZ ∈ D0. Hence, ι̃M : Z 7→ fZ defines a natural injection SM ↪→ D0, which induces the following
embedding of probability measures on ℘(SM ) into the set of probability measures on B(D0).

M1
+(SM ) 3 µ 7→ µ̃ :=

∑

Z∈SM

µ(Z) · δfZ
∈M1

+(D0),

where δf is the Dirac or point measure concentrated on f ∈ D0.
Denote by π̃M the probability measure on B(D0) associated with the stationary distribution πM for

the chain XM , and write X̃M for the corresponding D0-valued Markov chain. Since all we have done so
far is a reinterpretation of the state space the results obtained in chapter 3 regarding XM are also valid
for X̃M .

Although the embedding ι̃M given above is natural in view of how the delay interval [−r, 0] should
be partitioned according to section 3.1, it is not the only one possible. Indeed, one could select different
interpolation points in the definition of fZ . As the degree of discretization M increases the complete
Skorokhod distance between the different functions fZ , Z ∈ SM being fixed, tends to zero, and the
convergence results stated in 4.2 and 4.3 still hold true.

Following the notation of appendix A.3, for Z ∈ SM we write

J(Z) := J(fZ), J̇(Z) := J̇(fZ), ζZ := ζfZ
,

thereby denoting the sets of discontinuities or jumps of Z, and the minimal distance between two dis-
continuities. Notice that our new definition of J(Z) agrees with the number of jumps J (Z) defined in
section 3.1 in the sense that #J(Z) = J (Z).

Recall the notation of section 3.1. Let ν be a distribution on ℘(SM ) and denote by PM
ν the probability

measure on FM such that XM is a Markov chain with transition matrix PM and initial distribution
XM

0
d∼ ν. For a “point distribution” on Z ∈ SM write PM

Z .
For f ∈ D0 let Z(f) be the element of SM such that Z(i) = f( r

M ·i) for all i ∈ {−M, . . . , 0}. Let
(Y M

n )n∈{−M,−M+1,...} be the sequence of current states of XM as defined at the beginning of section 3.2.
Write

Ỹ M (t) := Y M
b t

r Mc, t ≥ −r.

For A ∈ B(D∞) set

P̃
M

f (A) := PM
Z(f)

(
Ỹ M ∈ A

)
, P̃M (A) := PM

πM

(
Ỹ M ∈ A

)
,

thereby defining probability measures on B(D∞). Note that P̃
M

f , P̃M are well defined and correspond to

the distribution of XM with XM
0 = Z(f) PM -almost surely and XM

0
d∼ πM , respectively.

4.2 Convergence of the stationary distributions on D0

The aim of this section is to prove that the sequence (π̃M )M∈N of probability measures on B(D0) induced
by the sequence (πM ) of stationary distributions converges weakly to a probability measure π̃. Since
(D0, d

◦
S) is separable, theorem 3 says that weak convergence of (π̃M ) to π̃ is equivalent to convergence

under the Prohorov metric induced by d◦S .
The proof follows the usual strategy for this kind of convergence. First, we check that the closure

of {π̃M | M ∈ N} is compact in M1
+(D0) with respect to the Prohorov topology. Now, (D0, d

◦
S) is also
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complete. According to the Prohorov compactness criterion, cited as theorem 4 in the appendix, it is
therefore sufficient to show that the set {π̃M | M ∈ N} is tight.

For the second step, choose a limit point π̃ ∈ M1
+(D0) of {π̃M | M ∈ N}, which exists according to

the first step. It remains to show that any convergent subsequence of (π̃M ) actually converges to π̃.
Before embarking on the actual proof of convergence we need some technical preparation, which

consists in defining suitable approximation sets and estimating their probability under the measures πM .

Let N ∈ N, Z ∈ SN , and set for M ∈ N \ {1, . . . , N−1}

UN
M (Z) :=

{
Z̃ ∈ SM

∣∣∣ #J̇(Z̃) = #J̇(Z) ∧ (∃λ ∈ Λ : sup
s∈[−r,0]

|λ(s)− s| ≤ r
2N+1 ∧ fZ̃ ◦ λ = fZ

)}
.

For N big enough in comparison to r, UN
M (Z) ⊂ SM is the set of elements Z̃ ∈ SM such that dS(fZ , fZ̃) ≤

r
2N+1 . Furthermore, #J(fZ̃) = #J(fZ) for all Z̃ ∈ UN

M (Z).
Notice that fZ̃ is not necessarily an approximation of fZ with respect to the complete metric d◦S ,

because the slope of λ can be of order N for all admissible time transformations.

Recall from proposition 2 that the probability πM (Z) of an element Z ∈ SM under the stationary
distribution πM depends only on the number of jumps of Z. It will be useful to partition SM into subsets
of elements which have equal number of inner jumps. Set

SM (i) :=
{

Z ∈ SM

∣∣ #J̇(fZ) = i
}

, i ∈ {0, . . . , M−1}.

Clearly, SM = SM (0)∪ . . .∪ SM (M−1) is a pairwise disjoint union. For Z, Z̃ ∈ SM (i) we have |#J(Z)−
#J(Z̃)| ∈ {0, 1}. Notice that we prescribed #J̇(Z) = #J̇(Z̃) instead of #J(Z) = #J(Z̃) in the definition
of SM (i). Elements Z ∈ SM such that fZ jumps at position 0 play a special role, as their accumulated
probability under πM tends to zero as M tends to infinity.

Before establishing this point, we need two lemmata, see appendix B. Lemma 1 estimates the number
of elements of SM (i) and UN

M (Z), respectively. Lemma 2 shows that for M ∈ N large most of the
probability mass of πM is concentrated on elements of SM which have a number of jumps small in
comparison to M .

It is even sufficient to restrict attention to elements of UN
M (Z), where Z ∈ SN is such that the number

of jumps of Z is small in comparison to N which in turn must be small against M . We also see that the
probability of a set UN

M (Z) under πM gives a good approximation of the probability which the “generating”
element Z ∈ SN receives under πN .

If we compare probabilities with respect to probability measures πM for different indices M ∈ N, we
have to assume that an appropriate relation holds between the corresponding transition probabilities αM ,
γM as M varies. We assume scaling relation (31) as in section 3.2, where we considered convergence of
the residence time distributions.

For M ∈ N let π̃M ∈M1
+(D0) be the probability measure which corresponds to the stationary distribution

πM , if we embed SM into D0 as was done in section 4.1.

Proposition 4. Suppose the sequences of transition probabilities (αM )M∈N, (γM )M∈N satisfy relation
(31) for some transition rates α, γ > 0. Then there is a probability measure π̃ on B(D0) such that (π̃M )
converges weakly to π̃ as M tends to infinity.

Proof. Lemma 2 from appendix B.1 must be applied several times yields, see appendix B.2.

For some special sets we can calculate their probability with respect to π̃.
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Proposition 5. Let π̃ be the weak limit of (πM )M∈N according to proposition 4. For i ∈ N0 set

Hi := {f ∈ D0 | #J(f) = #J̇(f) = i}, Ĥi := {f ∈ D0 | #J(f) = #J̇(f)+1 = i+1}.

Then for all i ∈ N0

π̃(Hi) =
2

c∞ · i! · α
b i+1

2 cγ b
i
2 c, π̃(Ĥi) = 0.

Proof. Observe that Hi, Ĥi, i ∈ N0, are disjoint closed subsets of D0, because convergence with respect
to the Skorokhod topology on D0 preserves the number of inner jumps.8 Indeed, Hi, Ĥi, i ∈ N0, are the
connected components of D0, and they are also open sets, because dS(f, g) = 2 for all f, g ∈ D0 such
that f(0) 6= g(0) or #J̇(f) 6= #J̇(g).

The assertion now follows from theorem 3 in appendix A.1, proposition 2, equations (33) and (60) of
proposition 3 and lemma 1 in appendix B.1, respectively, under scaling condition (31).

4.3 Convergence of the chain distributions on D∞

Let the notation be that of section 4.1, let us write D := D{−1,1}([0,∞)), DR := DR([0,∞)) and recall
D0 = D{−1,1}([−r, 0]), D0

R = DR([−r, 0]), D∞ = D{−1,1}([−r,∞)), D∞
R = DR([−r,∞)). All spaces come

with their respective Skorokhod topology, and D ⊂ DR, D0 ⊂ D0
R are closed subsets.

We sketch a proof for weak convergence of the sequence (P̃M ) in M1
+(D∞) applying results from

semimartingale theory as developed in Jacod and Shiryaev (1987).

A semimartingale with values in DR is described in terms of its characteristics, a triplet (B, C, ν), where B

is a truncated predictable process (“drift”), C the quadratic variation process of the continuous martingale
part and ν a random measure, namely the compensator of the jump measure of the semimartingale (Jacod
and Shiryaev, 1987: pp. 75-76).

Any probability measure Q on B(D) gives the distribution of a {−1, 1}-valued jump process. The
characteristics (B, C, ν) of such a process take on a special form. One may choose a continuous truncation
function with support contained in (−2, 2), thereby eliminating the contribution of B. The quadratic
variation process C of the continuous martingale part disappears, because the only continuous functions
in D are the two constant functions −1 and 1. The important characteristic is therefore the compensator
measure ν. If Q corresponds to a {−1, 1}-valued process in discrete time, then the compensator can be
calculated explicitly (Jacod and Shiryaev, 1987: pp. 93-94).

Let M ∈ N, Z ∈ SM and let P̃
M

Z be the corresponding probability measure on B(D∞) as defined in
section 4.1. Recall that P̃

M

Z is the distribution of the {−1, 1}-valued cadlag process (Ỹ M (t))t≥−r induced
by the sequence Y M of current states of XM when time discretization is taken into account. Denote by
(Y (t))t≥−r the canonical process on D∞ and by (Ft)t≥−r the canonical filtration in B(D∞).

Notice that (Y (t))t≥−r under P̃
M

Z is equivalent to the process (Ỹ M (t))t≥−r under PM
Z and that the

jumps of (Y (t))t≥0 under P̃
M

Z are concentrated on { r
M k | k ∈ N}. We can now calculate the compensator

measure ν̃M,Z : D∞× [0,∞)×R→ [0,∞] of (Y (t))t≥0 under P̃
M

Z in terms of the increment process of Y .
Observe that ν̃M,Z is determined by the integral processes (ψ ∗ ν̃M,Z)t≥0, ψ any bounded Borel function.9

Set s(k) := r
M ·k, k ∈ {−M,−M+1, . . .}. According to II.3.11 in Jacod and Shiryaev (1987: p. 94) it holds

8Skorokhod convergence in D∞ does not necessarily preserve the number of jumps.
9See Jacod and Shiryaev (1987: p. 66) for a definition of the integral process w. r. t. a random measure.

21



for all functions ψ, all t ≥ 0, ω̃ ∈ D∞ (all probabilities with respect to P̃
M

Z )

(ψ ∗ ν̃M,Z)t(ω̃) =
b t

r Mc∑

k=1

E
(
ψ

(
Y (s(k))− Y (s(k−1))

) · 1Y (s(k))6=Y (s(k−1))

∣∣ Fs(k−1)

)
(ω̃)

=
b t

r Mc∑

k=1

E
(

. . .
∣∣ σ

(
Y (s(k−M−1)), . . . , Y (s(k−1))

))
(ω̃)

= 1(ω̃(s(−M)),...,ω̃(s(0)))=Z(ω̃) ·
b t

r Mc∑

k=1

ψ(2) · P(
Y (s(k)) = 1

∣∣ Y (s(k−M−1)) = −1, Y (s(k−1)) = −1
) · 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=−1(ω̃)

+ ψ(2) · P(
Y (s(k)) = 1

∣∣ Y (s(k−M−1)) = 1, Y (s(k−1)) = −1
) · 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=−1(ω̃)

+ ψ(−2) · P(
Y (s(k)) = −1

∣∣ Y (s(k−M−1)) = 1, Y (s(k−1)) = 1
) · 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=1(ω̃)

+ ψ(−2) · P(
Y (s(k)) = −1

∣∣ Y (s(k−M−1)) = −1, Y (s(k−1)) = 1
) · 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=1(ω̃)

= 1...(ω̃) ·
b t

r Mc∑

k=1

ψ(2) · (αM · 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=−1(ω̃) + γM · 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=−1(ω̃)
)

+ ψ(−2) · (αM · 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=1(ω̃) + γM · 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=1(ω̃)
)
,

where Bayes’ formula has been applied.

Let f ∈ D0 with f(0) = f(0−), and write Z(f) = Z(f, M) for the element of SM such that fZ(f) = f .
The compensator measure ν̃M,Z(f) then induces a random measure

νM,f : DR × [0,∞)× R→ [0,∞], νM,f (ω) := ν̃M,Z(f)(θf (ω)), where

θf : DR → D∞
R θf (ω)(t) := f(t) · 1[−r,0)(t) + ω(t) · 1[0,∞)(t).

Assume that scaling relation (31) is satisfied for some positive transition rates α, γ. Then for all functions
ψ : R→ R, ω ∈ DR, t ≥ 0 it holds that

lim
M→∞

ψ ∗ νM,f
t (ω) =

∫ t

0

ψ(2) · (α · 1ω̃(s−r)=−1,ω̃(s)=−1(θf (ω)) + γ · 1ω̃(s−r)=1,ω̃(s)=−1(θf (ω))
)
ds

+
∫ t

0

ψ(−2) · (α · 1ω̃(s−r)=1,ω̃(s)=1(θf (ω)) + γ · 1ω̃(s−r)=−1,ω̃(s)=1(θf (ω))
)
ds,

which defines a random measure νf : DR × [0,∞)× R→ [0,∞].

Let µ : DR × [0,∞)× R→ [0,∞] be the jump measure associated to the D-valued process (Y (t))t≥0, cf.
Jacod and Shiryaev (1987: pp. 68-69). We have for all functions ψ : R→ R, ω ∈ DR, t ≥ 0

(ψ ∗ µ)t(ω) =
∑

0<s≤t

1ω(s) 6=ω(s−)(ω) · (ψ(2) · 1ω(s)=1,ω(s−)=−1(ω) + ψ(−2) · 1ω(s)=−1,ω(s−)=1(ω)
)
.

Theorem IX.2.31 in Jacod and Shiryaev (1987: p. 495) guarantees the existence of a probability measure
Qf on B(DR) such that

• Qf
({ω ∈ DR | ω(0) = f(0)}) = 1,

• the canonical process is a semimartingale under Qf with characteristics (0, 0, νf ).
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We notice that Qf (D) = 1. Let us interpret Qf as a probability measure on B(D). According to theorem
II.2.21 in Jacod and Shiryaev (1987: p. 80) the second property implies that

• (ψ ∗ µ− ψ ∗ νf )t≥0 is a local martingale under Qf for every function ψ : R→ R.

Observe that theorem IX.2.31 does not guarantee uniqueness of the probability measure Qf . Here,
however, uniqueness can be established by considering sequences of stopping times τ1, τ2, . . . which exhaust
the jump positions. The above local martingale property must then be applied to show that any two
solution measures to the semimartingale problem coincide on the sets {τn ≤ t} for all t ≥ 0, n ∈ N.
Recall that every element ω ∈ D is determined by its value ω(0) and the positions of its discontinuities.
By the uniqueness theorem of measure theory we see that Qf is uniquely determined.

Let p : D∞ → D be the natural projection. Then theorem IX.3.21 in Jacod and Shiryaev (1987: p. 505)
implies that P̃

M

Z(f,M) ◦ p−1 w→ Qf in M1
+(D). Define a probability measure P̃

f ∈ M1
+(D∞) by P̃

f
:=

Qf ◦ θ−1
f . We have δZ(f,M)

w→ δf in M1
+(D0). In view of Qf ({ω ∈ DR | ω(0) = f(0)}) = 1 we conclude

that P̃
M

Z(f,M)
w→ P̃

f
.

The last step is to show that (P̃M ) converges weakly, that is in place of a deterministic initial condition
f ∈ D0 we have π̃M ∈ M1

+(D0) as initial distribution. Let π̃ be the weak limit of (π̃M ) according to
proposition 4. As a consequence of proposition 5 we have π̃({f ∈ D0 | f(0) = f(0−)}) = 1. Define
P̃ ∈M1

+(D∞) by

P̃(A) :=
∫

D0

P̃
f
(A) dπ̃(f), A ∈ B(D∞).

If f1, . . . , fn ∈ D0 with fi(0) = fi(0−), i ∈ {1, . . . , n}, then any convex combination of the sequences
(P̃

M

Z(f1,M)), . . . , (P̃
M

Z(fn,M)) converges weakly to the corresponding convex combination of the measures

P̃
f1

, . . . , P̃
fn . An approximation argument analoguous to that in the proof of proposition 4 leads to

Proposition 6. Suppose scaling relation (31) holds. Let P̃M , M ∈ N, be defined as in section 4.1,
and let π̃ be the weak limit of (πM )M∈N according to proposition 4. Then there is a probabilty measure
P̃ ∈M1

+(D∞) such that P̃M
w→ P̃.

4.4 Residence times revisited

In section 3.2 we calculated the residence time distribution for the two state model of discretization degree
M for each M ∈ N. We then let M tend to infinity in order to obtain the residence time distribution
and its density function in the “continuous time” limit.

At that stage, however, we had not yet established the existence of a corresponding limit process.
This was done in section 4.3, where we saw that (P̃M ), the sequence of distributions induced by the two
state chains in discrete time, converges weakly to a probability measure P̃ on B(D∞). We are now in a
position to show that any process with distribution P̃ has the same residence time distribution as the one
obtained in section 3.2.

On the probability space (D∞,B(D∞), P̃) a process with distribution P̃ is, of course, given by the
canonical process of coordinate projections pt : D∞ → {−1, 1}, because pt is Borel measurable for all
t ≥ −r, cf. appendix A.4. We continue to work directly on the canonical space. Define a mapping

τ : D∞ → [0,∞], τ(f) := inf{t ≥ 0 | f(t) = −1}.(42)

Then τ is Borel measurable as we have

τ−1[0, t] = p−1
0 {−1} ∪

∞⋂
n=0

n⋃

k=1

p−1
0 {1} ∩ . . . ∩ p−1

k−1
n t
{1} ∩ p−1

k
n t
{−1} for all t ≥ 0,
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where the cadlag property of the elements of D∞ has been exploited. Because of this property the
infimum in (42) is really a minimum provided τ < ∞. We notice that τ is a stopping time with respect
to the natural filtration in B(D∞) and that τ is finite P̃-almost surely.

For each δ ∈ (0, 1) denote by Ãδ the event that in the time interval [−δr, 0] there is exactly one jump,
that jump going from −1 to 1. This means we set

(43) Ãδ :=
{
f ∈ D∞

∣∣ ∃ δ̃ ∈ [0, δ) : f(t) = −1 ∀ t ∈ [−δr,−δ̃r) ∧ f(t) = 1 ∀ t ∈ [−δ̃r, 0]
}
.

Observe that Ãδ ∈ B(D∞) and P̃(Ãδ) > 0 for all δ ∈ (0, 1). The distribution function of τ conditional on
the event of exactly one jump from −1 to 1 “just before” time zero can be approximated by functions of
the form

(44) Fδ(t) := P̃
(
τ ≤ t

∣∣ Ãδ

)
, t ∈ [0,∞),

where δ > 0 must be small. Since τ is P̃-almost surely finite and Ãδ has positive probability under P̃,
the function Fδ indeed determines a probability distribution on [0,∞).

Let f̃L be the residence time distribution density in the limit of discretization degree M tending to infinity
as given by (36). Set

(45) F (t) :=
∫ t

0

f̃L(s)ds, t ∈ [0,∞).

We have to show that Fδ(t) tends to F (t) as δ goes to zero for each t ∈ [0,∞). In (42) and (43), the
definitions of τ and Ãδ, respectively, instead of time zero we could have chosen any starting time t0 ≥ 0,
see appendix B.3, which gives a proof of

Proposition 7. Suppose scaling relation (31) holds. Let the distribution functions Fδ, δ ∈ (0, 1), and F

be defined by (44) and (45), respectively. Then

lim
δ↓0

Fδ(t) = F (t) for all t ∈ [0,∞).

5 Connection between the reduced and the reference model

The aim of this section is to provide a heuristic way of
establishing the missing link between our original model, which is given by equation (2), and the

reduced model developed in section 3. The situation here is quite similar to the one that was studied by
Tsimring and Pikovsky (2001), and we will closely follow their approach in deriving a relation between
the transition rates α, γ and the parameters of the original model.

The main ingredient in finding such a relation is the so-called Kramers rate, which gives an asymptotic
approximation of the time a Brownian particle needs in order to escape from a parabolic potential well
in the presence of white noise only as the noise intensity tends to zero. By means of the Kramers rate
we calculate escape rates from potentials that should mirror the “effective dynamics” of solutions to
equation (2). The resonance characteristics defined in subsection 3.3 can then be written down explicitly
as functions of the noise parameter σ, which allows us to numerically calculate the resonance point and to
compare the optimal noise intensity according to the two state model with the behaviour of the original
model.

Let U be a smooth double well potential with the positions of the two local minima at xleft and xright,
respectively, xleft < xright, the position of the saddle point at xmax ∈ (xleft, xright) and such that
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U(x) →∞ as |x| → ∞. An example for U is the double well potential V from sections 1 and 2. Consider
the SDE

(46) dX(t) = −U ′(X(t)
)
dt + σ · dW (t), t ≥ 0,

where W (.) is a standard one dimensional Wiener process with respect to a probability measure P and
σ > 0 is a noise parameter. Denote by Xx,σ a solution of equation (46) starting in Xx,σ(0) = x, x ∈ R.
With y ∈ R let τy(Xx,σ) be the first time Xx,σ reaches y, that is we set

τy(Xx,σ) := inf{t ≥ 0 | Xx,σ = y}.

As we are interested in the transition behaviour of the diffusion, we need estimates for the distribution
of τy(Xx,σ) when x and y belong to different potential wells.

In the limit of small noise the Freidlin-Wentzell theory of large deviations (Freidlin and Wentzell,
1998) allows to determine the exponential order of τy(Xx,σ) by means of the so-called quasipotential
Q(x, y) associated with the double well potential U . One may think of Q(x, y) as measuring the work a
Brownian particle has to do in order to get from position x to position y. The following transition law
holds.

Theorem 2 (Freidlin-Wentzell). Let Q be the quasipotential associated with U , let x ∈ (−∞, xmax),
y ∈ (xmax, xright]. Set ql := Q(xleft, xmax). Then

lim
σ↓0

σ2 · ln (
EP

(
τy(Xx,σ

))
= ql,(47a)

lim
σ↓0

P
(

exp
(ql − δ

σ2

)
< τy(Xx,σ) < exp

(ql + δ

σ2

))
= 1 for all δ > 0.(47b)

Moreover, Q(xleft, xmax) = 2
(U(xmax)− U(xleft)

)
. If x ∈ (xmax,∞), y ∈ [xleft, xmax) then ql has to be

replaced with qr := Q(xright, xmax).

We notice that in travelling from position x in the left potential well to y ∈ (xmax, xright], a position in
the downhill part of the right well, the transition time in the limit of small noise is determined exclusively
by the way up from position xleft of the left minimum to position xmax of the potential barrier.

A typical path of Xx,σ, if σ > 0 is small, will spend most of its time near the positions of the two
minima of the double well potential. Typically, the diffusion will reach the minimum of the potential well
where it started, before it can cross the potential barrier at xmax and enter the opposite well.

Theorem 2 implies the existence of different time scales for equation (46). On the one hand, there is
the time scale induced by the Wiener process, where one unit of time can be chosen as 1

σ2 , that is the
time it takes the quadratic variation process associated with σW (.) to reach 1. On the other hand, there
is the mean escape time given by (47a), which is proportional to exp

(
2L
σ2

)
, where L > 0 is the height of

the potential barrier. Clearly, with σ > 0 small, the time scale induced by the white noise is negligible in
comparison with the escape time scale.

Moreover, if U(xleft) 6= U(xright), then there are two different heights Ll and Lr for the potential
barrier depending on where the diffusion starts. Suppose, for instance, that Ll < Lr. According to (47b),
waiting a time of order exp

(
2Ll+δ

σ2

)
with 0 < δ < 2(Lr − Ll) one would witness transitions from the left

well to the right well, but no transition in the opposite direction. If the waiting time was of an exponential
order less than exp

(
2Ll

σ2

)
, there would be no interwell transitions at all, where “no transitions” means that

the probability of a transition occurring tends to zero as σ → 0. Thus, by slightly and periodically tilting
a symmetric double well potential quasi-periodic transitions can be enforced provided the tilting period
is of the right exponential order. This is the mechanism underlying stochastic resonance.
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Now, let us suppose that τy(Xx,σ), where x < xmax and y ∈ (xmax, xright], is exponentially distributed
with rate rK > 0 such that

(48) rK ∼ exp
(
−2

(U(xmax)− U(xleft)
)

σ2

)
.

Equations (47a) and (47b) of theorem 2 would be fulfilled. In the physics literature it is generally assumed
that τy(Xx,σ) obeys an exponential distribution with rate rK provided σ > 0 is sufficiently small. This is
known as Kramers’ law, and rK is accordingly called the Kramers rate of the respective potential well.
It is, moreover, assumed that the proportionality factor missing in (48) can be specified as a function of
the curvature of U at the positions of the minimum and the potential barrier, respectively. The Kramers
rate thus reads

(49) rK = rK(σ,U) =

√| U ′′(xleft)U ′′(xmax) |
2π

exp
(
−2| U(xleft)− U(xmax) |

σ2

)
.

Observe that both the assumption of exponentially distributed interwell transition times and formula
(49) for the Kramers rate are empirical approximations, where the noise parameter σ is supposed to be
sufficiently small.

Well known results for one-dimensional diffusions, extended to the multi-dimensional framework in
recent papers by Bovier et al. (2002a,b), show that in the limit of small noise the distribution of the
interwell transition time indeed approaches an exponential distribution with a noise-dependent rate that
asymptotically satisfies relation (48). The order of the approximation error can also be quantified. For
our purposes, however, Kramers’ law and the Kramers rate as given by equation (49) will be good enough.

In subsection 3.1 we introduced the transition rates α, γ as being switching rates in the two state model
conditional on whether or not the current state agrees with the last remembered state. The idea, now, is
to find two “effective” potentials Uα, Uγ such that α is proportional to the Kramers rate describing the
escape time distribution from potential Uα, while γ is proportional to the Kramers rate for potential Uγ ,
where the Kramers rate is given by formula (49). More precisely, we must have

(50) α = α(σ) = r · rK(σ,Uα), γ = γ(σ) = r · rK(σ,Uγ).

Note that the inclusion of the delay time r as a proportionality factor is necessary, because in the
construction of our two state model we took one unit of time as equivalent to the length of the interval
[−r, 0].

There is an important point to be made here. In the discussion of section 3 we assumed that X(t) ≈ 1 or
X(t) ≈ −1. The error of this approximation is of first order in β, and its contribution to the delay force
is proportional to β2 U ′′(1) +O(β3), i. e. of the second order in β. As long as we content ourselves with
an approximation of first order in β, two states corresponding to the positions of the minima around −1
and 1 should be enough in order to model the effective dynamics of the reference equation. If we wanted
to capture the influence of second order terms in the delay force, we would have to build up a model of
four states corresponding to the positions ±xα, ±xγ of the minima of the distorted potential V .10

The problem disappears, of course, if U ′ is constant except on a small symmetric interval (−δ, δ)
around the origin (see Fig. 1 c), for in this case the delay force would not depend on the particular value
of X(t− r) provided |X(t− r)| ≥ δ.

10Cf. also the numerical results in Curtin et al. (2004).
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Let L := V (0)−V (1) be the height of the potential barrier of V . Set ρ := |V ′′(0)V ′′(1)|, η := V ′′′(1) U ′(1)
(V ′′(1))2 ,

η̃ := U ′(1)
L . Neglecting terms of order higher than one, from (49) we obtain

α = α(σ) ≈ r ·
√

ρ (1− η β)
2π

exp
(
−2L (1− η̃ β)

σ2

)
,(51a)

γ = γ(σ) ≈ r ·
√

ρ (1 + η β)
2π

exp
(
−2L (1 + η̃ β)

σ2

)
.(51b)

Recall that the Kramers rate is exact only in the small noise limit. Thus, for the formulae (51a) to
become the actual rates of escape it is necessary that σ tends to zero. If the rates α, γ as functions of
r and σ are to converge to some finite non-zero values, we must have σ → 0 and r → ∞ such that 1

σ2

and ln(r) are of the same order. There remain errors due to the first order approximations of V , V ′′ and
U , which make sense only if V , U are sufficiently regular and the delay parameter β is of small absolute
value.

In subsection 3.3 we defined two measures of resonance, namely the jump height υM of the residence
time distribution density and the probabilities κ̂M , κM of transitions within the first and second delay
interval, respectively.11 Recall that M ∈ N ∪ {∞} is the degree of discretization, where M = ∞ denotes
the limit M →∞. We restrict attention to the case M = ∞, that is to the two state model in continuous
time.

Suppose the transition rates α, γ are functions of the reference model parameters as given by (51a) read
as equalities. In particular, α, γ are functions of the delay length r and the noise parameter σ. Let us
further suppose that the delay parameter β is of small absolute value, r > 0 is big enough so that the
critical parameter region for σ lies within the scope of formula (51a), and that the remaining parameters
are sufficiently nice.

As a consequence of the exponential form the Kramers rate possesses, we notice that

√
αγ = r ·

√
ρ

2π
· 4
√

1− η2β2 exp
(− 2L

σ2

) ≈ r ·
√

ρ

2π
exp

(− 2L
σ2

)
.

In first order of β, the geometric mean √αγ of α, γ coincides with the transition rate arising in case
β = 0, that is when there is no delay. Compare this with proposition 3, which states that the residence
time density f̃L is distributed on the first delay interval according to a mixed hyperbolic sine - cosine
distribution with parameter √αγ.

The conditions of definitions 1 and 2 are satisfied. If β > 0, then the reduced model exhibits stochastic
resonance according to both definitions. According to the jump height measure there is no effect in case
β = 0 and pseudo-resonance in case β < 0, while the time window measure does not distinguish between
β = 0 and β < 0, classifying both cases as pseudo-resonance.

Let us specify the potentials V and U according to the model studied by Tsimring and Pikovsky (2001),
that is V is the standard quartic potential and U a parabola, see Fig. 1. For the constants appearing in
formula (51a) we have

L = 1
4 , ρ = 2, η =

3
2
, η̃ = 4.

With r = 500, β = 0.1, for example, we obtain the resonance point συ ≈ 0.32 according to the jump
height measure, while the time window measure yields σκ ≈ 0.29 with probability κ∞(σκ) ≈ 0.88 for
transitions occurring in the second delay interval.

11The jump height measure corresponds to a measure of resonance proposed by Masoller (2003).
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Assume β is negative. Again, both measures yield an optimal noise level. With β = −0.1 we have
συ ≈ 0.30 as the noise level that maximizes the jump height in f̃L. According to the time window
measure optimal noise level is at σκ ≈ 0.34, but κ∞(σκ) ≈ 0.02, that is sojourns of duration between r

and 2r are rare.
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Figure 2: Graphs on [0, 2] of the density fL of the residence time distribution in normalized time. Parameters of
the original model: r = 500, a) σ = 0.30, β = 0.1, b) σ = 0.30, β = −0.1, c) σ = 0.35, β = −0.1.

There seems to be a discrepancy, now, between the predicted optimal noise level and the level of “most
regular” transition behaviour which one would expect from numerical simulation. This is true especially
with regard to the jump height measure, the pseudo-resonance point συ being too low.

The problem is that the expected residence time at the level of optimal noise in case β < 0 is long
compared with r. In spite of the fact that long residence times are rare, there is a high probability of
finding a solution path remaining in one and the same state for the length of many delay intervals or of
witnessing a quasi-periodic transition behaviour break down.

For example, let σ = 0.30, β = 0.1. The expected residence time is then about 1.16r, while with
σ = 0.30 and β = −0.1 the expected residence time is around 4.62r. More importantly, with β negative
the exponential part of the residence time distribution has a “heavy tail” in the sense that long sojourns
receive a relatively high probability, cf. Fig. 2.

These properties of the residence time distribution support the distinction made in definitions 1 and
2 between stochastic resonance and pseudo-resonance.

6 Conclusions and open questions

The main advantage of the two state model which has been our concern for most of this work is that it
provides a tool for the analysis of the phenomenon of noise-induced resonance in systems with delay.

The reference model introduced in section 2 is a more elaborate system exhibiting stochastic resonance.
Basic features of this model are the extended Markov property and the existence of an invariant probability
measure. Both properties carry over to the two state model.

By first studying the two state model in discrete time we obtained an explicit characterization of its
stationary distribution. It was thus possible to calculate the residence time distribution which in turn
served as starting point for the definition of two simple measures of resonance. The characterization
of the stationary distributions in discrete time together with the passage to the time limit also allows
to calculate measures of resonance different from those considered here, for example the entropy of a
distribution.

In section 5 a heuristic link between the reference and the two state model was outlined. The two
state model seems to reliably mirror those aspects of the reference model that are responsible for the
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phenomenon of stochastic resonance. Observe that we did not show whether the dynamics of the original
model in the limit of small noise is reducible to the two state model nor whether the resonance measures
considered here are indeed robust under model reduction.

There are different ways in which to proceed. The reference model could be modified, for example,
by substituting a distributed delay for the point delay. Clearly, the white noise could be replaced with
noise of different type, and higher dimensional equations may be considered.

Lastly, the passage to continuous time as addressed in section 4 should be a special case of more
general convergence results for continuous time Markov chains with delay.

A Skorokhod spaces and weak convergence

A.1 Weak convergence in separable metric spaces

The results summarized in this section are taken from Ethier and Kurtz (1986: ch. 3 §§ 1-3) and Billingsley
(1999: § 2). Let (S, d) be a separable metric space, and denote by M1

+(S) the set of probability measures
on the Borel-σ-algebra B(S). Define the Prohorov metric ρ by

ρ(P, P̂) := inf
{
ε > 0 | P(G) ≤ P̂(Gε) + ε for all closed G ⊆ S

}
, P, P̂ ∈M1

+(S),

where Gε := {x ∈ S | infy∈G d(x, y) < ε}. Then ρ is indeed a metric, and (M1
+(S), ρ) is a separable

metric space. If, in addition, (S, d) is complete, then (M1
+(S), ρ) is complete, too (Ethier and Kurtz,

1986: p. 101).

Denote by Cb(S) the space of all bounded continuous functions on (S, d), topologized with the supremum
norm. A sequence (Pn)n∈N of probability measures on B(S) is said to converge weakly to a probability
measure P ∈M1

+(S), in symbols Pn
w→ P, iff

∀ f ∈ Cb(S) :
∫

S

f d Pn
n→∞−→

∫

S

f d P .

The next theorem gives different characterizations of weak convergence and states that weak convergence
is equivalent to convergence in the Prohorov metric (Ethier and Kurtz, 1986: p. 108). Recall that we
assume (S, d) to be separable. In an arbitrary metric space convergence under ρ would still imply weak
convergence and its characterizations, but the converse would not necessarily hold.

Let P ∈ M1
+(S). A set A ⊆ S is called a P-continuity set iff A ∈ B(S) and P(∂A) = 0, i. e. A is

Borel-measurable and its boundary is a P-null set.

Theorem 3. Let (Pn)n∈N ⊆M1
+(S), P ∈M1

+(S). The following conditions are equivalent:

(i) lim
n→∞

ρ(Pn, P) = 0,

(ii) Pn
w→ P,

(iii)
∫
S

f d Pn
n→∞−→ ∫

S

f d P for all uniformly continuous functions f ∈ Cb(S),

(iv) lim sup
n→∞

Pn(A) ≤ P(A) for all closed sets A ⊆ S,

(v) lim inf
n→∞

Pn(A) ≥ P(A) for all open sets A ⊆ S,

(vi) lim
n→∞

Pn(A) = P(A) for all P-continuity sets A ⊆ S.
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Useful in proving convergence in M1
+(S) is the Prohorov criterion for compactness, provided the under-

lying metric space is complete (Ethier and Kurtz, 1986: p. 104).

Theorem 4 (Prohorov). Let Γ ⊆ M1
+(S), and suppose that (S, d) is complete. Then the following

conditions are equivalent:

(i) Γ is tight, i. e. ∀ ε > 0 ∃A ⊂ S compact : infP∈Γ P(A) ≥ 1− ε,

(ii) ∀ ε > 0 ∃A ⊂ S compact : infP∈Γ P(Aε) ≥ 1− ε,

(iii) the closure of Γ is compact in the Prohorov topology.

The mapping theorem states that under a measurable map weak convergence carries over to the sequence
of image measures if the set of discontinuities of the mapping is negligible with respect to the original
limit measure (Billingsley, 1999: p. 21).

Theorem 5. Let (Pn)n∈N ⊂M1
+(S), P ∈ M1

+(S). Let (S′, d′) be a second metric space and ξ : S → S′

be a B(S′)-B(S)-measurable map. Denote by Jξ the set of discontinuities of ξ.
If Pn

w→ P and P(Jξ) = 0 then Pn ◦ξ−1 w→ P ◦ξ−1.

A.2 The Skorokhod space D0
R

Here, we gather results and definitions from Billingsley (1999: §§ 12-13) on the nature of D0
R := DR([−r, 0]),

the Skorokhod space of all real valued cadlag functions on the finite interval [−r, 0], i. e. of functions
f : [−r, 0] → R such that

f(t+) := lim
s↓t

f(s) = f(t) for all t ∈ [−r, 0), f(t−) := lim
s↑t

f(s) exists for each t ∈ (−r, 0].

It is possible to define Skorokhod spaces of functions with values in more general spaces than R. In fact,
the theory can be developed for DE([−r, 0]) essentially in the same way as for D0

R as long as E is a Polish
space, i. e. a complete and separable metric space.

Let f be any real valued function on [−r, 0]. Define the modulus of cadlag continuity as

w̃(f, δ) := inf
{

max
i∈{1,...,n}

w(f, [ti−1, ti))
∣∣ n ∈ N, −r = t0 < . . . < tn = 0,

min
i∈{1,...,n}

(ti − ti−1) > δ
}
, δ ∈ (0, r),

(52)

where w(., .) is the modulus of uniform continuity defined as

w(f, I) := sup
s,t∈I

|f(s)− f(t)|, I ⊆ [−r, 0] an interval.(53)

A function f : [−r, 0] → R is in D0
R if and only if limδ↓0 w̃(f, δ) = 0, cf. Billingsley (1999: p. 123).

Denote by Λ := {λ : [−r, 0] → [−r, 0] | λ bijective and strictly increasing} the set of “time transforma-
tions” on [−r, 0]. For all λ ∈ Λ we have λ(−r) = −r, λ(0) = 0, and λ is continuous. On Λ define a
pseudo-norm

‖λ‖Λ := sup
s,t∈[−r,0], s 6=t

∣∣ln
(

λ(t)− λ(s)
t− s

)∣∣, λ ∈ Λ.

Let f , g be elements of D0
R, and define the distances dS , d◦S as

dS(f, g) := inf
{
ε > 0

∣∣ ∃λ ∈ Λ : sup
t∈[−r,0]

|λ(t)− t| ≤ ε ∧ sup
t∈[−r,0]

|f(t)− g(λ(t))| ≤ ε
}
,(54)

d◦S(f, g) := inf
{
ε > 0

∣∣ ∃λ ∈ Λ : ‖λ‖Λ ≤ ε ∧ sup
t∈[−r,0]

|f(t)− g(λ(t))| ≤ ε
}
.(55)
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Both functionals, dS and d◦S , measure the distance between f and g in terms of the supremum norm
‖f − g ◦ λ‖∞. In addition, dS requires that time transformations λ differ as little as possible from the
identy on [−r, 0], while d◦S puts an extra restriction on the slope of the transformations.

The most important difference between dS and d◦S lies in the fact that they give rise to different sets of
Cauchy sequences. Theorem 6 is a summary of Billingsley (1999: pp. 125-129).

Theorem 6. Let dS, d◦S be defined as above. Then D0
R is a separable metric space under dS as well as

under d◦S. Both metrics generate the same topology, called the Skorokhod topology.
Equipped with the Skorokhod topology, D0

R is a Polish space, and d◦S is a complete metric, while D0
R is

not complete under dS.

The example below illustrates why dS does not define a complete metric on D0
R. The sequence to be

constructed is a Cauchy sequence with respect to dS , the only possible limit point of which lies outside
the space of cadlag functions. The same sequence is not Cauchy under d◦S .

Example. Choose t0 ∈ [−r, 0). For n ∈ N big enough set fn := 2 · 1In
− 1, where In := [t0, t0 + 2−n).

Then (fn) ⊂ D0
R is a Cauchy sequence of {−1, 1}-valued functions with respect to the metric dS , and

fn(t) n→∞→ −1 for all t 6= t0, but dS(fn,−1) = 2 for all n ∈ N, and f := 2 · 1{t0} − 1 is no cadlag
function. ♦

The following criterion, which is theorem 12.3 in Billingsley (1999: p. 130), is an analogue of the Arzelà-
Ascoli theorem for compactness in spaces of continuous functions.

Theorem 7. Let A ⊆ D0
R. Then the closure of A is compact in the Skorokhod topology if and only if the

following two conditions hold:

(i) sup
f∈A

sup
t∈[−r,0]

|f(t)| < ∞,

(ii) lim
δ↓0

sup
f∈A

w̃(f, δ) = 0.

A.3 The Skorokhod space D0

There are two equivalent ways of topologizing D0 := D{−1,1}([−r, 0]), the space of all {−1, 1}-valued
cadlag functions on the finite interval [−r, 0]. The first is to define metrics dS , d◦S in analogy to appendix
A.2, where |.− .| should be interpreted as a metric on {−1, 1}. In fact, if (E, d) is a metric space, one can
define the Skorokhod space DE([−r, 0] with its accompanying metrics. If, in addition, (E, d) is complete
and separable, then an analogue of theorem 6 holds.12

The second option is to restrict the metrics dS , d◦S and the Skorokhod topology of D0
R to D0. This

works, because D0 is a closed subset of D0
R with respect to the Skorokhod topology. Theorem 6 now

implies that D0 is a separable metric space under dS , and complete and separable under d◦S , as is the case
for D0

R. Define the moduli of continuity w, w̃ by restriction or in analogy to (52) and (53), respectively.

For f ∈ D0 define J(f), the set of discontinuities or jumps, and ζf , the minimal distance between two
discontinuities or an inner discontinuity and one of the boundary points of [−r, 0], as

J(f) :=
{
t ∈ (−r, 0]

∣∣ f(t) 6= f(t−)
}

,

ζf := min
{|t− s| ∣∣ t, s ∈ J(f) ∪ {−r, 0}},

where f(t−) is the left-hand limit of f at t. Set J̇(f) := J(f)∩ (−r, 0), the set of inner discontinuities of
f . Notice that the only possible discontinuity of f not in J̇(f) is 0, the right boundary of [−r, 0].

12Skorokhod spaces for E-valued functions on the infinite interval [0,∞) are defined in Ethier and Kurtz (1986).
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Proposition 8. Let f ∈ D0, δ ∈ (0, r), and let I ⊆ [−r, 0] be an interval. Then

w(f, I) ∈ {0, 2}, w(f, I) = 0 ⇔ f is constant on the interval I,(56)

#J(f) ∈ N0,(57)

w̃(f, δ) ∈ {0, 2}, w̃(f, δ) = 0 ⇔ ζf > δ.(58)

Proof. Obviously, |f(s) − f(t)| ∈ {0, 2} for all s, t ∈ [−r, 0], and (56) is a consequence of (53), the
definition of w.

If there were an f ∈ D0 with #J(f) = ∞, one could choose a sequence (tn)n∈N ⊂ J(f) such that
tn

n→∞→ t and tn 6= t for all n ∈ N. Since f is a cadlag function, there would be δl, δr > 0 such that f is
constant on the intervals (t− δl, t), (t, t + δr), except if t were a boundary point of [−r, 0], in which case
only one of the constants δl, δr could be chosen appropriately. In any case, tn ∈ (t−δl, t) or tn ∈ (t, t+δr)
for n big enough, a contradiction, because f cannot be constant on an open interval and at the same
time have a discontinuity in it.

Clearly, w̃(f, δ) ∈ {0, 2}. Suppose w̃ = 0. Then there are m ∈ N and a partition −r = t0 < . . . <

tm = 0 such that ti− ti−1 > δ and w(f, [ti−1, ti)) = 0 for all i ∈ {0, . . . , m}. Hence, f is constant on each
interval [ti−1, ti), and the minimal distance between two discontinuities or an inner discontinuity and the
boundary of [−r, 0] is at least min{(ti − ti−1) | i ∈ {0, . . . , m}}.

Conversely, ζf > δ implies w̃(f, δ) = 0, because −r = t0 < . . . < tm = 0 forms a suitable partition of
[−r, 0], if one chooses m = #J̇(f)+1 and takes as t1, . . . , tm−1 the inner discontinuities of f .

Theorem 7, which states necessary and sufficient conditions for compactness in D0
R, takes on a simple

form in the present context.

Proposition 9. Let A ⊆ D0. Then the closure of A is compact in the Skorokhod topology if and only if
inf{ζf | f ∈ A} > 0.

Proof. Condition (i) of theorem 7 is satisfied for any A ⊆ D0. Hence, we must show that condition (ii)
of 7 is equivalent to inff∈A ζf > 0.

Let f ∈ D0, then w̃(f, δ) ∈ {0, 2} for all δ ∈ (0, r). Therefore, limδ↓0 supf∈A w̃(f, δ) = 0 if and only if
there exists δ0 ∈ (0, r) such that for all δ ∈ (0, δ0) and all f ∈ A we have w̃(f, δ) = 0. According to (58)
the latter condition is equivalent to the existence of δ0 ∈ (0, r) such that ζf ≥ δ0 for all f ∈ A, which in
turn is just inff∈A ζf > 0.

Condition inff∈A ζf > 0 implies supf∈A #J(f) < ∞, but the converse implication does not hold, as can
be seen by considering the sequence (fn) defined in the example of appendix A.2.

A.4 The space D∞
R

Denote by D∞
R := DR([−r,∞)) the space of all real valued cadlag functions on the interval [−r,∞).

Observe that a cadlag function on [−r,∞) has at most countably many points of discontinuity (Ethier
and Kurtz, 1986: p. 116). It is possible to define Skorokhod metrics on D∞

R in a way similar to that of
appendix A.2, cf. Ethier and Kurtz (1986: ch. 3 § 5).

There are two noteworthy differences, though, because the interval the elements of D∞
R live on is no

longer bounded to the right. In the definitions which correspond to (54) and (55) one needs a “fading
function” or a “fading series” to guarantee finiteness of the metrics. More importantly, the special role
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which the right boundary plays in (53) and in the definition of the set of time transformations Λ has no
counterpart with D∞

R .

An alternative is provided by Billingsley (1999: § 16), where a connection is established between D∞
R and

Skorokhod spaces over finite intervals. Observe that all definitions and properties of D0
R = DR([−r, 0])

carry over to the space DR([−r, t]) for any t ∈ (−r,∞). Set

θt : D∞
R 3 f 7→ f|[−r,t·r] ∈ DR([−r, t · r]), t > −1.

Let m ∈ N0. Set Dm
R := DR([−r,m · r]). Write dm, d◦m for the corresponding Skorokhod metrics, and

define a function hm and a “continuous restriction” ψm by

hm(t) :=





1 if t ∈ [−r, (m−1)r),

m− t
r if t ∈ [(m−1)r,m · r),

0 if t ≥ m · r,

ψm : D∞
R 3 f 7→ θm(f · hm) ∈ Dm

R .

Define a Skorokhod metric d◦∞ on D∞
R by

(59) d◦∞(f, g) :=
∞∑

m=0

2−m
(
1 ∧ d◦m

(
ψm(f), ψm(g)

))
.

An equivalent (but incomplete) Skorokhod metric d∞ can be defined as in (59) by replacing the metrics
d◦m with dm (Billingsley, 1999: p. 168). Now define a metric on the product of the spaces Dm

R , m ∈ N0,
that is one sets

ΠD :=
∞∏

m=0

Dm
R , d̃◦∞

(
(fm)m∈N0 , (gm)m∈N0

)
:=

∞∑
m=0

2−m
(
1 ∧ d◦m(fm, gm)

)
.

We have the following embedding theorem (Billingsley, 1999: p. 170).

Theorem 8. Define Ψ : D∞
R → ΠD by f 7→ (θm(f · hm))m∈N0 . Then

1. Ψ is an isometry with respect to d◦∞ and d̃◦∞,

2. Ψ(D∞
R ) ⊂ ΠD is closed,

3. (ΠD, d̃◦∞) is a Polish space, and so is (D∞
R , d◦∞).

The natural projection pt : D∞
R 3 f 7→ f(t) ∈ R is Borel-measurable for each t ≥ −r, and pt is continuous

at f ∈ D∞
R if and only if f is continuous at t. The projections generate B(D∞

R ) and form a canonical
process (Billingsley, 1999: p. 172). Notice that the restrictions θt, t > −1, are measurable, too.

The following proposition characterizes convergence in D∞
R in terms of convergence of the restricted

sequences (Billingsley, 1999: p. 169).

Proposition 10. Let fn, n ∈ N, f be elements of D∞
R . Then fn

n→∞→ f w. r. t. d◦∞ if and only if
θt(fn) n→∞→ θt(f) in DR([−r, t · r]) for every continuity point t · r of f .
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A.5 The Skorokhod space D∞

First observe that for any t > −r the space D{−1,1}([−r, t]) of all {−1, 1}-valued cadlag functions on
[−r, t] can be defined in analogy to the space D0.

Denote by D∞ := D{−1,1}([−r,∞)) the set of all {−1, 1}-valued cadlag functions on [−r,∞). Clearly,
D∞ is a subset of D∞

R , but it is also closed with respect to the Skorokhod topology of D∞
R as can be seen

from proposition 10 and appendix A.3. We may therefore restrict the topology of D∞
R and its metrics

d∞, d◦∞, thus topologizing D∞.

B Convergence to continuous time

B.1 Approximating sets in SM

Lemma 1.

∀M ∈ N ∀ i ∈ {0, . . . , M − 1} : #SM (i) = 4 · (M−1
i

)
,(60)

∀N ∈ N ∀Z1, Z2 ∈ SN ∀M ≥ N : Z1 6= Z2 ⇒ UN
M (Z1) ∩UN

M (Z2) = ∅,(61)

∀N ∈ N ∀ i ∈ {0, . . . , b
√

Nc − 1} ∀M ≥ N ∀Z ∈ SN (i) :
(⌊

2M
2N+1

⌋)i

≤ #UN
M (Z) ≤

(⌊
2M

2N+1

⌋
+ 1

)i

.
(62)

Proof. Any element f ∈ ι̃M
(
SM (i)

)
can be described as follows. Choose i out of M−1 possible positions

for the inner discontinuities, and decide on the binary values of f(−r), f(0). This determines f , and (60)
follows.

Let Z1 = (Z(−N)
1 , . . . , Z

(0)
1 ), Z2 = (Z(−N)

2 , . . . , Z
(0)
2 ) be elements of SN . By definition of UN

M (.), for
UN

M (Z1) ∩ UN
M (Z2) 6= ∅ we must have #J̇(Z1) = #J̇(Z2) as well as Z

(−N)
1 = Z

(−N)
2 and Z

(0)
1 = Z

(0)
2 .

Suppose that Z1, Z2 have the same number of inner discontinuities and agree at −N and 0, but still
Z1 6= Z2. Then Z1, Z2 differ in the position of at least one inner discontinuity, that is to say there is s1 ∈
(−r, 0) such that s1 ∈ J(Z1)\J(Z2); by symmetry, there is also s2 ∈ (−r, 0) such that s2 ∈ J(Z2)\J(Z1).
Select such an s2, then |s− s2| ≥ r

N for all s ∈ J(Z1).
Let Z̃1 be an element of UN

M (Z1). Then for any inner discontinuity s ∈ J̇(Z1) there is exactly one
s̃ ∈ J̇(Z̃1) such that |s̃− s| ≤ r

2N+1 , and vice versa. The same holds true for any element Z̃2 of UN
M (Z2)

with respect to Z2. In particular, there is s̃2 ∈ J̇(Z̃2) such that |s̃2 − s2| ≤ r
2N+1 . But s̃2 6∈ J(Z̃1),

because |s̃2 − s̃| ≥ r
N − 2r

2N+1 > 0 for all s̃ ∈ J(Z̃1). Since Z̃1, Z̃2 were arbitrary, this establishes (61).

An element Z̃ ∈ UN
M (Z) is determined by the positions of its #J̇(Z) inner discontinuities, where

{
k · r

M − r | k ∈ {1, . . . , M−1}}

is the set of possible such positions. If s ∈ J̇(Z), then there is k ∈ {1, . . . , N−1} with s = k · r
N − r, and

it exists exactly one s̃ ∈ J̇(Z̃) such that s̃ ∈ [s− r
2N+1 , s+ r

2N+1 ]. Equation (62) is now a consequence of

b 2M
2N+1c ≤ #

({
k · r

M − r
∣∣ k ∈ {1, . . . , M−1}} ∩ [s− r

2N+1 , s + r
2N+1 ]

)
≤ b 2M

2N+1c+ 1,

for all s ∈ {k · r
N − r | k ∈ {1, . . . , N−1}}, and the fact that #J̇(Z) = i for Z ∈ SN (i).
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Lemma 2. Let M , N , N0 be natural numbers such that N0 < N ≤ M , let ε > 0, and define the
expressions ψ1, ψ2 and ψ3 as

ψ1 := πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)
≥ 1− ε,

ψ2 := ∀ i ∈ {0, . . . , N0} ∀Z ∈ SN (i) :
∣∣πM

(
UN

M (Z)
)− πN (Z)

∣∣ ≤ ε

N i
,

ψ3 :=
N−1∑

i=N0+1

πN

(
SN (i)

) ≤ ε.

Suppose that the sequences of transition probabilities (αM )M∈N, (γM )M∈N satisfy relation (31) for some
transition rates α, γ > 0. Then for all ε > 0

∃ Ñ0 ∈ N ∀N0 ≥ Ñ0 ∃ Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ1,(63)

∀N0 ∈ N ∃ Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ2,(64)

∃ Ñ0 ∈ N ∀N0 ≥ Ñ0 ∃ Ñ ∈ N ∀N ≥ Ñ : ψ3.(65)

Finally, it holds that

∀ ε > 0 ∃N0, Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ1 ∧ ψ2 ∧ ψ3.(66)

Proof. Formula (66) follows by “putting together” (63), (64) and (65), where N0 = N0(ε) can be chosen
as the maximum of Ñ0 according to (63) and Ñ0 according to (65), Ñ = Ñ(ε,N0) as the maximum of
the respective variables Ñ , and in the same way for M̃ = M̃(ε,N0, Ñ , N).

The remaining formulae will be established one by one. Let ε > 0, without loss of generality ε < 1.
Recall proposition 2, where the normalizing constant cM for the probability measure πM was defined,
and equation (32) of proposition 3, where we obtained an explicit expression for c∞ = limM→∞ cM . In
analogy to propositions 2 and 3, respectively, we set

cM,M0 := 2 ·
M0∑

k=0

(
M

k

)( αM

1− γM

)k mod 2( αM · γM

(1− αM )(1− γM )

)b k
2 c

, M ∈ N, M0 ∈ {1, . . . , M}.

c∞,M0 := 2 ·
M0∑

k=0

1
k!

αk mod 2 (αγ)b
k
2 c, M0 ∈ N,

Because of relation (31) it holds that ∀ ε̃ ∈ (0, 1) ∀M0 ∈ N ∃ M̃ ∈ N ∀M ≥ M̃ ∀ {0, . . . , M0}:

(67) (1 + ε̃) · (αγ)k ≥

∧ (1 + ε̃)α ≥

∧ 1 ≥

M2k · ( αM ·γM

(1−αM )(1−γM )

)k

M · αM

1−γM

M ·...·(M−2k+1)
M2k ≥ M ·...·(M−2k)

M2k+1

≥ (1− ε̃) · (αγ)k

≥ (1− ε̃)α

≥ 1− ε̃.

In view of the above we have

∀ ε̃ ∈ (0, 1) ∃ M̃0 ∈ N ∀M0 ≥ M̃0 ∃ M̃ ∈ N ∀M ≥ M̃ :

1 ≥ c∞,M0

c∞
≥ 1− ε̃ ∧ M ≥ M0 ∧

∣∣cM,M0

c∞
− 1

∣∣ +
∣∣ c∞
cM,M0

− 1
∣∣ ≤ ε̃.

(68)
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To conclude the preparations, recall that for Z ∈ SM (i), where M ∈ N, i ∈ {0, . . . , M−1}, we have
#J(Z) ∈ {i, i+1}, and that exactly half of the elements of SM (i) has a discontinuity at 0.

Let ε̃ > 0. Choose Ñ0 ∈ N such that c∞,N0
c∞

≥ 1− ε̃ for all N0 ≥ Ñ0. Let N0 ∈ N with N0 ≥ Ñ0 = Ñ0(ε̃).
Choose Ñ ∈ N such that ∀N ≥ Ñ ∀ i ∈ {0, . . . , N0}:

(
2

2N+1

)i ≥ 1−ε̃
Ni and 1

Ni

(
N−1

i

) ≥ 1−ε̃
i! .

Let N ∈ N with N ≥ Ñ = Ñ(ε̃, N0). Choose M̃ such that ∀M ≥ M̃ ∀ i ∈ {0, . . . , N0}:
(b 2M

2N+1c
)i ≥ ( 2M−(2N+1)

2N+1

)i ≥ (1− ε̃)
( 2M−(2N+1)

2N

)i ≥ (1− ε̃)2
(

M
N

)i

∧ c∞
cM

≥ 1− ε̃ ∧ (
M
i

)(
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)b i
2 c ≥ 1−ε̃

i! αi mod 2 (αγ)b
i
2 c,

where (67) has been applied. For N0 ≥ Ñ0(ε̃), N ≥ Ñ(ε̃, N0), M ≥ M̃(ε̃, N0, N) we have

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)
=

N0∑

i=0

( ∑

Z∈SN (i)∧ J(Z)=i

+
∑

Z∈SN (i)∧ J(Z)=i+1

)
πM

(
UN

M (Z)
)

≥ 1
2cM

N0∑

i=0

(
#SN (i)

) (b 2M
2N+1c

)i

((
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)b i
2 c +

(
αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)b i+1
2 c)

as a consequence of proposition 2. According to the choice of N0, N , M and because of (60) it holds that

#SN (i) ≥ 4 · (1− ε̃) · Ni

i! ,
(b 2M

2N+1c
)i ≥ (1− ε̃)2

(
M
N

)i
, c∞

cM
≥ 1− ε̃.

We therefore have

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

≥ 2
c∞

(1− ε̃)4
N0∑

i=0

(
M−1

i

)((
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)b i
2 c +

(
αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)b i+1
2 c)

≥ 2
c∞

(1− ε̃)4
N0∑

i=0

(
M
i

)(
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)b i
2 c

≥ 2
c∞

(1− ε̃)5
N0∑

i=0

1
i! αi mod 2 (αγ)b

i
2 c = (1− ε̃)5 c∞,N0

c∞
≥ (1− ε̃)6 ≥ 1− 6ε̃.

Since ε̃ ∈ (0, 1) was arbitrary, we may set ε̃ := ε
6 , thereby establishing (63).

Let ε̃ > 0, N0 ∈ N. Choose Ñ ∈ N such that ∀N ≥ Ñ ∀ i ∈ {0, . . . , N0+1}:

b
√

Nc ≥ 2N0 + 3 ∧ 1
N ≤ ε̃ ∧ (

2N
2N+1

)i ≥ 1− ε̃ ∧ 1 + ε̃ ≥ c∞
cN

≥ 1− ε̃

∧ 1 + ε̃ ≥ N
α · αN

1−γN
≥ 1− ε̃ ∧ 1 + ε̃ ≥ (

N2

αγ · αN ·γN

(1−αN )(1−γN )

)b i
2 c ≥ 1− ε̃,

which is possible because of (67). Let N ∈ N with N ≥ Ñ = Ñ(ε̃, N0). Choose M̃ such that ∀M ≥
M̃ ∀ i ∈ {0, . . . , N0}:

M ≥ N ∧ (b 2M
2N+1c

)i ≥ (1− ε̃)
( 2M−(N+1)

2N

)i ≥ (1− ε̃)2
(

M
N

)i ∧ (b 2M
2N+1 +1c)i ≤ (1+ ε̃)

(
M
N

)i
.

Let N ≥ Ñ(ε̃, N0), M ≥ M̃(ε̃, N0, N), i ∈ {0, . . . , N0}, Z ∈ SN (i). We have to distinguish two cases. In
each case the first step will be an application of proposition 2.

36



Case 1. #J(Z) = i, that is fZ has no discontinuity at 0. Then

πM

(
UN

M (Z)
)− πN (Z)

= 1
cM

(
#UN

M (Z)
)(

αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)b i
2 c − 1

cN

(
αN

1−γN

)i mod 2( αN ·γN

(1−αN )(1−γN )

)b i
2 c

≥ 1
cM

(b 2M
2N+1c

)i(1− ε̃)2
(

α
M

)i mod 2( αγ
M2

)b i
2 c − 1

cN
(1 + ε̃)2

(
α
N

)i mod 2( αγ
N2

)b i
2 c

≥ 1
c∞

αi mod 2 (αγ)b
i
2 c

(
(1− ε̃)5

(
M
N

)i
M−(i mod 2+2b i

2 c) − (1 + ε̃)3N−(i mod 2+2b i
2 c)

)

= 1
c∞

1
Ni αi mod 2 (αγ)b

i
2 c

(
(1− ε̃)5 − (1 + ε̃)3

)

≥ 1
c∞

1
Ni η(α, γ, N0) (1− 5ε̃− 1− 7ε̃) = − 12

c∞
ε̃

Ni η(α, γ, N0) ≥ − 12
c∞

ε̃
Ni η(α, γ, N0+1),

where η(α, γ, n) := max{αk mod 2 (αγ)b
k
2 c | k ∈ {0, . . . , n}}. On the other hand,

πM

(
UN

M (Z)
)− πN (Z)

≤ 1
cM

(b 2M
2N+1c+ 1

)i(1 + ε̃)2 1
Mi αi mod 2 (αγ)b

i
2 c − 1

cN
(1− ε̃)2 1

Ni αi mod 2 (αγ)b
i
2 c

≤ 1
c∞

1
Ni αi mod 2 (αγ)b

i
2 c

(
(1 + ε̃)4 − (1− ε̃)3

) ≤ 18
c∞

ε̃
Ni η(α, γ,N0+1).

Case 2. #J(Z) = i + 1, that is fZ jumps at 0. Then

πM

(
UN

M (Z)
)− πN (Z)

= 1
cM

(
#UN

M (Z)
)(

αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)b i+1
2 c − 1

cN

(
αN

1−γN

)(i+1) mod 2( αN ·γN

(1−αN )(1−γN )

)b i+1
2 c

≥ 1
c∞

1
Ni α(i+1) mod 2 (αγ)b

i+1
2 c( (1−ε̃)5

M − (1+ε̃)3

N

)

≥ 1
c∞

1
Ni η(α, γ, N0 + 1) 1+7ε̃

N ≥ 8
c∞

ε̃
Ni η(α, γ, N0+1).

In the same way one obtains

πM

(
UN

M (Z)
)− πN (Z) ≤ 16

c∞
ε̃

Ni η(α, γ, N0+1).

Set ε̃ := min{ε, c∞ε
18η(α,γ,N0+1)}, and the proof of (64) is finished.

Let ε̃ > 0. Choose Ñ0 ∈ N according to (68) such that

∀N0 ≥ Ñ0 ∃Ñ ∈ N ∀N ≥ Ñ : 1 + ε̃ ≥ cN

c∞
≥ cN,N0

c∞
≥ 1− ε̃.

Making again use of proposition 2 we have for N0 ≥ Ñ0, N ≥ N̂ = N̂(ε̃, N0)

N−1∑

i=N0+1

πN

(
SN (i)

)

= 2
cN

N−1∑

i=N0+1

(
N−1

i

)((
αN

1−γN

)i mod 2( αN ·γN

(1−αN )(1−γN )

)b i
2 c +

(
αN

1−γN

)(i+1) mod 2( αN ·γN

(1−αN )(1−γN )

)b i+1
2 c)

≤ 1
cN

(cN − cN,N0) = 1− c∞
cN

cN,N0
c∞

≤ ε̃
2 .

This establishes (65).
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B.2 Proof of proposition 4

The first step is to show that the closure of {π̃M | M ∈ N} is compact in the Prohorov topology of
M1

+(D0). According to theorem 4 it is sufficient to prove tightness of {π̃M | M ∈ N}, that is

∀ ε > 0 ∃ K̃ ⊂ D0 compact : inf{π̃M (K̃) | M ∈ N} ≥ 1− ε,

where compactness means compactness with respect to the Skorokhod topology of D0. Recall from section
4.1 the definition of ι̃M . For all natural numbers N0 < N ≤ M we have

π̃M

(
ι̃M

(
UN

M

)) ≥ πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)
, where UN

M :=
⋃

Z∈SN

UN
M (Z).

Let ε > 0. According to (63) we can find natural numbers N0 < N ≤ M̃ such that for all M ≥ M̃ :

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)
≥ 1− ε.

Fix N , M̃ . In analogy to the definition of UN
M we set

Ã :=
⋃

Z∈SN

{
f ∈ D0

∣∣∣ #J̇(f) = #J̇(Z) ∧ (∃λ ∈ Λ : sup
s∈[−r,0]

|λ(s)− s| ≤ r
2N+1 ∧ f ◦ λ = fZ

)}
.

Then #J(f) ≤ N and ζf ≥ 2r
N(2N+1) for all f ∈ Ã, and by lemma 9 we see that cl(Ã), the closure of Ã,

is compact with respect to the Skorokhod topology. By definition we have UN
M ⊂ Ã for all M ≥ M̃ ≥ N .

Define

K̃ :=
M̃−1⋃

M=1

ι̃M (SM ) ∪ cl(Ã).

Then K̃ is compact in the Skorokhod topology, and with M ∈ N it holds that

π̃M (K̃) ≥




π̃M

(
ι̃M (SM )

)
= 1 if M ∈ {1, . . . , M̃ − 1},

π̃M

(
ι̃M (UN

M )
) ≥ 1− ε if M ≥ M̃.

Hence, inf{π̃M (K̃) | M ∈ N} ≥ 1 − ε. Since ε > 0 was arbitrary, we now know that {π̃M | M ∈ N} is
relatively compact.

Let (π̃M(j))j∈N be a weakly convergent subsequence of (π̃M )M∈N. Denote by π̃ the limit of (π̃M(j)) in the
Prohorov topology. We have to check that π̃M

w→ π̃ as M →∞. Because of theorem 3 it is sufficient to
show that ∫

D0

φ dπ̃M
M→∞−→

∫

D0

φ dπ̃ ∀φ ∈ Cb(D0) uniformly continuous.

Let φ be a bounded and uniformly continuous real function on D0 and set Kφ := sup{ |φ(f)| | f ∈ D0}.
With M ∈ N it holds that

∣∣∣∣
∫

φ dπ̃M −
∫

φ dπ̃

∣∣∣∣ ≤
∣∣∣∣
∫

φ dπ̃M −
∫

φ dπ̃M(j)

∣∣∣∣ +
∣∣∣∣
∫

φ dπ̃M(j) −
∫

φ dπ̃

∣∣∣∣ for all j ∈ N.

The convergence π̃M(j)
w→ π̃ implies | ∫ φ dπ̃M(j) −

∫
φ dπ̃| → 0 as j → ∞. We therefore have to show

that

∀ ε > 0 ∀ j0 ∈ N ∃ j ≥ j0 ∃ M̃ ∈ N ∀M ≥ M̃ :
∣∣∣∣
∫

φ dπ̃M −
∫

φ dπ̃M(j)

∣∣∣∣ ≤ ε.

38



Let ε > 0, j0 ∈ N. Choose natural numbers N0 = N0(ε), Ñ = Ñ(ε) according to (66). Choose
δ = δ(ε, φ) > 0 such that |φ(f) − φ(g)| ≤ ε for all f, g ∈ D0 with dS(f, g) ≤ δ. Let j ∈ N be big enough
so that j ≥ j0, M(j) ≥ Ñ and r

2M(j)+1 ≤ δ. Set N := M(j).
Recalling the definition of our approximation sets13 we see that dS(fZ , fZ̃) ≤ δ for all Z ∈ SN (i) and

Z̃ ∈ UN
M (Z) if i ∈ {0, . . . , N0} and M ≥ N . By the choice of δ this implies that |φ(fZ)− φ(fZ̃)| ≤ ε for

all such Z, Z̃.

Finally, choose a natural number M̃ = M̃(ε,N0, Ñ , N) according to (66). Then for M ≥ M̃

∣∣∣∣
∫

φ dπ̃M −
∫

φ dπ̃N

∣∣∣∣

≤ 2Kφ · ε +
N0∑

i=0

∑

Z∈SN (i)

∣∣∣∣φ(fZ) πN (Z) −
∑

Z̃∈UN
M (Z)

φ(fZ̃) πM (Z̃)
∣∣∣∣

≤ 2Kφ · ε +
N0∑

i=0

∑

Z∈SN (i)

∣∣φ(fZ)
∣∣ ·

∣∣∣πM

(
UN

M (Z)
)− πN (Z)

∣∣∣ +
∑

Z̃∈UN
M (Z)

(
φ(fZ̃)− φ(fZ)

)
πM (Z̃)

≤ 2Kφ · ε + ε ·
( N0∑

i=0

∑

Z∈SN (i)

πM

(
UN

M (Z)
))

+ Kφ · ε ·
( N0∑

i=0

N−i
(
#SN (i)

))

≤ 2Kφ · ε + ε · πM

(
SM

)
+ 4Kφ · ε ·

( N0∑

i=0

N−i
(
N−1

i

))

≤ 2Kφ · ε + ε + 4Kφ · ε ·
( ∞∑

i=0

1
i!

)
= (2Kφ + 1 + 4Kφe) · ε.

¤

B.3 Proof of proposition 7

Clearly, Fδ(0) = 0 = F (0) for all δ ∈ (0, 1). With M ∈ N let P̃M be the probability measure on B(D∞)
as defined in section 4.1. Recall that P̃M is the measure induced by the sequence of current states of the
Markov chain XM under PπM

, i. e. in the stationary regime. For δ ∈ (0, 1), M ∈ N set

FM
δ (t) := P̃M

(
τ ≤ t

∣∣ Ãδ

)
, t ∈ [0,∞).

From proposition 6 we know that P̃M
w→ P̃ as M tends to infinity. Check that for δ ∈ (0, 1), t ∈ (0,∞)

the events Ãδ, Ãδ ∩ {τ ≤ t} are P̃-continuity sets of B(D∞). An application of theorem 3 yields

P̃M

(
τ ≤ t | Ãδ

) M→∞−→ P̃
(
τ ≤ t | Ãδ

)
, i. e. FM

δ (t) M→∞−→ Fδ(t) for all δ ∈ (0, 1), t > 0.(69)

For all t > 0, δ ∈ (0, 1), M ∈ N we have

∣∣Fδ(t)− F (t)
∣∣ ≤ ∣∣Fδ(t)− FM

δ (t)
∣∣ +

∣∣FM
δ (t)− F (t)

∣∣.

In view of (69) it is sufficient to show that for each t > 0 and each ε > 0 there are δ0 ∈ (0, 1), M0 ∈ N
such that

(70)
∣∣FM

δ (t)− F (t)
∣∣ ≤ ε for all δ ∈ (0, δ0), M ≥ M0.

13The sets UN
M (Z) were defined at the beginning of section 4.2.
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As in section 3.2, let (Y M
n )n∈{−M,−M+1,...} be the random sequence of current states on (Ω,F) at dis-

cretization degree M ∈ N. Let δ ∈ (0, 1) and let M ∈ N be such that δ ·M ≥ 1. Set

Aj
δ,M :=

{
Y M
−bδMc = −1, . . . , Y M

−j−1 = −1, Y M
−j = 1, . . . , Y M

0 = 1
}
, j ∈ {0, . . . , bδMc−1}.

Notice that Aj
δ,M is an event in F . The corresponding event in B(D∞) is given by

Ãj
δ,M :=

{
f ∈ D∞

∣∣ ∀ l ∈ {j+1, . . . , bδMc} : f
(− l

M r
)

= −1 ∧ ∀ l ∈ {0, . . . , j} : f
(− l

M r
)

= 1
}
.

For all δ ∈ (0, 1) and all M ∈ N such that δ ·M ≥ 1 it holds that

PπM

(
Aj

δ,M

)
= P̃M

(
Ãj

δ,M

)
for all j ∈ {0, . . . , bδMc − 1},

Ãδ = Ã0
δ,M ∪ . . . ∪ Ã

bδMc−1
δ,M P̃M -almost surely.

In analogy to (26), the definition of the residence time distribution LM (.) of discretization degree M , we
set

Lj
δ,M (k) := PπM

(
Y M

0 = 1, . . . , Y M
k−1 = 1, Y M

k = −1
∣∣ Aj

δ,M

)
, k ∈ N.

Then, by construction of FM
δ , for all δ ∈ (0, 1) and all M ∈ N such that δ ·M ≥ 1 we have

FM
δ (t) =

b t
r Mc∑

k=1

bδMc−1∑

j=0

P̃M

(
Ãj

δ,M

∣∣ Ãδ

) · Lj
δ,M (k), t > 0.

It is not necessary to calculate the probabilities P̃M (Ãj
δ,M | Ãδ). Instead, proceeding in a way very much

as in section 3.2, we will estimate limes inferior and limes superior of M ·LjM

δ,M (bqMc) as M tends to
infinity, where q > 0 and (jM ) ⊂ N0 is any sequence such that jM ∈ {0, . . . , bδMc−1} for all M ∈ N.
The estimates will be uniform in δ ∈ (0, δ0] for any small δ0 > 0.

In analogy to (27), the definition of the tail constant KM , we set for δ ∈ (0, 1) and M big enough

Kj
δ,M := PπM

(
Y M
−bδMc = 1, . . . , Y M

−j−1 = 1, Y M
−j = 1, . . . , Y M

M−bδMc = 1
∣∣ Aj

δ,M

)
.

Because of the shift invariance of Y M under PπM
, the above definition of Kj

δ,M is really analogue to that
of KM . Exploiting the stationarity of XM under PπM

, we obtain

Kj
δ,M =

πM

(
(

bδMc−j︷ ︸︸ ︷
−1, . . . ,−1,

M−bδMc+j+1︷ ︸︸ ︷
1, . . . , 1)

)

πM

({(∗, . . . , ∗︸ ︷︷ ︸
M−bδMc

,−1, . . . ,−1︸ ︷︷ ︸
bδMc−j

, 1, . . . , 1︸ ︷︷ ︸
j+1

)}) .

As a consequence of proposition 2, the formula for the stationary distributions πM , we see that Kj
δ,M is

the same for all j ∈ {0, . . . , bδMc−1}. Proceeding as in the derivation of (29) we find that

(71) Kj
δ,M =

2(
1 +

√
γ̃M

α̃M

)(
1 +

√
η̃M

)M−bδMc +
(
1−

√
γ̃M

α̃M

)(
1−√η̃M

)M−bδMc =: Kδ,M .

In order to calculate Lj
δ,M we apply proposition 2 again in a way similar to that of section 3.2. Let

δ ∈ (0, 1), let M ∈M be such that bδMc ≥ 1, and j ∈ {0, . . . , bδMc−1}. Then for k ∈ {1, . . . , M−bδMc}

Lj
δ,M (k) =

√
γ̃M

2
·Kδ,M ·

(√
γ̃M

(
(1 +

√
η̃M )M−bδMc−k + (1−

√
η̃M )M−bδMc−k

)

+
√

α̃M

(
(1 +

√
η̃M )M−bδMc−k − (1−

√
η̃M )M−bδMc−k

))
.

(72a)
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While Lj
δ,M (k) in (72a) does not vary with j as long as k ≤ M−bδMc, for k ∈ {M−bδMc+1, . . . ,M−j}

it holds that

Lj
δ,M (k) = Kδ,M · γM · (1− γM )k−M+bδMc−1,(72b)

and for k ≥ M−j+1 we have

Lj
δ,M (k) = Kδ,M · αM · (1− γM )bδMc−j · (1− αM )k−M+j−1.(72c)

Now, let the discretization degree M tend to infinity, where we assume that scaling relation (31) holds
for some rates α, γ. From (71) we see that

K∞,δ := lim
M→∞

KM,δ =
2(

1 +
√

γ
α

)
e(1−δ)

√
αγ +

(
1−√

γ
α

)
e−(1−δ)

√
αγ

=
√

α√
α cosh

(
(1− δ)

√
αγ

)
+
√

γ sinh
(
(1− δ)

√
αγ

) .

(73)

Let q > 0 and let (jM ) ⊂ N0 be any sequence such that jM ∈ {0, . . . , bδMc−1} for all M ∈ N. If
q ∈ (0, 1−δ], then from (72a) we find that

(74a) lim
M→∞

M · LjM

δ,M

(bqMc) =
√

γ ·Kδ,∞ ·
(√

γ cosh
(√

αγ(1−δ−q)
)

+
√

α sinh
(√

αγ(1−δ−q)
))

.

If q ∈ (1−δ, 1), then a rough estimate of (72b) and (72c), respectively, yields

lim sup
M→∞

M · LjM

δ,M

(bqMc) ≤ max{α, γ} ·Kδ,∞,

lim inf
M→∞

M · LjM

δ,M

(bqMc) ≥ min{α, γ} ·Kδ,∞ · e−δγ · e−(q+δ−1)α.

(74b)

On the other hand, if q ≥ 1, then by (72c) we have

lim sup
M→∞

M · LjM

δ,M

(bqMc) ≤ α ·Kδ,∞ · e−(q−1)α,

lim inf
M→∞

M · LjM

δ,M

(bqMc) ≥ α ·Kδ,∞ · e−δγ · e−(q+δ−1)α.

(74c)

Notice that convergence in (73) as well as in (74) is uniform in δ ∈ (0, δ0] for arbitrary δ0 ∈ (0, 1). If we
let δ tend to zero, we recover the residence time distribution density fL of proposition 3. Taking the time
discretization into account, we obtain f̃L as given by (36) instead of fL.

Given t > 0, ε > 0, uniform convergence of (Lj
δ,M ) in δ and dominated convergence of the correspond-

ing residence time distribution densities over the interval (0, t] imply that we can find δ0 ∈ (0, 1) and
M0 ∈ N such that inequality (70) is fulfilled. The assertion of proposition 7 then follows.

¤

41



References

V. S. Anishchenko, A.B. Neiman, F. Moss, and L. Schimansky-Geier. Stochastic resonance: noise-
enhanced order. Physics – Uspekhi, 42(1):7–36, 1999.

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. The mechanism of stochastic resonance. Journal of
Physics A, 14:453–457, 1981.

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in climatic change. Tellus, 34:
10–16, 1982.

Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, NewYork, 2nd edition,
1999.

A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes I. sharp
asymptotics for capacities and exit times. Technical Report 767, Weierstrass-Institut für angewandte
Analysis und Stochastik (WIAS), 2002a.

A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes II.
precise asymptotics for small eigenvalues. Technical Report 768, Weierstrass-Institut für angewandte
Analysis und Stochastik (WIAS), 2002b.

Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Springer-Verlag,
NewYork, 1999.

D. Curtin, P. Hegarty, S. D. Goulding, J. Houlihan, Th. Busch, C. Masoller, and G. Huyet. Distribution
of residence times in bistable noisy systems with time-delayed feedback. Physical Review E, 70(3):
031103, 2004.

Richard Durrett. Stochastic Calculus. A Practical Introduction. Probability and Stochastics Series. CRC
Press, Boca Raton (FL), 1996.

Stewart N. Ethier and Thomas G. Kurtz. Markov Processes. Characterization and Convergence. John
Wiley & Sons, NewYork, 1986.

M. I. Freidlin and A.D. Wentzell. Random perturbations of dynamical systems, volume 260 of Grundlehren
der mathematischen Wissenschaften. Springer-Verlag, NewYork, 1998.

Luca Gammaitoni, Peter Hänggi, Peter Jung, and Fabio Marchesoni. Stochastic resonance. Reviews of
Modern Physics, 70(1):223–287, 1998.

Samuel Herrmann, Peter Imkeller, and Ilya Pavlyukevich. Stochastic resonance: non-robust and robust
tuning notions. February 2003.

Samuel Herrmann, Peter Imkeller, and Dierk Peithmann. Large deviations for diffusions with time
periodic drift and stochastic resonance. 2005.

J. Houlihan, D. Goulding, Th. Busch, C. Masoller, and G. Huyet. Experimental investigation of a bistable
system in the presence of noise and delay. Physical Review Letters, 92(5):050601, 2004.

Peter Imkeller and Ilya Pavlyukevich. Model reduction and stochastic resonance. Stochastics and Dy-
namics, 2(4):463–506, 2002.

Jean Jacod and Albert N. Shiryaev. Limit Theorems for Stochastic Processes, volume 288 of Grundlehren
der mathematischen Wissenschaften. Springer-Verlag, Berlin - Heidelberg - NewYork, 1987.

Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag,
NewYork, 2nd edition, 1991.

A. Krawiecki and J.A. Holyst. Stochastic resonance as a model for financial market crashes and bubbles.
Physica A, 317(3-4):597–608, 2003.

Robert Lorenz. Weak approximation of stochastic delay differential equations with time series. 2003.

42



Cristina Masoller. Distribution of residence times of time-delayed bistable systems driven by noise.
Physical Review Letters, 90(2):020601, 2003.

B. McNamara and K. Wiesenfeld. Theory of stochastic resonance. Physical Review A, 39(9):4854–4869,
1989.

Salah-Eldin A. Mohammed. Stochastic functional differential equations. Pitman Publishing, London,
1984.

Salah-Eldin A. Mohammed. Stochastic differential systems with memory: Theory, examples and applica-
tions. In L. Decreusefond, Jon Gjerde, B. Øksendal, and A. S. Üstünel, editors, Stochastic Analysis
and Related Topics VI. Papers from the Sixth Oslo-Silivri Workshop on Stochastic Analysis held in
Geilo, Boston, 1996. Birkhäuser.

C. Nicolis. Stochastic aspects of climatic transitions – responses to periodic forcing. Tellus, 34:1–9, 1982.

Toru Ohira and Yuzuru Sato. Resonance with noise and delay. Physical Review Letters, 82:2811–2815,
1999.

Ilya E. Pavlyukevich. Stochastic Resonance. PhD thesis, Humboldt-Universität zu Berlin, 2002.

Brian F. Redmonda, Victor G. LeBlanc, and André Longtin. Bifurcation analysis of a class of first-order
nonlinear delay-differential equations with reflectional symmetry. Physica D, 166:131–146, 2002.

Michael Scheutzow. Qualitatives Verhalten der Lösungen von eindimensionalen nichtlinearen stochas-
tischen Differentialgleichungen mit Gedächtnis. PhD thesis, Fachbereich Mathematik der Universität
Kaiserslautern, 1983.

Michael Scheutzow. Qualitative behaviour of stochastic delay equations with a bounded memory. Sto-
chastics, 12(1):41–80, 1984.

Daniel W. Stroock and S.R. Srinivasa Varadhan. Multidimensional diffusion processes, volume 233 of
Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin - Göttingen - Heidelberg,
1979.

L. S. Tsimring and A. Pikovsky. Noise-induced dynamics in bistable systems with delay. Physical Review
Letters, 87(25):250602, 2001.

43



 

SFB 649 Discussion Paper Series 
 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

001 "Nonparametric Risk Management with Generalized 
Hyperbolic  Distributions" by Ying Chen, Wolfgang Härdle 
and Seok-Oh Jeong, January 2005. 

002 "Selecting Comparables for the Valuation of the European 
Firms" by Ingolf Dittmann and Christian Weiner, February 
2005. 

003 "Competitive Risk Sharing Contracts with One-sided 
Commitment" by Dirk Krueger and Harald Uhlig, February 
2005. 

004 "Value-at-Risk Calculations with Time Varying Copulae" by 
Enzo Giacomini and Wolfgang Härdle, February 2005. 

005 "An Optimal Stopping Problem in a Diffusion-type Model with 
Delay" by Pavel V. Gapeev and Markus Reiß, February 2005. 

006 "Conditional and Dynamic Convex Risk Measures" by Kai 
Detlefsen and Giacomo Scandolo, February 2005. 

007 "Implied Trinomial Trees" by Pavel Čížek and Karel 
Komorád, February 2005. 

008 "Stable Distributions" by Szymon Borak, Wolfgang Härdle 
and Rafal Weron, February 2005. 

009 "Predicting Bankruptcy with Support Vector Machines" by 
Wolfgang Härdle, Rouslan A. Moro and Dorothea Schäfer, 
February 2005. 

010 "Working with the XQC" by Wolfgang Härdle and Heiko 
Lehmann, February 2005. 

011 "FFT Based Option Pricing" by Szymon Borak, Kai Detlefsen 
and Wolfgang Härdle, February 2005. 

012 "Common Functional Implied Volatility Analysis" by Michal 
Benko and Wolfgang Härdle, February 2005. 

013 "Nonparametric Productivity Analysis" by Wolfgang Härdle 
and Seok-Oh Jeong, March 2005. 

014 "Are Eastern European Countries Catching Up? Time Series 
Evidence for Czech Republic, Hungary, and Poland" by Ralf 
Brüggemann and Carsten Trenkler, March 2005. 

015 "Robust Estimation of Dimension Reduction Space" by Pavel 
Čížek and Wolfgang Härdle, March 2005. 

016 "Common Functional Component Modelling" by Alois Kneip 
and Michal Benko, March 2005. 

017 "A Two State Model for Noise-induced Resonance in Bistable 
Systems with Delay" by Markus Fischer and Peter Imkeller, 
March 2005. 

 
SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 
 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 


	Frontpage 017.pdf
	SFB649DP2005-017.pdf
	Kopie von SFB DP Frontpage 017.pdf
	SRdelay.pdf
	Kopie von SFB DP Endpage komplett bis inkl 17.pdf

	Endpage 017.pdf



